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Abstract. We give a systematic method of constructing extensions of the Kuznetsov-
Gerčiu logic KG without the finite model property (fmp for short), and show that there are
continuum many such. We also introduce a new technique of gluing of cyclic intuitionistic
descriptive frames and give a new simple proof of Gerčiu’s result [8, 7] that all extensions
of the Rieger-Nishimura logic RN have the fmp. Moreover, we show that each extension of
RN has the poly-size model property, thus improving on [8]. Furthermore, for each function
f : ω → ω, we construct an extension Lf of KG such that Lf has the fmp, but does not
have the f -size model property. We also give a new simple proof of another result of Gerčiu
[8] characterizing the only extension of KG that bounds the fmp for extensions of KG. We
conclude the paper by proving that RN.KC = RN + (¬p ∨ ¬¬p) is the only pre-locally
tabular extension of KG, introduce the internal depth of an extension L of RN, and show
that L is locally tabular if and only if the internal depth of L is finite.

1. Introduction

A.V. Kuznetsov was one of the pioneers in the study of extensions of intuitionistic propo-
sitional calculus IPC. He coined them as (propositional) superintuitionistic logics and un-
dertook a systematic study of their structure (see, e.g., the survey articles [14, 15, 17, 16]).
Kuznetsov was especially interested whether a logical system is decidable. A theorem by
Harrop [10] states that if a propositional logical system is finitely axiomatizable and has
the fmp, then it is decidable. This led Kuznetsov to study systematically the fmp and fi-
nite axiomatizability of superintuitionistic logics. In collaboration with his student V. Ja.
Gerčiu, Kuznetsov introduced a superintuitionistic logic—we call it the Kuznetsov-Gerčiu
logic and denote it by KG—and studied the fmp and finite axiomatizability of extensions
of KG [13, 9]. Kuznetsov and Gerčiu proved that there exist extensions of KG that do not
have the fmp and are not finitely axiomatizable.

The logic KG is defined as the logic of sums of cyclic Heyting algebras. Dually they
correspond to sums of cyclic intuitionistic descriptive frames. It follows that KG is contained
in the logic of the free cyclic Heyting algebra, known as the Rieger-Nishimura lattice. The
dual frame of the Rieger-Nishimura lattice is the well-known Rieger-Nishimura ladder. We
call this logic the Rieger-Nishimura logic and denote it by RN. It turns out that RN is
the greatest 1-conservative extension of IPC. In this paper we introduce a new technique
of gluing of cyclic intuitionistic descriptive frames and give a new simple proof of a result
of Gerčiu [8, 7] that all extensions of RN have the fmp. We also show that each extension
of RN has the poly-size model property, thus improving on [8]. On the other hand, for
each function f : ω → ω, we construct an extension Lf of KG such that Lf has the fmp,
but does not have the f -size model property. Moreover, we give a systematic method of
constructing extensions of KG without the fmp, and show that there are continuum many
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such. We conclude the paper by giving a new simple proof of another result of Gerčiu [8]
characterizing the only extension of KG that bounds the fmp for extensions of KG, show
that the logic RN.KC—which is obtained by adding the law of weak excluded middle to
RN—is the only pre-locally tabular extension of KG, introduce the internal depth of an
extension L of RN, and prove that L is locally tabular if and only if the internal depth of
L is finite.

The paper is organized as follows. Section 2 consists of preliminaries to make the paper as
self-contained as possible. In Section 3 we introduce the logics RN and KG, give a simple
finite axiomatization of KG, and describe finite and finitely generated rooted descriptive
KG-frames. We also describe finite rooted RN-frames. In Section 4 we introduce our
technique of gluing, describe finitely generated rooted descriptive RN-frames, and give a
simple finite axiomatization of RN. In Section 5 we prove that all extensions of RN have
the fmp, and construct continuum many extensions of KG that do not have the fmp. In
Section 6 we show that each extension of RN has the poly-size model property, and for each
function f : ω → ω, construct an extension of KG with the fmp but without the f -size model
property. In Section 7 we describe the extension of KG that bounds the fmp in extensions of
KG. Finally, in Section 8 we show that RN.KC is the only pre-locally tabular extension of
KG, define the internal depth of an extension L of RN, and prove that L is locally tabular
if and only if the internal depth of L is finite.

2. Preliminaries

We assume the reader’s familiarity with the intuitionistic propositional calculus IPC and
its Kripke semantics. For details we refer to [4, 3].

2.1. Descriptive frames and frame based formulas. We recall that an intuitionistic
Kripke frame is a partially ordered set (poset) F = (W,≤). For a poset F = (W,≤), w ∈W ,
and U ⊆ W , let ↑w = {v ∈ W : w ≤ v}, ↑U = {w ∈ W : ∃u ∈ U with u ≤ w},
↓w = {v ∈ W : v ≤ w}, and ↓U = {w ∈ W : ∃u ∈ U with w ≤ u}. We also recall that
U ⊆ W is an upset of W if u ∈ U and u ≤ v imply v ∈ U . Let Up(F) denote the set of
upsets of F.

Definition 2.1. [4, Section 8.1] An intuitionistic general frame or simply a general frame
is a triple F = (W,≤,P) such that (W,≤) is an intuitionistic Kripke frame and P is a set
of upsets of F such that ∅,W ∈ P and P is closed under ∪, ∩, and →, where:

U → V = {w ∈W : ↑w ∩ U ⊆ V } = W − ↓(U − V ).

Definition 2.2. [4, Section 8.4] Let F = (W,≤,P) be a general frame.

(1) We call F refined if for each w, v ∈ W , from w 6≤ v it follows that there is U ∈ P
such that w ∈ U and v /∈ U .

(2) We call F compact if for each X ⊆ P and Y ⊆ {W − U : U ∈ P}, whenever X ∪ Y
has the finite intersection property (that is, finite intersections of elements of X ∪Y
are nonempty), then

⋂
(X ∪ Y) 6= ∅.

(3) We call F descriptive if F is refined and compact.

The elements of P are called admissible sets. A descriptive valuation is a map ν from the
set of propositional letters to P. A pair (F, ν), where F is a descriptive frame and ν is a
descriptive valuation, is called a descriptive model.
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For the definition of generated subframes and p-morphisms of descriptive frames and
models we refer to [4, Section 8.5], and for the definition of subframes we refer to [4, Section
9.1]. An important property of generated subframes and p-morphic images, which we will
use frequently, is that they preserve validity of formulas.

Definition 2.3. [3, Definition 2.3.15] A descriptive frame F = (W,≤,P) is called rooted if
there exists w ∈ W such that W = ↑w and W − {w} ∈ P.

It is well known (see, e.g., [3, Section 2.3.2]) that each superintuitionistic logic is complete
with respect to the class of its rooted descriptive frames.

Definition 2.4. Let F = (W,R,P) be a descriptive frame. We say that F is n-generated
if there exist G1, . . . , Gn ∈ P such that each E ∈ P is a polynomial of G1, . . . , Gn in the
signature ∧,∨,→,⊥. We say that F is finitely generated if F is n-generated for some n ∈ ω.

It is well known that each superintuitionistic logic is complete with respect to its finitely
generated rooted descriptive frames [3, Corollary 3.4.3]. For a detailed description of the
structure of finitely generated descriptive frames we refer to [4, Section 8.7] and [3, Section
3.2].

Let F be a finite rooted frame. We recall that with F we can associate the Jankov-de Jongh
formula χ(F) and the subframe formula β(F) [4, Section 9.4], [3, Section 3.3]. Although the
actual shapes of χ(F) and β(F) do not really matter, the following theorem is of fundamental
importance.

Theorem 2.5.

(1) (For two different proofs see [4, Proposition 9.41] and [3, Theorem 3.3.3]) Let F be a
finite rooted frame and let χ(F) be the Jankov-de Jongh formula of F. Then for each
descriptive frame G we have:

G 6|= χ(F) if and only if F is a p-morphic image of a generated subframe of G.

(2) (For two different proofs see [4, Section 9.4] and [3, Theorem 3.3.16]) Let F be a finite
rooted frame and let β(F) be the subframe formula of F. Then for each descriptive
frame G we have:

G 6|= β(F) if and only if F is a p-morphic image of a subframe of G.

2.2. Sums of descriptive frames.

Definition 2.6. (see, e.g., [5, p. 17 and p. 179]) Let F1 = (W1,≤1) and F2 = (W2,≤2) be
Kripke frames. The linear sum of F1 and F2 is the Kripke frame F1 ⊕ F2 = (W1 ⊎W2,≤)
such that W1 ⊎W2 is the disjoint union of W1 and W2 and for each w, v ∈W1 ⊎W2 we have:

w ≤ v iff w, v ∈W1 and w ≤1 v,
or w, v ∈W2 and w ≤2 v,
or w ∈W2 and v ∈W1.

We extend the definition of linear sum to descriptive frames.

Definition 2.7. [2, Sections 2.3 and 2.4]

(1) Let F1 = (W1,≤1,P1) and F2 = (W2,≤2,P2) be descriptive frames. The linear sum of
F1 and F2 is the descriptive frame F1 ⊕F2 = (W,≤,P) such that (W,≤) is the linear
sum of (W1,≤1) and (W2,≤2), and U ∈ P if and only if U ∈ P1 or U = W1 ∪ V ,
where V ∈ P2.
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Figure 1. The Rieger-Nishimura ladder L

(2) Let F1, . . . ,Fn be descriptive frames. We define
⊕n

i=1
Fi = (

⊕n−1

i=1
Fi) ⊕ Fn. If each

Fi is equal to F, then we simply write
⊕

n F.
(3) Let {Fi : i ∈ ω} be a countable family of descriptive frames, where Fi = (Wi,≤i,Pi)

for each i ∈ ω. Let W =
⊎

i∈ω Wi ∪ {∞}, where ∞ /∈ Wi for each i ∈ ω. The
linear sum of {Fi : i ∈ ω} is the frame

⊕
i∈ω Fi = (W,≤,P) such that for each

w, v ∈
⊎

i∈ω Wi we have:

w ≤ v iff w ∈Wi, v ∈Wj, and i > j,
or there is i ∈ ω such that w, v ∈Wi and w ≤i v,
or w = ∞,

and U ∈ P if and only if U is an upset of W , U 6=
⊎

i∈ω Wi, and U ∩Wi ∈ Pi for
each i ∈ ω.

