
Temporary Unavailability Logic
and General Modification Logic

Wouter Koolen

CONTENTS CONTENTS

Contents

1 Introduction 2
1.1 Caustic Sabotage . 2
1.2 Temporary Unavailability . 3
1.3 Outline of the article . 4

2 TUL 4
2.1 Formalisation . 5
2.2 Translation to First Order Logic 7
2.3 Model Checking Complexity . 8
2.4 Satisfiability . 10
2.5 Several Considerations . 10

3 GML 10
3.1 Modification frames . 11
3.2 Logic . 11
3.3 Game . 13
3.4 Modification Product . 14
3.5 Reduction to ML-2 . 14
3.6 Satisfiability . 17
3.7 Model Checking Complexity . 17
3.8 Applications . 17

4 Conclusion 20
4.1 Open questions . 20
4.2 Acknowledgements . 21

1

1 INTRODUCTION

1 Introduction

Modal logics are simple yet expressive devices to talk about relational structures.
Dynamic modal logics extend standard modal logics with new operators that upon
evaluation alter the subject relational structure. Modal logics are thoroughly cov-
ered in [BdRV01], and this paper assumes familiarity with standard and dynamic
modal logic.

Sabotage logics are dynamic modal logics, that crumble the relational structure
under the effect of certain new operators. The concept of sabotage in the context of
graph algorithms and graph games was informally introduced in [vB05a]. It was
subsequently formalised and extended in [Roh04], which covers three variants of
sabotage logic in detail. This introduction is structured as follows. We first briefly
review existing sabotage logics. Then we introduce a new concept of sabotage,
based on temporary unavailability. Finally we provide the outline of the article.

1.1 Caustic Sabotage

[Roh04] defines three sabotage operators, which we briefly summarise. Fix a
Kripke model M = (W,R,V) with (W,R) a multi-graph and two worlds w, v ∈ W.
The sabotage logics with their corresponding new operator are:

� Sabotage Modal Logic (SML): SML Extends standard modal logic with an
operator that removes a single edge from the relational structure. Formally,
�ϕ is true at w when there is an edge e in R such that, after deleting e from
R, ϕ is true at w.

� Adjacent Sabotage Logic (ASL): ASL differs from SML in that edges can
only be removed at the focus of evaluation. Formally,� ϕ holds at w when
ϕ is true at w after deletion of some outgoing edge of w.

� Path Sabotage Logic (PSL): PSL is a variation of ASL, where edges are
removed at a second focus of deletion. That is, � ϕ is satisfied at (w, v)
when ϕ is true at (w, u) after erasing some outgoing edge (v, u) of v from R.

We call a dynamic operator caustic if it reduces R to a proper subgraph. We call
a dynamic modal logic caustic if all its dynamic operators are caustic. Clearly, �,
� and� are caustic operators and SML, ASL and PSL are caustic logics.

[Roh04] gives various motivations for each sabotage logic. The travelling re-
searcher problem, uncertainty elimination in epistemic logic and Euler’s famous
Seven Bridges of Königsberg problem are example domains for application of
SML, ASL and PSL respectively.

[Roh04] also defines two-player games on multi-graphs for each type of sab-
otage. Runner, the optimistic player, tries to advance through the graph toward
satisfaction of some fixed condition (like reaching a special node, or avoiding a
set of nodes) while Blocker - the saboteur - chooses the edge to be removed, thus
attempting to trap Runner in a sink.

2

1.2 Temporary Unavailability 1 INTRODUCTION

[Roh04] distinguishes three versions of the model checking problem:

1. formula; considers the model fixed, and the formula variable.

2. program; considers the formula is fixed, and the model variable.

3. combined; considers both model and formula variable.

The complexities of these three model checking problems plus the satisfiability
problem of the caustic sabotage logics are summarised in Table 1. The new sabo-
tage operators strengthen standard modal logic on several (complexity) fronts.

• The satisfiability problems for SML, PSL and ASL are undecidable.

• The combined model checking problems for SML, PSL and ASL are all
PSPACE-complete.

Interestingly, there is no difference in complexity between SML, PSL and ASL,
even though, intuitively, this sentence lists them in order of decreasing expressive
power.

1.2 Temporary Unavailability

This section proposes and motivates a new non-caustic sabotage operation. The
first and foremost reason for this proposal is architectural interest, but I admit that
I initially hoped that it would fill the gap between standard modal logic and the
caustic sabotage logics. It turns out to do so, but in a way I did not expect. More
about this in §2.3. Consider the following scenarios.

Scenario 1. When dealing with computer networks like the Internet, there are al-
ways connections that fail. But in general this is not because the computers or
networks are physically destroyed by some malevolent force, but because of tem-
porary failure. This means that broken entities might eventually be repaired, or
might even automatically repair themselves. Furthermore, if failures are indepen-
dent random events, it is very unlikely that many entities fail concurrently.

Scenario 2. A researcher is travelling toward an important conference. She is
travelling by car and receives a radio message that there is a traffic jam ahead. If
the jam is still some time ahead, then instead of rushing to the nearest train station
to bypass the traffic jam, and arrive a little late for certain, she might take her
chances and hope that the traffic jam will naturally resolve before she hits it.

