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ABSTRACT
Mixed multi-unit combinatorial auctions are combinatorial
auctions in which the auctioneer and the bidders negoti-
ate over transformations rather than over simple goods. By
proposing a transformation a bidder is offering to produce a
certain set of output goods after having received the speci-
fied input goods. Solving such a mixed auction means choos-
ing a sequence of transformations such that the auctioneer
ends up with all the goods desired at the lowest possible
cost. This is a generalisation of the winner determination
problem in combinatorial auctions and cannot be solved us-
ing standard winner determination algorithms. In this paper
we analyse the computational complexity of the winner de-
termination problem for mixed auctions and compare the
performance of two new algorithms and of the original al-
gorithm proposed for the problem. We also discuss suitable
ways of generating test sets for this comparison.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; J.4 [Social
and Behavioral Sciences]: Economics

General Terms
Algorithms, Experimentation, Economics

Keywords
Combinatorial Auctions, Integer Programming

1. INTRODUCTION
A combinatorial auction (CA) is an auction in which more
than one good can be sold or bought at a time [2]. If an
auctioneer wants to use a CA to sell a set of goods, each
potential buyer can submit bids for subsets of the full set.
The auctioneer then has to decide which items to allocate
to whom so as to maximise the sum of the prices offered.

Recently, Cerquides et al. [1] have introduced an exten-
sion of the standard model of CAs, so-called mixed multi-
unit combinatorial auctions (MMUCAs). In MMUCAs, the
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auctioneer and the bidders trade transformations of goods
rather than just simple goods. A transformation consists of
a set of input goods and a set of output goods. Through
bidding, an agent can offer to produce the specified out-
put goods in return for receiving the specified input goods.
MMUCAs are multi-unit auctions, which means that there
could be multiple indistinguishable copies of each good.
Solving such a MMUCA means choosing a sequence of trans-
formations from amongst those on offer such that the auc-
tioneer ends up with all the goods desired at the lowest
possible cost. MMUCAs have promising applications, for
instance in the area of supply-chain formation.

The winner determination problem (WDP), i.e. the prob-
lem of deciding which bids to accept, is NP-hard for both
standard CAs and MMUCAs. For the former, several algo-
rithms have been developed, some with very good empirical
performance [2]. Unfortunately, these algorithms cannot be
applied to the WDP for MMUCAs. Intuitively, the WDP
seems more difficult for MMUCAs than for standard com-
binatorial auctions, because for MMUCAs we also have to
decide on a feasible sequencing of the transformations to
be bought by the auctioneer. To date, there has only been
very limited research on winner determination algorithms for
MMUCAs. One algorithm, based on Integer Programming,
has been proposed in the original paper [1], and Vinyals et
al. [8] have provided a first implementation and carried out
initial tests. These tests have only been modestly successful.
To some extent this was to be expected, because the origi-
nal Integer Programming solution requires the specification
of a number of decision variables that is quadratic in the
size of the problem input. Our goal for the work described
in this paper has been to explore alternative algorithms and
to systematically compare their performance.

The remainder of this paper is organised as follows. Sec-
tion 2 briefly reviews the MMUCA model. We then discuss
the computational complexity of the WDP in Section 3: we
argue that the WDP may be considered a combination of an
optimisation problem (similar to the standard WDP) and
a second problem representing the sequencing requirement
specific to MMUCAs. This second problem is itself NP-
complete. Section 4 introduces three algorithms for solving
the WDP: the original algorithm of Cerquides et al. [1], an
algorithm based on Constraint Programming, and an algo-
rithm that directly works on the division into two subprob-
lems proposed in our complexity analysis. In Section 5 we
report on our empirical evaluation of the three algorithms
and Section 6 concludes.



2. MIXED AUCTIONS
In this section we briefly introduce the model of mixed multi-
unit combinatorial auctions (MMUCAs). For full details we
refer to the paper by Cerquides et al. [1].