It is obvious that ⊕ is an associative operation, and it is easy to verify that the linear
sum of a countable family of descriptive frames is again a descriptive frame [2, Section 2.4].
If each Fi is equal to F, then we simply write

⊕
ω F. Figuratively speaking, the operation

⊕ puts F2 below F1, and the operation
⊕

forms a tower of {Fi : i ∈ ω} by putting the Fi

below each other and then adjoining a new root to it. Note that the complement of the new
root is not admissible.

2.3. The Rieger-Nishimura ladder. Rieger [19] and Nishimura [18] described indepen-
dently the free cyclic (1-generated) Heyting algebra. The corresponding dual descriptive
frame is known as the Rieger-Nishimura ladder and is shown in Fig. 1. We denote the
Rieger-Nishimura ladder by L. Let PL denote the set of admissible upsets of L, and let
L0 = L − {ω}. Then L0 is the only non-admissible upset of L. Consequently, Up(L0) is
isomorphic to PL, and so one can work with either L and the admissible upsets of L, or
equivalently, with L0 and all upsets of L0. As a result, some authors concentrate mostly on
L0 (see, e.g., [4, Section 8.7]). Since in this paper we mostly work with descriptive frames,
we prefer to work with L, and call it the Rieger-Nishimura ladder.
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Definition 2.8. [18] The Nishimura polynomials are given by the following recursive defi-
nition:

(1) g0(p) = p,
(2) g1(p) = ¬ p,
(3) f1(p) = p ∨ ¬p,
(4) g2(p) = ¬¬ p,
(5) g3(p) = ¬¬ p→ p,
(6) gn+4(p) = gn+3(p)→ (gn(p)∨ gn+1(p)),
(7) fn+2(p) = gn+2(p)∨ gn+1(p).

For k ∈ ω let Lgk
= ↑wk, and for k ≥ 1 let Lfk

= ↑wk ∪ ↑wk−1. Let also ν(p) = {w0}. The
next proposition, which is straightforward to verify, shows that Lgk

and Lfk
are precisely the

generated subframes of L satisfying gk(p) and fk(p), respectively.

Proposition 2.9.

(1) For k ∈ ω we have ↑wk = {w ∈ L : w |= gk(p)}.
(2) For k ≥ 1 we have ↑wk ∪ ↑wk−1 = {w ∈ L : w |= fk(p)}.

We conclude this brief survey of the Rieger-Nishimura ladder by mentioning a rather
natural appearance of L0 in a different setting. Define 4 on ω by

n 4 m if and only if n−m ≥ 2.

As was observed by Esakia [6], the frame (ω,4) is isomorphic to L0.

3. Rieger-Nishimura and Kuznetsov-Gerčiu logics

In this section we introduce the Rieger-Nishimura logic RN and the Kuznetsov-Gerčiu
logic KG. We give a finite axiomatization of KG and describe finite and finitely generated
rooted descriptive KG-frames. We also describe finite rooted RN-frames.

For a frame F, let Log(F) = {ϕ : F |= ϕ}; that is, Log(F) is the set of formulas valid in
F. For a class K of frames, let Log(K) =

⋂
{Log(F) : F ∈ K}. It is well-known (see, e.g., [4,

Theorem 4.3]) that both Log(F) and Log(K) are superintuitionistic logics. We call Log(F)
the logic of F, and we call Log(K) the logic of K.

Definition 3.1. We set RN = Log(L); that is, RN is the logic of the Rieger-Nishimura
ladder.

A purely syntactic motivation for studying RN comes from n-conservative extensions
and n-scheme logics. Let L and S be superintuitionistic logics. We recall that S is an n-
conservative extension of L if L ⊆ S and for each formula ϕ(p1, . . . , pn) in n variables, we
have L ⊢ ϕ if and only if S ⊢ ϕ. We also recall that for a superintuitionistic logic L, a set of
formulas L(n) is called the n-scheme logic of L if for each k and each formula ψ(p1, . . . , pk)
in k variables, ψ(p1, . . . , pk) ∈ L(n) if and only if for all χ1(p1, . . . pn), . . . , χk(p1, . . . , pn), we
have L ⊢ ψ(χ1, . . . , χk). It is easy to see that L(n) is a superintuitionistic logic for each
n ∈ ω. It follows from [3, Proposition 4.1.9] that for each superintuitionistic logic L, a
superintuitionistic logic S is an n-conservative extension of L if and only if L ⊆ S ⊆ L(n),
and that L(n) is the greatest n-conservative extension of L. It turns out that RN is the
1-scheme logic of IPC and the greatest 1-conservative extension of IPC [3, Theorem 4.1.10].

We call a descriptive frame F cyclic if it is isomorphic to L, Lgk
, or Lfk

for some k ∈ ω.
Thus, F is cyclic if and only if it is a generated subframe of L, and each cyclic frame is finite
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Figure 2. The frames K1,K2, and K3

except L. Cyclic frames are exactly the duals of cyclic Heyting algebras ([2, Proposition 4],
[3, Section 4.1.1]), which is the motivation for the definition. It follows that RN is the logic
of the cyclic frames. In fact, RN is the logic of the finite cyclic frames (see [13, Section 4]
and Section 5 below). A natural relative of RN is the logic of finite linear sums of cyclic
frames.

Definition 3.2. We set KG = Log({
⊕n

i=1
Fi : each Fi is cyclic}); that is, KG is the logic

of finite linear sums of cyclic frames.

It follows from the definition that KG ⊆ RN. In fact, as we will see below, RN is a
proper extension of KG, and there are continuum many logics in the interval [KG,RN].
The logic KG was introduced and studied by Kuznetsov and Gerčiu [13]. They showed that
KG is finitely axiomatizable. Consider the formula

ϕKG = (p→ q) ∨ (q → r) ∨ ((q → r) → r) ∨ (r → (p ∨ q)).

Theorem 3.3. [13, Corollary 4.3.9] KG = IPC + ϕKG.

A more convenient axiomatization of KG was given in [12, Theorem 16] and [3, Theorem
4.3.4] by means of subframe formulas. Consider the frames K1, K2, and K3 shown in Fig. 2.

Theorem 3.4. KG = IPC + β(K1) ∧ β(K2) ∧ β(K3).

Proof. It is shown in [12, Theorem 16] that the greatest modal companion of KG is axiom-
atized by adding the subframe formulas of K1,K2, and K3 to the Grzegorczyk logic S4.Grz,
which is the greatest modal companion of IPC. It follows that KG = IPC+β(K1)∧β(K2)∧
β(K3). A more detailed direct proof can be found in [3, Theorem 4.3.4]. �

Consequently, KG is a subframe logic. Finitely generated subdirectly irreducible Heyting
algebras that belong to the variety of Heyting algebras corresponding to KG were character-
ized in [13, Lemma 4]. This gives the following characterization of rooted finitely generated
descriptive KG-frames. For a detailed proof, which is different from that in [13], we refer to
[3, Corollary 4.3.9]. A similar characterization was also established in [12, Theorem 16] for
the least modal companion of KG.

Theorem 3.5. A rooted descriptive KG-frame F is finitely generated if and only if F is
isomorphic to (

⊕n

i=1
Fi) ⊕ Lgk

, where each Fi is a cyclic frame and k ∈ ω.
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Figure 3. The frames G1 and G2

This theorem, in particular, implies that each finite rooted KG-frame is isomorphic to
(
⊕n

i=1
Fi) ⊕ Lgk

, where each Fi is a finite cyclic frame. Our next task is to single out the
class of finite rooted RN-frames from the class of finite rooted KG-frames. We recall that a
descriptive frame F is a generated subframe of L if and only if F is isomorphic to L, Lgk

, or
Lfk

for some k ∈ ω, and that each proper generated subframe of L is finite ([2, Proposition
4], [3, Theorem 4.2.1]). Next we recall a characterization of the p-morphic images of L.
Up to isomorphism, there are three different types of p-morphic images of L, which can be
described by means of linear sums of descriptive frames. Let G1 denote the frame consisting
of a single point, and let G2 denote the frame consisting of two distinct points that are not
related to each other (see Fig.3). The following result was established independently in [12,
Section 6] and [2, Proposition 4]. For a purely algebraic proof, we refer to [3, Theorem 4.2.6
and Corollary 4.2.7].

Theorem 3.6. A descriptive frame F is a p-morphic image of L if and only if F is isomorphic
to one of the following frames: L,

⊕
i∈ω Fi, (

⊕n

i=1
Fi) ⊕ G1, or (

⊕n

i=1
Fi) ⊕ L, where each

Fi is isomorphic to either G1 or G2 and n ∈ ω.

Theorem 3.6 enables us to characterize the generated subframes of p-morphic images of
L.

Theorem 3.7.

(1) An infinite descriptive frame F is a generated subframe of a p-morphic image of L if
and only if F is isomorphic to

⊕
i∈ω Fi or (

⊕n

i=1
Fi)⊕L, where each Fi is isomorphic

to G1 or G2 and n ∈ ω.
(2) A finite frame F is a generated subframe of a p-morphic image of L if and only if F

is isomorphic to (
⊕n

i=1
Fi)⊕ Lgk

or (
⊕n

i=1
Fi) ⊕ Lfk

, where each Fi is isomorphic to
G1 or G2 and k, n ∈ ω.

(3) A finite rooted frame F is a generated subframe of a p-morphic image of L if and
only if F is isomorphic to (

⊕n

i=1
Fi)⊕ Lgk

, where each Fi is isomorphic to G1 or G2

and k, n ∈ ω.

Proof. (1) The right to left implication follows from Theorem 3.6. Conversely, suppose an
infinite descriptive frame F is a generated subframe of a p-morphic image of L. Then there
exists an infinite descriptive frame G such that F is a generated subframe of G and G is a
p-morphic image of L. Then by Theorem 3.6, G is isomorphic to

⊕
i∈ω Fi or (

⊕n

i=1
Fi) ⊕ L.

It is easy to see that neither
⊕

i∈ω Fi nor (
⊕n

i=1
Fi)⊕L contains a proper infinite generated

subframe. Therefore, F is isomorphic to either
⊕

i∈ω Fi or (
⊕n

i=1
Fi) ⊕ L.

(2) The right to left implication follows from Theorem 3.6. Conversely, suppose G is a
p-morphic image of L and F is a finite generated subframe of G. Then by Theorem 3.6, G is
isomorphic to L,

⊕
i∈ω Fi, (

⊕n

i=1
Fi)⊕G1, or (

⊕n

i=1
Fi)⊕L. In the first case F is isomorphic

to Lgk
or Lfk

, in the second and third cases F is isomorphic to
⊕n

i=1
Fi, and in the fourth

case F is isomorphic to (
⊕n

i=1
Fi) ⊕ Lgk

or (
⊕n

i=1
Fi) ⊕ Lfk

, where each Fi is isomorphic to
G1 or G2.

