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ABSTRACT
We propose the use of logic-based preference representation
languages based on weighted propositional formulas for spec-
ifying bids in a combinatorial auction. We then develop sev-
eral heuristics for a branch-and-bound search algorithm for
determining the winning bids in this framework and report
on their empirical performance. The logic-based approach
is attractive due to its high degree of flexibility in design-
ing a range of different bidding languages within a single
conceptual framework.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems; I.2.4
[Computing Methodologies]: Artificial Intelligence—
Knowledge Representation Formalisms and Methods

General Terms
Algorithms, Experimentation, Economics

Keywords
Combinatorial Auctions, Preference Representation

1. INTRODUCTION
Combinatorial auctions are auctions in which the auctioneer
is offering not just one but a whole set of goods for sale.
Potential buyers can make bids for different subsets of this
set of goods. The so-called winner determination problem
faced by the auctioneer is then the problem of accepting a
collection of bids that will maximize the sum of the prices
offered, such that each good is sold at most once [4].

Bidding amounts to informing the auctioneer of one’s val-
uation for the goods on auction. Early work on combinato-
rial auctions typically ignored this aspect and made ad hoc
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assumptions on how a bidder can transmit their bid to the
auctioneer. But recently, several bidding languages with for-
mal syntax and semantics have been proposed that allow
bidders to describe their valuations in a uniform way [11,
9, 2]. For instance, if the OR-language is used then each
bidder can submit any number of atomic bids consisting
of a bundle of goods and a price, the auctioneer can ac-
cept any number of atomic bids such that the corresponding
bundles do not overlap, and each bidder pays the sum of
the prices of their accepted atomic bids. Another example
is the XOR-language, where the auctioneer can accept at
most one atomic bid per bidder. In this paper, we propose
to use a particular class of logic-based preference represen-
tation languages as bidding languages. The basic idea is to
identify goods with propositional variables and to let bidders
express their goals in terms of propositional formulas over
these variables. Each such goal is paired with a numerical
weight, and we compute the value assigned to a bundle of
goods by a bidder by summing up the weights of the goals
that are “satisfied”by that bundle. These languages go back
to early work on penalty logic [10] and have been studied
in depth in the field of knowledge representation [7, 3]. By
putting varying restrictions on the range of permissible (syn-
tactic) forms of formulas, we can define bidding languages
of varying expressive power. This is attractive because it
allows us to design languages of the right expressive power
for the application domain at hand.

Selecting a language which has the appropriate expres-
siveness for the domain is important: Too expressive and
the WDP becomes very difficult, too inexpressive and bid-
ders will be unable to provide their true valuations. The
appeal of logic-based bidding languages is clear, then, as we
can adjust the expressivity by selecting which formulas (or
weights) are permitted. Furthermore, the succinctness of
logic-based languages varies widely, so if concise representa-
tions are desired, a language having them may be available.

Our aim in this paper is to develop algorithms for the win-
ner determination problem for combinatorial auctions where
bids are expressed in terms of these logic-based languages.
Our general approach follows ideas of Sandholm [11], Fu-
jishima et al. [5], and others. Having to decide for each good
which bidder to assign it to gives rise to a (very large) search
tree, and we show how to define heuristics for pruning this
search tree without removing the optimal solution(s). Con-
cretely, we use a branch-and-bound (B&B) algorithm, al-
though the same heuristics could also be used, for instance,



in an approach based on the A* search algorithm.
The remainder of this paper is organized as follows. Sec-

tion 2 introduces the formal background of our logic-based
bidding languages. In Section 3 we define the winner de-
termination problem and outline the general framework for
our algorithms. We report some of our results in Section 4.
These results consist of the proposal for a B&B heuristic for
the specific bidding language we consider here, followed by
the use of a secondary heuristic guiding the order in which
we explore branches. We then report on experimental results
documenting the empirical performance of our algorithms.

2. LOGIC-BASED BIDDING LANGUAGES
We adopt the notation of Chevaleyre et al. [3]. Fix a fi-
nite set PS of propositional variables and let LPS denote
the language of propositional logic over PS. Each p ∈ PS
represents one of the goods on auction. Each bidder has a
valuation function v : 2PS → R to model their preferences
over alternative bundles of goods. Bidders can use formulas
of LPS to express goals. For instance, p1 ∧ p6 expresses that
our bidder would like to obtain goods p1 and p6 (together—
each item on its own may represent no value at all), while
¬p2 says that they would rather not get p2. If M ⊆ PS is
the set of goods obtained by a particular bidder, then we can
also think of M as a model that will satisfy some of these for-
mulas and falsify others. For instance, we have M |= p1 ∧p6

and M 6|= ¬p2 for M = {p1, p2, p4, p6}. A weighted goal is
a pair (ϕ, w), where ϕ is a formula and w ∈ R. A goal base
G = {(ϕi, wi)}i is a set of such weighted goals. Each ϕi

is required to be satisfiable, and no (syntactically distinct)
formula may appear more than once in G. G generates a
valuation function over sets of goods (models) M as follows:

v(M) =
X

{wi | (ϕi, wi) ∈ G and M |= ϕi}

That is, we obtain the valuation of M by adding up all the
weights of the goals that are satisfied by M .