Scenario 3. Epistemic agents typically gather knowledge by eliminating indistin-
guishability links in a graph of possible worlds. Rational agents with unbounded
resources employ caustic removal of such edges. But forgetful (or even worse,
memoryless) agents remove links that later resurface.

3

1.3 Outline of the article 2 TUL

Note that, although we are using terminology from probability theory and tem-
poral reasoning, we are not trying to model chance or time. We are just motivating
the idea that compromised entities may eventually return to their normal state.

These scenarios suggest a different non-caustic sabotage concept. The structure
does not crumble as before, but certain parts become temporarily unavailable. We
will restrict attention to the deletion of edges, as it is in a sense simpler (to remove
a world from a model, one also has to remove all incident edges) and it allows
efficient reuse of ideas from [Roh04].

1.3 Outline of the article

The next section, §2, treats the simplest instance of non-caustic sabotage, namely
temporary removal of arbitrary single edges. This results in the Temporary Un-
availability Logic. The complexity of TUL is subsequently analysed along the
lines of [Roh04]. In section §3 we present and motivates a generalisation of TUL
called General Modification Logic or GML. Where TUL deals with temporary re-
moval of single edges, allowing any individual edge to be removed, GML abstracts
away from the actual way in which the model is altered, and introduces restricted
accessibility between different alterations. The actual underlying mechanism is a
variation of product update (see [BMS98]). We conclude with a comparison of all
treated sabotage logics and a list of open problems in §4.

Table 1 Complexities of standard problems for sabotage logics, standard modal
logic and first order logic.

Logic Combined Formula Program Satisfiability
ML PTIME-compl. in PTIME in PTIME PSPACE-compl.
ASL PSPACE-compl. in PTIME in PTIME undecidable
PSL PSPACE-compl. in PTIME in PTIME undecidable
SML PSPACE-compl. in PTIME in PTIME undecidable
FOL PSPACE-compl. PSPACE-compl. in PTIME undecidable

2 Temporary Unavailability Logic (TUL)

We will first deal with the simplest case of non-caustic sabotage. The sabotage
operator that we will define removes a single edge from the model, just like in
SML. However, when a nested sabotage operator is evaluated, the removed edge
is restored before the new edge to remove is picked. As in [Roh04], we base
our relational structures on multi-graphs, so it matters how many edges there are
between a pair of nodes. Edges that have a multiplicity of two or more can never
be eliminated by the sabotage operator, and thus have a different status than edges
with a multiplicity of one.

4

2.1 Formalisation 2 TUL

2.1 Formalisation

Definition 2.1. Let Φ be a set of proposition letters. The language TUL is the
smallest set of formulae containing all formulae generated by the the grammar

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | ^ϕ | *̂ ϕ (1)

The operator *̂ is called the temporary unavailability operator. Analogous to the
dual operator �, we define *�ϕ := ¬ *̂ ¬ϕ. The fragment of TUL that consists of
*̂ -free formulae is equivalent to the standard modal logic (ML).

Definition 2.2. Let O be a set of modal operators. The operator depth with respect
to O, is given by odO(ϕ) where

ϕ 7→ odO(ϕ)
> 7→ 0
p 7→ 0
¬ϕ 7→ odO(ϕ)
ϕ ∨ ψ 7→ max

{
odO(ϕ), odO(ψ)

}
4ϕ 7→

odO(ϕ) + 1 if 4 ∈ O
odO(ϕ) otherwise

For a modal language with operator set O, we abbreviate odO(ϕ) to od(ϕ). The
modal language will always be clear from the context.

Definition 2.3. Let W be a non-empty set of worlds, R : W × W → N an acces-
sibility multi-relation and V : Φ → ℘(W) a valuation. We let a model be a tuple
M = (WM,RM,VM) as usual.

Definition 2.4. For w, v ∈ W, we write wRv and also (w, v) ∈ R for R(w, v) > 0 and
conversely w 6Rv for R(w, v) = 0. Also |R| =

∑
w,v∈W R(w, v).

Definition 2.5. We define two multi-relation alteration operators, + and −, that add
a unit to or remove a unit from the multiplicity of a certain edge. For (r, s), (t, u) ∈
W ×W let:

(
R + (r, s)

)
(u, v) =

R(u, v) + 1 if (u, v) = (r, s)
R(u, v) otherwise

(2)

(
R − (r, s)

)
(u, v) =

R(u, v) − 1 if (u, v) = (r, s)
R(u, v) otherwise

(3)

Note that the edge removal operator uses subtraction on the natural numbers, for
which 0 − x = 0. This should not matter, as we do not intend to use the function in
this case.

Remark 2.6. (3) defines a right inverse of (2), for
(
R + (r, s)

)
− (r, s) = R.

5

2.1 Formalisation 2 TUL

Definition 2.7. We now lift the multi-relation operators to models. Again for
(r, s), (t, u) ∈ W ×W let:

M + (r, s) =
(
W,R + (r, s),V

)
(4)

M − (r, s) =
(
W,R − (r, s),V

)
(5)

M
(t,u)
(r,s) =

(
M + (r, s)

)
− (t, u) (6)

Remark 2.8. In (6), when (r, s) = (u, v) the model remains unaltered.

