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Abstract. The paper discusses discrete frames as an attractive semantics

for modal logic. We study questions of completeness, persistence, duality
and definability. Notions of completeness, strong global completeness and

complexity of dual varieties coincide for discrete frames; moreover, they are

equivalent to conservativity of minimal hybrid extensions. The paper also
provides some criteria of di-persistence and a Goldblatt-Thomason theorem

for discrete frames.

1. Introduction

In this paper, we study discrete general frames, i.e., general frames in which
all singletons are admissible, as a semantics for modal logics. Discrete frames
form a natural and interesting generalization of Kripke frames, and they provide
a rather well behaved semantics for modal logics. For instance, the usual notions
of completeness, strong completeness and strong global completeness coincide for
discrete frames (unlike in the case of Kripke frames or neighbourhood frames).
From an algebraic perspective, discrete frames correspond to atomic and completely
additive algebras (AV-baos).

Not every modal logic is determined by a class discrete frames. In fact, com-
pleteness for discrete frames (“di-completeness”) is a non-trivial property (unlike
completeness with respect to arbitrary or descriptive general frames). Clearly, ev-
ery Kripke frame is in particular a discrete frame, and Kripke completeness implies
di-completeness. If a Kripke incomplete modal logic is di-complete, this shows that
the logic in question is still reasonably well-behaved. In this paper we characterize
the modal logics that are complete for discrete frames.

Besides completeness, we also study persistence with respect to discrete frames
(“di-persistence”). Note that these are independent notions: the van Benthem for-
mula 23> → 2(2(2p→ p)→ p) is di-persistent but axiomatizes a di-incomplete
logic (Lemma 17). The Church-Rosser formula 32p→ 23p, on the other hand, is
Kripke complete and hence di-complete, but it is not di-persistent (Example 33).
We provide several sufficient conditions for di-persistence.

Finally, we also study the duality theory of discrete frames to obtain an analogue
of The Goldblatt-Thomason Theorem (Theorem 32), characterizing the modally
definable classes of these frames.

A note on the terminology: according to some, discrete frames should better
be referred to as atomic frames, and the qualification discrete should be reserved
for frames whose accessibility relation is a discrete order. We acknowledge this
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unfortunate ambiguity. However, the term discrete frames has appeared in the lit-
erature already several times and some of its derivatives, such as di-persistence, have
achieved a certain notoriety. We have therefore decided not to change terminology.

Acknowledgements. The authors wish to thank Valentin Goranko for useful dis-
cussions and the anonymous referee of the first version of this paper for a number of
critical comments. The support by NWO grants number 612.069.006 and 680-50-
0613 is acknowledged. In earlier stages of writing this paper, the second author was
supported by the Jinzai Yosei fund of the Japan Science and Technology Agency.

2. Preliminaries

2.1. Modal logics, general frames, and completeness notions. By a modal
logic, we mean a set of modal formulas Λ containing all propositional tautologies
as well as 2(p → q) → (2p → 2q), that is closed under the rules Modus Ponens
(if φ ∈ Λ and φ → ψ ∈ Λ then ψ ∈ Λ), Necessitation (if φ ∈ Λ then 2φ ∈ Λ)
and Substitution (if φ ∈ Λ then every substitution instance of φ is in Λ). Thus, we
restrict attention to normal modal logics; the adjective normal will be dropped in
what follows. As usual, we write Λ ` φ instead of φ ∈ Λ. A formula φ is called
Λ-consistent if ¬φ 6∈ Λ. We say that φ is a global Λ-consequence of Γ if it can be
derived from Γ by using all formulas in Λ, Modus Ponens and Necessitation—but
not substitution. If φ can be derived without using Necessitation, we say it is a
local Λ-consequence of Γ. Denote 2≤nφ := φ ∧2φ ∧ · · · ∧2nφ. Thus, φ is a global
consequence of Λ iff it is a local consequence of {2≤nγ | γ ∈ Γ}. We say that Γ is
Λ-consistent if ⊥ is not a local Λ-consequence of Γ.

A general frame is a structure of the form 〈W,R,A〉, where R ⊆W ×W , and A
is a family of subsets of W closed under the Boolean operations and the operator
3RX = {w ∈ W | ∃x ∈ X(wRx)}. If A = 2W , we say that the general frame
is a Kripke frame or a relational structure. If for every x 6= y there exists a set
X ∈ A s.t. x ∈ X and y 6∈ X, we say that the frame is differentiated. If for every
x and y s.t. y is not an R-successor of x, there exists X ∈ A s.t. x ∈ 3RX and
y 6∈ X, we say the frame is tight. Frames which are both differentiated and tight are
called refined. Finally, if every family P ⊆ A with the finite intersection property
has non-empty intersection, we say the frame is compact. Frames which are both
refined and compact are called descriptive. As is well-known, a finite general frame
is a Kripke frame iff it is differentiated iff it is descriptive. It will become clear soon
that none of the equivalences holds in in the infinite case.

Given a general frame F = 〈W,R,A〉, an admissible valuation is a function V that
assigns to each proposition letter an element of A. A model is a pair consisting of a
frame and a valuation in it. The satisfaction definition is extended to all formulas
in the standard inductive way. A formula is globally valid in a model if it is satisfied
at every point of the model. A formula φ is valid on a general frame F = (W,R,A),
denoted by F |= φ, if 〈W,R, V 〉, w |= φ for all w ∈ W and for all admissible
valuations V . A formula φ is valid on a class of general frames X , denoted by
X |= φ, if it is valid on each general frame in X . We say that a class of frames
K ⊆ K ′ is a modally definable class of frames in K ′ (or a modal class of frames in
K ′) if there is a set of formulas Λ s.t. K = {F ∈ K ′ | F � Γ}. As for underlying
K ′, we will be interested only in three cases: when K ′ is the class of all general
frames, the class of all Kripke frames or, mostly, the class of all discrete frames (to
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be defined in Section 2.2). We will not mention the underlying class if it is clear
from the context.

A logic Λ is said to be complete with respect to a class of general frames X iff
for each formula ϕ, ϕ ∈ L iff X |= ϕ. If the “only if” direction holds, we say that
Λ is sound with respect to X. It is well known that every modal logic is complete
with respect to some class of general frames. The Sahlqvist Theorem shows that a
large class of modal logics are complete with respect to a class of Kripke frames.
Nevertheless, there are uncountably many Kripke incomplete modal logics (i.e,
modal logics that are not complete with respect to any class of Kripke frames).
In fact, there is a famous theorem known as The Blok Alternative (cf., e.g., [2],
[13]), which states that each logic that is not a union-splitting of the lattice of all
modal logics defines the same class of Kripke frames as uncountably many other,
Kripke incomplete logics. Most well-known logics such as K4, S4 and T are not
union-splittings.