(3) follows from (2) since Lfk
is not rooted for each k > 0. �
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Corollary 3.8. A finite rooted frame F is an RN-frame if and only if F is isomorphic to
(
⊕n

i=1
Fi) ⊕ Lgk

, where each Fi is isomorphic to G1 or G2 and k, n ∈ ω.

Proof. It follows from Theorem 3.7 that if a finite rooted frame F is isomorphic to (
⊕n

i=1
Fi)⊕

Lgk
, where each Fi is isomorphic to G1 or G2, then F is an RN-frame. Conversely, suppose

that F is a finite rooted RN-frame. By Theorem 2.5.1, F is a generated subframe of a
p-morphic image of L. Thus, by Theorem 3.7.3, F is isomorphic to (

⊕n

i=1
Fi) ⊕ Lgk

, where
each Fi is isomorphic to G1 or G2. �

As an immediate consequence, we obtain that RN is a proper extension of KG.

Theorem 3.9. KG $ RN.

Proof. That none of K1,K2,K3 is a p-morphic image of a subframe of L is routine to check.
Therefore, by Theorem 2.5.2, L |= β(K1), β(K2), β(K3). This, by Theorem 3.4, means that L

is a KG-frame, and so KG ⊆ Log(L) = RN. Now we show that KG 6= RN. Consider the
frame Lg4 ⊕ G1. By Theorem 3.5, Lg4 ⊕ G1 is a rooted KG-frame. On the other hand, by
Corollary 3.8, Lg4 ⊕ G1 is not an RN-frame. Thus, by Theorem 2.5.1, χ(Lg4 ⊕ G1) ∈ RN

but χ(Lg4 ⊕ G1) /∈ KG, and so RN 6⊆ KG. �

Similar to KG, we have that RN is finitely axiomatizable. This was first observed by
Kuznetsov and Gerčiu [13, Theorem 1]. But their axiomatization was rather complicated.
In order to give a more convenient axiomatization of RN, using a mixture of subframe and
Jankov-de Jongh formulas, we need to characterize finitely generated rooted RN-frames.

4. Gluing and finitely generated rooted RN-frames

In this section we introduce our technique of gluing, characterize finitely generated rooted
RN-frames, and give a convenient finite axiomatization of RN.

Theorem 4.1. Let F be a finitely generated rooted descriptive KG-frame. If F is an RN-
frame, then there exist k, n ∈ ω such that F is isomorphic to (

⊕n

i=1
Fi)⊕Lgk

, where each Fi

is isomorphic to L, G1, or G2.

Proof. By Theorem 3.5, F is isomorphic to a linear sum (
⊕n

k=1
Fi) ⊕ Lgk

, where each Fi is
a cyclic frame and k ∈ ω. If for each j ≤ n we have that Fj is isomorphic to L, G1, or G2,
then F satisfies the condition of the theorem. Suppose that there exists j ≤ n such that Fj

is isomorphic to Lgm
for some m ≥ 4 or Fj is isomorphic to Lfl

for some l ≥ 2. (For m < 4
and l < 2 the frames Lgm

and Lfl
are isomorphic to linear sums of G1 and G2.) Let j ≤ n be

the the least such j. If j > 1, then we define f : F → G1⊕Fj ⊕G1 by mapping all the points
above Fj onto the top node of G1 ⊕Fj ⊕G1, all the points below Fj onto the bottom node of
G1 ⊕Fj ⊕G1, and each point in Fj to itself; and if j = 1, then we define f : F → Fj ⊕G1 by
mapping all the points below Fj onto the bottom node of Fj ⊕ G1, and each point in Fj to
itself. In either case it is easy to verify that f is a p-morphism. Thus, either G1 ⊕Fj ⊕G1 or
Fj ⊕ G1 is a finite RN-frame, which contradicts Corollary 3.8. The obtained contradiction
proves that such a j does not exist. �

To show that the converse of Theorem 4.1 holds, we introduce a new technique of gluing.
For a Kripke frame F let max(F) denote the set of maximal points and min(F) denote the
set of minimal points of F.
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Definition 4.2.

(1) Let F1 = (W1,≤1) and F2 = (W2,≤2) be Kripke frames such that min(F1) and
max(F2) are nonempty. Let x ∈ min(F1) and y ∈ max(F2). The gluing sum of
(F1, x) and (F2, y) is the frame (F1, x)⊕̂(F2, y) = (W1 ⊎W2,≤) such that W1 ⊎W2 is
the disjoint union of W1 and W2, and ≤=≤1 ∪ ≤2 ∪[(W2 ×W1) − {(y, x)}].

(2) Let F1 = (W1,≤1,P1) and F2 = (W2,≤2,P2) be descriptive frames and let x ∈
min(F1) and y ∈ max(F2). The gluing sum of (F1, x) and (F2, y) is the frame
(F1, x)⊕̂(F2, y) = (W1⊎W2,≤,P), where (W1⊎W2,≤) is the gluing sum of ((W1,≤1),
x) and ((W2,≤2), y), and

P = {U ⊆W1 ⊎W2 : U is a ≤-upset, U ∩W1 ∈ P1, and U ∩W2 ∈ P2}.

Figuratively speaking, we take the linear sum of F1 and F2 and erase an arrow going from
y to x.

Lemma 4.3. Let k,m ∈ ω and let m be odd.

(1) (Lfm
, wm)⊕̂(L, w0) is isomorphic to L.

(2) (Lfm
, wm)⊕̂(Lgk

, w0) is isomorphic to Lgk+m+1
.

Proof. Easy. �

Next we recall the definition of the complexity of a formula.

Definition 4.4. The complexity c(ϕ) of a formula ϕ is defined inductively as follows:

c(p) = 0,

c(⊥) = 0,

c(ϕ ∧ ψ) = max{c(ϕ), c(ψ)},

c(ϕ ∨ ψ) = max{c(ϕ), c(ψ)},

c(ϕ→ ψ) = 1 + max{c(ϕ), c(ψ)}.

Now we recall the notion of the depth of a frame.

Definition 4.5. Let F be a frame.

(1) We say that F is of depth n < ω, and write d(F), if there is a chain of n points in
F and no other chain in F contains more than n points.

(2) We say that F is of infinite depth, and write d(F) = ω, if F contains a chain
consisting of n points for each n ∈ ω.

(3) We say that F is of finite depth if d(F) < ω.
(4) The depth of a point w of F is the depth of the subframe of F generated by w. We

denote the depth of w by d(w).
(5) For an upset U of F, the depth d(U) of U is defined as d(U) = sup{d(x) : x ∈ U}.

Definition 4.6. Let p1, . . . , pn be propositional variables and let ν be a descriptive valuation
of p1, . . . , pn on L.

(1) Let rank(ν) = max{d(ν(pi)) : ν(pi) ( L}.
(2) For each formula ϕ(p1, . . . , pn), let Mν(ϕ) = rank(ν) + c(ϕ) + 1.

Lemma 4.7. Let ν be a descriptive valuation on L. For each formula ϕ(p1, . . . , pn) and for
each x, y ∈ L with d(x), d(y) > Mν(ϕ), we have:

x |= ϕ if and only if y |= ϕ.
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Proof. By induction on the complexity of ϕ. If c(ϕ) = 0; that is, if ϕ is either ⊥ or a
propositional letter, then the lemma is obvious. Suppose that c(ϕ) = k and that the lemma
holds for each formula ψ such that c(ψ) < k. The cases when ϕ = ψ1 ∧ ψ2 and ϕ = ψ1 ∨ ψ2

are trivial. Suppose that ϕ = ψ1 → ψ2. Then c(ψ1), c(ψ2) < k. Let x, y ∈ L be such that
d(x), d(y) > Mν(ϕ). Without loss of generality we may assume that x 6|= ϕ and show that
y 6|= ϕ. From x 6|= ψ1 → ψ2 it follows that there exists z ∈ L such that x ≤ z, z |= ψ1, and
z 6|= ψ2. If d(z) < d(y)− 1, because of the structure of L, we have that y ≤ z, and so y 6|= ϕ.
If d(z) ≥ d(y)− 1, then d(z) > Mν(ϕ)− 1 = rank(ν) + c(ϕ) ≥ rank(ν) + c(ψi) + 1 = Mν(ψi)
for each i = 1, 2. Thus, d(z), d(y) > Mν(ψi), and by the induction hypothesis, y |= ψ1 and
y 6|= ψ2, which again implies that y 6|= ϕ. �

Lemma 4.8.

(1) If L ⊕ L 6|= ϕ, then L 6|= ϕ.
(2) If L ⊕ L ⊕ G 6|= ϕ for some frame G, then L ⊕ G 6|= ϕ.
(3) If F ⊕ L ⊕ L 6|= ϕ for some frame F, then F ⊕ L 6|= ϕ.
(4) If F ⊕ L ⊕ L ⊕ G 6|= ϕ for some frames F and G, then F ⊕ L ⊕ G 6|= ϕ.
(5) If for some k ∈ ω we have L ⊕ Lgk

6|= ϕ, then Lgm
6|= ϕ for some m ≥ k.

(6) If for some k ∈ ω and some frame G we have L ⊕ Lgk
⊕ G 6|= ϕ, then Lgm

⊕ G 6|= ϕ
for some m ≥ k.

(7) If for some k ∈ ω and some frame F we have F ⊕ L ⊕ Lgk
6|= ϕ, then F ⊕ Lgm

6|= ϕ
for some m ≥ k.

(8) If for some k ∈ ω and some frames G and F we have F ⊕ L ⊕ Lgk
⊕ F 6|= ϕ, then

F ⊕ Lgm
⊕ G 6|= ϕ for some m ≥ k.

Proof. (1) Let ν be a descriptive valuation on L ⊕ L such that (L ⊕ L, ν) 6|= ϕ. In order to
make a distinction, we denote the copy of L on top by L1 and the copy underneath by L2.
Let ν1 and ν2 be the restrictions of ν to L1 and L2, respectively; that is, νi(p) = ν(p) ∩ Li

for each i = 1, 2. Let M1(ϕ) = rank(ν1) + c(ϕ) + 1 and let m = 2 ·M1(ϕ) + 1. Consider the
gluing sum (Lfm

, wm)⊕̂(L2, w0), and let µ be the restriction of ν to (Lfm
, wm)⊕̂(L2, w0). By

Lemma 4.3.1, (Lfm
, wm)⊕̂(L2, w0) is isomorphic to L. Thus, to finish the proof we only need

to show that ((Lfm
, wm)⊕̂(L2, w0), µ) 6|= ϕ, which we do in the next claim.