Definition 2.9. Now we can inductively define TUL formula satisfaction in a
modelM, world w ∈ W and edge (r, s) ∈ W ×W:

M,w, (r, s)
 > (7)

M,w, (r, s)
 p ⇔ w ∈ V(p) (8)

M,w, (r, s)
 ¬ϕ ⇔ M,w, (r, s) 1 ϕ (9)

M,w, (r, s)
 ϕ ∨ ψ ⇔ M,w, (r, s)
 ϕ or M,w, (r, s)
 ψ (10)

M,w, (r, s)
 ^ϕ ⇔ ∃v : wRv ∧M, v, (r, s)
 ϕ (11)

M,w, (r, s)
 *̂ ϕ ⇔ ∃(t, u) ∈ R : M(t,u)
(r,s),w, (t, u)
 ϕ (12)

Definition 2.10. And finally we define formula satisfaction in a pointed model

M,w
 ϕ ⇔ ∃(r, s) ∈ R : M − (r, s),w, (r, s)
 ϕ (13)

M,w
∀ ϕ ⇔ ∀(r, s) ∈ R : M − (r, s),w, (r, s)
 ϕ (14)

The choice for existential quantification as our primary definition is somewhat ar-
bitrary, but it is in line with our preference for >, ∨, ^ over ⊥,∧,�. There is
some motivation for universal quantification too, especially when we want to rea-
son about safety or security, that is, satisfaction irrespective of the first edge where
disaster strikes.

Remark 2.11. Let M be a TUL model, w ∈ W and ϕ a TUL formula. During
evaluation of M,w � ϕ we need to evaluate certain subformulae of ϕ in pointed
models. Tracing the definitions given above, we see that in each nested evaluation
N, v, (r, s) � ψ, the actual model N equals M − (r, s). We could have chosen an
alternative definition of truth where we drag the original model along, like:

M − (r, s),w
 *̂ ϕ ⇔ ∃(t, u) ∈ R : M − (t, u),w
 ϕ (15)

Our current definition of truth is specified in terms of arbitrary models to emphasise
the fact that we are really altering the model. This will become a more important
issue when we consider more advanced temporary unavailability operators in §3.

6

2.2 Translation to First Order Logic 2 TUL

2.2 Translation to First Order Logic

Definition 2.12. LetM = (W,R,V) be a TUL model. We define its corresponding
First Order Logic (FOL) structure

M̂ = (W,
{
Pp | p ∈ Φ

}
,R)

where Pp = V(p).

Definition 2.13. Given a TUL formula ϕ, we inductively define its translation to
FOL ϕ̂(x, y, z). The variables x, y, z in the FOL formula are used to represent the
rôle of w, r, s respectively in the semantics of TUL.

ϕ 7→ ϕ̂(x, y, z)
> 7→ >

p 7→ Pp(x)
¬ϕ 7→ ¬ϕ̂(x, y, z)
ϕ ∨ ψ 7→ ϕ̂(x, y, z) ∨ ψ̂(x, y, z)
^ϕ 7→ ∃x′ : xRx′ ∧ ¬(x = y ∧ x′ = z) ∧ ϕ̂(x′, y, z)
*̂ ϕ 7→ ∃(y′, z′) ∈ R : ϕ̂(x, y′, z′)

Proposition 2.14. ϕ̂(x, y, z) is equivalent to a formula of FOL that uses only four
variables.

Proof. It is well-known that the ML side of the translation can be done using only
two variables. Note that the rule for *̂ does not use y, z at all, so in particular does
not pass them on to the inductive application of the translation. Hence we can
repeatedly reuse a single pair y′, z′ for each (nested) occurrence of *̂ . �

Remark 2.15. The reduction of TUL to first order logic does not yield formulae
in the Loosely Guarded Fragment, as discussed in [vB05b]. The culprits are the
definition for ^, in which the existential quantifier is not restrained by a conjunc-
tion of atoms, and the definition for wD, where the existential quantifier is properly
restrained by a single atom, but the variable x does not co-occur in the atom with
the existentially quantified variables.

Proposition 2.16. LetM = (W,R,V) be a TUL model. For all w, r, s, ∈ W we have

M − (r, s),w
 ϕ iff M̂ � ϕ̂(w, r, s)

Proof. By induction on the structure of ϕ. The only interesting cases are ^ and *̂ .

• The formula is of the form ^ϕ. We need to show

M − (r, s),w
 ^ϕ iff M̂ � ̂̂ϕ(w, r, s)

that is

∃v : w
(
R − (r, s)

)
v ∧M − (r, s), v
 ϕ iff

∃x′ : xRx′ ∧ ¬(x = y ∧ x′ = z) ∧ ϕ̂(x′, y, z)
(16)

which follows by the induction hypothesis and renaming of variables.