There are other, stronger forms of completeness. A logic Λ is said to be strongly
(locally) complete with respect to a class of general frames X if Λ is sound with
respect to X and for every set of formulas Γ that is Λ-consistent is satisfiable at
some point of a frame from X. Finally, Λ is strongly globally complete with respect
to X if Λ is sound with respect to X and for every set of formulas Γ and formula
α, if α is not a global Λ-consequence of Γ, then there exists a model M based on a
frame in X such that M globally satisfies Γ but does not globally satisfy α.

Lemma 1. Strong global completeness with respect to X implies strong complete-
ness with respect to X, which in turn implies completeness with respect to X.

Proof. The second implication is trivial. That strong global completeness implies
strong completeness may be easily proven in the same way as implication (2) =⇒
(1) in Wolter [25] Theorem 1.4.1. We sketch the proof to make the paper more self-
contained. Assume the set Γ is Λ-consistent. We claim that the set {2≤n(p→ γ) |
γ ∈ Γ, n ∈ ω} ∪ {p} for p which does not appear in Γ is Λ-consistent. To see this,
observe that every finite subset Γ′ ⊆fin Γ is satisfiable in a model 〈F,V〉, where F
is a general frame s.t. F � Λ; otherwise Γ wouldn’t be Λ-consistent. Because of the
assumption that p does not appear in Γ, the valuation V′ defined in the same way
as V with the exception of V′(p) := V(

∧
Γ′) (we may define a valuation this way

because Γ′ is finite) satisfies {2≤n(p → γ) | γ ∈ Γ′, n ∈ ω}. Now, it is enough to
use compactness to prove that ¬p is not a global Λ-consequence of {p→ γ | γ ∈ Γ}.
But then, by strong global completeness, there must be a model based on Λ-frame
from X which verifies all p→ γ globally and refutes ¬p at some point. At any such
point Γ holds. �

For classes of general frames closed under ultraproducts, completeness and strong
completeness coincide. Recall the definition of ultraproducts of general frames
from [8, 21]. A standard compactness argument establishes the following (cf. also
Corollary 1.8.6 in Goldblatt [8]):

Lemma 2. If Λ is complete with respect to a class X of general frames closed under
ultraproducts, then Λ is strongly complete with respect to X.

Moreover, we prove now that for classes of general frames closed under taking
generated subframes, strong completeness implies strong global completeness. Re-
call that a generated subframe of a general frame 〈W,R,A〉 is any frame 〈W ′, R′,A′〉
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with W ′ ⊆ W , R′ = R ∩ (W ′ ×W ′), A′ = {X ∩W ′ | X ∈ A} such that for all
〈w, v〉 ∈ R, if w ∈W ′ then v ∈W ′. A point-generated subframe is a generated sub-
frame of 〈W,R,A〉 whose universe consists exactly of those points in W which are
accessible in finitely many steps from a chosen x ∈W . A class of general frames X
is closed under point-generated subframes if for every F ∈ X and every point x ∈ F,
the subframe of F point-generated by x is in X .

Lemma 3. If Λ is strongly complete with respect to a class X of general frames
closed under point-generated subframes, then Λ is strongly globally complete with
respect to X.

Proof. It can again be extracted from proof of Theorem 1.4.1 in [25]. Assume α
is not a global Λ-consequence of Γ. It is equivalent to Λ-consistency of {2nγ|n ∈
ω, γ ∈ Γ} ∪ {¬α}. Then by strong completeness, this set must be satisfied in
a point x of a frame F ∈ X under a valuation V. But then the subframe of F
point-generated by x validates Λ, and the restriction of V to this subframe satisfies
globally Γ and refutes α at x. �

In general, however, none of the converse implications from Lemma 1 hold. The
well-known logic GL is Kripke complete without being strongly complete for any
class of Kripke frames. The proof of this fact provides us also with an interesting
class of general frames which is not closed under point-generated subframes provides
us with an example that strong completeness does not necessarily imply strong
global completeness. A general frame is complete if for every family of admissible
sets {Ai}i∈I there exists a smallest admissible set containing all Ai’s. It follows from
results of Shehtman [17] that every Kripke-complete extension of K4 is strongly
complete with respect to a class of complete general frames. In particular, GL is
strongly complete with respect to complete frames. But it is not very hard to prove

Proposition 4. GL is not strongly globally complete with respect to complete
frames. Neither is any logic between GL and GL.3 (the logic of well-founded strict
linear orders).

Proof. We will show that {pi → 3pi+1|i ∈ ω} globally implies ¬p0 on all complete
frames of the logic GL, but that ¬p0 is not a global GL-consequence of {pi →
3pi+1|i ∈ ω}.

Suppose for the sake of contradiction there were a complete frame F = 〈W,R,A〉
and an admissible valuation V , such that F |= GL, 〈F, V 〉 globally satisfies {pi →
3pi+1|i ∈ ω} and V (p0) 6= ∅. Let P be the smallest admissible set of which each
V (pi) is a subset (i ∈ ω). By construction, P is non-empty and P ⊆ 3P (note that
V (pi) ⊆ 3P for all i ∈ ω). It follows that we can refute GL on F, which contradicts
the assumption that F |= GL.

In order to see that ¬p0 is not a global GL.3-consequence of {pi → 3pi+1|i ∈ ω},
let F be the (discrete) frame consisting of a copy of natural numbers {0, 1, 2, . . .}
with the usual strict order, followed by a copy of natural numbers with reversed
order {. . . , 2′, 1′, 0′}, where the admissible sets are the finite and cofinite sets. It is
easy to see that F |= GL.3. Now, let V be a valuation with V (pi) = {i} (i.e., the
first copy of i) for all i ∈ ω. Then (F, V ) globally satisfies {pi → 3pi+1|i ∈ ω} and
V (p0) 6= ∅. �
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Proposition 4 strengthens the well-known fact that GL is not canonical: note
that canonicity implies strong (local and global) Kripke completeness. It also in-
dicates that the claim made in [17] that the consequence over transitive complete
frames is of essentially first-order nature (as opposed to second-order nature of con-
sequence over full Kripke frames) requires some qualifications. Local consequence
relation over such frames is indeed well-behaved. But as far as global consequence
is concerned, lattice-completeness of the frames involved seems to give rise to non-
elementary, non-compact behavior. The discrete frames studied in the present
paper are different in this respect, as we will see soon.

