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1 Introduction

The purpose of this note is to take a few steps toward a first order logic of
incomplete information, based on the idea that such a logic may be obtained by
importing an essential ingredient of probability theory, conditional expectation,
into the logic. The reason that we focus on conditional expectation is that it
is often used to model a kind of incomplete knowledge that is of interest in
itself: incomplete knowledge about the value of a variable, where the ‘degree of
incompleteness’ is given by some algebraic structure. Conditional expectation
often comes into play when what can be described as a change of granularity
is involved. Formal details will be given below, but a typical example is this.
Let Ω be a sample space equipped with a second countable Hausdorff topology,
and let X : Ω −→ IR be a random variable. Think of X as representing some
measurement apparatus. If B is the Borel σ-algebra on Ω, then the fact that
singletons are in B represents the assumption that an outcome can be observed
with arbitrary precision. In practice, however, it may be impossible to observe
an outcome X(ω) with arbitrary precision. For instance, the best we can do may
be to locate X(ω) in some element of a partition of IR into intervals of length
ε. Let B′ be the σ-algebra generated by those intervals. Then G = X−1B′ is
strictly contained in B. The conditional expectation E(X|G) is in a sense X
viewed from the perspective of G; the values of X are averaged over an element
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in the generated partition on Ω. This is brought out by the defining condition
of E: E(X|G) is a G-measurable random variable such that for A in G,

∫

A

E(X|G)dP =

∫

A

XdP.

Incomplete information is not always a negative qualification. In some cases
one wants to expressly reduce the information present in a signal in order to
make that information more useful. This happens for instance when noise is
suppressed in an audio signal. Moving to a coarser granularity can thus be
beneficial as well. For our present purposes it is of interest that this process of
filtering is also modelled by means of conditional expectation.

These two aspects of changes in granularity occur as well in qualitative
reasoning with incomplete information. In an interesting programmatic paper,
Hobbs [8] emphasises the positive aspects of switching to coarser granularities:

Our ability to conceptualize the world at different granularities
and to switch among these granularities is fundamental to our in-
telligence and flexibility. It enables us to map the complexities of
the world around us into simple theories that are computationally
tractable to reason in.

A few years earlier, Marr, in his book Vision, emphasised the same point while
sketching a program for semantics (Marr [12, p. 357–8])

I expect that at the heart of our understanding of intelligence will
lie at least one and probably several important principles abour orga-
nizing and representing knowledge that in some sense capture what
is important about our intellectual capabilities. . . . The perception
of an event or an object must include the simultaneous computation
of several different descriptions of it that capture different aspects of
the use, purpose or circumstances of the event or object. . . . The var-
ious descriptions include coarse versions as well as fine ones. These
coarse descriptions are a vital link in choosing appropriate overall
scenarios . . . and in correctly establishing the roles played by the
objects and actions that caused those scenarios to be chosen.

In fact, natural language even has adverbial expressions, such as ‘actually’,
‘really’, which indicate such shifts. Here is an example due to Asher and Vieu

The point of this pencil is actually an irregular surface with several
peaks.

It would be useful to have a formal apparatus capturing the process of simulta-
neously viewing the world at different scales; the claim of this paper is that one
way to approach this problem is via a suitable notion of generalised quantifica-
tion.

We are thus motivated by the following analogy. Moving to a larger grain
size is analogous to taking conditional expectation, and it will be shown that
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this process can be captured by a quantifier which shares many formal proper-
ties with conditional expectation. We will investigate several ways of defining
grain size with their associated conditioning structures and quantifiers. An im-
portant (and largely open) question that arises here is: when and why can we
be confident that a result (for instance a plan) obtained in a coarse world also
applies to the real, or at least a finer world? This leads to the study of a type
of preservation theorems which are analogous to the martingale convergence
theorems of probability theory. The ideas sketched above have been applied to
the development of a logic of visual perception in a series of papers [21], [19]
and [20]; the present article intends to provide some theoretical complements.

To further clarify the point of departure of the present article it is useful to
contrast it with the aims of Keisler’s probability logic (cf. Keisler [10]). Keisler
presents an infinitary axiomatisation of such concepts as probability measure,
integral and conditional expectation, and proves the completeness of the ax-
iomatisation with respect to the usual probability spaces. By contrast, we look
at what conditional expectation is used for in probability theory, try to iden-
tify situations of a more qualitative nature where approximately the same use
is called for, and define qualitative analogues of conditional expectation which
can perform these functions. There appears to be a certain logical and philo-
sophical interest in this procedure, because it touches upon the old problem of
the relation between logic and probability. It is our contention that logic and
probability are alike in that their fundamental concepts, quantification and con-
ditional expectation, are basically the same. Indeed, it has been observed several
times that algebraically speaking the existential quantifier and conditional ex-
pectation are in the same class of operators on a Boolean algebra, namely the
hemimorphisms1 α satisfying the averaging identity α(p ∧ αq) = αp ∧ αq. (See,
for example, Wright [24],[25] and the references given therein.) Furthermore
Ellerman and Rota [4] showed that existential quantification ∃x is conditional
expectation with respect to the algebra determined by projection along x and a
suitably generalised notion of measure, which is such that even on uncountable
models, every subset of the domain has positive measure.

What remains to be done is to further exploit the analogy and to generalise
existential quantification in such a way that the very special algebra used to
define ∃x (namely, the algebra of the sets of assignments obtained by projection
along x) can be replaced by arbitrary Boolean algebras, or even more general
structures. In view of the analogy with conditional expectation, the new quan-
tifiers will be called conditional quantifiers. It will be very useful to think of
these quantifiers as resource-bounded quantifiers: the resource is some algebraic
structure which determines the granularity of the available information with
respect to which one quantifies. For example, put in these terms quantification
∃xϕ means that we have no information about x, but full information about
the other variables.

The remainder of the paper is organised as follows. We shall first, in sec-

1A hemimorphism on a lattice L with 1 is a mapping α : L −→ L satisfying α(a ∨ b) =
α(a) ∨ α(b) and α1 = 1.
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tion 2, briefly rehearse theory and applications of conditional expectation in so
far as relevant for our purposes. We then look at several examples of shifts of
granularity, and show that they call for different types of resources (section 3).
In section 4 the resources considered are Boolean algebras, and we try to retain
as many of the properties of the existential quantifier as possible. Although we
prove an infinitary completeness theorem here, the results are not very satis-
factory, and in the next section (6) we consider, along with Boolean resources,
a modified notion of quantifier, namely a quantifier ∃ which lacks the property
ϕ ≤ ∃ϕ. These quantifiers, which bear a stronger resemblance to conditional
quantification then the existential quantifier itself, have a smoother theory, al-
though at some points we need the continuum hypothesis to get things off the
ground. In section 8 we consider resources which do not have the structure
of a Boolean algebra, notably Lawvere’s co-Heyting algebras (Lawvere [11]).
These algebras naturally arise in situations where there is a distinction between
positive and negative information. Again we supply an infinitary axiomatisa-
tion with a completeness theorem. Lastly, we return to our original motivation,
conditional quantification as capturing shifts of granularity, which leads us to
define a logical analogue of the martingales familiar from probability theory.
We show that there exists a natural relation between nonmonotonic reasoning
and martingale convergence, and we close with a conjecture on the precise form
of martingale convergence in the logical setting.

2 Conditional expectation

In this section we give a very brief introduction to the fundamental properties of
conditional expectation. The reader wishing to know more is advised to consult
any introductory treatise on measure theoretic probability, a beautiful specimen
of which is Williams’ Probability with martingales [23]. We begin with a simple
example. Suppose we have a variable X on a sample space Ω which takes values
0 and 1 both with probability 1

2 . Let Ai be the subset of Ω on which X takes
value i, then P (Ai) = 1

2 . Suppose furthermore that we cannot measure X
directly, but can only measure X +Y , where Y is some small perturbation. Let
Bi ⊆ Ai be such that P (B0) = ε 6= P (B1) = δ, where ε, δ ¿ 1

2 ; Y takes value 1
2

on B0, value − 1
2 on B1 and 0 elsewhere. Then X +Y takes value 0 on A0−B0,

value 1 on A1 − B1 and value 1
2 on B0 ∪ B1. The smallest Boolean algebra B

which contains A0−B0, A1−B1 and B0∪B1 does not contain A0 and A1. The
algebra B represents the situation that we have incomplete information about
X, and precisely codes the kind of information that we do have available about
X, namely X + Y , since B is the smallest algebra with respect to which X + Y
is measurable. If we can measure only X + Y , not X, this implies that all
information about X is represented by the function E(X|B), which takes value
0 on A0 −B0, value 1

2 − δ on A1 −B1, and value δ on B0 ∪B1. It follows that
we have no information about the event X > 0 (since A0 /∈ B, but our best
estimate for the probability of this event is given by P (E(X|B) > 0) = 1

2 + ε.
The next example is more realistic example, with continuous noise. Suppose
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we have a random variable X on a sample space Ω (measurable with respect to
a σ-algebra B) which we want to measure; for the sake of definiteness, assume
X is distributed as the Gaussian N(0, σ2). Due to noise, we can only observe
X + c.ξ, where ξ is independent of X, ξ is distributed as the Gaussian N(0, 1)
and c ∈ IR. X + c.ξ can be taken to be measurable with respect to a σ-algebra
G which is not the same as B. For example, the event {X < 0} ∈ B is not in G if
G is the smallest σ-algebra with respect to which X + c.ξ is measurable. Hence
we can only determine properties of X as filtered through G; this is represented
by the conditional expectation E(X|G). It is not possible to determine precisely
which sample point ω has been chosen. We can only ask whether ω ∈ A for
A ∈ G. Then the expected value of X given such information, namely

∫
A
XdP ,

should equal
∫
A

E(X|G)dP ; from the point of view of G, no other questions
about X can be answered. This leads to the following

Definition 1 Let B be a σ-algebra on Ω. A conditional expectation of a B-
measurable random variable X : Ω −→ IR with respect to the sub-σ-algebra G
and the probability measure P is a function E(X|G) : Ω −→ IR satisfying

∫

A

E(X|G)dP =

∫

A

XdP.

The Radon-Nikodym theorem is used to show that a function E(X|G)(ω) with
these properties exists. However, it is not unique, in the sense that for given X
two versions of E(X|G) only agree almost everywhere2. In the following list of
properties of E(X|G), the (in)equalities must therefore be understood as holding
almost everywhere:

1. E(1∅|G) = 0, E(1Ω|G) = 1;

2. X ⊆ Y implies E(1X |G) ≤ E(1Y |G); and

3. E(X ·E(Y |G)|G) = E(X|G) ·E(Y |G).

All three properties are strongly suggestive of quantifier properties, as has
often been remarked in the literature; see, for example, Birkhoff’s survey paper
[3]. However, conditional expectation as constructed above by means of the
Radon-Nikodym theorem is not yet quite analogous to quantification, since the
construction is not uniform. For example, for each X,Y there is a nullset N
such that off N , 3 holds; but there need not be a nullset which does the job
for every X,Y . The required uniformity is given by the following definition.
For ease of exposition, we formulate it in terms of conditional probability P(·|G)
determined by

P(A|G) = E(1A|G).

Definition 2 A regular conditional probability is a function P(F |G)(ω) : B ×
Ω −→ [0, 1] satisfying

2The analogues of conditional expectation in section 6 suffer from this non-uniqueness as
well.
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1. for each F ∈ B, P(F |G)(·) = E(1F |G) a.s.

2. for almost every ω, the map F 7→ P(F |G)(ω) is a probability measure on
B.

The last condition ensures that the additivity and monotonicity properties hold
in a uniform manner, in the sense that there exists a single nullset such that
outside this nullset these properties hold. Regular conditional probabilities do
not always exist, but we need not inquire into the conditions for existence here.
It is important to observe that also in this case the function P(F | G)(ω) is not
completely determined by G, and that essential reference is made to nullsets.

In probability one often considers families of conditional expectation opera-
tors. Since this suggests new ways of looking at quantifiers, we include a brief
description. Let T be a directed set, i.e. a set partially ordered by a relation
≥ such that for s, t ∈ T , there exists r ∈ T with r ≥ s, t. A family of algebras
{Bs}s∈T is called a net (sometimes filtration) if s ≥ t implies Bs ⊇ Bt. The
intuitive idea is that Bs contains all the information at hand at ‘stage’ s (which
could be a timepoint, or a location in space etc.). A set of random variables
{Xs}s∈T is called adapted (w.r.t. {Bs}s∈T ) if each Xs is measurable with re-
spect to Bs. The set {Xs}s∈T is called a martingale if for each s, t such that
s ≥ t, E(Xs|Bt) = Xt. For our purposes the following fundamental theorem is
of interest.

Theorem 1 Let X be a random variable measurable with respect to B =
⋃
s∈T Bs.

1. The family of random variables {E(X | Bs)}s∈T is adapted w.r.t. {Bs}s∈T
and is a martingale.

2. lims∈T E(X | Bs) = E(X | B) a.s.. (In many interesting cases, but not
always, one has in addition that X = E(X | B) a.s..)

The preceding material suggests that the family of quantifiers considered by
first order logic, {∃y | y a variable}, may be only one possibility among many
interesting families of quantifiers. In section 9 we shall study one example in
some detail, namely the logical analogue of a martingale. Another interesting
example is furnished by the logical analogue of a Markov random field, a family
of quantifiers that was implicitly used in the proof theory for generalised quan-
tifiers presented in Alechina and van Lambalgen [1]. In slightly more formal
detail: it can be shown that every filter quantifier is definable using a family
of resource-bounded quantifiers which is the qualitative analogue of a Markov
random field. This however is best left for a separate paper.

3 Examples: partiality and granularity

We proceed to give a few examples of conditional quantifiers, motivated by the
idea of ‘changes in granularity’. These examples play an important role in the
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logic of visual perception developed in [21] and [19], and the reader is encouraged
to consult the papers cited for fuller information on their use. Here, we shall
discuss the motivating examples mostly with reference to Hobbs’ paper. We will
return to vision in section 7, after we have developed the necessary technical
apparatus.

3.1 Restricted signature

Let L be a first order language, L′ a sublanguage of L containing only the
‘relevant’ predicates of L. A concrete case is furnished by visual occlusion: if
I am looking at the back of someone’s head, a predicate such as ‘mouth’ is
not applicable, hence not part of my model of the situation, or, equivalently,
not part of the language with which I describe that situation. Given a model
M (‘the real world’), we may then define an equivalence relation E on M by
E(a, b) iff for all formulas ϕ(x) in the language L′, M |= ϕ(a)⇐⇒M |= ϕ(b).