7

2.3 Model Checking Complexity 2 TUL

• The formula is of the form *̂ ϕ. We need to show

M − (r, s),w
 *̂ ϕ iff M̂ � *̂̂ ϕ(w, r, s)

Omitting the outer models and noting
(
M − (r, s)

)(t,u)
(r,s) = M − (t, u) that is

∃(t, u) ∈ R : M − (t, u),w
 ϕ iff ∃(y′, z′) ∈ R : ϕ̂(x, y′, z′)

which also follows by the induction hypothesis and renaming of variables.
�

2.3 Model Checking Complexity

We turn to the problem of TUL model checking. We consider the instance of model
checking where both the model and the formula are considered as input. Given a
formula ϕ, model M and world w, how hard is it to determine whether M,w
 ϕ?
The translation to FOL of the previous section places the problem in PSPACE, but
we can do better:

Proposition 2.17. The complexity of TUL model checking is in PTIME.

Proof. Let ϕ be a TUL formula and M = (W,R,V) a TUL model. First observe
that

1. There are at most
∣∣∣ϕ∣∣∣ subformulae of ϕ.

2. There are at most |W |2 many submodels of M where a single edge’s multi-
plicity has been decremented by one.

We give a procedure for determining truth of ϕ in all worlds of M simultaneously
in Algorithm 1. It is a dynamic programming algorithm, that constructs a table
of partial solutions which are subsequently reused to answer more complicated
questions fast. The algorithm performs |ϕ| · |W |2 · |W | evaluations, each requiring
|W |2 lookups in the worst case (which occurs at subformulae with *̂ as their main
operator). The initial setup in line 1 and final sweep in line 22 do not surpass this
amount of work. We conclude that the total needed time is

O
(
|ϕ| · |W |5

)
∈ PT IME

(
|ϕ|, |M|

)
�

Corollary 2.18. Formula and program complexity for TUL model checking are in
PTIME too.

Corollary 2.19. As TUL is an extension of ML, and ML model checking is PTIME
complete (see Table 1), TUL model checking is PTIME complete as well.

So in this respect TUL keeps closer to ML than to FOL. This is in a sense obvious.
The caustic sabotage operators can potentially remove any subset of the edges,
thus requiring consideration of exponentially many submodels. TUL logic can talk
about at most |W |2 submodels, thus remaining within polynomial time.

8

2.3 Model Checking Complexity 2 TUL

Algorithm 1 Dynamic programming algorithm for TUL model checking.
1: Construct ϕ1, ϕ2, . . . , ϕn, a list of all subformulae of ϕ ordered by increasing

formula length. Obviously ϕ itself is the longest subformula, so ϕn = ϕ.
2: Allocate a table T of truth-values of size n × |W |2 × |W |.
3: for all ϕi do {the first dimension of T}
4: for all (r, s) ∈ W ×W do {the second dimension of T}
5: for all w ∈ W do {the third dimension of T}
6: if ϕi = > then
7: T [i, (r, s),w] = true
8: else if ϕi = p then
9: T [i, (r, s),w] = V(p)

10: else if ϕi = ¬ϕa then {a < i}
11: T [i, (r, s),w] = not T [a, (r, s),w]
12: else if ϕi = ϕa ∨ ϕb then {a, b < i}
13: T [i, (r, s),w] = T [a, (r, s),w] or T [b, (r, s),w]
14: else if ϕi = ^ϕa then {a < i}
15: T [i, (r, s),w] = 1 iff there is some v s.t. w(R−(r, s))v and T [a, (r, s), v]
16: else if ϕi = *̂ ϕa then {a < i}
17: T [i, (r, s),w] = 1 iff there are t, u ∈ W s.t. T [a, (t, u),w]
18: end if
19: end for
20: end for
21: end for
22: return 1 iff there are w, r, s ∈ W s.t. T [n, (r, s),w].

9

2.4 Satisfiability 3 GML

2.4 Satisfiability

TUL model checking can be done efficiently, as shown by the previous section, and
in this respect TUL resembles standard ML. This similarity does not extend further,
as shown by the following results. Multi-agent TUL extends TUL by including a
sabotage modality for several agents.

Proposition 2.20. Multi-agent TUL does not have the finite model property:

Proof. The argument in [Roh04, definition of ϕ∞ on p63] carries over to multi-
agent TUL, for it uses only singly nested occurrences of the global sabotage oper-
ator. �

Proposition 2.21. The satisfiability problem for multi-agent TUL is undecidable.

Proof. The argument in [Roh04, section 3.3] that reduces Post’s correspondence
problem to SML using only singly nested global sabotage operators carries over to
TUL. �

2.5 Several Considerations

The following points require some attention.

• In the introduction we talked about temporarily unavailable entities that will
eventually be restored. The current semantics allows the case that a certain
single edge remains unavailable for the entire evaluation of the formula. One
could add a fairness condition, which states that each nested evaluation of
the *̂ operator must take out a different edge.

• One could consider the ability to remove several edges. This requires an
edge buffer together with an edge replacement protocol. We could think of
for example the bag, queue or stack of fixed size. This allows the model to
be altered in a more intricate fashion, while still allowing for the eventual
return of removed edges.

• One could desire the ability to remove worlds. We have restricted ourself
to edge removal, but we can model deleting a world by simultaneously sup-
pressing all incident edges. We call this operation blackout.

These points are the motivation for the generalisation of TUL to GML in the next
section.

3 General Modification Logic (GML)

This section defines the General Modification Logic, a new logic that incorporates
the product concept. It is a proper generalisation of TUL, abstracting over the exact
modification that is performed on the model. GML supports a.o. fairness, multiple
edge removal and blackout.