Claim 4.9. ((Lfm
, wm)⊕̂(L2, w0), µ) 6|= ϕ.

Proof. By induction on the complexity of ϕ. The cases when ϕ is either ⊥, a proposi-
tional letter, a conjunction, or a disjunction of two formulas are simple. Let ϕ = ψ → χ.
Since (L1 ⊕ L2, ν) 6|= ϕ, there exists x ∈ L1 ⊕ L2 such that (L1 ⊕ L2, ν), x |= ψ and
(L1 ⊕ L2, ν), x 6|= χ. If x belongs to (Lfm

, wm)⊕̂(L2, w0), then we are done. If x does
not belong to (Lfm

, wm)⊕̂(L2, w0), then we take a point y in Lfm
of depth M1(ϕ). Since

c(ψ), c(χ) < c(ϕ), we have M1(ψ),M1(χ) < M1(ϕ). It follows from Lemma 4.7 that
(L1 ⊕ L2, ν), y |= ψ and (L1 ⊕ L2, ν), y 6|= χ. Therefore, ((Lfm

, wm)⊕̂(L2, w0), µ), y |= ψ
and ((Lfm

, wm)⊕̂(L2, w0), µ), y 6|= χ. Thus, ((Lfm
, wm)⊕̂(L2, w0), µ), y 6|= ϕ. �

The proof of (2) is similar to that of (1). The proofs of (3) and (4) are similar to those of
(1) and (2) with the only difference that in these cases we should consider F ⊕ Lfm

instead
of Lfm

. The proof of (5) is similar to that of (1): We take the upset F consisting of Mν(ϕ)
layers of L and then consider a gluing sum of F with Lgk

. The proofs of (6), (7), and (8) are
similar to that of (5). �
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Figure 4. The frames K4,K5,K6

We point out that a modal analogue of Lemma 4.8.1 can be found in [12, Lemma 17].
We will also need the following auxiliary lemma [3, Lemma 4.2.12], which is an analogue of
Theorem 3.6.

Lemma 4.10. For each k, n ∈ ω, the frame
⊕n

i=1
Fi ⊕ Lgk

is a p-morphic image of Lgk+3n
,

where each Fi is isomorphic to G1 or G2.

We are now ready to characterize finitely generated rooted descriptive RN-frames.

Theorem 4.11. A finitely generated rooted descriptive KG-frame F is an RN-frame if and
only if F is isomorphic to (

⊕n

i=1
Fi)⊕Lgk

, where each Fi is isomorphic to L, G1, or G2 and
k ∈ ω.

Proof. The direction from left to right is Theorem 4.1. For the other direction, suppose
that F is isomorphic to (

⊕n

i=1
Fi) ⊕ Lgk

, where each Fi is isomorphic to L, G1, or G2.
Let m ∈ ω be the number of copies of L occurring in

⊕n

i=1
Fi. Then F is isomorphic

to [
⊕

m((
⊕mi

j=1
Hj) ⊕ L)] ⊕ (

⊕s

j=1
Hj) ⊕ Lgk

for some k,m,mi, s ∈ ω, where each Hj is

isomorphic to G1 or G2. By Theorem 3.6, (
⊕mi

j=1
Hj) ⊕ L is a p-morphic image of L. By

Lemma 4.10, (
⊕s

j=1
Hj)⊕Lgk

is a p-morphic image of Lgk+3s
. Thus, F is a p-morphic image

of (
⊕

m L)⊕Lgk+3s
. We show that (

⊕
m L)⊕Lgk+3s

is an RN-frame. If not, then there exists
a formula ϕ(p1, . . . , pn) such that RN ⊢ ϕ but (

⊕
m L)⊕Lgk+3s

6|= ϕ. Applying Lemma 4.8.2
m−1 times, we obtain that L⊕Lgk

6|= ϕ. By Lemma 4.8.5, there is t ≥ k such that Lgt
6|= ϕ.

Therefore, we found an RN-frame H = Lgt
such that H 6|= ϕ. This contradicts the fact

that RN ⊢ ϕ. Thus, such a ϕ does not exist, and so (
⊕

m L) ⊕ Lgk+3s
is an RN-frame.

Consequently, so is F as a p-morphic image of (
⊕

m L) ⊕ Lgk+3s
. �

Next we give yet another characterization of finitely generated rooted descriptive RN-
frames. Let K4 = Lg4 ⊕ G1, K5 = G1 ⊕ Lg4 ⊕ G1, and K6 = Lg5 ⊕ G1. The frames K4,K5,
and K6 are shown in Fig. 4.

Lemma 4.12. G1 ⊕ Lg4 ⊕ G1 is a p-morphic image of G1 ⊕ Lg5 ⊕ G1.

Proof. Let G1⊕Lg4⊕G1 and G1⊕Lg5⊕G1 be labeled as in Fig. 5. Define f : G1⊕Lg5⊕G1 →
G1 ⊕ Lg4 ⊕ G1 by f(yi) = xi for each i = 1, . . . , 5, and f(y6) = x5. Then it is easy to check
that f is an onto p-morphism. �

Theorem 4.13. A finitely generated rooted descriptive KG-frame F is an RN-frame if and
only if Ki is not a generated subframe of a p-morphic image of F for each i = 4, 5, 6.



12

x0

x1

x2

x3 x4

x5

y4

y5 y3

y6

y0

y1

y2

Figure 5. The frames G1 ⊕ Lg4 ⊕ G1 and G1 ⊕ Lg5 ⊕ G1 with the labels

Proof. First suppose that F is a finitely generated rooted descriptive RN-frame. If there is
i = 4, 5, 6 such that Ki is a generated subframe of a p-morphic image of F, then the Ki is
also an RN-frame, which contradicts Corollary 3.8. Thus, for no i = 4, 5, 6 we have Ki is
a generated subframe of a p-morphic image of F. Conversely, suppose that F is a finitely
generated rooted descriptive KG-frame such that for no i = 4, 5, 6 we have Ki is a generated
subframe of a p-morphic image of F. Since F is a KG-frame, by Theorem 3.5, F is isomorphic
to (

⊕n

i=1
Fi)⊕Lgk

, where each Fi is a cyclic frame. Assume that F is not an RN-frame. By
Theorem 4.11, there exists i ≤ n such that Fi is isomorphic to Lgm

or Lfl
for some m ≥ 4 and

l ≥ 2. We take the least such i. We consider the case when Fi is isomorphic to Lgm
for some

m ≥ 4. The case when Fi is isomorphic to Lfl
for some l ≥ 2 is proved similarly. Similar

to Theorem 4.1, if i > 1, then we define f : F → G1 ⊕ Fi ⊕ G1 by mapping all the points
above Fi onto the top node of G1 ⊕ Fi ⊕ G1, all the points below Fi onto the bottom node
of G1 ⊕ Fi ⊕ G1, and each point in Fi to itself; and if i = 1, then we define f : F → Fi ⊕ G1

by mapping all the points below Fi onto the bottom node of Fi ⊕ G1, and each point in Fi

to itself. In either case it is easy to verify that f is a p-morphism. Looking at the structure
of Lgm

we see that if m is even, then the subframe of Lgm
consisting of the last three layers

of Lgm
is isomorphic to Lg4; and if m is odd, then the subframe of Lgm

consisting of the
last three layers of Lgm

is isomorphic to Lg5 . Therefore, if m is even and m ≥ 4, then by
identifying all but the points of the last three layers of Lgm

we obtain a p-morphic image of
Lgm

which is isomorphic to G1 ⊕ Lg4 or Lg4 (depending whether i > 1 or i = 1); and if m is
odd and m ≥ 5, then by identifying all but the points of the last three layers of Lgm

we obtain
a p-morphic image of Lgm

which is isomorphic to G1 ⊕Lg5 or Lg5 (again depending whether
i > 1 or i = 1). Thus, if m ≥ 4 and m is even, then K4 = Lg4 ⊕G1 or K5 = G1 ⊕Lg4 ⊕G1 is
a p-morphic image of F; and if m ≥ 5 and m is odd, then K6 = Lg5 ⊕G1 or G1 ⊕Lg5 ⊕G1 is
a p-morphic image of F. Since by Lemma 4.12, K5 is a p-morphic image of G1⊕Lg5 ⊕G1, we
obtain that one of K4,K5,K6 is a p-morphic image of F. The obtained contradiction proves
that our assumption was wrong, and that F is an RN-frame. �

Now we are in a position to give a convenient axiomatization of RN.

Theorem 4.14.

(1) RN = KG + χ(K4) ∧ χ(K5) ∧ χ(K6).
(2) RN = IPC + β(K1) ∧ β(K2) ∧ β(K3) ∧ χ(K4) ∧ χ(K5) ∧ χ(K6).

Proof. (1) It follows from Theorems 2.5.1, 4.11, and 4.13 that RN and KG + χ(K4) ∧
χ(K5) ∧ χ(K6) have the same finitely generated rooted descriptive frames. Now since each
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Figure 6. K4, K5, and K6 as subframes of L

superintuitionistic logic is complete with respect to its finitely generated rooted descriptive
frames, we obtain that RN = KG + χ(K1) ∧ χ(K2) ∧ χ(K3).

(2) is an immediate consequence of (1) and Theorem 3.4. �

We note that a similar axiomatization of the greatest modal companion of RN was claimed
in [12, Theorem 18]. However, the argument contained a gap since the formula χ(K6) was
missing from the axiomatization. We conclude this section by showing that unlike KG, the
logic RN is not a subframe logic. For this, by [4, Theorem 11.21], it is sufficient to show
that descriptive RN-frames are not closed under the operation of taking subframes.

Theorem 4.15. RN is not a subframe logic.

Proof. By Corollary 3.8, neither of K4, K5, K6 is an RN-frame. However, as can be seen in
Fig. 6, all three are subframes of L. Thus, RN is not a subframe logic. �

5. Extensions of KG with and without the fmp

In this section we use our gluing technique to give a systematic method of constructing
extensions of KG with and without the fmp. Our first general theorem states that every
extension of RN has the fmp. This result was first established by Gerčiu [8] using algebraic
technique (the gaps in [8] were corrected in [7]). Kracht [12] claimed that every extension of
the greatest modal companion of KG has the fmp. This is not true as we will see shortly. In
fact, there are continuum many extensions of KG that lack the fmp. Nevertheless, Kracht’s
technique works for all extensions of the greatest modal companion of RN.