Hobbs proposes to define a model N with domain the E-equivalence classes
of elements ofM, such that (for monadic predicates) N |= A([a]) iffM |= A(a).
By the choice of E, this is welldefined. However, apart from the fact that this
does not generalise to predicates of higher arity, the truth definition does not
capture the intuitive motivation. The trouble lies in the direction from left to
right: if N |= A([a]) then M |= A(a). When planning a hike, a curve on the
map (represented by a suitable equivalence class) be a trail from x to y from
the perspective of the map’s scale, without being an actual trail (e.g. it may
have been overgrown in part). A more intuitive truth definition is obtained
by putting N |= A([a]) iff ∃b(E(a, b)&M |= A(b)). Since E is an equivalence
relation this is again welldefined, but the definition now better captures the
uncertain nature of the inference from N to M.

In order to treat predicates of arbitrary arity, we can define an equivalence re-
lationR on assignments byR(f, g) iff for all formulas ϕ in the language L′, M |=
ϕ[f ]⇐⇒M |= ϕ[g]. R generates a quantifier3 ∃R by

M |= ∃R[f ] ⇐⇒ ∃g(R(f, g) & M |= ϕ[g]).

If A is a predicate of L, ∃RA represents the set of tuples of R-equivalence classes
corresponding to tuples satisfying A. ∃R thus defines a model N which can be
viewed as a coarsening of M4.

Let B be the algebra of L-definable sets of assignments, and let G be the
subalgebra of B determined by L′. We will see later that ∃R is in a sense a
quantifier conditional on G. It will also become clear later that ∃R only has the
right properties for a resource-bounded quantifier when N is finite, but at this
stage ∃R is useful to fix ideas. The important point to remember is that the
‘best estimate’ of a predicate is represented by a quantifier. We could also use
two quantifiers ∃ and ∀ corresponding to best upper and best lower estimate,
but in the Boolean case ∃ and ∀ will be dual.

3Quantifiers of this type (which satisfy the S5 axioms) were introduced by Halmos [6].
4The reader may observe that Hobbs’s truth definition actually corresponds to using the

dual quantifier ∀R when interpreting predicates on N .
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3.2 Homomorphic image

The map a 7→ [a] constructed above is an example of a homomorphism:

Definition 3 A mapping h :M−→ N is a homomorphism if it is a surjective
map such that M |= A(a1, . . . , an) implies N |= A(h(a1), . . . , h(an)).

Note that, in the previous example, both truth definitions for the predicates give
rise to homomorphisms. Concrete examples of homomorphisms are furnished by
projections of vector spaces onto spaces of lower dimension. For instance when
planning a trip from x to y, the (two-dimensional5) road between x and y is
reduced to a one-dimensional curve. For another example, we may consider
object recognition: to identify some complex shape such as a human body
(which requires a very large number of parameters for a complete specification),
it is often sufficient to use a rough model, specifiable by few parameters (cf.
Marr [12]). For more examples in this vein, some borrowed from Herskovits’
semantics for spatial prepositions [7], see van Lambalgen [20].
In the obvious way h generates a projection π on the assignment spaces of M
and N , π : FM −→ FN . Define an equivalence relation R on assignments by
R(f, g) iff π(f) = π(g); R defines a quantifier ∃R as above.

Let us now compare the model N and the quantifier ∃R; both in some sense
represent a coarsening of the model M, and if h is a homomorphism we have
N |= A(h(a)) ifM |= ∃RA(a). For arbitrary formulas ϕ there is no such pleasant
relation between truth on N and ∃Rϕ, so we must ask which ‘estimate’ of ϕ is
best: {f | N |= ϕ[π(f)]} or {f | M |= ∃Rϕ[f ]}. (Observe that both sets are
R-invariant, so they actually determine sets of equivalence classes, consistent
with the intuition that individual assignments are not accessible.)

The answer has to do with the role of knowledge. Given that N |= A(h(a)),
we may be ignorant whether M |= A(a); but we may know for certain that
M |= ∀x(A(x) → ¬B(x)). Suppose the model N is such that AN and BN
overlap and BM = π−1(BN ); this is consistent with h : M −→ N being a
homomorphism. In this case AN is evidently too rough as an estimate for
AM, since we already know that the intersection AN ∩ BN cannot be part
of AM. On the other hand, ∃R does take account of such knowledge, and
can be shown to have the property that M |= ∀x(A(x) → ¬B(x)) implies
M |= ∀x(∃RA(x)→ ¬B(x)) (for this particular choice of B).

We now reformulate the property of being a ‘best estimator’ abstractly,
borrowing a notation from probability theory. Let G′ be the algebra of first
order definable subsets of FN , G = {π−1(C) | C ∈ G′}. We would now like
to have a quantifier ∃(· | G) which gives us ‘M seen from the point of view
of N ’. Desirable properties are, for instance, monotonicity, distribution over
disjunction, and the property that, if C ∈ G and, on M, ϕ ⊆ C (as sets of
assignments), then ∃(ϕ|G) ⊆ C.

Formally, the quantifier ∃(·|G) should be a map from sets of assignments to
sets of assignments, with range in G, satisfying properties such as monotonicity

5This is already an idealisation, i.e. a projection.

8



       

and distribution over ∨. At this stage it is not yet clear that this is at all
possible, we just have the vague analogy with conditional expectation to guide
us.

3.3 Combining information

In the preceding examples the resource was determined by a single model, and
one might ask what the advantage is of the resource-bounded quantifier over the
model. Although there is a definite advantage, for instance when the resource
is only a proper subalgebra of the algebra determined by a model, it is when
we want to combine information from several sources, that resource-bounded
quantification really comes into its own. For example, when planning a trip,
we combine information from a road atlas with information about road blocks.
Both sources can be viewed as homomorphic images, say N and K, of the
real world M, which lead to algebras GN and GK on M. If G is the smallest
algebra containing both GN and GK, and if ∃xϕ(x, a, b) is the sentence ‘there
is a path from A to B’, then the formula ∃(∃xϕ(x, a, b)|G) should give us the
best estimate of the truth of ∃xϕ(x, a, b) given the information in N and K. It
should be possible to construct a model from ∃(·|G) which represents our best
knowledge, but the usefulness of ∃(·|G) resides in the possibility to combine
information from a ‘fixed’ source (the road atlas) with temporary information.

3.4 Partial homomorphisms

A more realistic example of coarse graining is obtained when a only few elements
of the domain are approximated, and the rest is not taken into consideration.
This happens for instance in vision, when we combine the effects of the approx-
imative nature of perception with the necessarily restricted perceptual field.
Hobbs [8, p. 2] treats this case by throwing in the element EE (for ‘everything
else’) in the approximating model, and mapping all elements not considered on
EE. There exists another option, which will be seen to lead to a quantifier.

Definition 4 A partial homomorphism h :M ↪→ N is a surjective homomor-
phism from a submodel M′ ⊆M to N .

If h is a partial homomorphism, the projection π : FM ↪→ FN , defined by
π(f)(x) = h(f(x)) is likewise a partial function.

The quantifier ∃ associated to such a partial homomorphism is different from
the S5-type quantifiers considered above; that is, it does satisfy the ‘desirable
properties’ of section 3.2, but it will lack the properties ϕ ≤ ∃ϕ and ∃1 = 1.
In case we have a partial homomorphism h which arises from restricting a total
homomorphism h′ to a domain D (say, the visual field), the quantifier ∃ can be
made to satisfy ∃1 = 1 as well, which leads to the very useful concept of an
average, introduced by Wright [25]. It will be studied in detail in section 6.
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3.5 Non-Boolean resources

So far we took the resources to be Boolean algebras. In some of the applications
of [21] and [19] it turned out be useful to have resources with weaker logical
properties, in order to model various kinds of partiality. For example, in practice
there will often be an assymmetry between a predicate A and its negation. Here
is the pertinent definition:

Definition 5 A co-Heyting algebra is a bounded distributive lattice L with a
subtraction operation \ : L× L −→ L with the property

x\y ≤⇐⇒ x ≤ y ∨ z.

Definition 6 A complete co-Heyting algebra is a lattice in which arbitrary in-
fima exist subject to the following distributive law

x ∨
∧

i

yi =
∧

i

(x ∨ yi).

A concrete example of a complete co-Heyting algebra is obtained when we
take the lattice of sets of assignments on a modelN defined by positive formulas,
and close under

∧
. It will be seen in section 8 that this choice of resource changes

the logic drastically.

As a last example, we consider an even weaker structure, also motivated by
the idea of partiality. If we think of the quantifier ∃ applied to the predicate A
as giving an estimate of A on the basis of restricted information, then we would
like our estimate to be somehow informative. In the present set-up, ∃A is always
defined, but it may sometimes return the value 1. In treating Barwise’s example
of a non-inference due to partiality, ‘Whitehead saw Russell. Russell winked.
Therefore Whitehead saw Russell wink.’, in [19], it was found useful to allow
the possibility that ∃A is undefined, when it would otherwise have returned the
value 1. This leads to the following structure:

Definition 7 A pseudolattice L is a partially ordered set in which meets and
joins of finite non-empty sets exist. A pseudolattice L is a pseudo co-Heyting
lattice if it is closed under arbitrary non-empty meets, such that the following
distributive law holds:

a ∨
∧

i∈I
bi =

∧

i∈I
(a ∨ bi).

Note that in lattices in which arbitrary (i.e. also empty) finite meets and
joins exists, top and bottom can be defined by 1 =

∧ ∅ and 0 =
∨ ∅; but a

pseudo co-Heyting lattice may lack top and/or bottom. Hence, if H is pseudo
co-Heyting, and if ∃ is a quantifier conditional on H (in a sense to be made
precise later), then ∃A need not be defined, and ∃0 can be non-empty.

It will be seen that, in order to construct the quantifiers corresponding to
these examples, the conditioning algebra must be chosen carefully, in particular
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with regard to completeness properties; but we hope that the general idea is
clear. In closing this section, we remark that common to all examples given is
that we start from a model N and a ‘filter’ through which to view N (be it
a Boolean algebra or a weaker structure); these two ingredients then define a
conditional quantifier. It is also possible to proceed in the opposite direction:
starting from a conditional quantifier, to define a class of models and resources
which could have given rise to this quantifier. (We are really concerned with
classes of models here, since as we have seen, a resource may filter out quite a
lot of information about a model.) The technical development of this idea is
rather lengthy however, so it will not be included here.

4 Conditioning on Boolean algebras

4.1 Preliminaries

Let B be a Boolean algebra of sets of assignments, G a subalgebra of B. As
a concrete case, let us refer back to section 3.2. Let h : M −→ N be a
homomorphism, then h generates a projection π on the assignment spaces of
M and N , π : FM −→ FN , by putting π(f)(x) = h(f(x)). Now put G =
{π−1{g | N |= ψ[g]} | ψ a first order formula}. We want to construct quantifiers
as mappings ∃ : B −→ G which somehow give the best estimate given the
information present in G; this generalises both first order logic and conditional
expectation in probability theory. The analogy suggests that one should think
of the conditioning algebra G as a resource, so that the generalised notion of
quantification sought for is resource bounded quantification.

Above, we have met several examples of possible resources, determined by
models which were in a sense coarser than the ground models. Hobbs’ remark
that change of granularity allows us to reason in computationally tractable the-
ories, can be provisionally be translated into the requirement that the resource
is specifiable in a ‘simple’ way. A prime example is of the course the resource
derived from a finite model. Other possibilities suggest themselves, for instance
the case where the resource is obtained by applying negation, countable con-
junction and countable disjunction to predicates. For instance, if the domain
of the ground model consists of the reals, then the resource, which is thus a
Borel σ-algebra, can in general be said to be computationally simpler than the
algebra of first order definable sets6. This case will be our main example below.
Of course, this is not exactly real life computability, but it may give an idea of
what could possibly be done here.

Considering the resources, several questions immediately arise

1. What are the possible resources? E.g. Boolean algebras or also other
structures? Do these structures have to be complete in some sense?

6This of course depends on the signature; due to quantifier elimination it is not true with
only addition and multiplication.
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2. How does one define a quantifier given a resource and how does this choice,
together with the choice of a resource, influence the logical properties of
the resulting quantifier?

3. Is the quantifier uniquely determined by the resource?

In this section we suppose that the resource is given by a Boolean algebra
G and we define the quantifier by means of a standard adjointness condition; as
a consequence the logic of the conditional quantifier will be classical, and the
quantifier will satisfy S5-like properties. (Other resources will be considered
in section 8.) Since we think of the resource as the available information, this
means that the quantifier should take values in G (compare the discussion of
conditional expectation in section 2). It turns out that this is in general impos-
sible without moving to some kind of completion of G. If the answer to question
3 is affirmative, then the result of applying the quantifier resource-bounded by
G to the formula ϕ is in a loose sense computable from G and ϕ. As will become
clear in the course of the paper, this apparently can be achieved only when the
resource satisfies a logic much weaker than classical logic.

Definition 8 Let M be a model, F the set of assignments f : V AR −→ |M|,
B the algebra of first order definable sets of assignments, G a subalgebra of B.
A quantifier conditional on G is a function ∃(·|G) : B −→ G satisfying the
adjointness condition7

for all A ∈ G, for all ϕ ∈ B, ϕ ≤ A iff ∃(ϕ|G) ≤ A.

In this definition we have tacitly introduced the notational convention that
definable sets of assignments are represented by the formulas defining them. It
is easy to see that ∃(·|G), when it exists, is unique, and must satisfy

∃(ϕ|G) =
∧
{A ∈ G | ϕ ≤ A}.

The inclusion from left to right follows from the adjointness condition and we
have equality because ∃(ϕ|G) ∈ G by hypothesis. It is also clear that the exis-
tential quantifier ∃x is a conditional quantifier: let Gx be the algebra of sets of
assignments definable by formulas which do not contain x free, then ∃x is the
quantifier conditional on Gx.
It is instructive to rewrite the Galois condition in order to emphasise the analogy
between conditional quantification and conditional expectation.

Lemma 1 A mapping ∃(·|G) : B −→ G is a conditional quantifier if and only
if the following conditions hold

1. ∃(0|G) = 0, ∃(1|G) = 1

2. ϕ ≤ ∃(ϕ|G)

7In the interest of stylistic variation, adjointness will sometimes be called ‘Galois condition’.
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3. ϕ ≤ ψ implies ∃(ϕ|G) ≤ ∃(ψ|G)

4. ∃(ϕ ∨ ψ|G) = ∃(ϕ|G) ∨ ∃(ψ|G)

5. (a) ∃(ϕ ∧ ψ|G) = ∃(ϕ|G) ∧ ψ) for ψ ∈ G
(b) ∃(ϕ ∧ ∃(ψ|G) | G) = ∃(ϕ|G) ∧ ∃(ψ|G).

The equivalent properties 5a and 5b will collectively be referred to as the
Frobenius property.