Let G be a finite set of types of goods. In a MMUCA,
agents negotiate over transformations of such goods. By
offering a transformation (I,O) ∈ NG × NG, a bidder is
proposing to deliver the output goods in the multi-set O
after having received the input goods in I. For the bidding
process, in this paper, we shall restrict ourselves to so-called
XOR-bids [5, 1]. An XOR-bid is an expression, transmitted
by a bidder to the auctioneer, that specifies several mutually
exclusive offers for providing a multi-set of transformations
in return for a certain price. 1 Consider this example:

〈{(aa, bb)},−5〉 xor 〈{(a, b), (c, d)},−7〉

Here the bidder is making two offers and the auctioneer can
accept at most one of them. The first one is the offer to
produce two goods of type b in return for e 5 after having
received two goods of type a. The second offer involves two
transformations that would have to be accepted together.
For instance, if the auctioneer already owns one a and one
c, then she can obtain a b and a d for e 7. However, if she
only owns a c, then she cannot obtain a d, as she would not
be able to also accept the transformation (a, b).

A formal semantics of this XOR-language, mapping
bid expressions to bidder valuation functions, is given by
Cerquides et al. [1]. Here we are mostly interested in the
auctioneer’s perspective. Suppose the auctioneer initially
owns a multi-set of goods Uin and would like to end up with
the multi-set Uout (or any superset thereof). She then issues
a call for proposals, to which each bidder can reply with
an XOR-bid of their choice. Finally, the auctioneer has to
decide which transformations to accept. This is called the
winner determination problem (WDP).

The input to the WDP consists of Uin, Uout and the XOR-
bids received. A valid solution to the WDP is a sequence of
transformations to accept that satisfies two conditions:

• Condition 1: The solution has to respect the con-
straints given by the bids submitted. That is, for each
bidder at most one of the multi-sets of transformations
offered can be accepted and all transformations from
a given multi-set need to be accepted together.

• Condition 2: The sequence needs to be implementable,
namely (a) the input set of the first transformation
has to be a (not necessarily proper) superset of Uin;
(b) after each transformation the new set of goods held
by the auctioneer has to be a superset of the input set
of the next transformation in the sequence; and (c) the
final set of goods has to be a superset of Uout.

An optimal solution of the WDP is a valid solution that
maximises the sum of prices (revenue) associated with the
accepted multi-sets of transformations.

3. COMPLEXITY
In this section we analyse the computational complexity of
the WDP for MMUCAs. The (decision-variant of the) WDP

1Positive prices are amounts to be paid by a bidder to the
auctioneer (and vice versa for negative prices).

for standard CAs is known to be NP-complete [7]. Intu-
itively, the WDP for MMUCAs seems harder as it also has
to account for the implementability condition given in the
previous section. However, as already argued by Cerquides
et al. [1], the WDP for MMUCAs is also NP-complete: NP-
hardness is due to MMUCAs generalising CAs, while NP-
membership follows from the fact that any proposed solution
can certainly be verified in polynomial time (with respect to
the size of the bids expressed in the XOR-language).

But despite both problems belonging to the same com-
plexity class, intuitively the WDP for MMUCAs still seems
more difficult. To make this intuition precise, we decompose
the WDP into two subproblems:

• Problem 1: Find a multi-set of transformations to ac-
cept that (a) respects the constraints given by the bids
submitted; (b) makes the union of the input sets and
Uin a superset of the union of the output sets and Uout;
and (c) maximises revenue.

• Problem 2: Check whether the solution to Problem 1
satisfies the implementability condition. If so, find a
valid sequence using all the transformations of the so-
lution to Problem 1 and only those. If not, backtrack
and continue with the next best solution to Problem 1.

The decision problem underlying Problem 1 is clearly still
NP-complete: it generalises the standard WDP in a simi-
lar manner as the WDP for MMUCAs does. Furthermore,
only minor modifications are needed to be able to use stan-
dard winner determination algorithms to tackle Problem 1.
Hence, Problem 2 may be seen as representing the added
level of difficulty when we move from the standard WDP to
the WDP for MMUCAs. Next, we are going to discuss the
computational complexity of Problem 2.

It is important to note that Problem 2 does not deal with
bidders and bids. Its input is a set of transformations and
its goal is to compute an implementable sequence. All the
transformations must be used and each transformation can
be used only once. We can observe some similarities to the
Directed Hamiltonian Path Problem (DHPP). This is the
problem of finding a path in a directed graph that visits all
the vertices exactly once and is known to be NP-complete [3].
Using a reduction from the DHPP to Problem 2 we can
obtain the following result:

Proposition 1. Finding a complete sequence for a given
set of transformations (“Problem 2”) is NP-complete.