Theorem 5.1. Every extension of RN has the fmp.

Proof. Let L be an extension of RN and let L 6⊢ ϕ. Then there exists a finitely generated
rooted descriptive L-frame F such that F 6|= ϕ. By Theorem 4.11, F is isomorphic to
(
⊕n

i=1
Fi) ⊕ Lgk

, where each Fi is isomorphic to L, G1, or G2. If there is no j ≤ n such
that Fj is isomorphic to L, then F is finite, and so ϕ is refuted on a finite L-frame. Suppose
that j ≤ n is the least index for which Fj is isomorphic to L. Let H denote the finite frame
F1 ⊕· · ·⊕Fj−1. Then F is isomorphic to H⊕Fj ⊕· · ·⊕Fn ⊕Lgk

. It follows from the proof of
Theorem 4.11 that there exist s,m ∈ ω such that Fj ⊕· · ·⊕Fn ⊕Lgk

is a p-morphic image of
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Figure 7. The frame L ⊕ Lg4 ⊕ G1

⊕
s L⊕Lgm

. Therefore, F is a p-morphic image of G = H⊕
⊕

s L⊕Lgm
. Since p-morphisms

preserve validity of formulas, G 6|= ϕ. Applying Lemma 4.8.4 s − 1 times, we obtain that
H ⊕ L ⊕ Lgm

6|= ϕ. By Lemma 4.8.7, there is t ≥ m such that H ⊕ Lgt
6|= ϕ. As H ⊕ Lgt

is
a generated subframe of H ⊕ L, which is a generated subframe of F, it follows that H ⊕ Lgt

is an L-frame. Thus, ϕ is refuted on a finite L-frame H ⊕ Lgt
, so each non-theorem of L is

refuted on a finite L-frame, and so L has the fmp. �

Now we show that there exist extensions of KG that lack the fmp. Let G be a finite
rooted KG-frame not isomorphic to an RN-frame. The simplest such frame is Lg4 ⊕ G1.
Let H = L⊕G and let L = Log(H). The descriptive frame L⊕Lg4 ⊕G1 is shown in Fig. 7.

Theorem 5.2. Let G be a finite rooted KG-frame not isomorphic to an RN-frame, H =
L ⊕ G, and L = Log(H). Then a finite rooted KG-frame F is an L-frame if and only if
either of the following two conditions is satisfied.

(1) F is an RN-frame.
(2) F is isomorphic to a p-morphic image of a generated subframe of

⊕n

i=1
Fi⊕ G1 ⊕G,

where each Fi is either empty or isomorphic to G1 or G2.

Proof. First we show that if a finite rooted frame satisfies the conditions of the theorem,
then it is an L-frame. Since L is a generated subframe of H, we have that each RN-frame
is an L-frame. By Theorem 3.6,

⊕n

i=1
Fi ⊕ G1 is a p-morphic image of L, where each Fi

is isomorphic to G1 or G2. Therefore,
⊕n

i=1
Fi ⊕ G1 ⊕ G is a p-morphic image of L ⊕ G.

Thus, if F is a p-morphic image of a generated subframe of
⊕n

i=1
Fi ⊕ G1 ⊕ G, then F is an

L-frame. Conversely, let F be a finite rooted L-frame. By Theorem 2.5.1, F is a p-morphic
image of a generated subframe H′ of H. If H′ is a generated subframe of L, then F is an
RN-frame. Suppose that H′ is isomorphic to L ⊕ H′′, where H′′ is a generated subframe of
G. By Theorem 3.6, each finite p-morphic image of L has the form

⊕n

i=1
Fi ⊕ G1, where

each Fi is isomorphic to G1 or G2. Thus, if F is a p-morphic image of L ⊕ H′′, then F is a
p-morphic image of

⊕n

i=1
Fi ⊕ G1 ⊕ H′′, where each Fi is isomorphic to G1 or G2. Finally,
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since H′′ is a generated subframe of G, the frame
⊕n

i=1
Fi⊕G1⊕H′′ is a generated subframe of⊕n

i=1
Fi⊕G1⊕G. Thus, F is a p-morphic image of a generated subframe of

⊕n

i=1
Fi⊕G1⊕G,

which concludes the proof. �

Theorem 5.3. Let G be a finite rooted KG-frame not isomorphic to an RN-frame, H =
L ⊕ G, and L = Log(H). Then L does not have the fmp.

Proof. Consider the Jankov-de Jongh formulas χ1 = χ(G1 ⊕ G) and χ2 = χ(Lg4). Without
loss of generality we may assume that χ1 and χ2 have no variables in common. Let ϕ =
χ1 ∨ χ2. It is easy to see that G1 ⊕ G is a p-morphic image of H (simply map all the points
in L to the top node of G1 ⊕G). This by Theorem 2.5.1 means that H 6|= χ1. Also, Lg4 is a
generated subframe of H. Applying Theorem 2.5.1 again we obtain that H 6|= χ2. Therefore,
H 6|= ϕ, and so L 6⊢ ϕ. Suppose that there is a finite rooted L-frame F such that F 6|= ϕ.
Then F 6|= χ1 and F 6|= χ2. By Theorem 2.5.1, F 6|= χ1 implies that G1 ⊕ G is a p-morphic
image of a generated subframe of F. Thus, if F is an RN-frame, then G1 ⊕ G is also an
RN-frame, which by Corollary 3.8, is a contradiction. Consequently, F 6|= χ1 implies F

is not an RN-frame. By Theorem 5.2.2, this means that F is a p-morphic image of some
(
⊕n

i=1
Fi) ⊕ G1 ⊕ H′′, where H′′ is a generated subframe of G and each Fi is isomorphic to

G1 or G2. Next we show that Lg4 cannot be a p-morphic image of a generated subframe of
F. Let F′ be a generated subframe of F and let f : F′ → Lg4 be an onto p-morphism. If
|max(F′)| = 1, then clearly Lg4 cannot be a p-morphic image of F′. Suppose that F′ has two
maximal points u1 and u2. Then f(u1) 6= f(u2) and f(u1) and f(u2) are the maximal points
of Lg4 . Let u be a point of the second layer of F′. Since the top layers of F′ are sums of
G1 and G2, we have that u ≤ u1 and u ≤ u2. Therefore, f(u) 6= f(u1) and f(u) 6= f(u2).
But then u should be mapped to a point of the second layer of Lg4 , which consists of a
single point. This point must see both maximal points of Lg4, a contradiction. Therefore,
no generated subframe of F can be p-morphically mapped onto Lg4 , and so F |= χ2, which
contradicts our assumption that F 6|= χ2. Thus, there is no finite L-frame that refutes both
χ1 and χ2. Consequently, ϕ can not be refuted on a finite rooted L-frame, which means that
L does not have the fmp. �

Consequently, there are many extensions of KG that lack the fmp. Next we show that
there are in fact continuum many such. We use the standard method (introduced by Jankov
[11]) of constructing infinite anti-chains of finite rooted KG-frames. Let K be the class of
non-isomorphic finite rooted KG-frames. We define a partial order ⊑ on K as follows. For
F,G ∈ K we set:

F ⊑ G if and only if F is a p-morphic image of a generated subframe of G.

In the next lemma we show how to construct anti-chains of finite rooted KG-frames and
RN-frames. This, using Jankov’s technique, will allow us to show that RN has continuum
many extensions, and that there are continuum many logics in the interval [KG,RN].

Lemma 5.4.

(1) If k 6= m, then Lgk
is not a p-morphic image of Lgm

.
(2) The sequence Γ = {Lgk

⊕ G1 : k ≥ 4} of rooted KG-frames forms an anti-chain in
(K,⊑).

(3) The sequences ∆1 = {G1 ⊕ Lf3 ⊕ Lgk
⊕ G1 : k ≥ 4 and k is even} and ∆2 =

{G1 ⊕ Lf3 ⊕ Lgk
⊕ G1 : k ≥ 5 and k is odd} of rooted KG-frames form anti-chains

in (K,⊑).
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Figure 8. The frames Lg4 ⊕ G1, Lg6 ⊕ G1, and Lg8 ⊕ G1

(4) (
⊕n

i=1
Fi)⊕G1 ⊕Lf3 ⊕Lgk

⊕G1 6⊑ (
⊕n

i=1
Fi)⊕G1 ⊕Lf3 ⊕Lgm

⊕G1, where each Fi

is isomorphic to G1 or G2 and k 6= m.
(5) The sequences Υ1 = {(

⊕k

i=1
G2)⊕ Lg4 : k ∈ ω} and Υ2 = {(

⊕k

i=1
G2)⊕ Lg5 : k ∈ ω}

of rooted RN-frames form anti-chains in (K,⊑).

Proof. (1) is easy; for a short proof see [3, Lemma 4.2.13].
For (2), let Lgk

⊕G1,Lgm
⊕G1 ∈ Γ with m > k. Then |Lgk

⊕G1| < |Lgm
⊕G1|, so Lgm

⊕G1

cannot be a p-morphic image of a generated subframe of Lgk
⊕G1. Suppose that there exists

a generated subframe H of Lgm
⊕ G1 such that Lgk

⊕ G1 is a p-morphic image of H. If H

is a proper generated subframe of Lgm
⊕ G1, then H is an RN-frame. By Corollary 3.8,

Lgk
⊕G1 is not an RN-frame, so cannot be a p-morphic image of H. Thus, H is isomorphic

to Lgm
⊕ G1, and so Lgk

⊕ G1 is a p-morphic image of Lgm
⊕ G1. Then the least point of

Lgm
⊕ G1 is mapped to the least point of Lgk

⊕ G1. If some other point of Lgm
⊕ G1 were

mapped to the least point of Lgk
⊕ G1, then Lk ⊕ G1 would be a p-morphic image of a

generated subframe of Lgm
, so would be an RN-frame, a contradiction. Therefore, no other

point of Lgm
⊕G1 is mapped to the least point of Lgk

⊕G1. Thus, Lgk
is a p-morphic image

of Lgm
, which contradicts (1). Consequently, Γ forms an anti-chain in (K,⊑).