Proof. Suppose ∃(·|G) is a conditional quantifier. All properties are trivial
except 5a and 5b. The latter property follows from the former since ∃(·|G) ∈ G.
The inclusion from left to right in 5a follows from 2 (i.e. Galois from right to
left), and Galois from left to right. The other direction is more interesting. We
have to show ∃(ϕ|G) ∧ ψ ≤ ∃(ϕ ∧ ψ|G); since G has an implication → which is
also the implication of B, this follows if we can show ∃(ϕ|G) ≤ ψ → ∃(ϕ∧ψ|G).
Now the r.h.s. is in G so it suffices to show that ϕ ≤ ψ → ∃(ϕ ∧ ψ|G), but this
follows from 2 and the properties of →.
Now suppose that the conditional quantifier satisfies properties 1 to 5b. The
right to left direction of Galois follows from 2. Suppose ϕ ≤ A, where A ∈ G.
By 3, ∃(ϕ|G) ≤ ∃(A|G) = A, where the last equality holds because of 5a. 2

Observe that all these properties correspond to properties of conditional
expectation, except for 2. This is also the property wich makes it hard to
achieve our desired goal, as will be seen in a moment, and in section 6 we shall
consider quantifiers which lack it, the so called averages. Note also that these
properties are true of the existential quantifier.

4.2 Existence of a conditional quantifier

In section 3 we gave a few examples of conditioning algebras; do there exist
conditional quantifiers relative to these algebras? More formally, we start from
a model consisting of a pair 〈M,G〉, where G is the Boolean algebra which
represents the resource, and we are asking whether there exists an algebra B,
which extends the algebra of first order definable sets of assignments, and a
conditional quantifier ∃ : B −→ G. If this is so, we say that the model 〈M,G〉
can be extended with the conditional quantifier ∃ : B −→ G. In this weak form
of the existence question, we ask for the smallest extension of the algebra of first
order definable sets of assignments on which a quantifier conditional on G can
be defined. Much stronger versions of the question can be asked, for instance
we could demand that B is closed under first order quantifiers, or under other
conditional quantifiers; in sum, we could ask for the existence of a family of
conditional quantifiers having certain interactions; we will return to this below.
Even in this weak form, the answer is no in general, since it is dependent upon
completeness properties of G. However, we shall first consider a case where the
answer is affirmative. Suppose that in example 3.2 we take the model N to be
finite. This case is of importance in the logic of vision of [21] and [19], which
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mostly considers models that can be written as inverse limits of inverse systems
of finite models (cf. section 9 below).

Lemma 2 With the notation of section 3.2, if N is finite, then 〈M,G〉 can be
extended with a conditional quantifier ∃(·|G).

Proof. Suppose ϕ(x) ≤ A ∈ G, then we may assume A is of the form
π−1ψ(x, y), ψ first order. Let u be a variable occurring in x, and let u be ob-
tained from y by substituting every variable with u. Then ϕ(x) ≤ π−1ψ(x, u) ≤
π−1ψ(x, y). Since N is finite, it follows that

∧{A ∈ G | ϕ ≤ A} is actually a
finite meet, which is thus in G. 2

The next example, motivated by section 3.1, gives a construction of a Boolean
algebra G such that conditioning with respect to G cannot be defined. Suppose
we have a modelM with infinite signature {C,A1, A2, . . .}, where all predicates
are unary. Let M satisfy

1. ∀n∀y(C(y)→ An(y)

2. ∀n∀y(An+1(y)→ An(y))

3. ∀n∃y(¬An+1(y) ∧An(y))

4. ∀n∃y(¬C(y) ∧An(y)).

Let G be the Boolean algebra generated by the An, and letM be an ω-saturated
modelfor 1–4. Under these conditions, ∃(C(x, y)|G) would have to be equal to∧
nAn(y), but this is not in G.

Hence G must have some completeness properties. We would like to follow
probability theory in being able to specify the resource G independently; ideally,
the meaning of the quantifier ∃(·|G) should then be completely determined by
G. In the above examples, especially in 3.2, G should represent ‘the’ information
present in a model. However, there is no unique choice here; it all depends on
the logic in which we describe the model. Even if we fix the logic to be classical,
there are still various possibilities for making the logic infinitary. The easy way
out is to allow all infima and suprema.

Suppose G0 is a Boolean algebra of first order definable sets of assignments.
Define an equivalence relation RG0

by

RG0(f, g) iff ∀ψ ∈ G0(f ∈ ψ =⇒ g ∈ ψ).

Let G be the algebra of RG0 -invariant sets of assignments, then G is effectively
the power set on the set of equivalence classes {[f ]RG0

| f ∈ F}. In this case we
have

Lemma 3 Let M be a model, F its set of assignments, G the RG0-invariant
algebra contained in ℘(F). Then the conditional quantifier ∃(·|G) : ℘(F) −→ G
exists.
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Proof. Define ∃(A|G) = {f ∈ F | ∃g ∈ F(RG0(f, g) ∧ g ∈ A)}. ∃(A|G) = A
for A ∈ G ⊆ B, hence the range of ∃(·|G) is G. Since RG0 is an equivalence
relation, ∃(·|G) satisfies the Galois condition with respect to G. 2

In fact there is an intimate relation between conditional quantifiers and
equivalence relations, as the following argument, essentially due to Halmos,
shows. Strictly speaking, we cannot yet state this result since we have not
introduced a formal language for conditional quantifiers. The only thing we need
from the next section is, however, that for the resources G that are of interest,
for each formula ϕ, ∃(ϕ|G) is a formula with finitely many free variables.

We remind the reader that if a model M is ω1-saturated, then for any set
{ϕi | i ∈ ω} of formulas (in arbitrary free variables): if for each n, {ϕi | i ∈ n}
is satisfiable, then so is {ϕi | i ∈ ω}. For obvious reasons this property will be
referred to as compactness.

Theorem 2 Suppose we have a model M on which is defined a conditional
quantifier ∃(·|G), such that M is ω1-saturated with respect to the language con-
taining the conditional quantifier. Then there exists an equivalence relation
R such that for all formulas ϕ in the language, ∃(ϕ|G) = {f ∈ F | ∃g ∈
F(R(f, g) ∧ g ∈ ϕ)}.

Proof. Given ∃(·|G), define R by R(f, g) iff for all C in the range of ∃(·|G),
f ∈ C iff g ∈ C. Then ∃g ∈ F(R(f, g) ∧ g ∈ ϕ) implies f ∈ ∃(ϕ|G) because
∃(ϕ|G) is R-invariant. Conversely, if ∀g(g ∈ ϕ → ¬R(f, g)), for each g ∈ ϕ
choose Cg in the range of ∃(·|G) such that g ∈ Cg, f /∈ Cg. This can be done
because the range of ∃(·|G) is an algebra (this will be formally proved in the
proof of theorem 5). It follows that ϕ ⊆ ⋃g Cg and by ω1-saturation ϕ is also
covered by a finite union, which is therefore in the range of ∃(·|G). By the Galois
property, it follows that f /∈ ∃(ϕ|G). 2

Recall that part of our motivation is that we want to construct the condi-
tional quantifier in such a way that ∃(ϕ|G) is in a sense computable from ϕ and
G. The case of interest to us is where G is the collection of RG0

-invariant sets
of assignments, for a Boolean algebra G0 of first order formulas.

Theorem 3 Let the model M be ω1-saturated, G, G0 as above. Then for first
order ϕ, ∃(ϕ|G) =

∧{ψ ∈ G0 | ϕ ≤ ψ}.

Proof. Let [f ] denote the RG0 equivalence class of an assignment. For arbitrary
formulas ϕ we then have

∃(ϕ|G) =
⋃
{[f ] | ϕ ∩ [f ] 6= ∅}.

The inclusion from left to right follows because the r.h.s. is an invariant set
which covers ϕ, hence by Galois also covers ∃(ϕ|G). Conversely, if g /∈ ∃(ϕ|G),
then since ∃(ϕ|G) is invariant, [g] ∩ ∃(ϕ|G) = ∅, and it follows that [g] ∩ ϕ = ∅.
By construction, each [f ] is of the form

⋂{C ∈ G0 | f ∈ C}. Now let ϕ be
first order and suppose there exists an assignment g such that for all ψ ∈ G0
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such that ϕ ≤ ψ, g ∈ ψ, but [g] ∩ ϕ = ∅. Since [g] =
⋂{θ ∈ G0 | g ∈ θ}, by

ω1-saturation there exists θ ∈ G0 such that g ∈ θ and ϕ ≤ ¬θ. Since ¬θ ∈ G0

we have g ∈ ¬θ, a contradiction. 2

Hence, although G is very large (for example, it strictly includes the σ-algebra
generated by G0), in order to ‘compute’ ∃(ϕ|G) we need only a countable set
of elements of lesser complexity than ∃(ϕ|G) itself. Furthermore, when working
with a single conditional quantifier, this is basically all we need. In the following,
(¬)θ stands for a conjunction of a finite but arbitrary number of formulas, some
of which may be negated.

Lemma 4 Every formula in the language obtained by adding a single condi-
tional quantifier ∃(·|G) to a first order language without ∀ or ∃ is equivalent to
a formula of the form: a disjunction of conjuncts ψ ∧ (¬)∃(ϕ|G).

Proof of lemma 4 If θ is a formula of the language, write θ in disjunctive
normal form. ∃(·|G) distributes over disjunction, hence we have to show that
each conjunct of θ is of the required form.
By lemma 1, part 5b, every quantifier ∃(·|G) occurring within the scope of
another such quantifier can be pulled out. 2

Speaking topologically, we have the following situation. Let the first or-
der formulas determine a basis for a totally disconnected topology τ on the
set F of assignments of an ω1-saturated model M. τ is compact, and if we
identify assignments not distinguished by a formula, also Hausdorff. It follows
that (F , τ) is isomorphic to a standard Borel space. We have just shown that
the set of formulas constructed from a single conditional quantifier determines
sets of assignments which are Boolean combinations of open and closed sets.
Sets are becoming more complicated when we add a second conditional quan-
tifier; e.g. ∃(¬∃(ϕ|G)|H) will in general be Fσ. This suggests that, in order
to accomodate families of conditional quantifiers, the domain of each of them
should be the Borel σ-algebra generated by τ . However, in view of the form of
the definition of conditional quantifiers, one may suspect that adding one more
conditional quantifier may then lead to analytic, non-Borel sets of the form
∃(¬∃(¬∃(ϕ|G)|H)|K). In general one has the following result, kindly communi-
cated to me by A. Kechris:

Lemma 5 Let X be a standard Borel space, and let E ⊆ X ×X be the Borel
equivalence relation determined by a countable collection G0 of Borel sets, via

Eab ⇐⇒ ∀C ∈ G0(a ∈ C ↔ b ∈ C).

Then the following are equivalent

1. for some Borel set A ⊆ X, the set {a ∈ A | ∃b(Eab & b ∈ A)} is complete
analytic

2. E has uncountably many uncountable classes.
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It is easy to cook up an example along the lines of 3.1 which satisfies the second
condition. It follows that we cannot simply take the domain of a conditional
quantifier to be the Borel σ-algebra generated by τ . This is somewhat out of
keeping with our general aim of using a logic which is as simple as possible
to describe the resource. Below we shall tackle this problem in two ways. In
the next section, we show that at least as far as completeness is concerned,
the complexity of the denotation of conditionally quantified formulas can be
kept small; this is achieved by resorting to a type of nonstandard model first
introduced by Harvey Friedman, the so called Borel models. We then move on
to slightly change the logical properties of the conditional quantifier, dropping
the property that ϕ ≤ ∃(ϕ|G), and show that it has the effect of lowering
complexity of denotation. In this case the Borel σ-algebra suffices as a domain
of the quantifier. Conditional quantifiers will make a further appearance in
section 9, where they will be used to provide simple examples of interesting
families of quantifiers, martingales.

5 The logic of conditional quantifiers

In the literature on algebraic logic, what we call conditional quantifiers have been
studied mainly by means of representation theory: given a mapping ∃ : B −→ G,
satisfying certain properties, where G is a subalgebra of the Boolean algebra B,
find out what corresponds to ∃ on the Stone spaces associated to B and G.
For our purposes this is not quite sufficient. Most importantly, representation
theory does not tell us for which G the desired mappings ∃ exist. Hence, given an
abstract quantifier, we can find a representation; but this gives us no clue how to
construct such quantifiers as conditional on a given algebra. In this respect, the
Halmos-Wright theory of quantifiers differs from its probababilistic counterpart.
A related point is that the algebraic theory in itself gives us little idea how to
construct a semantics for these quantifiers, in particular it is unclear how they
interact with the ordinary quantifiers. We shall thus proceed in a traditional
manner and develop logics for conditional quantifiers, with proof rules, semantics
and completeness results relating the two.

Even so, there are several ways to do this. Staying close to probability theory
would suggest adding conditional quantifiers to Lω1ω or some fragment thereof,
as in Keisler’s probability logics [10]. The other option is to add conditional
quantifiers to first order logic, even though the resource G need not itself be
specifiable as a set of first order formulas. We shall choose the latter option,
which is roughly analogous to the addition of generalised quantifiers to first
order logic.

5.1 Syntax

Definition 9 We assume given a supply of names B,G,Gs, . . . for Boolean al-
gebras. For any such name G, ∃(· | G) denotes a conditional quantifier. The
language L(CQ(G)) consists of a first order language together with a single

17



         

quantifier symbol ∃(· | G) with the formation rule
If ϕ is a formula, then so is ∃(ϕ | G).

If we want to consider a language with many conditional quantifiers {Gs | s ∈
T}, we write L(CQ({Gs | s ∈ T})).

We now encounter a technical subtlety. Normally a quantifier binds a variable,
or perhaps several variables, but what are the free variables of ∃(ϕ|G)? The
Galois condition forces ∃(ϕ|G) to mean

∧{ψ ∈ G | ϕ ≤ ψ}, from which it
follows that the free variables of ∃(ϕ|G) are all those occurring in some ψ ∈ G
with ϕ ≤ ψ. What those variables are very much depends on the interpretation
of G in a model. Syntactically we can thus say only that the set of free variables
of ∃(ϕ|G) coincide with the set of free variables of the language. Below, we shall
put a reasonable restriction on G which allows us to identify the free variables
of ∃(ϕ|G) with those of ϕ. Also, as we shall see later the effect of a conditional
quantifier is best described as ‘partially binding’ variables; see section 9.