10

3.1 Modification frames 3 GML

3.1 Modification frames

Let F be the class of Kripke frames.

Definition 3.1. A function1 i : F → F is called a modification frame generator if
for all F = (W,R) ∈ F there are a set F, a directed graph E ⊆ F × F over F and
directed multi-graphs R f ⊆ W ×W over W for all f ∈ F, such that

i(F) =

(
F, E,

{
R f

}
f∈F

)
.

We lift i from frames to models thus: i(M) = i(W,R). We call the structure
i(M) =

(
F, E,

{
R f

}
f∈F

)
the modification frame generated by i from M and denote

it by T when i and M are unambiguous. Furthermore, we call the elements of F
modifications. We regard them as names for operations on R, and for each f ∈ F
we say that R f is the result of f .

Example 3.2. For TUL, we can specify the corresponding modification frame gen-
erator iTUL as follows

iTUL(W,R) =

(
F, E,

{
R f

}
f∈F

)
(17)

F =
{
(a, b) | aRb

}
(18)

E = F × F (19)

R(a,b) = R − (a, b) (20)

We take as modifications F all edges in the source frame (flattened from a multi-
graph to a normal graph). The inter-modification accessibility graph E is the com-
plete graph over F, and the result R f (an accessibility relation over W) that corre-
sponds to f is obtained by removing the edge f from R.

Example 3.3. Consider the Kripke frame F in Figure 0a. Application of iTUL to
this frame yields the modification frame T in Figure 0b. Each modification f ∈ F
(node of T) corresponds to an edge of F. The accessibility relation E between
modifications is the complete graph, as shown by the undirected arcs. Reflexive
arcs are omitted from the figure for brevity.

3.2 Logic

Now that we have defined the structures of interest, we turn to the logic.

Definition 3.4. Let Φ be a set of proposition letters. The language of General
Modification Logic (GML) is the smallest set of formulae containing all formulae
generated by the the grammar

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | ^ϕ | ?̂ ϕ (21)
1Technically, i is a class function. In particular, it is a formula in the language of set theory.

If interest is limited to the computable case only, we can substitute any Turing complete notion of
algorithm instead.

11

3.2 Logic 3 GML

Figure 1 Example (a) source frame and (b) modification frame generated by iTUL.

(a) Kripke frame

F = (W,R)
•

a //

b

��

•

f

��

e

��
•

d
//

c

??����������������
•

(b) Modification frame

T =

(
F, E,

{
R f

}
f∈F

)
b

...............

NNNNNNNNNNNNNN c

========

a

��������

pppppppppppppp

NNNNNNNNNNNNNN

======== d

f

��������������

pppppppppppppp e

��������

The operator ?̂ is called the modification operator. Analogous to �, the dual oper-
ator of ^, we define ?�ϕ := ¬ ?̂¬ϕ. The fragment of GML that consists of ?̂ -free
formulae is equivalent to the standard modal logic (ML).

Definition 3.5. The semantics of GML are defined relative to a modification frame
generator i that we consider fixed to avoid subscripts. Fix a modelM = (W,R,V),
and let T = i(M). Additionally fix a world w ∈ W and a modification f ∈ F.
Furthermore fix a GML formula ϕ. We inductively define truth in the pointed
model, pointed frame combinationM,w,T, f by

M,w,T, f
 > (22)

M,w,T, f
 p ⇔ w ∈ V(p) (23)

M,w,T, f
 ¬ϕ ⇔ M,w,T, f 1 ϕ (24)

M,w,T, f
 ϕ ∨ ψ ⇔ M,w,T, f
 ϕ or M,w,T, f
 ψ (25)

M,w,T, f
 ^ϕ ⇔ ∃v ∈ W : wR f v ∧M, v,T, f
 ϕ (26)

M,w,T, f
 *̂ ϕ ⇔ ∃g ∈ E : f Eg ∧M,w,T, g
 ϕ (27)

We call w the first focus or current world and f the second focus or current mod-
ification. (22) – (25) are just propositional logic with additional ballast. (26),
defining the GML diamond operator, is similar to the corresponding clause in stan-
dard ML, but reads wR f v instead of wRv. This ensures that the first focus only
uses edges that exist in R f , the result of the current modification. (27), defining
the GML modification operator, allows the second focus to make transitions in E,
independent of the current world. Hence the GML modification operator behaves
as a regular diamond in the modification frame.

Example 3.6. Consider the model M of Figure 1a, which adds a valuation to the

12

3.3 Game 3 GML

frame of Figure 0a. Also let T be iTUL(M) as shown in Figure 1b. Then

M,w1,T, a
 p ∧ q by propositional logic (28)

M,w1,T, a 1 ^p (w1,w2) = a < Ra (29)

M,w1,T, a
 ^q (w1,w3) = b ∈ Ra (30)

M,w1,T, b
 ^p (w1,w2) = a ∈ Rb (31)

M,w1,T, a
 *̂ ^p (a, b) ∈ E and (31) (32)

M,w2,T, f
 *�^(¬p ∧ ¬q) (w2,w4) has multiplicity 2 (33)

Figure 2 Example (a) model and (b) modification frame generated by iTUL.
(a) Kripke model

M = (W,R,V)
w1•p,q

a //

b

��

w2•p,¬q

f

��

e

��
w3•¬p,q

d
//

c

::vvvvvvvvvvvvvvvvvvv
w4•¬p,¬q

(b) Modification frame

T =

(
F, E,

{
R f

}
f∈F

)
b

...............