For (3), suppose that m > k and that G1 ⊕ Lf3 ⊕ Lgk
⊕ G1 is a p-morphic image of a

generated subframe of G1 ⊕ Lf3 ⊕ Lgm
⊕ G1. Then there exist a generated subframe H of

G1 ⊕ Lf3 ⊕ Lgm
⊕ G1 and an onto p-morphism f : H → G1 ⊕ Lf3 ⊕ Lgk

⊕ G1. Obviously,
H contains the first three layers of G1 ⊕ Lf3 ⊕ Lgm

⊕ G1; otherwise, the cardinality of H is
smaller than that of G1 ⊕Lf3 ⊕Lgk

⊕G1. First we show that if x ∈ H is such that d(x) ≤ 3,
then d(f(x)) ≤ 3. If not, then |↑f(x)| > |G1 ⊕ Lf3 |. On the other hand, |↑x| < |G1 ⊕ Lf3 |.
So |↑x| < |↑f(x)|, a contradiction. Therefore, the restriction of f to the first three layers of
H is contained in G1 ⊕ Lf3 . We show that it is exactly G1 ⊕ Lf3 . If not, then it is a proper
upset of G1 ⊕ Lf3 . If it is the top node of G1 ⊕ Lf3 , then Lf3 ⊕ Lgk

⊕ G1 is a p-morphic
image of a generated subframe of Lgm

⊕ G1, a contradiction. If it contains the top node
and at least one other point, then it is easy to see that there exist z ∈ H of depth ≤ 3 and
u in G1 ⊕ Lf3 minus the f image of the first three layers of H such that u � f(z). Since
G1 ⊕ Lf3 ⊕ Lgk

⊕ G1 is a p-morphic image of H, there exists x ∈ H such that d(x) > 3 and
f(x) = u. But then x ≤ z and f(x) � f(z), a contradiction. Thus, the restriction of f to
the first three layers of H is equal to G1 ⊕ Lf3 . By (2), Lgk

⊕ G1 is not a p-morphic image
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Figure 9. The frames in ∆1

Figure 10. The frames in Υ1

of a generated subframe of Lgm
⊕ G1. Therefore, there is x ∈ H such that d(x) > 3 and

d(f(x)) ≤ 3. Let y ∈ H be such that d(y) ≤ 3. Then x ≤ y, and so f(x) ≤ f(y). This is
a contradiction since for each u ∈ G1 ⊕ Lf3 ⊕ Lgk

⊕ G1 of depth ≤ 3, there exists z ∈ H of
depth ≤ 3 such that u � f(z). Thus, there is no generated subframe of G1 ⊕Lf3 ⊕Lgm

⊕G1

that can be mapped p-morphically onto G1 ⊕Lf3 ⊕Lgk
⊕G1. This proves that both ∆1 and

∆2 are anti-chains in (K,⊑).
The proof of (4) is a routine adaptation of that of (3). The proof of (5) is similar to that

of (2), and is based on the fact that for m 6= n there is no p-morphism from
⊕n

i=1
G2 onto⊕m

i=1
G2. �

We point out that the anti-chain in Lemma 5.4.5 was first constructed in [12, Lemma 20].



18

Figure 11. The frames Hk

Theorem 5.5.

(1) There are continuum many extensions of RN. Consequently, there are continuum
many extensions of KG with the fmp.

(2) There are continuum many extensions of KG that are not contained in RN.
(3) There are continuum many logics in the interval [KG,RN].

Proof. (1) It follows from Lemma 5.4.5 that Υ1 (resp. Υ2) is an infinite anti-chain of finite
rooted RN-frames. For ∆,Θ ⊆ Υ1, if ∆ 6= Θ, then the standard application of the Jankov-
de Jongh formulas gives us that Log(∆) 6= Log(Θ) [11]. Since there are continuum many
subsets of Υ1, the result follows.

(2) is similar to (1). We only need to observe that none of the frames in Γ constructed
in Lemma 5.4.2 is an RN-frame. Therefore, for ∆ ⊆ Γ, Log(∆) is an extension of KG not
contained in RN.

(3) is similar to (1) and (2). For each ∆ ⊆ Γ, the logic Log({L} ∪ ∆) is an extension of
KG that is properly contained in RN. �

Now we show that there are continuum many extensions of KG without the fmp. Let
Hk = L ⊕ Lf3 ⊕ Lgk

⊕ G1, where k ≥ 4 is even (see Fig. 11), and let Θ = {Hk : k ≥ 4 is
even}.

Theorem 5.6.

(1) For k ≥ 4 the logic Log(Hk) lacks the fmp.
(2) For each ∆ ⊆ Θ, the logic Log(∆) lacks the fmp.
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(3) For each ∆,Γ ⊆ Θ, if ∆ 6= Γ, then Log(∆) 6= Log(Γ).

Proof. (1) is a consequence of Theorem 5.3 since Lf3 ⊕Lgk
⊕G1 is not an RN-frame. For (2),

we first show that a finite rooted frame F is a Log(∆)-frame if and only if F is a Log(Hk)-
frame for some Hk ∈ ∆. Indeed, it is clear that if F is a finite rooted Log(Hk)-frame for some
Hk ∈ ∆, then F is a Log(∆)-frame. Conversely, if F is a finite rooted Log(∆)-frame, then
Log(F) ⊇ Log(∆) =

⋂
{Log(Hk) : Hk ∈ ∆}. By Theorem 2.5.1, there is Hk ∈ ∆ such that

Log(F) ⊇ Log(Hk). Thus, F is a Log(Hk)-frame. Now the same technique as in the proof
of Theorem 5.3 shows that Log(∆) lacks the fmp for each ∆ ⊆ Θ. For (3), suppose that
∆,Γ ⊆ Θ and that ∆ 6= Γ. Without loss of generality we may assume that there is Hk ∈ ∆
such that Hk /∈ Γ. Then it is easy to see that Gk = G1 ⊕ Lf3 ⊕ Lgk

⊕ G1 is a p-morphic
image of Hk, and so Gk is a Log(∆)-frame. Suppose that Gk is a Log(Γ)-frame. Then, as
was shown in (2), there exists Hm ∈ Γ such that m 6= k and Gk is a Log(Hm)-frame. Similar
to Theorem 5.2, we can show that all finite rooted frames of Log(Hm) are finite rooted RN-
frames or p-morphic images of generated subframes of (

⊕n

i=1
Fi) ⊕ G1 ⊕ Lf3 ⊕ Lgm

⊕ G1,
where each Fi is isomorphic to G1 or G2. Then Gk is a p-morphic image of a generated
subframe of (

⊕n

i=1
Fi) ⊕ G1 ⊕ Lf3 ⊕ Lgm

⊕ G1, which contradicts Lemma 5.4.3 and 5.4.4.
Therefore, Gk is not a Log(Γ)-frame. Then the Jankov-de Jongh formula of Gk belongs to
Log(Γ) but does not belong to Log(∆). Thus, Log(∆) 6= Log(Γ). �

As an immediate consequence, we obtain:

Corollary 5.7. There are continuum many extensions of KG without the fmp.

6. Poly-size model property

In this section we strengthen Theorem 5.1 and show that every extension of RN has the
poly-size model property. We recall that a logic L has the poly-size model property if for
each formula ϕ with L 6⊢ ϕ, there exists an L-frame F such that F 6|= ϕ and the size of F is
polynomial in the size of ϕ.

Theorem 6.1. Every extension of RN has the poly-size model property.

Proof. Let L be an extension of RN and let L 6⊢ ϕ. By Theorem 5.1, there exists a finite
rooted L-frame F such that F 6|= ϕ. Since L is an extension of RN, we have that F is an
RN-frame. Therefore, by Corollary 3.8, F is isomorphic to F1 ⊕ F2, where F2 is a finite
generated subframe of L and F1 is a finite sum of the frames G1 and G2. It is our goal
to find a finite L-frame G such that G 6|= ϕ and the size of G is polynomial in the size of
ϕ. We split the proof in two parts. First we ‘compress’ F1 into a smaller frame and then
we ‘cut out’ some parts of F2 to make F even smaller. Let ν be a valuation on F such
that (F, ν) 6|= ϕ and let p1, . . . , pn be the variables occurring in ϕ. Define an equivalence
relation ∼ on F by w ∼ v if w ∈ ν(pi) if and only if v ∈ ν(pi) for each i = 1, . . . , n. Since
each ν(pi) is an upset, we have that each equivalence class is convex; that is, from w ∼ v
and w ≤ u ≤ v, it follows that u ∼ w. We show that there are at most (n + 1) + 2n
equivalence classes of F1. If there are w, v ∈ F1 such that d(w) = d(v), w |= pi, and v 6|= pi

for some pi, then for each u with w, v ≤ u we have u |= pi, and for each u with u ≤ w, v
we have u 6|= pi. Looking at the structure of F1, we see that for each u different from w, v
we have w, v ≤ u or u ≤ w, v. Therefore, for each pi there is at most one layer of F1 with
points that have different values of pi. Since there are n propositional variables, there are
at most n non-equivalent layers of F1, say l1, . . . , ln. Note that the number of equivalence
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classes of F1 is less than or equal to the number of equivalence classes of F1 −
⋃n

i=1
li plus

the number of equivalence classes of
⋃n

i=1
li. The cardinality of

⋃n

i=1
li is 2n. Therefore,

there are at most 2n equivalence classes of
⋃n

i=1
li. Moreover, for each i, j ≤ n we have that

ν(pi)∩ (F1−
⋃n

i=1
li) ⊆ ν(pj)∩ (F1 −

⋃n

i=1
li) or ν(pj)∩ (F1−

⋃n

i=1
li) ⊆ ν(pi)∩ (F1 −

⋃n

i=1
li).

Thus, there are at most n + 1 equivalence classes of F1 −
⋃n

i=1
li. Consequently, there are

at most (n + 1) + 2n equivalence classes of F1. We let H1 be the frame obtained from F1

by replacing each equivalence class C in F1 −
⋃n

i=1
li by a single point wC, and define a map

f : F → H1⊕F2 as follows. Let f be the identity on all the points of F2∪
⋃n

i=1
li, and for each

w ∈ F1 −
⋃n

i=1
li let f(w) = wC , where C is the equivalence class containing w. It is easy to

check that f is an onto p-morphism. We define a valuation µ on H1 ⊕ F2 by µ(f(x)) = ν(x)
for each x ∈ F. It follows from the definition of f that µ is well-defined. Therefore, the new
model (H1 ⊕ F2, µ) is a p-morphic image of the model (F, ν). Since the truth of a formula
is preserved and reflected by p-morphisms between models [4, Theorem 2.15], we have that
(H1 ⊕ F2, µ) 6|= ϕ and that |H1 ⊕ F2| ≤ |F2| + (n+ 1) + 2n.