5.2 Semantics

Definition 10 A conditional quantification model for L(CQ(H)) is a structure
〈M,G,G′〉, where G is a Boolean algebra of sets of assignments and G′ is a
subalgebra of G. The interpretation of ∃(ϕ|H) on 〈M,G,G′〉 is given by

1. The name H is interpreted by the algebra G.

2. 〈M,G,G′〉 |= ∃(ϕ|H)[f ] iff for all A ∈ G′, ϕ ≤ A implies f ∈ A.
The quantifier ∃(ϕ|H) thus interpreted on the structure 〈M,G,G′〉 is called
adapted if the range of ∃(· | H) equals G′. Henceforth we do not distinguish
between names for algebras and their interpretations, and we shall take the sec-
ond argument of ∃(·|·) to be the algebra itself. We shall also sometimes suppress
reference to the algebras when considering a structure.
Similarly, a model for L(CQ({Gs | s ∈ T})) is of the form 〈M, {Gs | s ∈
T}, {G′s | s ∈ T}〉, where each G′s ⊆ Gs.
Intuitively, G represents the resource, and G′ represents the range of the con-
ditional quantifier, which could be smaller, for instance when the language is
countable and G is uncountable. Adaptedness is the analogue of measurability
in our context. The distinction between G and G′ is necessitated by our decision
to add conditional quantifiers to first order logic; this implies that the domain of
∃(·|G) in general will not contain all of G, and as a consequence condition 2 can
only be formulated for the range of ∃(·|G), not for G itself. This is so because
condition 2 corresponds directly to the Galois condition, formulated as a proof
rule; and since in the proof rules only formulas of the language can occur, a
proof of the completeness theorem will usually say little about sets in G − G′.
The price we have to pay for this is that the truth condition 2 is not induc-
tive, since to verify that ∃(ϕ|G) satisfies it, we have to know G′, hence ∃(ϕ|G)
itself. However, when the structure upon which the quantifier conditions is not
a Boolean algebra but a co-Heyting algebra, the situation is much better; cf.
section 8.
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5.3 Formal system and completeness

As we have seen, without restrictions on G, a formula of the form ∃(·|G) may
contain infinitely many variables. We first briefly study a fragment of L(CQ)G))
where the first order quantifiers ∀, ∃ are not allowed to have the conditional
quantifier ∃(·|G) within their scope. This fragment will be called L(CQ)G))−.
The fragment is axiomatised by a sequent calculus A(CQ(G))− consisting of the
ordinary structural rules and rules for the connectives, the rules for ∀, ∃ with
the proviso that they are not applicable to formulas containing a conditional
quantifier, together with the following rules for conditional quantifiers

(lCQ−)
Γ, ϕ =⇒ ∆

Γ, ∃(ϕ|G) =⇒ ∆
where formulas in Γ,∆ are of the form ∃(θ|G);

and

(rCQ−)
Γ =⇒ ϕ,∆

Γ =⇒ ∃(ϕ|G),∆
(without restrictions on Γ,∆).

Lemma 6 A(CQ(G))− is sound with respect to adapted conditional quantifica-
tion models.

Proof. We check lCQ. Suppose M |= Γ, ∃(ϕ|G)[f ], where Γ is a set of con-
ditionally quantified formulas. The interpretation of ∃(ϕ|G) entails that for all
A ∈ G′ such that ϕ ≤ A, f ∈ A. The premiss of the rule gives ϕ ≤ ∧Γ→ ∨

∆,
and since the model is adapted and G′ is a Boolean algebra, the r.h.s. is in G′.
It follows that f ∈ ∧Γ → ∨

∆, whence f ∈ ∨∆. The soundness of rCQ is
trivial. 2

Theorem 4 A(CQ(G))− is complete, i.e. every set Γ of sentences in L(CQ)G))−

consistent with A(CQ(G))− has an adapted conditional quantification model.

The proof is based on the idea that each formula of the form ∃(ϕ|G) can be
treated as a separate predicate of infinite arity, together with the normal form
lemma 4, which we restate for convenience:

Lemma 7 Every L(CQ)G))− - formula is equivalent to a formula of the form:
a disjunction of conjuncts ψ ∧ (¬)∃(ϕ|G).

The proof of theorem 4 is then completed by a Henkin construction. 2

However, the lack of ordinary quantifier rules somewhat complicates the
usual Henkin construction, so we will move to the more interesting system where
ordinary quantifiers may have scope over conditional quantifiers. In order to get
a result for the full language L(CQ)G)) we have to restrict the algebras under
consideration to the ones that are analogous to those considered in examples 3.1
and 3.2. The distinguishing feature of these algebras is given by the following
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Definition 11 An algebra G of sets of assignments is homogeneous if it is
closed under substitution, where a substitution is an operation Sr : G −→ G,
determined by a function r : ω −→ ω, satisfying Sr(A) = {f | ∃g ∈
A (g(xi) = f(xr(i))}. A homogeneous conditional quantification model is a
conditional quantification model 〈M,G,G′〉 where both G and G′ are homoge-
neous.

The definition is as convoluted as it is because of the following subtlety: if we
substitute x1 for x2 in θ(x1, x2), we want the result to be two-dimensional, not
one-dimensional. The advantage of homogeneous conditioning algebras G is that
we may intuitively think of a formula ∃(ϕ(x)|G), as having the free variables x,
for if there were θ ∈ G, ϕ ≤ θ containing additional free variables they can be
replaced by variables from x. We may therefore write ∃(ϕ(x)|G) as ∃(ϕ|G)(x).
Furthermore the result of substituting a variable z for y in ∃(ϕ(y, x)|G) is now
simply ∃(ϕ(z, x)|G). Formally,

Lemma 8 Let 〈M,G,G′〉 be a homogeneous conditional quantification model.
Then if x does not occur free in ϕ, 〈M,G,G′〉 |= ϕ[f ], g =x f implies 〈M,G〉 |=
ϕ[g].

Proof. It suffices to prove the statement of the lemma for ϕ of the form
∃(ψ(x)|G). Suppose y /∈ x, f ∈ ∃(ψ(x)|G), g =y f . Choose B ∈ G, ψ(x) ≤ B,
then f ∈ B. Let r : V AR −→ x be a mapping which is the identity on x, and
which maps the remaining free variables of B into x. Then ψ(x) ≤ Sr(B) ≤ B
and Sr(B) ∈ G. It follows that f ∈ Sr(B), whence g ∈ Sr(B) and g ∈ B. 2

We now introduce the sequent calculus A(CQ(G)) appropriate to this situ-
ation. The previous rule (lCQ−) is replaced by

(lCQ)
Γ, ϕ(x) =⇒ ∆

Γ, ∃(ϕ|G)(x) =⇒ ∆
where formulas in ∆ are of the form ∃(θ|G),¬∃(θ|G), and where Γ does not

contain x free.
(rCQ) is identical to (rCQ−), and we allow the rules for ∃, ∀ to be applied to
formulas containing a conditional quantifier.

It is instructive to compare (lCQ) to the l∃ rule. To introduce ∃x we require
that neither Γ nor ∆ contains x free, i.e. that both Γ and ∆ contain only
∃(·|Gx)-formulas (where Gx is the algebra of formulas not containing x free).
Hence l∃ is an instance of (lCQ−). The stronger rule (lCQ) makes clear that x
actually plays a dual role: roughly speaking, introduction of ∀x on ϕ → ∨

∆,
and introduction of ∃x on ϕ. These roles must be kept separate for general
conditional quantifiers. Another difference between (lCQ−) and (lCQ) is that
in the later rule we do not allow formulas of the form ∃(θ|G)(x) to occur on Γ,
but move them (with negations added) all to ∆. The reason for this technical;
we later need an infinitary variant of (lCQ) which is only sound with the new
stipulation.

As a consequence of lemma 8 we obtain
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Lemma 9 A(CQ(G)) is sound for adapted homogeneous conditional quantifi-
cation models.

Proof. Lemma 8 guarantees that the unrestricted l∃ and r∀ are sound. Now
consider (lCQ). Suppose M |= Γ, ∃(ϕ|G)(x)[f ]. Since M is adapted, we know
that for all ψ in the range of the conditional quantifier: if M |= ∀x(ϕ(x) →
ψ)[f ], then M |= ψ[f ]. The restriction onx now ensures that M |= ∀x(ϕ(x)→∨

∆)[f ]. 2

We assume that the role of adaptedness has been made sufficiently clear;
henceforth we shall take all models of interest to be adapted.

Theorem 5 A(CQ(G)) is complete for homogeneous conditional quantification
models.

Proof. For each formula ∃(ϕ(x)|G) of L(CQ(G)) introduce a predicate, also
written ∃(ϕ(x)|G), with free variables x. Suppose the sequent Λ =⇒ ∆ is not
derivable in A(CQ(G)). It follows from the rules that Λ ∪ {¬δ | δ ∈ ∆} is
consistent in A(CQ(G)). Let Γ be any set of formulas of L(CQ(G)) consistent
in A(CQ(G)); by the above translation we can think of Γ as a set of first order
formulae. Add a countable set of Henkin witnesses to the language. Γ can be
extended to a set T maximally consistent in A(CQ(G)), satisfying

1. for each ϕ in the language, ϕ ∈ T or ¬ϕ ∈ T

2. for first order ϕ, if ∃xϕ(x) ∈ T , then for some a, ϕ(a) ∈ T .

An equivalence relation ∼ is defined on the constants by putting a ∼ b iff
a = b ∈ T , and if [a] is the ∼-equivalence class of a, one puts A([a1] . . . [an])
iff A(a1 . . . an) ∈ T , where A is a standard predicate. This determines a first
order modelM. For formulas of the form ∃(ϕ|G) the truth condition is similar:
∃(ϕ|G)([a1] . . . [an]) iff ∃(ϕ|G)(a1 . . . an) ∈ T . By induction one proves the truth
lemma for M and T :

M |= ϕ([a1] . . . [ak]) iff ϕ(a1 . . . ak) ∈ T,

where 〈a1 . . . ak〉 is any sequence of constants.
Define G = G′ to be {ϕ | M |= ∀x(ϕ(x)↔ ∃(ϕ|G)(x))}. We then have to show
that G is a Boolean algebra, and that 〈M,G,G〉 is a homogeneous conditional
quantification model. It is easy to see that the properties of lemma 1 can be
derived in A(CQ(G)). By lemma 1, part 5b, G is closed under ∧, and by part 4
of the same lemma G is closed under ∨, hence G is a lattice. By rule lCQ,
∃(¬∃(ϕ|G)|G) = ¬∃(ϕ|G), so that G is also closed under Boolean negation. By
lemma 1, part 5b, ∃(∃(ϕ|G)|G) = ∃(ϕ|G), so that the range of ∃(·|G) equals G.
The defining condition of G ensures that it is homogeneous.
It remains to check that M |= ∃(ϕ|G)[a1 . . . ak] iff for all ∃(ψ|G) ∈ G′ = G :
ϕ ≤ ∃(ψ|G) on M implies M |= ∃(ψ|G)[a1 . . . ak]. The direction from right to
left is trivial: T is consistent with rCQ, hence ∀x(ϕ(x)→ ∃(ϕ|G)(x)) ∈ T . For
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the converse direction, choose an element of A ∈ G such that onM, ϕ ≤ A. By
construction, A is of the form ∃(ψ|G). We now observe that since T is consistent
with lCQ, if ∀x(ϕ(x)→ ∃(ψ|G)(x)) ∈ T , also ∀x(∃(ϕ|G)(x)→ ∃(ψ|G)(x)) ∈ T ,
whence it follows that M |= ∃(ϕ|G)[a1 . . . ak]. 2

This result is far from optimal in that we have little control over the algebra
G constructed in the proof of the completeness theorem, contrary to the intuitive
motivation. Consider the following simple example. We have a language with
two unary predicates A and C, satisfying ∀x(C(x)→ A(x)). We want to think
of the algebra generated by A as the resource. Then, intuitively, ∃(C|G) should
be equal to A. However, a model as constructed in the proof of the completeness
theorem, satisfying the Galois conditions for ∃(·|G) plus the property ∀x(C(x)→
A(x)), need not satisfy ∃(C|G) = A; in general, one will only get that ∃(C|G) is
contained in A. Hence, despite appearances, the S5 axioms are not complete for
the resource-bounded quantifier ∃(C|G); precisely the fact that G is the resource
in ∃(C|G) is left out.

To see what kind of additional axiom might be needed, let us complicate
the situation slightly by supposing that we now have finitely many predicates
A1, . . . , An all satisfying ∀x(C(x) → Ai(x)), such that the resource G is now
determined by the Ai. Then clearly we should have ∃(C|G) =

∧
i≤nAi, and

this is forced by requiring additionally that ∀xy(
∧
i≤n(Ai(x) ↔ Ai(y)) →

(∃(C|G)(x) ↔ ∃(C|G)(y))). Indeed, the Galois condition forces that ∃(C|G) ⊆∧
i≤nAi, and if the inclusion were proper, this could be used to generate a coun-

terexample to the axiom. Note that the axiom is a way of expressing in logic
that ∃(·|G) is measurable with respect to the algebra G.

We are now ready to introduce the formal system meeting our specifica-
tions, with the associated standard models. By induction, using the fact that
homomorphisms are surjective, one first proves

Lemma 10 Suppose h : M −→ N is a homomorphism, π the associated pro-
jection on assignments. For every predicate A in the signature ofM, add a new
predicate A′, which is interpreted on M by A′M = h−1AN . If GN is the algebra
of sets of assignments first order definable on N , then π−1(GN ) is the algebra
of sets of assignments on M first order definable with respect to the language
only containing the A′.

Definition 12 A standard conditional quantification model is a homogeneous
conditional quantification model 〈M,G0,G,G′〉 such that G0 is a countable alge-
bra of first order formulas (or the sets of assignments defined by these formulas)
and G = σ(G0). As before G′ ⊆ G is the range of the conditional quantifier.

By lemma 10, the condition that G0 is a countable set of first order formulas
captures all cases of interest. Note that σ(G0) is homogeneous if the generating
algebra G0 is homogeneous; it follows that we may think of a formula ∃(θ|G),
where θ has arity n, as determining a set of n-tuples.

The formal system now consists of A(CQ(G)) plus a new rule (M)G0 , where
G0 is a Boolean algebra of first order formulas, which says:
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Γ =⇒ ∃(ϕ|G)(x) {Γ, ψ(x) =⇒ ψ(y),∆ | ψ ∈ G0}
Γ =⇒ ∃(ϕ|G)(y),∆

Clearly (M)G0 has infinitely many premisses when G0 is infinite, although
each sequent itself is finite. The next lemma establishes a connection between
the rule (MG0) and measurability with respect to G0 in the setting of Borel
models:

Lemma 11 (Blackwell; cf. Exercise 14.16 in [9]) Let X be a standard Borel
space. Let (An) be a countable collection of Borel subsets of X; define an equiv-
alence relation R by R(x, y) iff ∀n(x ∈ An ⇔ y ∈ An). Then for any Borel set
B, B is R-invariant iff B ∈ σ(An).