NNNNNNNNNNNNNN c

========

a

��������

pppppppppppppp

NNNNNNNNNNNNNN

======== d

f

��������������

pppppppppppppp e

��������

3.3 Game

These semantics can easily be interpreted as a two player formula game. The game
starts with a GML formula ϕ, a Kripke model M = (W,R,V) called the original
model, a world w, a modification frame T and a modification f . The players are
called Verifier and Falsifier, and they try to do to ϕ what their name suggests. We
call (W,R f ,V) the current model. The player to move is determined by the structure
of the formula:

• >. Verifier wins.

• ¬ϕ. Players exchange roles, the game continues with the formula ϕ.

• ϕ ∨ ψ. Verifier picks one of ϕ, ψ to continue the game.

• ^ϕ. Verifier makes a move (w, v) in the current model. The game continues
with the formula ϕ and world v.

• *̂ ϕ. Verifier makes a move (f , g) in the modification frame. The game con-
tinues with the formula ϕ and the modification g, hence with new current
model (W,Rg,V).

Proposition 3.7. Verifier has a winning strategy iffM,w,T, f
 ϕ.

Proof. An easy induction on the structure of ϕ. �

13

3.4 Modification Product 3 GML

3.4 Modification Product

As pointed out in §3.2, the modal operators of GML are similar to the standard
diamond operator. This section describes an operation called modification product,
that maps a model and corresponding modification frame to a new structure, in
which standard bi-agent modal logic suffices.

Definition 3.8. Starting from a Kripke modelM = (W,R,V) and the modification

frame T = i(M) =

(
F, E,

{
R f

}
f∈F

)
generated by i from M we define the modifica-

tion product by
M × T =

(
W × F,RM×T1 ,RM×T2 ,VM×T

)
(34)

where

(w, f) ∈ VM×T(p) ⇔ w ∈ V(p) (35)

(w, f)RM×T1 (v, g) ⇔ f = g ∧ wR f v (36)

(w, f)RM×T2 (v, g) ⇔ w = v ∧ f Eg (37)

Definition 3.9. For f ∈ F, we call the restriction of the modification productM×T
to worlds in W ×

{
f
}

the modification image of f . The only possible accessibility
arrows for the second agent within the accessibility image of f are reflexive arrows,
and these are present iff f E f .

The idea behind these definitions is this: the modification frame specifies a set
of modifications. To form the modification product, we “apply” each modifica-
tion to the original model and concatenate the resulting modification images. The
accessibility relation for the first agent is determined by the result of each modifica-
tion, and relates different worlds within the same modification image. On the other
hand, the accessibility relation for the second agent relates images of the same
original world between different modification images, for those modifications that
are related in the modification frame. The valuations do not consider edges at all,
and they are just replicated in each modification image.

Example 3.10. We have shown a particular model and its TUL modification frame
in Figure 2. The corresponding modification product is shown in Figure 3. To
emphasise the accessibility relation, this figure omits the valuations. The valuation
in the product model is formed by repeating copies of the valuation of the source
model.

3.5 Reduction to ML-2

We reduce GML to ML-2, bi-agent standard modal logic.

Definition 3.11. The reduction of a GML formula ϕ to a ML-2 formula ϕ̌ is given

14

3.5 Reduction to ML-2 3 GML

Figure 3 Modification product construction. In (c), the individual modification im-
ages are enclosed by dotted circles, and the removed edge within each modification
image is shown as a dotted arrow. Double edges between modification images of
f and g abbreviate that (w, f) and (w, g) are related for all w ∈ W. As an example,
when the current world and current modification are given by the nodes in rectan-
gles in (a) and (b), then the resulting current world in the modification product is
given by the node in the rectangle in (c).

(a) Original modelM

•
a //

b

��

•

f

��

e

��
•

d
//

c

??����������������
•

(b) Modification frame T

−b

111111111111111

QQQQQQQQQQQQQQQ −c

CCCCCCCC

−a

{{{{{{{{

mmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQ

BBBBBBBB −d

− f

nnnnnnnnnnnnnnn
−e

||||||||

(c) Modification productM × T

•
a //

b
��

•

f
��

e
��

•
a //

b
��

•

f
��

e
��

•
d

//

c
??�������
• •

d
//

c
??