Our next task is to make F2 smaller. Let D1, . . . , Ds be the partition of F2 into the
equivalence classes of ∼. We first show that s ≤ (n + 1) + 2(2n). The proof is similar
to that for F1. It follows from the structure of F2 that for each propositional variable pi

there are at most two adjacent layers of F2 with points that have different values of pi.
Therefore, there are at most 2n layers of F2 with non-equivalent points. Let these layers
be e1, . . . , e2n. Then, as in the above, we can show that s ≤ (n + 1) + 2(2n). Therefore,
|F2| ≤ max({|Di| : i = 1, . . . , n}) · ((n + 1) + 2(2n)). Next we show that without loss of
generality we may assume that |Di| ≤ 2 · (c(ϕ) + 5). If there is i such that Di has more
than c(ϕ) + 5 layers, then let k′ = max{d(x) : x ∈ Di} and let m′ = min{d(x) : x ∈ Di}.
We also let k = k′ − 2 and m′′ = m′ + 2. We add and subtract 2 to m′ and k′, respectively,
to make sure that each layer in between k and m′′ is properly contained in Di. Lastly,
let m = m′′ + (c(ϕ) + 1). Similar to Lemma 4.7, we can show that if x, y are such that
m ≤ d(x), d(y) ≤ k, then for each subformula ψ of ϕ we have x |= ψ if and only if y |= ψ.
Now we ‘cut out’ all the layers in between m and k as follows. Let K = F2 − Lft

, where
t = 2k−1; that is, K is obtained from F2 by cutting out the first k layers. Then K is isomorphic
to Lga

for some a. Consider the gluing sum (H1 ⊕ Lfr
, wr)⊕̂(K, w0), where r = 2m − 1. By

Lemma 4.3.2, (H1 ⊕ Lfr
, wr)⊕̂(K, w0) is isomorphic to H1 ⊕ H2, where H2 is isomorphic to

Lgr+a+1. On the other hand, F2 is isomorphic to Lgb
, where b = t+a+1 = (r+a+1)+(t−r) =

(r+ a+ 1) + ((2k− 1)− (2m− 1)) = (r+ a+ 1) + 2(k−m). Therefore, H2 is isomorphic to
a generated subframe of F2. As in Claim 4.9, we can show that (H1 ⊕Lfr

, wr)⊕̂(K, w0) 6|= ϕ.
Continuing this process for each i such that Di contains more than c(ϕ)+5 layers, we obtain
a frame H1 ⊕ H2 such that H1 ⊕ H2 6|= ϕ and H2 is isomorphic to a generated subframe of
F2 of the size at most 2 · (c(ϕ) + 5) · ((n + 1) + 2(2n)). Thus, H1 ⊕ H2 is isomorphic to a
generated subframe of a p-morphic image of F1 ⊕ F2, so H1 ⊕H2 is an L-frame, and the size
of H1 ⊕ H2 is bounded by ((n + 1) + 2n) + 2 · (c(ϕ) + 5) · ((n + 1) + 2(2n)). It follows that
the size of H1 ⊕ H2 is polynomial in the size of ϕ. Consequently, every non-theorem of L is
refuted in an L-frame whose size is polynomial in the size of ϕ, and so L has the poly-size
model property. �

Next we show that although every extension of RN has the poly-size model property, there
exist extensions of KG that have the fmp, but do not have the poly-size model property.
In fact, for each function f : ω → ω, we construct a logic Lf ⊃ KG such that Lf has the
fmp, but it does not have the f -size model property. We recall that for a given function
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f : ω → ω, a logic L has the f -size model property if for each formula ϕ with L 6⊢ ϕ, there is
a finite L-frame F such that F 6|= ϕ and |F| < f(|ϕ|). Our construction is similar to that of
[4, Theorem 18.20], however our proof is different and uses the Jankov-de Jongh formulas.

Theorem 6.2. For each function f : ω → ω there is a an extension Lf of KG such that Lf

has the fmp, but Lf does not have the f -size model property.

Proof. If f : ω → ω is not order-preserving, then we consider an order-preserving function
g : ω → ω such that f(n) < g(n) for each n ∈ ω. If the theorem holds for g, it obviously
holds for f as well. Thus, without loss of generality we may assume that f : ω → ω is order-
preserving. Let G be a finite rooted KG-frame which is not an RN-frame. For each k ∈ ω
let Ck be the chain of depth k and let Hk = G1 ⊕G⊕Ck. We set ϕk = χ(Hk)∨χ(Lg4). Then
|Hk| = k+ |G|+1 and |ϕk| = |χ(Hk)|+ |χ(Lg4)|+1. It follows from the syntactic description
of Jankov-de Jongh formulas (see, e.g., [3, Section 3.3]) that there is a polynomial P such
that |χ(Hk)| < P (|Hk|). Therefore, |ϕk| < P (|Hk|) + c1 = P (k + c2) + c1 for some constants
c1 and c2. Thus, without loss of generality we may assume that there is a polynomial P
such that |ϕk| < P (k). Since f is order-preserving, f(|ϕk|) < f(P (k)). Consider Lgf(P (k))

consisting of the first f(P (k)) layers of L. Clearly Lgf(P (k))
is a generated subframe of L. For

each k ∈ ω let Fk denote the frame Lgf(P (k))
⊕ G ⊕ Ck. We let Lf = Log({Fk : k ∈ ω}). It

follows from the definition of Lf that Lf has the fmp.

Claim 6.3. Fk is the smallest Lf -frame that refutes ϕk.

Proof. The proof is similar to that of Theorem 5.3. We will be a bit sketchy here. First
note that arguments similar to those in the proof of Theorem 5.2 show that if a finite rooted
frame F is an Lf -frame, then it is isomorphic to either of the following frames:

(1) Fk for some k ∈ ω,
(2) Some RN-frame,
(3) A p-morphic image of a generated subframe of (

⊕n

i=1
Ki)⊕G1 ⊕G⊕ Ck, where each

Ki is isomorphic to G1 or G2.

As in the proof of Theorem 5.3, we can show that if F is isomorphic to some RN-frame,
then F |= χ(Hk) for each k ∈ ω, and if F is isomorphic to a frame described in (3), then
F |= χ(Lg4). Moreover, it is clear that Fn |= χ(Hk) for each k > n. Therefore, F 6|= ϕk only
if F is isomorphic to Fn for n ≥ k. Obviously the smallest among the Fn with n ≥ k is the
frame Fk. �

To finish the proof we observe that |Fk| = 2f(P (k)) + |G| + k. Moreover, |ϕk| < P (k)
and f is order-preserving. Thus, |Fk| > f(|ϕk|), and so Lf does not have the f -size model
property. �

7. Pre-finite model property

In this section we characterize the logic that bounds the fmp in extensions of KG. This
was first established by Gerčiu [8]. He gave a very sketchy algebraic proof. We give a new
full proof of this result by means of descriptive frames.

Definition 7.1. A logic L is said to have the pre-finite model property if L does not have
the fmp, but all proper extensions of L have the fmp.

Let T1 = G1 ⊕ Lg4 ⊕ L ⊕ G1 and T2 = G1 ⊕ Lg5 ⊕ L ⊕ G1. The frames T1 and T2 are
shown in Fig. 12.
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Figure 12. The frames T1 and T2

Lemma 7.2. T1 is a p-morphic image of T2.

Proof. The proof is a simple adaptation of the proof of Lemma 4.12. �

Theorem 7.3. Let L ⊇ KG.

(1) If L does not have the fmp, then L ⊆ Log(T1).
(2) Log(T1) is the only extension of KG with the pre-finite model property.

Proof. (1) Suppose that L ⊇ KG does not have the fmp. Then there is a formula ϕ such
that L 6⊢ ϕ and for each finite L-frame G we have G |= ϕ. Since each superintuitionistic logic
is complete with respect to its finitely generated rooted descriptive frames, there is a finitely
generated rooted descriptive L-frame F such that F 6|= ϕ. By our assumption, F is infinite.
This implies that Log(F) does not have the fmp. Obviously we have that L ⊆ Log(F).
Thus, to prove that L ⊆ Log(T1), it is sufficient to show that Log(F) ⊆ Log(T1). We prove
this by showing that T1 is a p-morphic image of F. By Theorem 3.5, F is isomorphic to
(
⊕n

i= Fi) ⊕ Lgk
, where k, n ∈ ω and each Fi is a cyclic frame. Since F is infinite, there is

j ≤ n such that Fj is isomorphic to L. Let j be the least such index. First suppose that
j > 1. Then F is isomorphic to G⊕ Fj ⊕ Fj−1 ⊕ · · · ⊕ Fn ⊕Lgk

, where Fj is isomorphic to L

and G is finite. If there is no i with n ≥ i ≥ j − 1 such that Fi is isomorphic to Lgm
or Lfl

for some m ≥ 4 and l ≥ 2, then the same argument as in the proof of Theorem 5.1 shows
that Log(F) has the fmp, which is a contradiction. Therefore, there is such i and we take
the least such i. Then there are two possible cases: (i) Fi is isomorphic to Lgm

for m ≥ 4,
or (ii) Fi is isomorphic to Lfl

for l ≥ 2. We only consider the case when Fi is isomorphic
to Lgm

for m ≥ 4. The case when Fi is isomorphic to Lfl
for l ≥ 2 is similar. We define a

p-morphism f from F to G1 ⊕ Fj ⊕ G1 ⊕ Fi ⊕ G1 as follows: We send all the elements of G

to G1, each element of Fj to itself, all the elements of Fj−1 ⊕ · · · ⊕ Fi−1 to G1, each element
of Fi to itself, and all the elements of Fi+1 ⊕ · · · ⊕Lgk

to G1. It is easy to check that f is an
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onto p-morphism, and so G1 ⊕Fj ⊕G1 ⊕Fi ⊕G1 is a p-morphic image of F. Moreover, Fj is
isomorphic to L and Fi is isomorphic to Lgm

for m ≥ 4. Next we apply the same argument
as in the proof of Theorem 4.13. If m > 4 is even, then G1 ⊕ Lg4 is a p-morphic image of
Lgm

; and if m > 4 is odd, then G1 ⊕ Lg5 is a p-morphic image of Lgm
. Therefore, if m > 4

and m is even, then H1 = G1 ⊕ L ⊕ G1 ⊕ G1 ⊕ Lg4 ⊕ G1 is a p-morphic image of F; and if
m > 4 is odd, then H2 = G1 ⊕ L ⊕ G1 ⊕ G1 ⊕ Lg5 ⊕ G1 is a p-morphic image of F. Clearly
if m = 4, then H′

1 = G1 ⊕ L ⊕ G1 ⊕ Lg4 ⊕ G1 is a p-morphic image of F; and if m = 5,
then H′

2 = G1 ⊕ L ⊕ G1 ⊕ Lg5 ⊕ G1 is a p-morphic image of F. It is easy to see that H′

1 is
a p-morphic image of H1, and that H′

2 is a p-morphic image of H2. Now by identifying the
greatest element of G1 ⊕ Lg4 ⊕ G1 with the least element of L ⊕ G1, we obtain that T1 is
a p-morphic image of H′

1. Exactly the same argument shows that T2 is a p-morphic image
of H′

2. Finally, Lemma 7.2.2 ensures that T1 is a p-morphic image of T2, which means that
T1 is a p-morphic image of F. The proof in case j = 1 is analogous, with the only difference
that we also need to use Theorem 3.6, by which G1 ⊕ L is a p-morphic image of L, and
so G1 ⊕ L ⊕ Lg4 ⊕ G1 is a p-morphic image of L ⊕ Lg4 ⊕ G1, and G1 ⊕ L ⊕ Lg5 ⊕ G1 is a
p-morphic image of L⊕Lg5 ⊕G1. Thus, in either case, T1 is a p-morphic image of F, and so
Log(T1) ⊇ Log(F).