Proof. The direction from right to left is proved by induction, and does not
need the assumption that X is a Borel space. For the converse direction, observe
that since the collection (An) is countable, each equivalence class is determined
by a sequence in 2ω. The canonical projection π : X −→ 2ω is Borel measurable
if we equip 2ω with the product topology. The Borel σ-algebra on 2ω is isomor-
phic to σ(An) via π. For each Borel set B, π(B) is analytic. For invariant Borel
sets we have in addition that π(Bc) = π(B)c, so that by Suslin’s theorem π(B)
is actually Borel. It follows that B ∈ σ(An). 2

Lemma 12 (M)G0 is sound with respect to standard conditional quantification
models.

Proof. LetM be a standard conditional quantification model, f an assignment
such that M |= Γ[f ], and for all δ ∈ ∆,M 6|= δ[f ]. We then have that
∃(ϕ|G) ∈ G = σ(G0) and M |= ∃(ϕ|G)(x)[f ]. Let f(x) = a, f(y) = b. The
second premiss, combined with the homogeneity of G0 says that a, b are G0-
equivalent. The easy half of Blackwell’s lemma then ensures that b ∈ ∃(ϕ|G).

2
The main ingredient of the completeness proof is provided by the following

definition

Definition 13 (H. Friedman) A first order model M is totally Borel if its
domain is (homeomorphic to) IR and all relations definable on M by means of
parameters are Borel.

Theorem 6 (H. Friedman; cf. Steinhorn [14], [15]) A first order theory
with an infinite model has a totally Borel model.

The addition of the infinitary rule necessitates a modified notion of a max-
imally consistent theory. As before, G0 is a homogeneous algebra of first order
formulas.

Definition 14 A set of formulas Γ in L(CQ(G)) is G0-saturated if it is maximal
with respect to satisfying the following conditions
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1. Γ is consistent in A(CQ(G)) + (M)G0 .

2. ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ.

3. ∃xϕ(x) ∈ Γ implies ϕ(a) ∈ Γ for some Henkin witness a.

4. If for some terms s, t, ∃(ϕ|G)(t),¬∃(ϕ|G)(s) ∈ Γ, then there exists a for-
mula ψ ∈ G0 such that ψ(t),¬ψ(s) ∈ Γ.

Lemma 13 Every set of formulas Γ consistent in A(CQ(G)) + (M)G0 has a
G0-saturated extension.

Proof. We do the two nontrivial cases. Enumerate the formulas in the ex-
tended language such that each formula occurs infinitely often. Suppose we
have reached a stage Tk where the formula to be treated is ∃(ϕ|G)(s) ∈ Tk.
Suppose for some t, ¬∃(ϕ|G)(t) ∈ Tk. If for all ψ ∈ G0 such that Tk ∪ {ψ(s)}
consistent, Tk ∪ {ψ(s)} ` ψ(t), then rule (M)G0 would give us Tk ` ∃(ϕ|G)(t), a
contradiction. Hence we may choose ψ such that Tk ∪{ψ(s), ψ(t)} is consistent.
Do this for each t such that ¬∃(ϕ|G)(t) ∈ Tk, and let the result be Tk+1.
We next show that witnesses for existential formulas can be added such that the
resulting theory is still consistent with (M)G0 . So suppose we have constructed
a theory Tn, consistent in A(CQ(G)) + (M)G0 , such that ∃xϕ(x) ∈ Tn; we want
to construct Tn+1 such that for some witness a, ϕ(a) ∈ Tn+1, while Tn+1 is still
consistent with (M)G0 . Assume for a term b and a formula θ, ¬∃(θ|G)(b) ∈ Tn.
We have a contradiction with (M)G0 if for all (new) witnesses a, on the one hand
Tn, ϕ(a) ` ∃(θ|G)(a), and on the other hand, for all ψ ∈ G0, Tn, ϕ(a) ` (ψ(a)↔
ψ(b)). However, rule (M)G0 then implies that for all new a, Tn, ϕ(a) ` ∃(θ|G)(b),
and it follows that Tn ` ¬∃xϕ(x), a contradiction. 2

Putting all these ingredients together we now have

Theorem 7 A(CQ(G))+(M)G0 is complete with respect to standard conditional
quantification models.

Proof. Let Γ be consistent in A(CQ(G)) + (M)G0
. As before, think of condi-

tionally quantified formulas as being predicates. We may assume that Γ has an
infinite model, for if not, the argument given just after theorem 5 does the job.
Extend Γ to Γ∗ with built-in Skolem functions and extend Γ∗ to a G0-saturated
theory T . Let M be a totally Borel model for T . Define G′ to be {ϕ | M |=
∀x(ϕ(x) ↔ ∃(ϕ|G)(x))}. Let G0 = {ϕ | ϕ first order,M |= ϕ ≡ ∃(ϕ|G)}. It
remains to be shown that G′ ⊆ σ(G0). Define the equivalence relation R by
R(f, g) iff for all ψ ∈ G0,M |= ψ[f ] ⇔ M |= ψ[g]. R is a Borel equivalence
relation on IRω and by Blackwell’s lemma it suffices to show that each ∃(ϕ|G)
is invariant under R (since ∃(ϕ|G) is a Borel subset of IRω).
For notational convenience we shall assume that ∃(ϕ|G)(x) only contains the
free variable x. The proof of Theorem 6 shows that each element of the universe
of M is of the form t(i1, . . . , in), where t is a Skolem term and i1, . . . , in are
indiscernibles from a linear order of indiscernibles homeomorphic to the irra-
tionals. Now suppose M |= ∃(ϕ|G)(x)[f ], where f(x) = t(i), for t a Skolem
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term. Let R(f, g) with g(x) = s(j). We then have, for all ψ ∈ G0, M |= ψ(t(i))
implies M |= ψ(s(j)). By construction this is equivalent to: for all ψ ∈ G0,
T ` ψ(t(u)) implies T ` ψ(s(v)). Since ∃(ϕ|G)(t(u)) ∈ T , by rule (M)G0 this
implies ∃(ϕ|G)(s(v)) ∈ T , whence M |= ∃(ϕ|G)(s(j)). 2

A much simpler argument also shows that the rules given (i.e. including the
infinitary rule) are also complete with respect to models of the form 〈M,G0,G〉,
G the algebra of all G0-invariant sets. However, the point of the argument just
given is that it forces the denotations of the formulas to be in an algebra which
is effectively described.

The argument goes over without change to families of conditional quanti-
fiers. Say the language is now L(CQ({Gs | s ∈ T})); this requires the obvious
extension of A(CQ(G)) + (M)G0 to A(CQ(G)) + {(M)Gs0 | s ∈ T}. We then
have

Corollary 1 A(CQ(G)) + {(M)Gs0 | s ∈ T} is complete with respect to stan-
dard homogeneous conditional quantification models of the form 〈M, {Gs0 | s ∈
T}, {Gs | s ∈ T}, {G′s | s ∈ T}〉, where each G′s ⊆ Gs and G = σ(Gs0).

6 Averages

One of the themes of our investigation is the relation between the resource chosen
and the logical properties of the conditional quantifier. We have seen that it
is in general impossible to construct a conditional quantifier satisfying the S5
properties, which is conditional on a resource which is the σ-algebra generated
by a set of first order formulae. Here, we show that, if we drop the requirement
that ϕ ≤ ∃(ϕ | G), then conditioning on a σ-algebra is possible. We also obtain
a very intuitive correspondence between this form of conditional quantification
and conditional expectation, whenever the latter is defined. There is a price
to pay, however; the construction requires the continuum hypothesis, and the
models have to be expanded by means of an ideal. We first give an algebraic
definition of the quantifier of interest.

Definition 15 (Wright [25]) Let B be a Boolean algebra. An average is a
mapping ∃ : B −→ B, satisfying

1. ∃0 = 0, ∃1 = 1

2. ∃ commutes with ∨

3. for all A in the range of ∃, for all B ∈ B,

(a) B ≤ A =⇒ ∃B ≤ A
(b) B ∧A = 0 =⇒ ∃B ∧A = 0.

Equivalently,

Lemma 14 (Wright [25]) An average is a mapping ∃ : B −→ B, satisfying
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1. ∃0 = 0, ∃1 = 1

2. ∃ commutes with ∨

3. ∃(A ∧ ∃B) = ∃A ∧ ∃B.

An example of an average on a Boolean algebra B is obtained when there
exists a subalgebra G which is a retract of B, i.e. when there exists a surjective
homomomorphism h : B −→ G which is the identity on G. Referring to exam-
ple 3.1, we obtain an average when a predicate in L but not in L′ is defined by
means of a formula in L′. An extreme case of an average is a homomorphism
h : B −→ 2, i.e. an ultrafilter. A more typical example of an average ∃ arises is
obtained when we have a probability measure P on B, so that we may define,
for all a ∈ B: ∃a = 1 iff P (a) > 0. This example suggests that an average
can also be characterised by means of a modified Galois condition, involving an
ideal.

Lemma 15 (Wright [25]) If ∃ is an average with range G, the set I = {N |
N ≤ B ∧ ¬∃B, for some B ∈ B} is an ideal. Moreover, I ∩ G = {0}.

Proof. By the Frobenius property, ∃(B ∧ ¬∃B) = ∃B ∧ ¬∃B = 0, and the
result follows since ∃ commutes with ∨. For the second part of the assertion,
assume N ∈ I ∩ G, then ∃N = N and there exists B such that N ≤ B ∧ ¬∃B.
Hence N = ∃N ≤ ∃(B ∧ ¬∃B) = 0. 2

Lemma 16 A mapping ∃ : B −→ B is an average iff there exists an ideal I on
B such that I ∩ range(∃) = {0} and, for all B ∈ B, all A in the range of ∃:

B ∧ ¬A ∈ I ⇐⇒ ∃B ≤ A.

Proofsketch. If ∃ is an average, B∧¬A ∈ I implies ∃(B∧¬A) = ∃B∧¬A = 0,
whence ∃B ≤ A. If ∃B ≤ A, then B ∧ ¬A ∈ I since B ∧ ¬∃B ∈ I. 2

The latter characterisation will be used in our semantics for averages, now
considered as quantifiers added to a first order language. It suggests that in
this case the resource consists of two parts: an algebra and an ideal of negligible
sets.

We are now in a position to elaborate the example sketched in section 3.4.
Consider a partial homomorphism h :M −→ N with domain D; I is then the
prime ideal determined by F − Dω. Let G be the algebra on M determined
by N and h; for the moment we waive issues about completeness. Define a
quantifier ∃ : B −→ G by ∃ϕ =

∧{A ∈ G | ϕ ≤I A}, then the range of ∃
will be a subalgebra of G and it will satisfy all properties of an average except
∃1 = 1; in fact we will have ∃Dω = ∃1 = Dω. For the purposes of the logic of
vision outlined in [19] this is not satisfactory, since it provides the perceptual
field with sharp boundaries; whereas the logic should allow for the possibility
that one sees an object which does not occur in the perceptual field, so that
∃Dω = ∃1 6= Dω. It is then technically convenient to have ∃ satisfy ∃1 = 1.
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This requires changing the set-up; we now must assume that h derives from a
total homomorphism h′ so that h = h′|D and G is generated from h′ rather
than from h. The desideratum that the perceptual field does not have sharp
boundaries translates into the requirement that no nonempty part of Dω is in
G, or, what amounts to the same, that I ∩ G = {0}. Under these conditions,
∃ is an average. As an interesting additional consequence we obtain that ∃
is in fact surjective on G, for if A,B ∈ G, then A ≤I B iff A ≤ B. This
example clearly shows that the two resources defining an average, concretely:
approximate vision and restricted perceptual field, should be independent.

6.1 Existence of averages

Wright [25][p. 446] gives a representation theorem for averages in terms of hy-
persections on the Stone spaces of B and G. This gives us little information
about the kind of resource that can actually occur for an average, so we shall
approach the matter from the other end, by fixing the resource.

Definition 16 An ideal I in a Boolean algebra B is ω1-saturated if for any
family of pairwise disjoint sets {Bα|α < ω1} ⊆ B−I, there exist distinct Bα, Bγ
such that Bα ∩Bγ /∈ I.

Lemma 17 Let B be a Boolean σ-algebra. Then a σ-ideal I ⊆ B is ω1-saturated
iff there does not exist an uncountable set A ⊆ B − I of pairwise disjoint sets.

Proof. The direction from left to right is trivial. For the other direction,
suppose for all distinct Bα, Bγ , Bα ∩ Bγ ∈ I. Define a pairwise disjoint family
{Aα|α < ω1} by putting

A0 = B0

Aα = Bα ∩ (
⋃
γ<αBγ)c.

By hypothesis, Bα ∩
⋃
γ<αBγ ∈ I, whence Aα /∈ I. It follows that the family

Aα must be countable, a contradiction. 2

Corollary 2 Let (X, τ) be a second-countable topological space, B the Borel
σ-algebra on X.

1. If µ is a σ-additive measure on B, then I = {N | µ(N) = 0} is an ω1-
saturated σ-ideal.

2. I = {N | N is meagre} is an ω1-saturated σ-ideal.

Proof. 1 is immediate by Lemma 17.
For 2, let {Bα}α<ω1

be an uncountable pairwise disjoint subset of B − I. Let
Oα be an open set congruent to Bα modulo I. The Oα can at most overlap on a
meagre set and hence must be pairwise disjoint by the Baire category theorem.
This contradicts the fact that the space is second-countable. 2

Recall that a collection of sets is a π-system if it is closed under finite inter-
section.
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Theorem 8 (ZFC + CH) Let B be the σ-algebra generated by a class of first
order definable sets of assignments, let G0 be a countable subalgebra of B deter-
mined by a set of first order formulas with generated σ-algebra σ(G0), and let I
be an ω1-saturated σ-ideal. Furthermore, suppose that for some π-system ∆ gen-
erating G0, I ∩∆ = {∅}. Then there exists an average ∃(·|G0, I) : B −→ σ(G0),
satisfying

B ⊆I A iff ∃(B|G0, I) ⊆ A,
for B ∈ B, A in the range of ∃(·|G0, I), and such that G0 is contained in the
range.

Proof. The quotient σ-algebra B/I satisfies the countable chain by ω1-saturation
of I, hence is complete; analogously for the subalgebra σ(G0)/I. Let π be
the canonical projection B −→ B/I. Define a map F : B −→ σ(G0)/I by
F (B) =

∧{A ∈ σ(G0)/I|π(B) ≤ A}.
We now choose representatives from the elements of σ(G0)/I such that the

algebraic relations are preserved and G0 is included in the set of representatives.
In general, let G be a Borel σ-algebra generated by a topology τ , and let I

be a σ-ideal disjoint from τ . A lifting ρ : G −→ G is a map which satisfies

1. ρ(A) = A (mod I)

2. A = B (mod I) implies ρ(A) = ρ(B)

3. ρ(∅) = ∅

4. ρ(A ∩B) = ρ(A) ∩ ρ(B)

5. ρ(A ∪B) = ρ(A) ∪ ρ(B).