•

•
a //

b
��

•

f
��

e
��

•
a //

b
��

•

f
��

e
��

•
d

//

c
??�������
• •

d
//

c
??�������
•

•
a //

b
��

•

f
��

e
��

•
a //

b
��

•

f
��

e
��

•
d

//

c
??�������
• •

d
//

c
??�������
•

���������

���������

oooooooooooooooooooo

oooooooooooooooooooo

OOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOO

@@@@@@@@@

@@@@@@@@@

OOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOO

////////////////////

////////////////////

@@@@@@@@@

@@@@@@@@@

��������������������

��������������������

���������

���������

oooooooooooooooooooo

oooooooooooooooooooo

15

3.5 Reduction to ML-2 3 GML

by
ϕ 7→ ϕ̌

> 7→ >

p 7→ p
¬ϕ 7→ ¬ϕ̌

ϕ ∨ ψ 7→ ϕ̌ ∨ ψ̌

^ϕ 7→ ^1ϕ̌
?̂ ϕ 7→ ^2ϕ̌

Proposition 3.12. The reduction preserves truth, in other words

M,w,T, f
 ϕ ⇔ M × T, (w, f)
 ϕ̌ (38)

Proof. By induction on the complexity of ϕ, and case distinction on structure

• ϕ = >, ϕ = ¬ψ, ϕ = ϕ1 ∨ ϕ2 are all trivial.

• ϕ = p. We need to show

M,w,T, f
 p ⇔ M × T, (w, f)
 p (39)

which both are equivalent to w ∈ V(p).

• ϕ = ^ψ. We need to show

M,w,T, f
 ^ψ ⇔ M × T, (w, f)
 ^1ψ̌ (40)

well

M × T, (w, f)
 ^1ψ̌ (41)

⇔ ∃(v, g) : (w, f)RM×T1 (v, g) ∧M × T, (v, g)
 ψ̌ (42)

⇔ ∃v : wR f v ∧M × T, (v, f)
 ψ̌ (43)
⇔
IH ∃v : wR f v ∧M, v,T, f
 ψ (44)

⇔ M,w,T, f
 ^ψ (45)

• ϕ = ?̂ψ. We need to show

M,w,T, f
 ?̂ψ ⇔ M × T, (w, f)
 ^2ψ̌ (46)

well

M × T, (w, f)
 ^2ψ̌ (47)

⇔ ∃(v, g) : (w, f)RM×T2 (v, g) ∧M × T, (v, g)
 ψ̌ (48)

⇔ ∃g : f Eg ∧M × T, (w, g)
 ψ̌ (49)
⇔
IH ∃g : f Eg ∧M,w,T, g
 ψ (50)

⇔ M,w,T, f
 ?̂ψ (51)

This covers all cases. �

16

3.6 Satisfiability 3 GML

3.6 Satisfiability

We saw that TUL, the simplest non-caustic sabotage logic, can be reduced to GML,
from which it follows that the satisfiability problem for GML is generally undecid-
able.2 One may think that this is in contradiction with the foregoing reduction of
GML to ML, as the satisfiability problem for ML is certainly decidable! The prob-
lem with this reasoning is of course that most ML models are not images of GML
models under the above reduction.

3.7 Model Checking Complexity

We already saw that model checking for TUL is in PTIME. This means that for
certain classes of modification frame generators, the model checking problem for
GML is in PTIME as well. We can generalise this result by imposing a polynomial
bound on the size of the modification frame, and this will place combined formula
complexity for GML in PTIME in this case.

Proposition 3.13. Let i be a modification frame generator, and let there be an
algorithm that for all finite F = (W,R) computes i(F) in time O(|W |n) for some
fixed n. (This implies that |F| ∈ O(|W |n).) Then the combined model checking
problem for i-GML is in PTIME.

Proof. Let M = (W,R,V) be a Kripke model, ϕ a GML formula. We first com-
pute T = i(M), which we can do in time polynomial in |M| by assumption. We
proceed by computing the modification product M × T, which we can do in time
polynomial in |M|, yielding a bi-agent Kripke model of polynomial size in |M|. We
then compute ϕ̌, in time linear in

∣∣∣ϕ∣∣∣. We finish by applying the model checking
algorithm for standard modal logic, which runs in polynomial time in both model
and formula size. Hence the entire procedure can be completed in polynomial time
in |M| and

∣∣∣ϕ∣∣∣. �

Remark 3.14. This is a generalisation of Proposition 2.17.

3.8 Applications

We demonstrate the expressive power of GML by modelling the sabotage operators
that we described in section §2.5, which lists possible extensions of TUL.

Fairness By taking E irreflexive, we get a fair sabotage operator. Evaluation of
the sabotage operator requires making a move, picking an accessible modification,
in the modification frame. When the accessibility relation E is irreflexive, we are
forced to choose a different modification.

2It is not for certain degenerate modification frame generators, of course.

17

3.8 Applications 3 GML

SML By taking F to contain any subrelation of R and f Eg iff g contains a single
edge less than f , we get the global sabotage modality of [Roh04]. Note that we
identify modifications and results in this case.

iS ML =

(
F, E,

{
R f

}
f∈F

)
(52)

F =
{
f : R × R→ N | ∀x, y ∈ W : R(x, y) ≥ f (x, y)

}
(53)

f Eg ⇔ ∃e ∈ f : g = f − e (54)

R f = f (55)

This does not imply that we can do SML model checking in PTIME, for the set of
modifications is exponentially large inM.

ASL We can not model adjacent sabotage, for the accessibility relation between
modifications is not uniform, but in fact depends upon the focus of evaluation.