(2) Suppose that L has the pre-finite model property. Then L does not have the fmp, so
by (1), L ⊆ Log(T1). Moreover, since Log(T1) does not have the fmp, L can not be properly
contained in Log(T1). Thus, L = Log(T1). �

8. Locally tabular extensions of RN and KG

In this section we show that RN.KC = RN + (¬p ∨ ¬¬p) is the only pre-locally tabular
extension of KG. This gives a criterion for an extension of KG to be locally tabular. We
also introduce the internal depth of a descriptive RN-frame and prove that an extension L
of RN is locally tabular if and only if the internal depth of L is finite. This provides another
criterion of local tabularity for extensions of RN.

Definition 8.1.

(1) A logic L is called locally tabular if for each n ∈ ω there are only finitely many
pairwise non-L-equivalent formulas in n variables.

(2) A logic L is called pre-locally tabular if L is not locally tabular but every proper
extension of L is locally tabular.

Let K = G1 ⊕L, which is shown in Fig. 13. It is easy to see that K is obtained from L by
identifying the two maximal nodes of L.

Theorem 8.2. Log(K) is complete with respect to {G1 ⊕ Lgk
: k ∈ ω}.

Proof. Suppose that K 6|= ϕ for some formula ϕ. Then there exists a descriptive valuation
ν and a point x of K of finite depth such that (K, ν), x 6|= ϕ. We consider the generated
subframe F of K generated by x. It is easy to see that F is isomorphic to G1 ⊕ Lgk

for some
k ∈ ω and that F 6|= ϕ. Therefore, Log(K) is complete with respect to {G1⊕Lgk

: k ∈ ω}. �

Definition 8.3. Let RN.KC = RN + (¬p ∨ ¬¬p).

Theorem 8.4. Log(K) = RN.KC.
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Figure 13. The frame K

Proof. Since K is a p-morphic image of L, it is an RN-frame. As K has a greatest element,
it follows from [4, Proposition 2.37] that K validates ¬p ∨ ¬¬p, and so K is an RN.KC-
frame. Thus, Log(K) ⊇ RN.KC. Conversely, RN.KC is an extension of RN. By Theorem
5.1, RN.KC has the fmp. Finite rooted RN.KC-frames are finite rooted RN-frames with
a greatest element. An argument similar to that in the proof of Theorem 3.7 shows that
each finite rooted RN.KC-frame is a p-morphic image of a generated subframe of K. Thus,
RN.KC ⊇ Log(K). �

To prove a criterion of local tabularity for extensions of KG, we reformulate the criterion
for a variety of algebras to be locally finite established in [1] for extensions of KG.

Theorem 8.5. An extension L of KG is locally tabular if and only if the class of finitely
generated rooted descriptive L-frames is uniformly locally tabular; that is, for each n ∈ ω
there is M(n) ∈ ω such that for each n-generated rooted descriptive L-frame F we have
|F| ≤M(n).

In proving our criterion, we will use the following auxiliary lemma. For a proof we refer
to [3, Lemma 4.1.23].

Lemma 8.6. Suppose F is an n-generated descriptive frame isomorphic to
⊕s

i=1
Fi. Then

s ≤ 2n.

Theorem 8.7. An extension L of KG is not locally tabular if and only if L ⊆ Log(K).

Proof. We first show that Log(K) is not locally tabular. Observe that for each point x of
K of finite depth, the point-generated subframe Fx of F is finite rooted 2-generated and
sup({|Fx| : x is a point of F of finite depth}) = ω. Thus, by Theorem 8.5, Log(K) is not
locally tabular. It follows that if L ⊆ Log(K), then L is not locally tabular. Now suppose
that L is not locally tabular. We show that L ⊆ Log(K). By Theorem 8.5, there are two
possible cases:

Case 1: There exists n ∈ ω such that there is an n-generated infinite rooted descriptive
L-frame F. By Theorem 3.5, F is isomorphic to

⊕m

i=1
Fi, where each Fi is a cyclic

frame. Since F is infinite, there is j ≤ m such that Fj is isomorphic to L. We have
that j > 1 or j = 1.
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Case 1.1: If j > 1, then we define a p-morphism f from F onto G1⊕L⊕G1 as follows.
We send all the points of Fj+1 ⊕ · · ·⊕Fn to G1, each point of Fj to itself, and all the
points of F1⊕· · ·⊕Fj−1 to G1. It is easy to check that f is a p-morphism. Finally, by
identifying the least point of L with the point of G1, we obtain a p-morphic image of
G1⊕L⊕G1 isomorphic to K. Thus, K is a p-morphic image of F, and so L ⊆ Log(K).

Case 1.2: If j = 1, then a similar argument to that in Case 1.1 gives us that L is a
p-morphic image of F. But K is a p-morphic image of L. Thus, in this case too, we
obtain that K is a p-morphic image of F, and so L ⊆ Log(K).

Case 2: There exists n ∈ ω such that sup({|H| : H is an n-generated finite rooted
L-frame}) = ω. This means that for each m ∈ ω there is a finite rooted n-generated
frame H such that |H| > m. Since each H is a KG-frame, each H is isomorphic to⊕s

i=1
Hi, where each Hi is finite and cyclic. Then we have two possible cases.

Case 2.1: For each m ∈ ω there exists an n-generated finite rooted L-frame H =⊕s

i=1
Hi such that |Hi| > m for some i ≤ s. Then the same argument as in Case 1

shows that for each k ∈ ω the frame G1 ⊕ Lgk
is an L-frame. By Theorem 8.2, this

implies that L ⊆ Log(K).
Case 2.2: There is m ∈ ω such that for each n-generated finite rooted L-frame H =⊕s

i=1
Hi, we have |Hi| ≤ m for i = 1, . . . , s. By Lemma 8.6, s ≤ 2n. Therefore, |H| ≤

m · 2n, and by Theorem 8.5, L is locally tabular, which contradicts our assumption.

Consequently, we obtain that L is not locally tabular if and only if L ⊆ Log(K). �

Corollary 8.8.

(1) An extension L of KG is locally tabular if and only if L 6⊆ RN.KC.
(2) If an extension L of KG is finitely axiomatizable, then it is decidable whether L is

locally tabular.

Proof. (1) is an immediate consequence of Theorems 8.4 and 8.7. For (2), first note that
since RN.KC is finitely axiomatizable and has the fmp, it is decidable. Let Ax(L) be the
finite axiomatization of L. Then L is not locally tabular if and only if RN.KC ⊢ ϕ for each
ϕ ∈ Ax(L). This problem is clearly decidable since RN.KC is decidable. �

We conclude the paper by giving another criterion of local tabularity for extensions of
RN. By Corollary 3.8, each finite rooted L-frame is isomorphic to

⊕n

i=1
Fi⊕Lgk

, where each
Fi is isomorphic to G1 or G2 and k, n ∈ ω.

Definition 8.9.

(1) Let F = (
⊕n

i=1
Fi)⊕Lgk

, where each Fi is isomorphic to G1 or G2 and k, n ∈ ω. The
initial segment of F is the frame Lgk

.
(2) The internal depth of a finite rooted RN-frame F is the depth of its initial segment.

Let dI(F) denote the internal depth of F.
(3) The internal depth of a logic L ⊇ RN is sup{dI(F) : F is a finite rooted L-frame}.

Let dI(L) denote the internal depth of L.

Theorem 8.10. A logic L ⊇ RN is locally tabular if and only if dI(L) < ω.

Proof. First suppose that dI(L) = ω. Then for each m ∈ ω there exists k > m such that
(
⊕n

i=1
Fi) ⊕ Lgk

is an L-frame, where each Fi is isomorphic to G1 or G2 and k, n ∈ ω. By
mapping all the points of

⊕n

i=1
Fi to G1, we obtain that G1 ⊕ Lgk

is a p-morphic image of
(
⊕n

i=1
Fi) ⊕ Lgk

. Therefore, each G1 ⊕ Lgk
is an L-frame, and so L ⊆ Log(K), by Theorem
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8.2. Now apply Theorem 8.7 to obtain that L is not locally tabular. For the converse,
suppose that dI(L) = m < ω. Let F be an n-generated rooted descriptive L-frame. By
Theorem 4.11, F is isomorphic to (

⊕s

i=1
Fi) ⊕ Lgk

, where each Fi is isomorphic to L, G1, or
G2. We show that no Fi can be isomorphic to L. If there is i such that Fi is isomorphic to
L, then we consider the least such i. For each x ∈ Fi of finite depth, the generated subframe
of F generated by x is a finite rooted L-frame. But the internal depth of such frames is
unbounded, contradicting the fact that dI(L) < ω. Therefore, no such Fi exists. Thus, F is
isomorphic to (

⊕s

i=1
Fi) ⊕ Lgk

, where each Fi is isomorphic to G1 or G2. Since dI(L) = m,
we have |Lgk

| ≤ 2m. By Lemma 8.6, s ≤ 2n. Therefore, |
⊕s

i=1
Fi| ≤ 2 · (2n) = 4n. It follows

that |F| ≤ 4n + 2m. Thus, the cardinality of each n-generated rooted L-frame is bounded
by 4n + 2m. This, by Theorem 8.5, implies that L is locally tabular. �
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