A lifting is strong if we have in addition

(vi) for U ∈ τ, U ⊆ ρ(U).

The existence of liftings can be proved in ZFC; but assuming the continuum
hypothesis, a strong lifting ρ exists for G if τ is second countable and Hausdorff;
see Graf [5][p. 425].

In particular this is true for our case, where G = σ(G0), for as in the proof
of lemma 11, we may view G as the Borel σ-algebra on 2ω. Moreover, since
G0 consists of clopen sets, we may use (vi) to conclude that ρ is actually the
identity on G0.

Note that we may take ρ to be a mapping on σ(G0)/I and define ∃(B|G0, I) =
ρ(F (B)). Then the range of ∃(B|G0, I) is a subalgebra of σ(G0) containing G0

and for first order ϕ, ∃(ϕ|G0, I) ⊆ ∧{C ∈ G0|ϕ ⊆ C}.
Lastly, we show that the Galois condition holds. The direction from right to

left is trivial, since by construction B ⊆I ∃(B|G0, I). For the converse direction,
if B ⊆I A, where A is in the range of ∃(·|G0, I) then π(B) ≤ π(A), whence
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F (B) ≤ F (A). It follows that ρ(F (B)) ⊆ ρ(F (A)), but since A is in the range
of ∃(·|G0, I), ρ(F (A)) = A. 2

In logical terms, the meaning of the result is the following. Suppose we
drop ordinary ∀, ∃ altogether and work in the fragment of Lω1ω not containing
quantifiers, as in Keisler’s probability logic [10]8. Let Lω1ω(Av(G)) denote this
fragment with the average ∃(·|G, I) added.

Corollary 3 (ZFC+CH) Let M be a model, G = σ(G0 a countably generated
σ-algebra, I an ω1-saturated σ-ideal on G such that I ∩G0 = {∅}. Then M can
be extended to a model of Lω1ω(Av(G)) with ∃(·|G, I) interpreted by means of
G, I.

2
The use of a lifting in the proof of theorem 8 is unavoidable, as can be

seen as follows. Suppose we are given an average α : B −→ G with range G;
let I be the ideal {a ∈ B|αa = 0}. Let alg(G ∪ I) be the Boolean algebra
generated by G ∪ I, then G ∩ I = {∅} and G ' alg(G ∪ I/I). Let π be the
canonical projection π : B −→ B/I, then we can define a conditional quantifier
∃ : B/I −→ alg(G ∪ I)/I by ∃πa = παa. Furthermore, the range of α is
obtained by applying a lifting to the range of ∃. This parallels the steps in our
proof. Furthermore, we want the lifting to be strng in order to ensure that the
generating algebra G0 is in the range; I am not aware of any method of doing
this without the continuum hypothesis.

Measures provide a source for the required ideals. Assume for the following
that M is ω1-saturated. Let F be the space of assignments, with its compact
topology of first order definable subsets. Let C(F) denote the set of continuous
functions on F , and letM(F) be the space of probability measures on F . M(F)
is compact in the weak ?-topology, the smallest topology making each of the
maps µ −→

∫
Fdµ, F ∈ C(F), continuous. It follows that there exist many

non-atomic measures on F . Indeed, take any sequence (fn) of elements of F ,
and define a measure µn by

µn(B) =
1

n

n∑

i=1

χB(fi),

where χB is the characteristic function of B. By compactness, the sequence (µn)
will have a limit point inM(F). Given a µ ∈M(F), define I = {B|µ(B) = 0},
then I is an ω1-saturated σ-ideal. Given a π-system ∆ generating G0, we can
always construct a measure µ which assigns positive measure to each element
of ∆ (by taking a suitable infinite convex combination) and in this case we will
have ∆ ∩ I = {∅}.

We are now in a position to establish a connection between averages and
conditional expectation.

8Although we do not need Keisler’s restriction to admissible fragments.
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Corollary 4 (ZFC + CH) Let G = σ(G0), let µ be a probability measure on
B, the σ-algebra generated by the first order definable sets of assignments, and
let Eµ(·|G) denote conditional expectation with respect to µ. Let I be the set of
µ-nullsets. Then for all B ∈ B, for µ-a.a. f ∈ F :

f ∈ ∃(B|G, I)⇐⇒ Eµ(B|G)(f) > 0.

Proof. From right to left: suppose µ{f |Eµ(B|G)(f) > 0 & f /∈ ∃(B|G, I)} >
0, then ∫

Eµ(B|G) · 1∃(B|G,I)cdµ > 0,

whence ∫
1B · 1∃(B|G,I)cdµ > 0,

a contradiction. For the converse direction, we use the Galois property (and
CH). Let ρ be the strong lifting used to construct ∃(·|G, I). Put

A = ρ([{f | Eµ(B|G)(f) > 0}]),

then, since A is in the range of the average, it will follow that ∃(B|G, I) ⊆ A if
B ⊆ A mod I.
But we have

∫
Ac

1Bdµ =
∫
Ac

Eµ(B|G)dµ = 0, and we are done. 2

6.1.1 Uniqueness

One of the questions we posed at the beginning was: is the quantifier unique
given the resource? In this case the resource consists of an algebra together
with an ideal. If the algebra were complete, the average would be definable as
∃(ϕ|G, I) =

∧{ψ ∈ G | ϕ ≤I ψ}, so that it is unique. In the case of countable
completeness, the situation is different. Suppose we have averages ∃0, ∃1 both
with respect to the resource G, I; let ∃0 have range G0 ⊆ G and let ∃1 have
range G1 ⊆ G. An easy computation then shows that for all b in the domain of
∃0, ∃1, ∃0b4∃1b ∈ I; uniqueness holds only modulo the ideal. This means that
also here ∃(ϕ|G, I) is not computable from ϕ and the resource G. At most the
equivalence class containing ∃(ϕ|G, I) can be determined from knowledge of G,
ϕ and I, but the actual choice depends upon CH.

6.2 Logic of averages

6.2.1 Syntax

The syntax of the logic is the same as that for conditional quantifiers, except
that we write an average as ∃(·|G, I), thus explicitly mentioning the second
component of the resource. To mark the difference the language of the average-
quantifier will be denoted L(Av).

From the rules of the sequent calculus A(CQ(G)) + (M)G0 we keep only the
left introduction rule. Note that this takes care of both parts of the modified
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Galois condition in 15, due to the presence of the side formulas Γ,∆. Dropping
the right introduction rule has the consequence that we have to force distribution
over ∨ by means of the axiom

∃(ϕ ∨ ψ|G, I) =⇒ ∃(ϕ|G, I), ∃(ψ|G, I).

The resulting system is called A(Av) + (M).

6.2.2 Semantics

Motivated by the discussion in section 6.1, models for averages will take the
following form

Definition 17 A standard average model is a structure of the form 〈M,G,G0,G′, I〉,
where M is a first order model, G0 is a homogeneous algebra of first order de-
finable sets of assignments, G = σ(G0), G′ is a Boolean algebra contained in
G, and I is an ideal such that I ∩G′ = {0}. The average ∃(·|G, I) is interpreted
on this structure as follows

1. the range of ∃(·|G, I) is G′

2. M |= ∃(ϕ|G, I)[f ] iff for all A ∈ G′, ϕ ≤I A ⇐⇒ f ∈ A (where ϕ ≤I A
means that ϕ ∧ ¬A ∈ I).

The soundness of A(Av) + (M)G0 with respect to standard average models
is proved as for standard conditional quantification models.

6.2.3 Completeness

Theorem 9 A(Av) + (M)G0 is complete with respect to standard average mod-
els.

Proof. The proof is almost the same is that of theorem 7, but of course we
now have to take care of the ideal. Let I be the ideal of L(Av)-definable sets
of assignments generated by {ϕ∧¬∃(ϕ|G, I) | ϕ a formula of L(Av)}. We must
show that I ∩ G′ = {0}. An element in I ∩ G′ is a formula ψ such that for a set
{ϕn ∧ ¬∃(ϕn|G, I)|n ≤ k}, ψ ≤ ∨n≤k(ϕn ∧ ¬∃(ϕn|G, I)). Applying ∃(·|G, I)) to
the r.h.s yields 0 in virtue of the Frobenius property, hence the r.h.s. is in I. It
follows that ∃(ψ|G, I) = 0. Since ψ ∈ G′, ∃(ψ|G, I) = ψ, whence ψ = 0.

It is now easy to see that ∃(ϕ|G, I) =
∧{A ∈ G′ | ϕ ≤I A}. The direction

from right to left follows because by definition of I, ϕ ≤I ∃(ϕ|G, I). For the
converse direction, observe that if ϕ ≤I A, then there are formulae ψn, n ≤ k
such that ϕ ∧ ¬A ≤ ∨

n≤k ψn ∧ ∃(ψn|G, I), whence we have ∃(ϕ ∧ ¬A|G, I) ≤∨
n≤k ∃(ψn ∧ ∃(ψn|G, I) | G, I) = 0 by Frobenius, so that ∃(ϕ|G, I) ≤ A. 2

The ideal constructed in the course of the completeness proof apparently
lacks the strong properties demanded by the existence theorem 8. One way
to force those properties would be to show that every theory consistent with
A(Av) + (M)G0

can be extended to a theory consistent with Friedman’s logic
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for ‘almost all’ (cf. Steinhorn [14]) together with a set of axioms of the form
Qx¬(ϕ(x)∧¬∃(ϕ|G, I)(x)), where Q is the ‘almost all’ quantifier. We have not
been able to show, however, that such an extension is always possible.

7 Interlude: illusory conjunctions

Now that we have treated conditional quantifiers and averages in some detail,
we briefly pause to give an application of these quantifiers to the logic of vision
outlined in [21], [19] and [20]. The main thrust of those papers is, that if one
takes seriously the idea that seeing is filtering of information, then a plausible
logic of perception and of perception reports can be obtained if the required
filtering is performed by various quantifiers of the conditional type. Here, we
extend the argument by applying the logic of conditional quantifiers to a psy-
chological phenomenon called ‘illusory conjunction’, for which see Treisman and
Gelade [17], Treisman and Schmidt [18] and Treisman [16].

First a brief remark on the relation between conditional quantification and
vision. It seems profitable to split the meaning of the sentence ‘I see a ϕ’ into two
components, the first semantic, the second pragmatic. The semantic component
is ‘With the present approximation what I perceive [x] is identified as a ϕ’9,
whereas the pragmatic component can be rendered as ‘I expect this identification
to remain true for every more refined approximation’. Some of the theory of
the pragmatic component will be studied in section 9. The semantic component
is formalised as ∃(ϕ(x)|G), where G is the filtering structure corresponding to
‘the present approximation’. The reasons for this formalisation, which derive
from the importance of filtering to perception as discussed in Marr [12], are
extensively discussed in the papers cited, especially [20], and we will not dwell
upon this here. But note a consequence of this choice: there is a difference
between ∃(ϕ|G)∧∃(ψ|G) and ∃(ϕ∧ψ|G), the latter being in general the smaller
set. It was left open in [21] and [19] whether this difference has any visual
meaning. (Incidentally, situation semantics faces this problem too, as was noted
by Barwise in [2].) This is where Treisman’s work comes in, which we shall now
briefly describe.

The phenomenon to be explained, illusory conjunctions, is that features
(such as color or shape) which are perceived in a unattended part of the visual
field, may combine in a random manner. Thus, if the perceptual field is a
display containing only pink X’s and green T’s, one may still report seeing a
pink T when experimental conditions are such that serially scrutinising each
letter is impossible. The pink T is an illusory conjunction in the sense that it
is spuriously combining features from two objects which do exist. The theory
proposed to explain the phenomenon is that features are detected in parallel
and fast, but in such a manner that they are not yet bound to a location; it
requires attention, which consists in serially scrutinising each object or location
to conjoin the features into a unitary whole. Experimentally, the distinction
between searching for features and searching for an object shows up as follows.

9Here, ‘perceive’ is taken in a passive, pre-attentive, sense.
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Suppose we have a display which is filled with green X’s and brown T’s and which
may or may not contain the target. In the feature condition, one asks subjects to
search for a target which is either blue or an S; in the object condition, the target
is a green T. In both cases one has to search for two features simultaneously,
but they have to be conjoined only in the latter condition. The experimental
findings are that in the feature condition search time is independent of display
size, whereas in the object condition search time increases linearly with display
size (where display size is measured by the number of items the display contains).
This strongly suggests that search in the first condition is parallel, whereas it is
serial in the second condition. Parallel search points to the existence of many
specialised feature detectors, each devoted to a small part of the visual field,
while serial search is a consequence of focussing attention on one item at a time.

What has all this to do with logic? Our claim is that viewing visual percep-
tion as filtering leaves room for illusory conjunctions; furthermore, that, also
as a matter of logic, restricting attention to one object, as formalised by a
suitable ideal, eliminates the illusory conjunctions. Formally, an illusory con-
junction of predicates A and B is a situation where (relative to a visual field)
∀x(A(x) → ¬B(x)), but ∃x(∃(A(x)|G) ∧ ∃(B(x)|G)); the existential quantifier
is the correct formalisation here, because we are asking only for the existence
of a target, not for its location. Such situations can be constructed easily, not
only for conditional quantifiers, but also for averages. (A concrete instance of
a filter here is given by the experiment reported in Treissman and Gelade [17]
which shows that judgments of presence or absence of a feature are indepen-
dent of judgments of spatial location of that feature.) Now recall from section
6 that we may model the effect of a restricted perceptual field by means of
averages; if the set of objects D represents the perceptual field, the ideal I is
given by the subsets of (Dc)ω. Similarly we may go one step further and use I
to represent the field of attention; if this consists of the object d, we may put
I = {F ⊆ F | f(x) 6= d}. Let ∃(·|G, I) be the associated average. Then we
have generally

∃(ϕ(x)|G, I) ∧ ∃(ψ(x)|G, I) = ∃(ϕ(x) ∧ ψ(x)|G, I).

There are two cases. First suppose ϕ(d) ∧ ψ(d). By definition of an aver-
age, ϕ(x) ∧ ψ(x) ≤I ∃(ϕ(x) ∧ ψ(x)|G, I), so that for our definition of I,
f ∈ ϕ(x) ∧ ψ(x) ∧ ¬∃(ϕ(x) ∧ ψ(x)|G, I) implies f(x) 6= d. It follows that
ϕ(x) ≤I ∃(ϕ(x) ∧ ψ(x)|G, I), or equivalently ϕ(x) ∧ ¬∃(ϕ(x) ∧ ψ(x)|G, I) ∈ I:
for if f ∈ ϕ(x) and f(x) = d, then f ∈ ψ(x) and by the preceding observation
f ∈ ∃(ϕ(x) ∧ ψ(x)|G, I). It follows that ∃(ϕ(x)|G, I) ≤ ∃(ϕ(x) ∧ ψ(x)|G, I),
whence also ∃(ϕ(x)|G, I) ∧ ∃(ψ(x)|G, I) ≤ ∃(ϕ(x) ∧ ψ(x)|G, I). In the second
case, ϕ(d)∧¬ψ(d). Now we must have ψ(x) ∈ I, so that ∃(ψ(x)|G, I) = 0 and
again ∃(ϕ(x)|G, I)∧∃(ψ(x)|G, I) ≤ ∃(ϕ(x)∧ψ(x)|G, I). The argument depends
upon the fact that I contains all subsets of {f | f(x) 6= d}. It would fail, as it
should, if I allowed attention to be divided between at least two objects.