PSL To model path sabotage, we must make F even larger, including a modifi-
cation for every subrelation of R like for SML, but now also labelling them with
the current path deletion focus.

iPS L =

(
F, E,

{
R f

}
f∈F

)
(56)

F = W ×
{
f : R × R→ N | ∀x, y ∈ W : R(x, y) ≥ f (x, y)

}
(57)

(w, f)E(v, g) ⇔ w f v ∧ g = f − (w, v) (58)

R(w, f) = f (59)

Two modifications (w, f) and (v, g) are related if the edge (w, v) is present in f , and
g is the result of deleting this edge from f .

Blackout The blackout operator simultaneously removes all edges incident to a
certain world. It is used to model removing worlds in terms of edge deletions.

iBO =

(
F, E,

{
R f

}
f∈F

)
(60)

F = W (61)

E = F × F (62)

uRwv ⇔ uRv ∧ w , v (63)

Figure 4 shows an application of the fair blackout operator to the Idol model.

Protocols for multiple edge removal Given an algebraic specification S of a
collection (say a bag, queue or stack), we take the modifications to be the states
in the external behaviour of S (see [Fok00]). We then take R f to be R minus all
edges contained in the collection as indicated by f . Finally we take f Eg if f has a
primitive transition to g.

18

3.8 Applications 3 GML

Figure 4 Example of the fair blackout operator.
(a) Original (Idol) model
M

•
a //

b

��

•

f

��

e

��
•

d
//

c

??����������������
•

(b) Modification frame T

− {} oo //
OO

��

cc

##GGGGGGGGGGGGGGGGGG − {a, c}OO

��
− {b} oo //

{{

;;wwwwwwwwwwwwwwwwwww
−

{
d, e, f

}
(c) Modification productM × T

•
a //

b
��

•

f
��

e
��

•
a //

b
��

•

f
��

e
��

•
d

//

c
??�������
• •

d
//

c
??

•

•
a //

b
��

•

f
��

e
��

•
a //

b
��

•

f
��

e
��

•
d

//

c
??�������
• •

d
//

c
??�������
•

ks +3

KS

��

[c

�#???????????????

??????????????? ;C

{� ���������������

��������������� KS

��

ks +3

19

4 CONCLUSION

4 Conclusion

We introduced and motivated TUL, a new sabotage modal logic. It lies in between
ML and SML, for its model checking complexity is PTIME complete (like ML),
but its satisfiability problem is undecidable (like SML).

We then generalised TUL and arrived at GML, which uses a modification frame
generator to merge a Kripke model that represents the common starting point and a
modification frame; an accessibility graph over modifications. We introduced mod-
ification frame generators to construct modification frames for arbitrary frames.
We reduced GML to bi-agent standard modal logic, and proved that its model
checking problem is PTIME complete under certain conditions on the modifica-
tion frame generator.

Table 2 summarises the results of this paper, and puts them into context.

Table 2 Complexities of standard problems for sabotage logics and first order logic.
Logic Combined Formula Program Satisfiability
ML PTIME-compl. in PTIME in PTIME PSPACE-compl.
TUL PTIME-compl. in PTIME in PTIME undecidable
GML3 PTIME-compl. in PTIME in PTIME undecidable
GML4 ? ? ? undecidable
ASL PSPACE-compl. in PTIME in PTIME undecidable
PSL PSPACE-compl. in PTIME in PTIME undecidable
SML PSPACE-compl. in PTIME in PTIME undecidable
FOL PSPACE-compl. PSPACE-compl. in PTIME undecidable

4.1 Open questions

The following interesting questions have remained unanswered:

• Under which conditions on the modification frame (generator) is the satisfi-
ability problem of GML decidable? When F is a singleton set and E = ∅

we are working in standard modal logic, for which the satisfiability problem
is decidable. When i models temporary unavailability of single edges, we
already enter the realm of undecidability.

• A somewhat related question is that of the finite model property. Which
modification frame generators do have this property?

• Which modification frame generators have bisimulation invariance? [Roh04,
p62] shows that global sabotage allows us to distinguish between loops and
paths of otherwise indistinguishable worlds, thus losing bisimulation invari-
ance.

4With polynomial bound on the modification frame.
4In general.

20

4.2 Acknowledgements REFERENCES

4.2 Acknowledgements

The author would like to thank Prof. Dr. Johan van Benthem for his comments. He
also appreciated the remarks by Drs. Steven de Rooij, correcting grammar, style
and punctuation.

References

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge University Press, 2001.

[BMS98] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic
of public announcements, common knowledge, and private suspicions.
In TARK ’98: Proceedings of the 7th conference on Theoretical aspects
of rationality and knowledge, pages 43–56, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[Fok00] Wan Fokkink. Introduction to Process Algebra. Springer, 2000.

[Roh04] Philipp Rohde. On Games and Logics over Dynamically Chang-
ing Structures. PhD thesis, Rheinisch-Westfälischen Technischen
Hochschule Aachen, 2004.

[vB05a] Johan van Benthem. An essay on sabotage and obstruction, essays
in honor of Jörg Siekmann on the occasion of his 69th birthday. In
D. Hutter, editor, Mechanizing Mathematical Reasoning, pages 268–
276. Springer Verlag, 2005.

[vB05b] Johan van Benthem. Guards, bounds, and generalized semantics. Jour-
nal of Logic, Language and Information, 14(3):263–279, 2005.

21