2.2. Discrete frames. A discrete frame is a general frame 〈W,R,A〉 which satisfies
the additional condition that {x} ∈ A for each x ∈W . Discrete frames are a natural
generalization of Kripke frames. Many Kripke-incomplete logics are still complete
with respect to a class of discrete frames. This is nicely exemplified by results of
Wolter [26] on the lattice of all tense logics of linear time flows. Within this lattice,
Kripke-incompleteness is a common phenomenon, and yet all logics are di-complete
(i.e., complete with respect to a class of discrete frames). In general, however,
di-completeness is a non-trivial property, as we will see in Section 3.

Note that no infinite general frame can be discrete and descriptive at the same
time for a simple reason: every cofinite subset is admissible in a discrete frame,
but on infinite frames, the family of all cofinite sets has the finite intersection
property but empty intersection. Thus, the intersection of the discrete frames
and the descriptive frames is precisely the class of finite Kripke frames. Still,
every discrete frame is refined. Refinedness therefore forms a natural common
generalization of discreteness and descriptiveness.

Another straightforward observation linking classes of frames introduced before:
the class of Kripke frames is simply the intersection of the class of discrete frames
and the class of complete frames. Assume X is not admissible. By completeness
and discreteness, there is the smallest set X ′ containing all singletons from X.
X must be then a proper subset of X ′ and there is y ∈ X ′ − X. But then by
discreteness again X ′ − {y} is also an admissible set containing all singletons from
X, a contradiction.

As was mentioned, discrete frames appeared several times in the literature, but it
would be hard to provide a detailed historical sketch. One of the earliest references is
perhaps van Benthem [21], though the name itself was not used there. Van Benthem
proved, e.g., that di-persistence, as opposed to d-persistence, does not imply Kripke
completeness. Discrete frames play a crucial role in hybrid logic and in difference
logic, where they have been used in proofs of some general completeness results
(cf. [6, 22]). They were discussed in papers on modal model theory ; cf. Goranko
and Otto [11] for a reference. General frames where all singletons are admissible
turn out to be of importance in the study of atom structures; cf. Venema [23] or
Goldblatt [10] for some interesting results.

2.3. Algebra and duality theory. As is well-known, with every general frame
F = 〈W,R,A〉, we can associate its dual algebra F+ whose universe is A equipped
with standard set-theoretical operations and 3R. This is an example of a BAO — a
boolean algebra with operators. [1] Instead of speaking of satisfiability (refutability)
of formulas in a frame, we may then speak of satisfiability (refutability) in algebra:
valuations in algebra are assigning arbitrary elements of algebra to propositional
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variables. In other words, we identify formulas of modal logics with terms of BAOs.
An algebraic model is a pair consisting of an algebra and a valuation in it. A formula
φ is satisfiable in an algebra if there is a valuation V s.t. V(φ) 6= ⊥. φ is globally
satisfiable if there is a valuation V s.t. V(φ) = >. Finally, φ is validated in a
given algebra if it is globally satisfied by any valuation. The class of all algebras
validating Λ is a variety, i.e., equationally definable class of algebras. We denote
this variety by VΛ.

Definitions of strong completeness and strong global completeness with classes
respect to classes of general frames can be thus directly translated for corresponding
classes of algebras. Lemma 1 holds without any changes. Algebraic perspective,
however, provides us with one more notion of completeness, which turns out to
be the strongest one. Let K be a class of algebras. We say that a variety V
is K-complex if every A ∈ K can be isomorphically embedded into an algebra
from V ∩ K. A logic Λ is strongly globally complete with respect to K if the
corresponding variety VΛ is K-complex. This observation hardly merits the name
of a lemma: by standard algebraic techniques, every logic Λ is strongly globally
complete with respect to VΛ; i.e., φ is not a global Λ-consequence of Γ iff there is
A ∈ VΛ and a valuation in A which globally satisfies Γ while refuting φ. Now embed
A into an algebra from VΛ ∩K.

It is the converse direction which is more interesting. It turns out that a sufficient
condition for the converse implication to hold is the closure of K under direct
products. The proof can again be adopted from Wolter [25]:

Lemma 5. If K is closed under direct products and Λ is strongly globally complete
with respect to K, then the corresponding variety VΛ is K-complex.

Proof. Take any A ∈ VΛ. Assign a new variable pa to every element a of A; let
VA(pa) = a. DiagA is the set of all formulas which are mapped onto > by this
valuation. Now for any a 6= >, pa is obviously not a global Λ-consequence of DiagA,
so there must be Aa ∈ K and a valuation Va in Aa globally satisfying DiagA and
refuting pa. Now take the product of all Aa’s and the product valuation V. It is
left for the reader to verify that f(a) := V(pa) is indeed an embedding. �

Thus, Proposition 4 is a thinly disguised proof that the variety corresponding
to GL (i.e., the variety of diagonalizable or Löb algebras) is not closed under com-
pletions. That is, certain algebras from that variety cannot be embedded into any
lattice-complete algebra from the same variety. The class of complete frames is
just a counterpart of the class of lattice-complete algebras and the latter are closed
under direct products.

Discrete frames have a natural algebraic counterpart, too. From an algebraic
point of view, they correspond to atomic and completely additive atomic Boolean
algebras with operators (AV-BAO’s). Recall that a BAO is atomic if every element
is above an atom, and it is completely additive if 3

∨
s∈S s =

∨
s∈S 3s whenever∨

s∈S s is defined. A simple example of an atomless BAO: the algebra whose carrier
is {{s·t | t ∈ 2ω, s ∈ S} | S ⊆fin 2∗} with the usual set-theoretic Boolean operations
and a trivial modal operator (i.e., the identity operator), where 2∗ (2ω) is the set
of all binary sequences of finite (infinite) length. A simple example of an atomic
BAO that is not completely additive: the algebra of finite and cofinite subsets of
natural numbers, with 3S = ∅ for finite S and 3S = ω for cofinite S. This BAO is
not completely additive, as can be seen by comparing 3

∨
n∈ω{n} to

∨
n∈ω 3{n}.
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It is fairly easy to see that the dual algebra of a discrete frame must always be
atomic and completely additive. The converse direction, i.e, the question how turn
an AV-bao into a discrete frame, will be postponed until Section 5.