Let H ⊆ LPS be a syntactical restriction on formulas and
H ′ ⊆ R a set of allowed weights. Then L(H, H ′) is defined
as the bidding language given by the class of goal bases
satisfying the restrictions H and H ′. Here, we work with
the language of L(pcubes, pos), the language of positive cubes
(conjunctions of positive literals) with positive weights. This
language has similar (though not the same) expressivity as
a language proposed by Hoos and Boutilier [6].

3. WINNER DETERMINATION
In this section we first introduce some notation and define
the winner determination problem (WDP) for combinatorial
auctions when bids are represented using weighted proposi-
tional formulas. We then outline our generic framework for
B&B algorithms to solve the WDP.

3.1 Notation
Let A be the set of agents bidding in any given auction.
Each agent i ∈ A has got a goal base Gi defining their valu-
ation over the goods in PS. An allocation A : PS → A∪{∗}
is a function which maps goods to the agents to which they
are given. We write A(p) = ∗ when A leaves good p unal-
located, and in that case A is a (strictly) partial allocation.
If A allocates all goods in PS, then A is a complete alloca-
tion. The set und(A) = {p ∈ PS | A(p) = ∗} is the set of
unallocated goods in allocation A, and we write und(A, ϕ)

for the set of unallocated goods appearing as propositional
variables in the formula ϕ.

Next we introduce the notion of a (partial) allocation sat-
isfying a given goal of a bidder. Define MA

i as the set of
goods assigned to bidder i in allocation A. As explained in
Section 2, MA

i defines a model for formulas of the language
LPS : a propositional variable p ∈ PS is true iff p ∈ MA

i .
We write MA

i |= ϕ if the goal ϕ is satisfied in MA
i . Further-

more, we write MA
i ? ϕ iff MA

i 6|= ϕ and MA
i ∪ S |= ϕ for

some set S ⊆ und(A). That is, ϕ is a goal of agent i that
is not (yet) satisfied in allocation A, but that could still be
satisfied if we allocate more items.

3.2 The Winner Determination Problem
Intuitively, the WDP is the problem of deciding which goods
to allocate to which bidder in such a way that maximizes the
sum of the weights associated with the goals satisfied by the
chosen allocation. To make this precise, we define the social
welfare of an allocation A as follows:

sw(A) =
X

i∈A

X

(ϕ,w)∈Gi

MA
i

|=ϕ

w

Then the WDP is the optimization problem of finding a com-
plete allocation A maximizing sw(A). By restricting atten-
tion to complete allocations we are defining a WDP without
free disposal. If desired, we can easily model auctions with
free disposal by adding a single bidder with an empty goal
base to any given auction instance.

3.3 Winner Determination Algorithms
A brute force algorithm for solving the WDP enumerates all
complete allocations, computes the social welfare for each,
and picks the one with the highest value. Naturally, such an
approach will not scale. The most common approach is to
use Integer Programming, as done by Boutilier [1] for one
logic-based language [2]. Instead, we use a B&B algorithm,
similar to the work of Sandholm [11] and Fujishima et al. [5].
B&B consists of two parts: A procedure for branching—that
is, dividing the solution space—and a procedure for bounding
the quality of solutions contained on any branch.

Our search space is organized as follows. Initially, all
goods are unallocated. We pick one of the unallocated goods
and select an agent in A to receive it, and repeat until all
items have been allocated. This gives rise to a large search
tree, the depth of which is given by the number of goods on
auction, and for which each internal node has |A| children.
Each internal node corresponds to a strictly partial alloca-
tion, while the leaf nodes represent complete allocations.

Following standard conventions, we introduce two func-
tions, g and h, mapping nodes (allocations) in the search
tree to R. The function g computes the social welfare al-
ready derived, i.e., it is simply defined by g(A) = sw(A).
The heuristic function h estimates the additional social wel-
fare achievable by allocating the remaining goods. B&B
explores the search space as follows. We start with an ini-
tial tree consisting of a single node where no goods have
been allocated yet. We maintain a frontier of leaf nodes
and a pointer to the current top allocation A∗ delivering the
highest social welfare so far. The algorithm then repeatedly
applies the following steps:

1. Select a node (partial allocation) A from the frontier
that still has a chance of beating the current top allo-



cation A∗: g(A∗) < g(A) + h(A). Any A not meeting
this condition can be removed from the frontier.