Summarising: if one takes seriously the point of view that perception involves
filtering, or information reduction, then illusory conjunctions can be expected.
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As a matter of logic, the only way to eliminate these conjunctions is by focussing
attention on one object at a time.

8 Other conditioning structures

One theme of this investigation is the relation between the strength of the
resource and the logical properties of the quantifier bounded by this resource.
Here is one easy result, already used implicitly in section 6, which shows how
fixing the logic also fixes the structure of the resource.

Lemma 18 (Wright [25]) Let ∃ be an average defined on a Boolean algebra
B. Then its range G is a Boolean algebra.

Proof. It suffices to show that the complement of B is the complement of
G. Choose ∃a ∈ G, and let (∃a)′ be its complement in B. We are done if
we can show that (∃a)′ ∈ G, or, equivalently, ∃((∃a)′) = (∃a)′. We have 1 =
∃(∃a ∨ (∃a)′) = ∃∃a ∨ ∃((∃a)′) = ∃a ∨ ∃((∃a)′), whence (∃a)′) ≤ ∃((∃a)′).
On the other hand, 0 = ∃a ∧ (∃a)′, whence ∃((∃a)′) ∧ ∃a = 0, i.e. ∃((∃a)′) ≤
(∃a)′. 2

Hence if we have a resource H ⊆ B which does not contain a nontrivial
Boolean subalgebra, it will be impossible to define an average ∃ : B −→ H with
nontrivial range.

One may also ask several converse questions. Suppose we fix (i) the structure
of the resource, (ii) the desired properties of the quantifier conditional on this
resource and (iii) the basic first order logic, what is the resulting logic of the
conditional quantifier? This demand for a complete characterisation of course
presupposes that (i) - (iii) are consistent. Ideally, the complete axiomatisation
would be obtained by an operation on the algebras given by (i) and (iii), but
this appears to be difficult in general. However, we already proved one result
along these lines, namely lemma 4, which can be restated as follows

Lemma 19 Suppose ∃ is a quantifier on a classical first order language satis-
fying the axioms for an average, such that the range of ∃ (i.e. the resource)
satisfies classical logic. Then the first order language extended with ∃ satisfies
classical logic.

Proof. Lemma 4 shows that the Lindenbaum algebra of the logic can be
obtained as the direct product of two Boolean algebras, namely the resource
and the first order logic. 2

So much for the easy results. In the rest of the section we consider examples
of resources weaker than Boolean algebras.
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8.1 Positive information

In section 3 we gave an example where the resource G is the co-Heyting algebra
generated by positive formulas. This example was motivated by the considera-
tion that there sometimes exists an asymmetry between positive and negative
information, where only the former is ‘effective’. A concrete case of this occurs
in perception, in particular in the interaction between knowledge and percep-
tion. Let the predicate A denote a set of 2D objects, B the predicate ‘has mass’,
Gs a collection of tests comparing images to 3D templates at level of accuracy
s; e.g. as in Marr [12], Chapter 5. Then even though A ∩ B = ∅, one may
have ∃(A|Gs) ∩ B 6= ∅; in fact, this is just the visual illusion which allows us
to enjoy (?) television. Formally, what is at issue here is that we do not always
want to require adjointness with respect to Bc.

We now investigate this case in slightly more detail. As will be seen, it is
the only example where the conditioning structure naturally has the right com-
pleteness properties and where in addition ∃(ϕ|G) can be said to be computable
from ϕ and G.

Let M be a model, G0 the distributive lattice of (sets of assignments on
M definable by) positive formulas. Let G be the lattice obtained by closing G0

under countable conjunctions, then since G satisfies the infinite distributive law∧
i∈I(ai ∨ b) =

∧
i∈I ai ∨ b, G is actually a co-Heyting algebra. We may now

define a quantifier ∃(·|G) by putting ∃(ϕ|G) =
∧{ψ ∈ G | ϕ ⊆ ψ}, for ϕ in the

language L(CQ(G)). Although the definition is similar to what we have seen
before, with this choice of resource it stands to reason that

ϕ ∧ ∃(ψ|G) = 0 =⇒ ∃(ϕ|G) ∧ ∃(ψ|G) = 0

must fail, because it expresses that the estimate ∃(ϕ|G) is affected by the neg-
ative information ¬∃(ψ|G), which need not be in G. For suitable G this can
indeed be shown, and it follows that the Frobenius property fails. The question
of interest is then whether there exists a complete axiomatisation of conditional
quantifiers with co-Heyting algebras as range.

Definition 18 The language L(CQ(co-H)) has propositional constants >,⊥,
connectives ∧,∨,¬ and quantifiers ∃, ∀, ∃(·|G). The formation rules are as usual,
except that ¬ϕ is defined only for formulas ϕ not containing a conditional quan-
tifier.

Definition 19 A standard co-Heyting model is a structure 〈M,G0,G, 〉, where
M is a first order model and G is the complete co-Heyting algebra of sets of
assignments generated by a homogeneous set of first order formulas G0. The
interpretation of \ on M should satisfy M |= ϕ\ψ[f ] iff for all θ, if M |=
ϕ[f ]⇒M |= ψ ∨ θ[f ], then M |= θ[f ].
The interpretation of ∃(ϕ|H) on 〈M,G0,G, 〉 is given by

1. The name H is interpreted by the co-Heyting algebra G.

2. 〈M,G0,G, 〉 |= ∃(ϕ|H)[f ] iff for all A ∈ G, ϕ ≤ A implies f ∈ A. .
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Observe that in this case we do not make a distinction between the resource
and the range of the quantifier; this choice will be justified by the completeness
theorem below. Standard co-Heyting models can easily be constructed starting
from an ω1-saturated first order modelM and a homogeneous set of first order
formulas G0. Let H be the complete co-Heyting algebra generated by the sets of
assignments definable onM by first order formulas, G the complete co-Heyting
subalgebra generated by G0. By ω1-saturation, H is closed under ∃. We may
therefore define \ explicitly by As before, the proof calculus consists of a basic
system together with an infinitary measurability rule.

The basic sequent calculus A(CQ(co-H)) comprises

1. The classical rules for ∧,∨, ∀, ∃,>,⊥.

2. The classical rules for ¬, applicable only to formulas not containing ∃(·|G).

3. The classical structural rules, including cut.

4. (lCQ(co-H))
Γ, ϕ(x) =⇒ ∆

Γ, ∃(ϕ|G)(x) =⇒ ∆,

where x does not occur free in Γ and ∆ consists of ∃(·|G)-quantified for-
mulas, or conjunctions of these. The deviant condition on ∆ is necessary
to enforce that the range of the conditional quantifier will be a lattice.
Note that in this case we definitely could not allow formulas of the form v
to be present in Γ, as this would make the Frobenius property derivable.

5. (rCQ(co-H))
Γ =⇒ ϕ,∆

Γ =⇒ ∃(ϕ|G),∆.

Trivially one has

Lemma 20 A(CQ(co-H)) is sound with respect to standard co-Heyting models.

The basic sequent calculus leads to a weak completeness theorem, in the
sense that the resource will be a distributive lattice. However, in order for the
resource to be a complete co-Heyting algebra, we need an infinitary rule.

Definition 20 For a set G0 of first order formulas, (McoH)G0 is the following
infinitary rule

{Γ, ∃x(θ(x) ∧ ¬ψ(x)) =⇒ ∃x(ϕ(x) ∧ ¬ψ(x)) | ψ ∈ G0}
Γ, ∃(θ|G) =⇒ ∃(ϕ|G) .

The idea behind the rule is simple: given the intended interpretation of
∃(·|G), if for all ψ ∈ G0, ϕ ≤ ψ implies θ ≤ ψ, then ∃(θ|G) ≤ ∃(ϕ|G). The
complicated formulation arises from the fact that we do not have implication in
our language. We thus have

Lemma 21 (McoH)G0
is sound with respect to standard co-Heyting models.
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We are now in a position to prove

Theorem 10 A(CQ(co-H)) + (McoH)G0 is complete with respect to standard
co-Heyting models.

Proof. Suppose Λ =⇒ ∆ is not derivable. Construct a maximal filter F
containing Λ such that

∨
∆ /∈ F . Enumerate the formulas such that each

formula occurs infinitely often; as usual, we construct F in stages Fn ensuring
the various closure properties; but since there is no negation applicable to all
formulas, we have to increase ∆ as well. We do the case corresponding to rule
(McoH)G0 . Suppose Fn,∆n have been constructed such that Fn =⇒ ∆n is not
derivable, and suppose that the formula to be treated is ∃(θ|G) ∈ Fn. Consider
a formula ∃(ϕ|G) with number smaller than that of ∃(θ|G). If

Fn, ∃(ϕ|G) =⇒ ∆n

is not derivable, put Fn+1 := Fn ∪ {∃(ϕ|G)} and ∆n+1; = ∆n. If

Fn, ∃(ϕ|G) =⇒ ∆n

is derivable, then there must exist ψ ∈ G0 such that

Fn, ∃x(θ ∧ ¬ψ) =⇒ ∃x(ϕ ∧ ¬ψ),∆n

is not derivable. Indeed, if all these sequents were derivable, then one would
have the following derivation

{Fn, ∃x(θ ∧ ¬ψ) =⇒ ∃x(ϕ ∧ ¬ψ),∆n | ψ ∈ G0}
Fn, ∃(θ|G) =⇒ ∃(ϕ|G),∆n

Fn =⇒ ∃(ϕ|G),∆n ,

from which it follows that Fn =⇒ ∆n by cut; a contradiction. For the ψ found
above, define

Fn+1 := Fn ∪ {∃x(θ ∧ ¬ψ)}, ∆n+1 := ∆n ∪ {∃x(ϕ ∧ ¬ψ)},

and proceed.
One then shows that for any such maximal F , for all first order τ , either τ ∈ F
or ¬τ ∈ F , and that F is closed under Henkin witnesses. Let M be the model
constructed from F . Let G0 be as in the infinitary rule, and let G be the complete
co-Heyting algebra generated by G0. To ensure that the model M satisfies
∃(ϕ|G) =

∧{ψ ∈ G0 | M |= ∀x(ϕ(x) → ψ(x))}, it suffices to show that we can
takeM to omit the type Σ = {ψ(x) ∈ G0 | ∃x(ϕ(x)∧¬ψ(x)) /∈ F}∪{¬∃(ϕ|G)}.
But the rule (McoH)G0 implies that Σ is locally omitted by F , and we are done.

2
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8.2 Bi-Heyting algebras

Our ostensible motivation in studying co-Heyting algebras as resources was that
they lead to the failure of the property p ∧ ∃q = 0 ⇒ ∃p ∧ ∃q = 0, so that
the estimate ∃p of p need not be influenced by negative information. It thus
seemed natural to take the co-Heyting algebra generated by positive first order
formulas. However, one has to be careful here, for if we close the finitary positive
formulas under both

∧
and

∨
, we obtain a complete bi-Heyting algebra:

Definition 21 A bi-Heyting algebra is an algebra that is both Heyting and
co-Heyting. A complete bi-Heyting lattice is a lattice closed under arbitrary
suprema and infima such that the following distributive laws hold

x ∨
∧

i

yi =
∧

i

(x ∨ yi), x ∧
∨

i

yi =
∨

i

(x ∧ yi).

An interesting feature of bi-Heyting algebras is that they have two negations:
ordinary intuitionistic negation ¬a = a → ⊥, and the supplement ∼ a = >\a.
The latter satisfies a∨ ∼ a = >, but not necessarily a∧ ∼ a = ⊥.

Lemma 22 A complete lattice satisfying the distributive laws above is a bi-
Heyting algebra.

Proof. Define a → b by
∨{c | a ∧ c ≤ b} and a\b by

∧{c | a ≤ b ∨ c}. The
distributive laws ensure that these operations have the right properties. 2

Now if the resource is bi-Heyting, so is the resulting logic of the conditional
quantifier, hence we also have an implication here. However, implication is
sufficient to derive the Frobenius property, whence also the undesired influence
of negative information. Positiveness must therefore be taken in a rather strict
sense.

We remark in passing that there exist more natural examples of bi-Heyting
algebras than the one just given. Suppose we allow partial predicates on models,
i.e. predicates A which have positive and negative extensions A+ and A− such
that A+ ∩ A− = ∅, but not necessarily A+ ∪ A− = |M|. The logic of
partial predicates is provided by Kleene’s three-valued logic. Now using strong
Kleene negation gives us implication, whereas the weak negation also gives us
subtraction, thus yielding a bi-Heyting algebra.
Furthermore, in a topos the set of subobjects of a given object forms a complete
bi-Heyting algebra, so that here the theory of conditional quantifiers works very
smoothly. However, it would go against our motivation to fix one particular
type of resource for its technical elegance, instead of considering a variety of
resources reflecting degrees of incomplete knowledge.

9 Martingales, nonmonotonicity and an open prob-
lem

In logic a variable is either free or bound, with nothing in between. One idea
which probability theory may have to offer to logic is that there is actually a
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continuous scale between free and bound variables; for in probability we have not
only the random variable X : Ω −→ IR and an integral

∫
XdP = E(X|{∅,Ω})

which is a real number, but also conditional expectations E(X|G), which are
nonconstant functions if G 6= {∅,Ω}.

Now suppose we have a formula ϕ(x) with only the variable x free. Exis-
tentially binding x means applying the conditional quantifier ∃(·|{0,1}) to ϕ;
semantically this expresses that we have no information about x. Replacing
{0,1} by an algebra of formulas in some of which x occurs free now expresses
that we have some information about x. If we replace {0,1} by the algebra G of
all formulas containing x free, we indicate by this that we have full information
about x, and accordingly ∃(ϕ(x)|G) = ϕ(x). Summarising, we could say that
we have replaced the two possibilities ‘free/bound’ by a continuum of possibili-
ties, where ‘less information about x’ corresponds to ‘x is bound stronger’. This
continuum of possibilities suggests that we consider notions of limit that might
be applicable here. The most useful one appears to be the logical analogue of
the martingales that were introduced in section 2. In the following we consider
conditional quantifiers, hence averages are for the moment excluded.