2.4. First-order logic, second-order logic and many sorted logic. In this
paper, we will use two correspondence languages. One is standard first-order logic
with one binary relation constant. Another is a very weak form of (monadic)
second-order logic, identified here with many-sorted first-order logic. It does not
even contain the full Comprehension Principle for first-order formulas or Universal
Instantiation as defined in van Benthem [21]. The axioms governing the behaviour
of set variables are simply the same as the axioms governing the behaviour of
first-order variables: ∀X.(φ → ψ) → (∀X.φ → ∀X.ψ) and φ → ∀X.φ, if X does
not appear free in φ. Completeness of this language can be established by the
standard Henkin construction. Ultraproducts of Henkin structures are defined in
the standard way and used to prove compactness. General frames for modal logic
are exactly those Henkin structures which satisfy in addition

∀X∃Y.(∀y.y ∈ Y ↔ y 6∈ X), ∀X,Y.∃Z(∀x.x ∈ Z ↔ x ∈ X&x ∈ Y ),

i.e., closure under boolean connectives and

∀X∃Y.(∀y.y ∈ Y ↔ ∃x.(yRx&x ∈ X)),
that is, closure under modal connectives. Hence, these conditions are defin-

able in our many-sorted language and preserved under ultraproducts. And indeed,
for those Henkin structures which happen to be general frames, the many-sorted
ultraproduct construction coincides with modal ultraproduct of general frames.
Discreteness is definable too (and hence preserved under ultraproducts):

∀x∃Y.(∀y.y ∈ Y ↔ x = y).
Thus, elementarity of a class of general frames means something much more

trivial than elementarity of a class of Kripke frames. The condition of being closed
under ultraproducts of Kripke frames taken as relational structures is far harder
to satisfy than being closed under ultraproducts of Kripke frames taken as general
frames. Let us say that call the weaker notion of elementarity two-sorted elemen-
tarity and sum up this observation as

Proposition 6. Every modally definable class of discrete frames is two-sorted el-
ementary, hence closed under ultraproducts.

Proof. Use the standard translation, and prefix the resulting formula with universal
quantifiers. Recall that discreteness itself is also preserved under ultraproducts. �

2.5. Hybrid logics. While this paper deal with modal logics, we make use of a
number of results from hybrid logic. For this reason, let us briefly survey hy-
brid logic and the results that we need. The minimal hybrid language is ob-
tained by extending the basic modal language with an infinite set of nominals
NOM = {i, j, . . .}. The formulas of this language are generated by the following
recursive definition:

φ ::= > | p | i | ¬φ | φ ∧ ψ | 3φ
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where p is a proposition letter and i is a nominal. It is usually assumed that the set
of nominals NOM , as well as the set of proposition letters PROP , is countable. A
formula will be called pure if it contains no proposition letters.

By a hybrid logic, we mean in this paper a set Λ of formulas of the minimal
hybrid language which contains all propositional tautologies, the axiom 2(p→ q)→
(2p→ 2q), and all instances of the axiom scheme 2≤m(i→ φ)∨2≤m(i→ ¬φ) (for
i ∈ NOM , m ∈ ω and φ a hybrid formula), and is closed under the rules Modus
Ponens, Necessitation, Substitution (i.e., uniformly replacing proposition letters by
formulas and nominals by nominals), as well as the following rule, called COV:

If Λ ` `(¬i) for all i then Λ ` `(⊥),
where ` is an arbitrary necessity form. Here, necessity forms are defined as follows
(cf. Goldblatt [9]): fix an arbitrary symbol # not occurring in the language, and let
the set of necessity forms be the smallest set containing # such that for all necessity
forms `(#) and hybrid formulas φ, (φ→ l(#)) and 2`(#) are also necessity forms.
Given a necessity form `(#) and a formula φ, we will use `(φ) to denote the formula
obtained by replacing the unique occurrence of # in ` by φ.

For a modal logic Λ, we use ΛH to denote its minimal hybrid extension, i.e., the
smallest hybrid logic containing it.

Discrete frames form a very natural semantics for hybrid logic. Valuations of
nominal variables are required to range over singletons. Notions of satisfiability
and completeness can be formulated without any changes and we can prove

Theorem 7 (Di-completeness of hybrid logics). Every hybrid logic is strongly com-
plete for a class of discrete frames. Moreover, assuming PROP and NOM are
countable, the universes of all frames from the class can be assumed to be count-
able.

Proof. See, e.g., [7, 6]. �

This implies a Kripke completeness result for hybrid logics axiomatized by pure
formulas:

Corollary 8 (Kripke completeness of pure hybrid logics). Every hybrid logic axiom-
atized by pure formulas is strongly Kripke complete. Moreover, assuming PROP
and NOM are countable, the universes of all frames from the class can be assumed
to be countable.

Definition 9 (Bisimulation systems). Given a bisimulation Z between frames F
and G, and a subset X of the domain of G, we say that Z respects X if the following
two conditions hold for all x ∈ X:

(1) There exists exactly one w such that wZx.
(2) For all w, v, if wZx and wZv then v = x.

A bisimulation system from F to G is a function Z that assigns to each finite subset
X ⊆ G a total bisimulation Z(X) ⊆ F×G respecting X. G is called the image of
bisimulation system Z.

Definition of a total bisimulation is standard and can be found in, e.g., [18]. That
work gives several analogues of the Goldblatt-Thomason theorem for languages with
nominals. For present purposes, the following result will be important, concerning
definability by means of pure hybrid formulas.
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Theorem 10 (Frame classes definable by pure hybrid formulas [18]). Every class
of frames defined by a set of pure formulas is ∆-elementary. Moreover, a class K
of Kripke frames is defined by a pure formula iff the following hold.

(1) K is elementary,
(2) K is closed under images of bisimulation systems,
(3) For all frames F, if every point-generated subframe of F is a generated

subframe of a frame in K, then F ∈ K.

Note that every modal frame class satisfies the last condition. A typical example
of a modally definable frame class that is not closed under images of bisimulation
systems is the class of confluent frames, defined by 32p→ 23p.

Call a formula di-persistent if its validity is preserved under passage from a
discrete frame to the underlying Kripke frame. We will study di-persistence for
modal formulas in detail in Section 4. In doing so, we will make use of the following
elegant characterization of the di-persistent hybrid formulas.

Theorem 11 (Gargov and Goranko [12]). Every pure hybrid formula is di-persistent.
Conversely, every di-persistent hybrid formula defines the same class of discrete
general frames as a pure hybrid formula.

Proof. The first part of the result is clear. Next, suppose φ is a di-persistent
hybrid formula, and let Σ be the set consisting of all pure instantiations of φ,
i.e., Σ = {φσ | σ is a substitution that maps every proposition letter to a pure
formula}. We will show that Σ defines the same class of discrete general frames as
φ. It follows then by compactness that φ is equivalent on discrete general frames to
a finite conjunction of elements of Σ (here is where we use two-sorted elementarity
of the class of discrete general frames).