2. Select a good not yet allocated in A: p ∈ und(A).

3. Produce as children of A all allocations A′ which ex-
tend A by allocating p. Thus each expanded node will
have one child for each bidder in A. Add all children
to the frontier (and remove A from it).

We stop when there are no more viable partial allocations
in the frontier to choose from (during step 1). As a solution
we return (one of) the best (by now complete) allocations
in the final frontier.

A heuristic function h is admissible iff it never underesti-
mates the remaining social welfare still achievable: that is,
iff g(A) + h(A) ≥ sw(A′) for all partial allocations A and
all complete allocations A′. As is well known (and easy to
see), if h is admissible, then B&B is guaranteed to find an
optimal solution.

When designing a winner determination algorithm for a
particular bidding language within the general framework
above, there are three choices to make: (i) the B&B heuristic
h, (ii) a heuristic to decide which node to expand next (the
expansion policy), and (iii) a heuristic to decide which good
p to allocate next (the branching policy). In subsequent
sections, we discuss several options for the B&B heuristic
and for the branching policy (we have not experimented with
different expansion polices, which we expect to be the least
important factor in designing a WDP algorithm).

4. HEURISTICS FOR POSITIVE CUBES
In this section we develop heuristics for the B&B algorithm
for the WDP using the bidding language L(pcubes, pos),
which is based on positive cubes with positive weights. In-
tuitively, the weight given to a cube of the form p1∧· · ·∧pm

may be regarded as the marginal utility associated with ob-
taining all of p1, . . . , pm—beyond the utility associated with
any subset of these.

4.1 A Branch-and-Bound Heuristic
We now define our upper-bound heuristic for L(pcubes, pos):

Definition 1. Define the heuristic function h+
∧ as

h
+
∧ (A) =

X

p∈PS

h
p(A) where

h
p(A) = max

i∈A
h

p
i (A)

h
p
i (A) =

X

(ϕ,w)∈Gi

h
p
i (A, ϕ)

h
p
i (A, ϕ) =

8

<

:

w
|und(A,ϕ)|

if (ϕ, w) ∈ Gi,

p ∈ und(A, ϕ), MA
i ? ϕ

0 otherwise

The intuition embodied here is that we can estimate the
value of an item for an agent by assigning to each item a
share of the weight of each positive cube in which it appears.
For example, suppose agent 1 bids {(a∧ b, 6), (a∧c, 8)}, and
agent 2 bids {(a, 6), (b ∧ c, 10)}. Under the empty partial
allocation ∅, for agent 1 we have that ha

1(∅) = 6
2

+ 8
2

= 7,

hb
1(∅) = 6

2
= 3, and hc

1(∅) = 8
2

= 4. For agent 2, we have

ha
2(∅) = 6, hb

2(∅) = 10
2

= 5, and hc
2(∅) = 10

2
= 5. Since

each item may be allocated to only one agent, the atom-
wise components of the heuristic “award” each item to the
agent for whom that item contributes most: ha(∅) = 7 since
ha

1(∅) > ha
2(∅); hb(∅) = 5 since hb

2(∅) > hb
1(∅); and hc(∅) = 5

since hc
2(∅) > hc

1(∅). The upper-bound h+
∧ (∅) is the sum of

the maximum contributions of the atoms: h+
∧ (∅) = 7 + 5 +

5 = 17. Notice that in this case the optimal value is 16,
which is attained when agent 2 receives all three items; the
heuristic overestimates the optimal value to be 17 instead.

For lack of space, we omit the proof of the following result:

Proposition 1. The heuristic h+
∧ is admissible for

L(pcubes, pos).

4.2 Two Branching Policies
Let A be the set of strictly partial allocations. A function
b : A → PS is a branching policy if for all strictly partial
allocations A, b(A) = p for some p which A does not allocate.

Definition 2. We define two branching policies:

• The lexical branching policy is the branching policy b
such that b(A) = p, where p is the lexically least good
not allocated by partial allocation A.

• The best-estimate first branching policy is the branch-
ing policy b such that b(A) = p, where p is the lexically
least good such that hp(A) = maxa∈PS ha(A), where
hp(A) is as in Definition 1.