Definition 22 Let 〈T,≥〉 be a directed set, i.e. ≥ is a partial order on T
such that for all s, t ∈ T there exists r ∈ T such that r ≥ s, t. A family of
conditional quantifiers {∃(·|Gs) | s ∈ T} is a martingale if for all formulas ϕ,
∃(ϕ|Gs) ≤ ∃(ϕ|Gt).

With this definition one trivially has

Lemma 23 1. {∃(·|Gs) | s ∈ T} is a martingale if s ≥ t implies Gs ⊇ Gt.

2. If {∃(·|Gs) | s ∈ T} is a martingale, then ∃(∃(ϕ|Gs)|Gt) = ∃(ϕ|Gt).

2
Observe that 2 is the defining condition for martingales in probability theory.

By analogy, we may now ask whether there exists a suitable notion of limit
here. Now clearly, if {∃(·|Gs) | s ∈ T} is a martingale, lims∈T ∃(ϕ|Gs)(f) = 1
iff ∃s∀t ≥ s∃(ϕ|Gt)(f) = 1 iff ∀t∃(ϕ|Gt)(f) = 1, so that the limit is simple
intersection. The direction from right to left is trivial; for the converse direction,
choose arbitrary r, then for s ≥ s0r, ∃(ϕ|Gs)(f) = 1, so that by the martingale
property ∃(ϕ|Gr)(f) = 1. Two questions now arise:

1. Is lims∈T ∃(ϕ|Gs) itself a conditional quantifier?

2. When is lims∈T ∃(ϕ|Gs) equal to ϕ?

These questions are not easy to answer. For the case that the quantifiers are
generated by equivalence relations, the first question has a positive answer, at
least on suitably saturated models. This is the content of Wright’s theorem 3
in [24].10 For general models the question is open. On the other hand, if the

10The saturation comes in because Wright proves his result via Stone representation theory
for Boolean algebras.
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resources are co-Heyting algebras, then the answer is affirmative. The second
question is even more interesting, and to explain why, we will make an excursion
to nonmonotonic logic.

In Reiter’s version of default logic ([13]), a default is a rule of the form

α : β1, . . . , βn/ω

where α is the prerequisite of the rule, β1, . . . , βn are its justifications , and ω
is its consequent . The customary interpretation of the rule is: ‘if α has been
derived from the bakcground knowledge and β1, . . . , βn are consistent with what
has been derived, conclude ω’.

A normal default is one in which there is a single justification which is
identical to the consequent; this is the kind of default of interest to us. Normally,
defaults are used to express rules with exceptions, such as ‘Birds fly’, formalised
as

B(a) : F (a)/F (a),

for every constant a. A default theory consists of a set of facts and a set of
default rules. The facts (‘Tweety is a bird’) are taken to be specific and reliable
information, and the defaults represent general information.

We will use default rules to express a slightly different concept. For the
following discussion a martingale {∃(·|Gs) | s ∈ T} is assumed to be given. We
want to consider a default rule of the form

∃(A(x)|Gs) : ∃(A(x)|Gt)/∃(A(x)|Gt) (for t > s),

which says that if evidence at stage s derives ∃(A(x)|Gs), and if ∃(A(x)|Gt) is
consistent with the evidence (where t > s), then assume ∃(A(x)|Gt).11 Note
the subtle difference with Reiter’s default rules: here the specific information
consists of observational judgments, which are always approximate, hence de-
feasible. The default rules now express the expectation that the judgment will
continue to be true in more refined approximations. This ‘evidential’ interpre-
tation also leads to a formal difference.

We assumed that observations on variables are always performed with fi-
nite accuracy. At any given time, there will be a maximum accuracy s with
which observations can be performed. Intuitively this suggests that for t > s,
∃(A(x)|Gt) will be consistent with the evidence; for if not, we would seem to
have evidence at accuracy level t, which is impossible. This intuitive argument
can be given formal status when we consider quantifiers conditional on Boolean
algebras, but in general not when the quantifier is conditional on a co-Heyting
algebra. Here is the argument.

Suppose the information about X at stage s is summarised by ∃(ψ|Gs) where
∃(ψ|Gs) 6= 0. We now make an additional observation ∃(ϕ|Gs). We may assume
that ∃(ψ|Gs) ∧ ∃(ϕ|Gs) 6= 0. By monotonicity ∃(∃(ϕ|Gt)|Gs) ≥ ∃(ϕ|Gs). Now

11Default rules consisting of open formulas would not be allowed in Reiter’s set up, but here
they are.
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suppose that ∃(ψ|Gs) ∧ ∃(ϕ|Gt) = 0. Then also ∃(∃(ψ|Gs) ∧ ∃(ϕ|Gt)|Gs) = 0,
and by Frobenius, ∃(ψ|Gs) ∧ ∃(∃(ϕ|Gt)|Gs) = 0; whence ∃(ψ|Gs) ∧ ∃(ϕ|Gs) = 0,
a contradiction. It is crucially important for this argument that the obser-
vation ∃(ϕ|Gs) is performed at level s. If the observation were less accurate,
say ∃(ϕ|Gr) for r < s, then the assumption ∃(ψ|Gs) ∧ ∃(ϕ|Gr) 6= 0 does not
contradict ∃(ψ|Gs) ∧ ∃(ϕ|Gs) = 0. In this sense the observation has to be max-
imally informative relative to the background knowledge. Furthermore, since
the Frobenius property is used, we need conditioning on Boolean algebras (or
at least bi-Heyting algebras).

Motivated by these considerations we shall take a default to be a rule of the
form

∃(ϕ(x)|Gs)/∃(ϕ(x)|Gt).
The rule should be interpreted as: ‘if I have observed X at stage s and have
ascertained that X satisfies ϕ, where s represents the maximum available ac-
curacy, then I may assume that observing X at stage t will still yield that X
satisfies ϕ.’12

Now the following natural question arises: suppose we have thus nonmono-
tonically concluded that for all t, ∃(ϕ(x)|Gt), what does this tell me about the
real world? Can I conclude from this, albeit nonmonotonically, that ϕ? This
is clearly question 2 above. The answer is generally ‘no’, although for positive
formulas we can do better. This will be seen when we finally return to where we
began, with the connection between granularity and conditional quantification.

Let M be the ‘real world’, and let {Ms | s ∈ T} be a set of simple, for
instance finite, coarse-grained approximations to M. We may assume that the
set {Ms | s ∈ T} has the structure of an inverse system:

Definition 23 Let T be a set directed by a partial order ≥; i.e., ≥ is reflexive,
transitive, anti-symmetric, and for s, t ∈ T there is r ∈ T such that r ≥ s, t. An
inverse system (indexed by T ) is a structure 〈Ms, hst〉s,t∈T with

1. for each s ∈ T , Ms is a structure for the signature σs;

2. for any R in the union of the signatures there is t ∈ T such that R is in
σs if s ≥ t.

3. for each s, t ∈ T with s ≥ t there is a homomorphism hst : |Ms| −→ |Mt|,
satisfying for each R in σt ∩ σs

{〈hst(d1), . . . , hst(dn)〉 : 〈d1, . . . , dn〉 ∈ Rs} ⊆ Rt;

, where Rs(Rt) is the interpretation of R on Ms(Mt)
13

12The difference between Reiter’s interpretation and ours is that we take the consistency of
the justification to be relative to a stage s, whereas in Reiter’s case it refers to an extension
of the default theory. Here, we shall forego a discussion of the possible notions of extensions
applicable in this context; see [22].

13It is mainly for conceptual reasons that we allow the signatures of the models to vary,
since we may wish to say that a predicate is not yet applicable at a certain stage.
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4. hrr is the identity on Ms, and for s ≥ t ≥ r, hsr = hst ◦ htr.

Requiring that T is directed is tantamount to assuming that the collection
of coarse-grained approximations is consistent, in the sense that any two ap-
proximationsMs,Mt can be ‘fused’ into an approximationMr which projects
homomorphically onto both Ms and Mt. Another way of viewing the con-
sistency requirement is that (under an additional topological restriction) an
inverse system has an inverse limit M such that M is the smallest structure
which projects homomorphically onto all the Ms.

Definition 24 Let 〈Ms, hst〉s,t∈T be an inverse system. Its inverse limit

M := lim
←T
Mt

is defined as follows

1. the domain |M| consist of the threads in the product Πt∈T |Mt|; i.e., func-
tions ξ : T −→ ⋃

t∈T |Mt| satisfying: ξt ∈ |Mt|, and hst(ξs) = ξt for
s ≥ t.

2. the interpretation of the predicates is given by: for each R there exists
t ∈ T such that for all threads ξ1, . . . , ξn

R(ξ1, . . . , ξn)⇐⇒ ∀s ≥ t : Rs(ξ
1
s , . . . , ξ

n
s )

The inverse limitM is a submodel of the direct product Πt∈TMt; however, the
domain of this submodel might be empty. Under the additional assumption that
theMs are finite this cannot be so. The proof rests on the fact that the discrete
topology on the Ms is compact and makes the bonding mappings continuous.

Theorem 11 Suppose 〈Ms, hst〉s,t∈T is an inverse system of finite models.
Then |M| is non-empty.

Now let 〈Ms, hst〉s,t∈T be an inverse system with inverse limit M. We
now associate a family of conditional quantifiers to the Ms. Let Bs denote
the algebra of first-order definable sets of assignments on Ms, and let πs :
FM −→ FMs denote the projection from the assignment space of M to that
of Ms. π−1(Bs) is an algebra on FM, but not yet quite the one we want,
since it does not take account of the information in models Mt where t ≤ s.
Therefore we define Gs =

⋃
t≤s π

−1
t (Bt), an algebra which does take account of

what has gone on ‘before’. For simplicity assume that the quantifier ∃(·|Gs) is
generated by the equivalence relation determined by Gs. If s ≥ t, then it is
clear that the family {∃(·|Gs) | s ∈ T} is a martingale, since s ≥ t implies by
construction Gt ⊆ Gs. As observed above, if T is directed, lims∈T ∃(ϕ|Gs)(f) = 1
iff ∃s0∀s ≥ s0∃(ϕ|Gs)(f) = 1 iff

∧
s∈T ∃(ϕ|Gs) = 1.

We are now interested in cases where we have a strong form of convergence:
ϕ = lims∈T ∃(ϕ|Gs)(f) =

∧
s∈T ∃(ϕ|Gs), where the Gs are Boolean algebras.
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Lemma 24 Suppose M is an inverse limit of an inverse system whose models
Ms are finite. Then the associated martingale {∃(·|Gs) | s ∈ T} converges on
positive formulas.

Proofsketch. Using compactness and the fact that positive formulas are pre-
served by homomorphism, one shows that for positive ϕ, if for all s, Ms |=
ϕ[πs(f)], then M |= ϕ[f ]. For positive formulas we have the relationship
∃(ϕ|Gs) ⊆ π−1

s {g ∈ FMs | Ms |= ϕ[g]}. It then follows that
∧
s∈T ∃(ϕ|Gs) ≤∧

s∈T π
−1
s {g ∈ FMs

| Ms |= ϕ[g]} ≤ ϕ. The converse direction follows from
ϕ ≤ ∃(ϕ|Gs). 2

The proof uses essentially that the Gs generate a compact totally discon-
nected topology on M. Without the compactness assumption, we only have
that convergence holds for universal formulas. More importantly, however, con-
vergence may fail even for negations of predicates, cf. [21]. This can be verified
for example on 〈2ω, A〉, written as the limit of the inverse sequence of models
〈{0, 1}n, A〉, such that the interpretation of A on 2ω is a single infinite branch.
We will now pause to connect the above results once more to perception.

9.1 Digression: illusory conjunctions continued

Treisman and Gelade [17, p. 113] remark that there are two ways in which
search tasks can be difficult. (1) Targets and distractors may be difficult to
discriminate, and so require serial fixations with foveal vision; this may happen
both for single features and for conjunctions. (2) In case there are two or more
items present, identification of conjunctions requires focussed attention which
serially scans each item. The second form of search was discussed in section 7.
Here we briefly treat the first form.

In [21], [19] and [20] it is argued at length, following Marr [12], that a formal
model of the higher stages of visual perception is best clad in the form of an
inverse system of first order structures, so that s ≥ t means that Ms is a
more refined description than isMt; equivalently, that ∃(·|Gs) is a finer-grained
filter than is ∃(·|Gt). The visual analogue of moving from s to t would thus be
changing foveal acuity, which allows one to see sharper. The following result
then gives a logical analogue of Treisman and Gelade’s first search procedure in
the case of a conjunction.

Lemma 25 In the situation outlined above, assuming compactness, for all s ∈
T there exists t ≥ s such that for positive ϕ, ψ, ∃(ϕ|Gt)∧∃(ψ|Gt) ≤ ∃(ϕ∧ψ|Gs).

Proof. We have ϕ ∧ ψ =
∧
t ∃(ϕ|Gt) ∧ ∃(ψ|Gt) ≤ ∃(ϕ ∧ ψ|Gs) ≤ C, for any

C ∈ Gs such that ϕ ∧ ψ ≤ C. Since the ∃(ϕ|Gt) ∧ ∃(ψ|Gt) are closed and C is
clopen, the result follows by compactness. 2

The result says that parallel detection of features, if sufficiently accurate,
may give a reliable indication of the presence of a true conjunction, thus pro-
viding a second route to the elimination of illusory conjunctions. 2

We now return to the logical questions raised by martingale convergence.
One might conjecture that on inverse systems of compact models, martingale
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convergence holds at most for positive formulas. This is not true, since conver-
gence holds as well for the following class of formulas

Definition 25 A formula ϕ(x) is locally positive if there exist sentences ψ1, . . . , ψn
satisfying |= ψ1 ∨ . . . ∨ ψn and for i 6= j, |= ¬(ψi ∧ ψj), and positive formulas
θ1, . . . , θn such |= ∀x(ϕ(x) ↔ ∧

i≤n(ψi ∧ θi)). The notion locally universal is
defined analogously.

The formula (ψ ∧ A(x)) ∨ (¬ψ ∧ B(x)), where ψ is the formula ‘there exist at
least 2 elements’, is an example of a formula which is locally positive, but not
positive.

Lemma 26 ϕ is locally positive (universal) if there exist finitely many non-
equivalent positive (universal) θi such that |= ∨i ∀x(ϕ(x)↔ θi).

By a compactness argument one then shows that a formula ϕ is locally positive
(universal) iff for each model M there exists a positive formula θ such that ϕ
is equivalent to θ on M.

Lemma 27 Under the same assumptions as above, the martingale {∃(·|Gs) |
s ∈ T} converges on locally positive formulas. Without compactness we have
convergence on locally universal formulas.

Proof. This is immediate from lemma 26. 2

We therefore conjecture, for the general case without compactness assump-
tions

Conjecture 1 If all martingales derived from an inverse system converge on
ϕ, then ϕ is equivalent to a locally universal formula.
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