Let F be any discrete frame. If F |= φ, then clearly, F |= Σ. Conversely, suppose
F |= Σ. Let G be the smallest discrete frame based on the underlying Kripke frame
of F. More precisely, let V be any valuation for F under which every point in F is
named by a nominal, and let G be the discrete general frame in which the admissible
subsets are precisely those definable under V by means of pure hybrid formulas.
Clearly, G |= φ. By di-persistence, we obtain that φ is valid on the underlying
Kripke frame of G (which is also the underlying Kripke frame of F), and hence,
F |= φ. �

Call a class K of frames singleton-persistent if whenever a discrete frame belongs
to K, all discrete frames built on the same Kripke frame also belong to K. A similar
notion has been introduced by Goldblatt [10] in an algebraic setting. Then, the
following analogue of Theorem 11 holds for classes of discrete frames and sets of
hybrid formulas.

Theorem 12. Let K be any class of discrete frames defined by a set of hybrid
formulas. Then K is singleton-persistent iff K is defined by a set of pure formulas.

Proof. A straightforward adaptation of the proof of Theorem 11. The only differ-
ence in the proof is that compactness is no longer used, since we do not insist on
definability by means of a single formula. �

3. Completeness for discrete frames

Recall that we call a modal logic di-complete if it is complete for some class
of discrete frames. In this section, we study di-(in)completeness in detail. The
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following central result characterizes di-completeness in terms of conservativity of
the minimal hybrid extension.

Theorem 13 (Di-completeness). The following are equivalent for any modal logic
Λ.

(1) Λ is di-complete.
(2) Λ is strongly globally complete for a class of discrete frames. If PROP is

countable, then all frames in the class may furthermore be assumed to be
countable.

(3) The minimal hybrid extension ΛH is conservative over Λ.

Proof. [1 ⇒ 2] If Λ is complete with respect to some class of discrete frames, then
in particular, Λ is complete with respect to the class of discrete frames it defines.
By Proposition 6 and Lemma 2, it follows that Λ is strongly complete for the same
class of discrete frames. Finally, by Lemma 3 Λ is in fact strongly globally complete
with respect to this class.

[2 ⇒ 3] Suppose Λ is strongly complete for a class K of discrete frames. Since
the additional axioms of ΛH are valid on all discrete frames and the inference rules
of ΛH preserve validity on all classes of discrete frames, ΛH is sound with respect
to K, which implies that ΛH is conservative over Λ.

[3 ⇒ 1] Conversely, suppose ΛH is conservative over Λ. By Theorem 7, ΛH is
complete with respect to some class of discrete frames. Hence, so is Λ.

�

This theorem has surprising algebraic implications. Completeness of Λ with
respect to discrete frames means that the corresponding variety is HSP -generated
from its AV-algebras. The class of AV-algebras is closed under direct products.
Hence, by Lemma 5, we obtain the following

Corollary 14. For arbitrary variety V of BAOs, t.f.a.e.
(1) V is HSP -generated from its AV-algebras.
(2) V is AV-complex, i.e., every algebra from V can be isomorphically embedded

into an AV-algebra from V .

In other words, given the class of all AV-algebras from the variety corresponding
to a di-complete logic, it is enough to consider only their subalgebras to obtain all
algebras from this variety, without any help of homomorphic images and products.
As the example of GL above shows, nothing like this holds for dual algebras of
Kripke frames: Kripke completeness does not imply Kripke complexity.

There is an interesting open problem here. Recall that the hybrid logic ΛH ex-
tends the modal logic Λ with an axiom scheme and rule COV forcing di-completeness.

Question 1. Can we find a non-standard rule that would force di-completeness in
the basic modal language?

Despite several promising attempts, we have not been able to find such a rule.
Another open question is the following.

Question 2. Is there a di-incomplete modal logic extending K4?

Having considered the issue of completeness, we should mention a corollary of a
recent result of Venema concerning a strong version of di-incompleteness.
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a0 a1 a2 a3   . . .

c  b

. . .

transitive

Figure 1. The Van Benthem frame F.

Theorem 15 (Venema [24]). There is a consistent bi-modal logic Λ that has no
discrete frames.

We will give a easy proof of this result below (cf. Theorem 19). Note that
this radical form of incompleteness can only occur among multi-modal logics. For
uni-modal frames, the situation is a little better.

Theorem 16 (Makinson [16]). Every consistent uni-modal logic has at least one
discrete frame.

Actually, it can be shown that the so-called Blok Alternative holds for discrete
frames, too. We are not going to pursue this issue here; it is going to be discussed
in [15].

In the remainder of this section, we discuss applications of the above results.
A famous example of a Kripke incomplete logic is the logic vB [20, 5], which is
obtained by extending the basic modal logic K with the axiom 23> → 2(2(2p→
p) → p); if no confusion arises, vB is used to denote this axiom itself. Litak [14]
observed that vB is in fact incomplete with respect to discrete frames:

Lemma 17. The formula 32⊥∨2⊥ is valid on every discrete frame of vB, even
though it does not belong to the logic.

Proof. Assume 32⊥ ∨ 2⊥ fails in a discrete frame F = (W,R,A). Then there is
an x ∈ F s.t. F, x � 3> ∧ 23>. In other words, x has at least one R-successor y
and every R-successor of x (in particular y) has an R-successor.

Consider any admissible valuation V such that V (p) := W \ {y} (note that,
since F is discrete, W \ {y} ∈ A). Then F, y, V � 2(2p → p). For, consider
any R-successor z of y, and suppose F, z, V |= 2p. Then z must be distinct from
y, for otherwise it would follow that F, V, y |= p. Hence, by the definition of V ,
F, z, V |= p.

Since F, y, V 6� p, this shows that F, x, V 6� vB, and hence F 6� vB.
The second part of the statement was proved by van Benthem [20], by means of

the general frame depicted in Figure 1, where the admissible sets are all finite sets
not containing b, and their complements. This general frame (which is not discrete)
is known as the van Benthem frame. �

As an application of our results, we now show that the minimal hybrid extension
of vB is Kripke complete and has the finite model property.

Proposition 18. vBH is Kripke complete and has the finite model property.

Proof. By Lemma 17 and Theorem 7, 32⊥∨2⊥ belongs to vBH . It is also possible
to derive this formula directly; an interested reader may try it as an exercise.
Clearly, 32⊥ ∨ 2⊥ implies 23> → 2(2(2p → p) → p). It follows that vBH

coincides with the minimal hybrid extension of K plus 32⊥ ∨ 2⊥. The latter is
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strongly Kripke complete by Corollary 8 (note that 32⊥ ∨ 2⊥ is pure) and has
finite model property by a straightforward filtration argument. �

By the same construction, we may prove stronger results concerning noncon-
servativity of minimal hybrid extensions. For example, adding an arrow from a1

to c and deleting the arrow from b to a0 in the van Benthem frame allows one to
obtain a Kripke incomplete logic whose minimal hybrid extension is determined by
a single finite frame. Similarly, by expanding the Van Benthem frame with an extra
relation we obtain a simple proof of Theorem 15:

Theorem 19. The bi-modal logic extending vB with the axiom 3′(23> ∧ 3>)
is consistent, but has no discrete frames, and hence has an inconsistent minimal
hybrid extension.