Each B&B solver used in our experiments implements one of
these branching policies. Both are clearly correct, since nei-
ther rules out reaching any particular complete allocation.

4.3 Experimental Results1

For L(pcubes, pos) and a fixed number of goods m, we gen-
erated goal bases as follows: For each agent, we randomly
chose an integer in [1, 2m] to be the number of formulas in
that agent’s goal base, with each potential atom appearing
in a given positive cube with probability 0.5. (This makes
positive cubes of middling length more probable than very
short or very long ones.) Each formula was given a random
integer weight uniformly chosen from [1, 10]. The solvers
used for L(pcubes, pos) were:

BruteForce A brute-force search. Iterates over all com-
plete allocations, returning the lexically first
optimal one.

PCubeLex A B&B solver, using the upper-bound heuris-
tic h+

∧ and the lexical branching policy.

PCubeBF A B&B solver, using the upper-bound heuris-
tic h+

∧ and the best-estimate-first branching
policy.

Our first experiment tested the BruteForce solver against
PCubeLex to establish a baseline for comparison. As ex-
pected, the size of the solution space rapidly overwhelms
the BruteForce solver. Instances of size (8, 8) (8 agents, 8
goods) which take nearly 54 seconds to solve by BruteForce

can be solved by PCubeLex in less than 0.01 seconds.

1All experiments reported here were conducted on a Fe-
dora 7 Linux system (kernel 2.6.23) with a 2GHz Intel Core 2
Duo T7300 CPU and 2GB of RAM, using Sun’s Java SE
JVM (version 1.6.0 02).
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Figure 1: CPU time for WDP instances with 20

agents in L(pcubes,pos) using the PCubeBF solver

Our second experiment tested the B&B solvers to see how
many partial allocations (nodes) were created for each WDP
instance. The number of nodes created is a useful measure
of efficiency for a B&B solver. The worst case is building
every partial allocation, a complete n-ary tree of depth m,
for n agents and m goods. We found that PCubeLex is quite
parsimonious in building nodes. At (20, 20), PCubeLex builds
(on average) only 401 of the 5.5× 1024 possible nodes; even
at (20, 70), most instances generate around 1400 nodes.

Our third experiment tested the effect of varying the
branching policy on solver runtime. Intuitively, one would
expect that using a best-estimate-first branching policy
would produce better performance than a lexical branching
policy when using an upper-bound heuristic which is inex-
act. However, for PCubeLex and PCubeBF this turned out not
to be the case—runtime saved in other parts of the solver
by calculating which good to branch on next was usually
consumed by the calculation itself, and so seldom was any
gain realized this way.

In our fourth experiment, we fixed the number of agents
at 20 and varied the number of goods from 1 to 75, and
solved 100 randomly-generated (as above) WDP instances
of each size using PCubeBF, the results of which can be seen
in Figure 1. Due to our method of randomly generating
goal bases, the number of atomic bids (i.e., weighted for-
mulas) present in any WDP instance is around |A| · |PS|.
For example, the average instance with 20 agents and 75
items contains around 1500 atomic bids. PCubeBF is capa-
ble of solving problems with nearly one hundred items and
thousands of bids in under one minute.

5. CONCLUSIONS
Logic-based bidding languages, where bidders submit
weighted propositional formulas over the names of the goods
on auction to encode their valuations (i.e., the prices they
are offering for different bundles), allow bidders to specify
the goals they wish to see satisfied (and their relative im-
portance) in a natural manner. Furthermore, by putting re-
strictions of the syntax of formulas and the range of weights
to be used, the expressive power and representational suc-
cinctness can be tailored to the problem domain at hand. In
this paper, we have developed heuristics for use in branch-

and-bound algorithms for solving the winner determination
problem in combinatorial auctions when different such lan-
guages are used to encode bids.

Our experimental for results the language of positively-
weighted positive cubes are encouraging. Considering that
our implementation has been developed with a view of be-
ing able to conveniently specify and test different heuristics
for different languages, significant improvements can be ex-
pected from future re-implementation. We stress that the
language of positive cubes is very attractive for combinato-
rial auctions. It allows agents to specify their marginal valu-
ations for obtaining a certain set of goods together, beyond
the sum of the values associated with each of its subsets.

In the future, we plan to test our algorithms with more
realistic auction instances. Unfortunately, work to date on
generating such data, in particular the CATS system [8],
cannot immediately be used for our purposes due to the dif-
ferences between the XOR-language (used by CATS) and
logic-based languages. As argued by Boutilier [1], a transla-
tion is possible in principle, but it is not clear how it would
affect the hardness of an auction instance, nor whether a
translated instance would still be a realistic instance.
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