Proof. Consider the Van Benthem frame expanded with the total accessibility re-
lation W ×W . This general frame (which is not discrete) validates the logic under
consideration, thus showing consistency. That the logic has no discrete frames
follows immediately from Lemma 17. �

Incidentally, Proposition 18 contradicts Theorem 6.1 in [6], which states that the
minimal hybrid extension of a uni-modal logic is always conservative. We believe
there is a mistake in the proof of Theorem 6.1 (more precisely in the last sentence
of the proof).

4. Persistence for discrete frames

One of the most fruitful notions in the study of modal logics has been persistence
with respect to descriptive frames (d-persistence), also known as canonicity. Since
we claim that discrete frames provide a natural semantics for modal logics, it seems
sensible to investigate the discrete analogue of canonicity, i.e., di-persistence. In
fact, Conradie et al. [4] argue that, in the context of hybrid logic, di-persistence is
the appropriate notion of canonicity. This seems reasonable in the light of Corol-
lary 8 and Theorem 11. But Theorem 21 below may suggest that the hybrid notion
of canonicity should combine both kinds of persistence.

A first observation on di-persistence is the following.

Theorem 20. Every di-persistent modal formula defines an elementary class of
Kripke frames that is closed under images of bisimulation systems.

Proof. Follows from Theorem 11 and Theorem 10. �

It follows that non-elementary formulas such as 23p→ 32p are not di-persistent,
and similarly for formulas that are not preserved by bisimulation systems, such as
32p → 23p. We do not known, though, whether the converse of Theorem 20
holds:

Question 3. Is every modally definable elementary class of Kripke frames that
is closed under images of bisimulation systems definable by means of di-persistent
modal formulas?

Without non-standard rules di-persistence does not imply Kripke completeness
or even di-completeness. The logic used in Theorem 19 is axiomatized by di-
persistent formulas (the conjunction of its two axioms defines the empty class of
discrete frames, hence is trivially di-persistent) and yet the logic is di-incomplete.
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This is a significant difference with persistence for refined frames or d-persistence.
It is natural then to ask what di-persistent formulas are Kripke-complete. The
answer is provided by the following

Theorem 21. For every modal logic Λ axiomatized by di-persistent formulas, the
following are equivalent:

(1) Λ is complete with respect to a ∆-elementary class of frames.
(2) Λ is canonical, i.e., persistent for descriptive frames.
(3) Λ is Kripke-complete.
(4) The minimal hybrid extension ΛH is conservative over Λ.

Proof. [1⇒ 2] This is the Fine-van Benthem theorem; cf., e.g., [2, Theorem 10.19].
[2 ⇒ 3] Trivial.
[3⇒ 4] Kripke-completeness implies di-completeness, which implies conservativ-

ity by Theorem 13.
[4 ⇒ 1] Suppose ΛH is conservative over Λ. Λ is axiomatized by a set of di-

persistent formulas Γ. By Theorem 11, each γ ∈ Γ is equivalent over the class of
discrete frames to a pure formula γ′. Then Theorem 7 yields ΛH is axiomatized
by a set of pure formulas Γ′ := {γ′ | γ ∈ Γ}. Hence, by Corollary 8, Λ is Kripke-
complete. By Theorem 10, the class of frames for Λ is ∆-elementary (i.e., it is
defined by a set of first-order sentences). �

This is a telling result. It implies that di-persistence, as an intermediate step for
proving Kripke completeness, does not offer any more generality than canonicity.
For, if a logic can be proven to be Kripke complete via di-persistence, then it could
also have been proven Kripke complete via d-persistence.

This does not mean that di-persistence is a useless notion. It becomes useful
in the context of axiomatizations of extended modal languages that come with a
general completeness result for di-persistent formulas (in particular, this holds for
hybrid logics).

Let us note here that if Theorem 11 is replaced by Theorem 12 in the proof
of Theorem 21, we obtain the following characterization of logics determined by
singleton-persistent classes of discrete frames:

Corollary 22. Every modal logic Λ determined by a singleton-persistent class of
discrete frames is determined by a ∆-elementary class of Kripke frames, hence
canonical.

Venema [23] and Goldblatt [10] offer alternative proofs that the class of Kripke
frames for Λ satisfying the assumptions of the above corollary must be ∆-elementary.

There is a natural common generalization of d-persistence and di-persistence,
namely persistence for refined frames (r-persistence). Since discrete frames and
descriptive frames are both refined, r-persistence implies both di-persistence and
canonicity. Note that the converse does not hold: the density formula 3p→ 33p
is canonical and di-persistent but not r-persistent [1, Example 5.87].

Let us consider some syntactic criteria for di-persistent and r-persistence. The
first one was found by Venema [22]. Let a very simple Sahlqvist formula be a
formula of the form φ→ ψ, where ψ is positive (i.e., every proposition letter occurs
under an even number of negation symbols) and φ is built up from proposition
letters using conjunction and 3’s.
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Theorem 23 (Venema [22]). Every very simple Sahlqvist formula is di-persistent
(and canonical).

Venema also showed that, in the absence of tense operators, not every Sahlqvist
formula is di-persistent. It will also follow from our Example 33.

A reasonably large class of r-persistent formulas can be obtained by restricting
the modal depth at which proposition letters may occur inside a formula. Call a
formula shallow if every occurrence of a proposition letter is under the scope of at
most one modal operator. Then we have the following.

Theorem 24. Every shallow formula is r-persistent (hence canonical and di-persistent).

Proof. The proof proceeds by contraposition. Let F be a refined general frame, G
its underlying Kripke frame and suppose G, V, w 6|= φ, where φ is a shallow modal
formula, V a valuation in G not necessarily admissible in F and and w a world.
We will construct an admissible valuation V ′ such that F, V ′, w 6|= φ, thus showing
that F 6|= φ.

Let χ1, . . . , χn be the variable-free subformulas of φ and let p1, . . . , pm be the
proposition letters occurring in φ. In what follows, σ will be always a metavariable
ranging over all complete elementary conjunctions of χ1, . . . , χn, i.e., types of the
form (¬)χ1 ∧ · · · ∧ (¬)χn, and τ will be always a metavariable ranging over all
complete elementary conjunctions of p1, . . . , pm. We may in fact assume that φ is a
Boolean combination of formulas of the form σ∧τ or 3(σ∧τ). Here is exactly where
we used the assumption of shallowness. Let Wσ, Wτ and Wστ denote the subsets
of the domain of F defined by σ, τ and σ ∧ τ , respectively, under the valuation V .

Fix any σ, and consider the set Wσ. Since σ is a variable-free formula, Wσ

is admissible. The proposition letters p1, . . . , pm partition Wσ into 2m disjoint
(possibly empty and not necessarily admissible) subsets Wστ (recall that τ ranges
over complete elementary conjunctions of p1, . . . , pm). We will construct admissible
setsW ′στ (for all τ) that form a partition ofWσ, such that the following requirements
hold for all τ :

(1.) W ′στ contains w iff Wστ does
(2.) W ′στ contains a successor of w iff Wστ does.

Using these new partitions for all the σ’s, one can then define an admissible valua-
tion V ′: for each proposition letter pk (k ≤ m), V ′(pk) is the union of all W ′στ with
τ |= pk. By construction, V ′ is an admissible valuation, and F, V, w and F, V ′, w
agree on φ. It follows that F, V ′, w 6|= φ, and hence F 6|= φ.

In the remainder of the proof, we will show how to construct these sets W ′στ .
Fix any σ.
Step 1: Choosing witnesses.

For each τ there are four possibilities:
a. Wστ contains w and also a successor of w In this case, pick two witnesses: w

and a successor of w in this set.
b. Wστ a successor of w but not w itself. In this case, pick only one witness, namely

a successor of w
c. Wστ contains w but no successor of w. In this case, pick only one witness,

namely w.
d. Wστ does not contain w nor a successor of w. In this case, pick no witness.

Step 2: Separating the witnesses.
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By repeated application of differentiatedness, we can now find a partition P of
the space Wσ into admissible sets so that (i) any two witnesses belong to a different
component of P , and (ii) every component of P contains a witness. Moreover, if
no successor of w satisfies exactly the same proposition letters as w does, then by
tightness we can ensure that the component of the partition containing w does not
contain any successor of w (to see this, note that w is irreflexive in this case).
Step 3: Defining the sets W ′στ

We now define each W ′στ , for each τ , as the union of the components of the parti-
tion P that contain a witness belonging to Wστ . By construction, the requirements
(1.) and (2.) are met. Note that the left-to-right direction of (2.) follows from the
last sentence of Step 2 (the application of tightness). �

Note that this proof generalizes to multi-modal languages, but not to languages
with k-ary modalities for k ≥ 2. Indeed, Goranko and Vakarelov [12] show by
means of a formula 2(p, p)→ ∇(p, p) that Theorem 24 fails for such languages.

Incidentally, the converse of Theorem 24 does not hold: the formula 33p→ 22p
is easily seen to be r-persistent, but there is no shallow formula that defines the
same frame property (i.e., ∀xyzuv(Rxy ∧ Ryz ∧ Rxu ∧ Ruv → z = v)). This can
be easily shown using two finite frames of depth two; details are left to the reader.
Nevertheless, it is not easy to generalize Theorem 24 even within the class of very
simple Sahlqvist formulas, as witnessed by the density formula mentioned above.

5. Duality and definability

This section studies the duality between discrete frames and AV-algebras from
category-theoretical point of view. Thomason [19] studied the relationship between
Kripke frames and complete AV-BAOs in the same way; our input is essentially to
show that the assumption of completeness is not needed in his proofs. We need
these results to obtain Theorem 32, which is an interesting variant of the Goldblatt-
Thomason Theorem.

First, let us briefly recall some well known validity preserving operations on
general frames. The disjoint union of family of general frames {〈Wi, Ri,Ai〉}i∈I
is the general frame 〈W,R,A〉, where 〈W,R〉 is the disjoint union of the frames
〈Wi, Ri〉 (i ∈ I) and A = {X | (X ∩Wi) ∈ Ai for all i ∈ I}. Generated subframes
were already introduced in Section 2.1. The notion of bounded morphism is the
same as in case of Kripke frames with additional requirement that the inverse image
of an admissible set is admissible.

We have already seen that the dual F+ of a discrete frame is an atomic and
completely additive algebra, i.e., a AV-BAO. Now, let A be a AV-BAO and let AtA
be the set of its atoms. A+ is the frame whose universe is AtA, the accessibility
relation R3 is defined as aR3b if a ≤ 3b and the admissible subsets are those of
the form {a ∈ AtA | a ≤ b} for b ∈ A. This construction is known as the atom
structure of A; it should not be confused with its canonical extension.

Proposition 25. (1) A+ is a discrete frame.
(2) (A+)+ is isomorphic to A; the isomorphism is defined as φ(b) = {a ∈ AtA |

a ≤ b}.
(3) (F+)+ is isomorphic to F; the isomorphism is defined as ψ(x) = {x}.

Speaking in category-theoretical terms: this takes care of objects, but how about
morphisms? The standard notion for morphism for frames is bounded morphism and
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the standard notion of morphism for algebras is homomorphism. Alas, as we shall
see soon, in this particular case the two notions do not exactly match. In order to
find a good counterpart of bounded morphism, we need a stronger algebraic notion:
a complete homomorphism, that is, a homomorphism preserving all existing joins.
Given a complete homomorphism f : A 7→ B, define its dual f+ : B+ 7→ A+ as

f+(b) := The single a ∈ AtA s.t. b ≤ f(a).
As f is a homomorphism, there cannot exist two distinct atoms a and a′ satisfying

this condition. But as f is a complete homomorphism, there must exist at least one
a with such a property (otherwise f(>) ≤ ¬b) and hence the definition is correct.

Proposition 26. (1) A discrete frame G is a bounded morphic image of a
discrete frame F iff the dual of G is completely embeddable in F+

(2) A AV-BAO A is completely embeddable into AV-BAO B iff the dual of A
is a bounded morphic image of B+

(3) A discrete frame G is (isomorphic to) a generated subframe of a discrete
frame F iff the dual of G is a complete homomorphic image of F+

(4) A AV-BAO A is a complete homomorphic image of AV-BAO B iff the dual
of A is (isomorphic to) a generated subframe of B+.

(5) A is isomorphic to the direct product of {Ai}i∈I iff A+ is isomorphic to the
disjoint union of {Ai+}i∈I .

(6) F is isomorphic to the disjoint union of {Fi}i∈I iff F+ is isomorphic to the
direct product of {Fi+}i∈I .

Those with interest in category theory may prove a far stronger

Proposition 27. Categories of AV-BAOs with complete homomorphisms and of
discrete frames with bounded morphisms are dually equivalent in the sense of Davey
and Clark [3] by the dual representation 〈( )+, ( )+, φ, ψ〉.

The proofs of both facts are analogous to those in Thomason [19].
So what is the proper notion of morphism for discrete frames which corresponds

to arbitrary morphisms of AV-BAOs? The answer given by Thomason [19] for
Kripke frames can be easily adapted to more general case. We have opted for a
purely relational definition, formulating di-morphisms as relations between points
and admissible sets, rather than as functions from ultrafilters of dual algebras to
points as Thomason did.

Definition 28 (Di-morphisms). A di-morphism from a discrete frame F := 〈W,R,A〉
to a discrete frame G := 〈U, S,B〉 is a binary relation F ⊆W ×B s.t. the following
conditions are satisfied for all w ∈W and X,Y ∈ B:

conjunction: wF (X ∩ Y ) iff wFX and wFY ,
negation: wF (U \X) iff not wFX,
reverse image: {x ∈W | xFX} ∈ A,
back-and-forth: wF{u ∈ U | ∃u′ ∈ X.uSu′} iff ∃w′ ∈ W such that wRw′

and w′FX.
F is the source of F and G is its target. If for every u ∈ U , there exists w ∈W

s.t. wF{u}, we say 〈U, S,B〉 is a di-morphic image of 〈W,R,A〉.

Definition 29 (Duals). For every AV-BAO A, define A∗ := A+. For every discrete
frame F, define F∗ := A+. For every di-morphism F from F := 〈W,R,A〉 to
G := 〈U, S,B〉, define F ∗ : B 7→ A as F ∗(B) := {w ∈ W | wFB}. For every
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homomorphism f : A 7→ B of AV-BAOs, define f∗ ⊆ At(B) × A as bf∗A if
b ≤ f(A).

Proposition 30. Let f be a homomorphism of BAOs and F be a di-morphism of
discrete frames.

(1) f∗ is a di-morphism
(2) F ∗ is a homomorphism of BAOs.
(3) The target of f∗ is a di-morphic image of the source iff f is an embedding.
(4) F ∗ is an embedding iff the target of F is di-morphic image of the source.

Proof is the same as in Thomason [19]. That paper also shows how to define
notions of identity di-morphisms and composition of di-morphisms and prove an
analogue of Proposition 27.

Proposition 31. Every modally definable class of discrete frames is closed under
point-generated subframes, disjoint unions, ultraproducts (of general frames) and
di-morphic images.

Proof. Follows from Propositions 26, 30 and standard algebraic results (Birkhoff et
al.). �

Together, the above results not only provide a necessary, but in fact a sufficient
condition for modal definability. Thus, we obtain a complete characterization of the
modally definable classes of discrete frame, in the spirit of Goldblatt and Thomason.

Theorem 32 (Modal definability on discrete frames). A class of discrete frames
is modally definable iff it is two-sorted elementary and closed under point-generated
subframes, disjoint union and di-morphic images.

Proof. The “only if” direction has been already proved. For the converse, assume
that K is a class of discrete frames closed under the four above mentioned construc-
tions, Λ is the logic determined by K (or, as some would say, the modal theory
of K) and F = 〈W,R,P 〉 is a discrete frames s.t. F � Λ. Observe that, as K is
closed under ultraproducts and point-generated subframes, Λ is strongly globally
complete with respect to K by Lemma 2 and 3.

We need to ensure our language is rich enough. For every A ∈ P choose a distinct
propositional variable pA and define canonical valuation VF(pA) = A. Let Γ be the
global theory of 〈F, VF〉, i.e, the set of those formulas which are true at every point
of F under the canonical valuation. Γ is obviously closed not only under Modus
Ponens, but also under Necessitation. For any x ∈W , ¬p{x} 6∈ Γ. By strong global
completeness, for every x ∈ W there is Gx ∈ K and a valuation Vx on Gx s.t.
Gx, Vx � Γ and Gx, Vx 2 ¬p{x}. As K is closed under disjoint unions, the disjoint
union of all models 〈Gx, Vx〉 is a model based on a frame from K; denote this model
as 〈G, V 〉. Define a relation F between elements of the universe of G and elements
of P by yFA iff G, y, V � pA. It is now enough to prove that F is a di-morphic
image of G by F . The conjunction and negation properties follow by the fact that
for every A,B ∈ P , pA∩B ↔ pA ∧ pB ∈ Γ and pW\A ↔ ¬pA ∈ Γ, respectively.
The reverse image property follows from the fact that V is an admissible valuation
in G. The back-and-forth property follows from the fact that p3A ↔ 3pA ∈ Γ.
Finally, for every x ∈W , the existence of y s.t. yF{x} follows from non-emptiness
of V (p{x}). �
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Figure 2. Confluence is not preserved under taking di-morphic images

This result read algebraically means that a class of AV-BAOs is the class of
all AV-BAOs from some variety V iff it is closed under products, ultraproducts,
subalgebras and complete-homomorphic images. In other words, all AV-BAOs
which are homomorphic images of a class of AV-BAOs can be obtained by the use
of these four constructions.

To demonstrate the use of di-morphisms let us consider the following

Example 33. Call a relation R confluent if it satisfies ∀xyz.(Rxy ∧ Rxz →
∃u.(Ryu∧Rzu)). The class of confluent Kripke frames is defined by the elementary
and canonical modal formula 32p→ 23p. The class of confluent discrete frames,
however, is not modally definable, as we will now show by means of a di-morphism.
Consider discrete frames F1 and F2 (cf. Venema [22]) whose underlying structures
are as depicted in Figure 2, and where the admissible sets are the finite and cofinite
ones. Define a di-morphism F from F1 onto F2 by letting xFA iff either x ∈ A or
(x = u and A is cofinite). The only non-trivial property of F that needs to be shown
is the back-and-forth property. For this, it is enough to show that 3A is cofinite in
F2 iff there is a successor x of u s.t. xFA. But 3A is cofinite iff t ∈ A, and t is
the only successor of u in F1.

From algebraic point of view, it means that the dual algebra of F2 is embeddable
into F1, but that embedding is not an embedding preserving arbitrary existing joins.

6. Conclusion

Discrete frames provide a natural semantics for modal logics. They are well be-
haved in many respects, and they offer a natural alternative when Kripke complete-
ness is not obtainable. In this paper, we have addressed a number of basic questions
concerning completeness, persistence, duality and definability with respect to dis-
crete frames. There are a few remaining open problems, such as Questions 1, 2
and 3.
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