A full proof of this result is available elsewhere [6]. The ba-
sic idea of reducing a DHPP instance to a WDP instance
is to associate each node in the graph with a good and to
build one transformation for each such node: the input is
the good associated with that node and the output is the set
of goods associated with its successors. Several restrictions
must then be built into the translation to make sure that ev-
ery sequence of transformations represents a path and every
path can be represented by a sequence of transformations.

Although Problem 2 is hard to solve in general, there is
a property a set of transformations can have that makes it
easy to solve. This property is related to the so-called goods
graph. The goods graph is a directed graph where there is
an edge between two goods, say a and b, if there is some
transformation such that a occurs in this transformation as
an input good and b as an output good. If the goods graph



generated by a set of transformations does not contain any
cycles, then Problem 2 becomes easy to solve.

4. ALGORITHMS
In this section we present two algorithms for the WDP.

4.1 The Original Algorithm
First, we briefly sketch the original winner determination
algorithm for MMUCAs [1], which maps the WDP into an
Integer Programming (IP) problem. It uses binary decision
variables of the form xm

ijk ∈ {0, 1}, where xm
ijk=1 expresses

that the kth transformation in the jth multi-set in the XOR-
bid of the ith bidder (which we will refer to as transformation
tijk from now on) should be accepted and be placed at the
mth position in the sequence. Furthermore, xijk=1 says that
transformation tijk should be accepted (without specifying
its position in the sequence); xij=1 says that the full jth
multi-set of the ith bidder should be accepted; and xm=1
says that there is some transformation at the mth position
of the sequence.

We only show part of the constraints modelling the WDP.
Firstly, xij=xijk ensures that transformations belonging
to the same multi-set are always accepted together, whileP

ij xij ≤ 1 enforces the XOR condition. The following two

(sets of) constraints ensure that for each selected transfor-
mation there is exactly one position in the sequence:

xijk =
X
m

xm
ijk and xm =

X
ijk

xm
ijk

The implementability condition can be expressed by stipu-
lating that the number of copies of good g held by the auc-
tioneer after m−1 steps in the sequence needs to be at least
as great as the input required for the mth transformation.

If pij is the price of the jth multi-set in the bid of the
ith bidder, then the WDP amounts to solving the optimisa-
tion problem max

P
ij xij · pij , subject to above constraints.

While this gives us a working algorithm, an obvious dis-
advantage is the fact that the number of variables xm

ijk is
quadratic in the number of transformations in the input.

4.2 A Constraint Programming Algorithm
To find a better representation of the WDP, we have ex-
plored the use of Constraint Programming (CP). By using
CP a wider array of constraints is available to model the
problem. The quadratic number of variables in the original
approach is caused by the use of binary decision variables
to represent the place of a transformation in the sequence.
Using integer decision variables and a sophisticated tech-
nique for indexing variables, we are able to model the WDP
more compactly: First, we fix an arbitrary ordering over
the available transformations, i.e. each transformation tijk

is associated with a number n. Next, two sets of variables
are introduced: xn holds the position of transformation n
in the sequence, and ym holds the transformation at posi-
tion m. There is an obvious link between these two types of
variables, which is represented by the following equations:

yxn = n and xym = m

Also, all variables of the form xn must contain different val-
ues. The same holds for variables of the form ym.

When switching to this approach, all transformations
must have a position somewhere in the sequence. There-
fore, we are not able to distinguish between accepted and

rejected transformations. To remedy this, a set of dummy
transformations is introduced, and a set of dummy positions
are placed after the real sequence. Only accepted transfor-
mations occur in a real position, while the rejected trans-
formations occur in dummy positions. Full details of the
algorithm are available elsewhere [6].

The number of variables used is now linear in the number
of transformations in the auction. On the downside, the
constraints needed to refer to the index of a variable by
means of another variable are relatively expensive.

4.3 The Division Algorithm
Our final approach is based on the division of the WDP dis-
cussed in Section 3. Both Problem 1 and Problem 2 can
be modelled independently using IP. For each multi-set Bij

of transformations belonging to the jth bid of bidder i, let

IBij

total(g) =
P

(I,O)∈Bij
I(g) represent the number of copies

of good g needed and OBij

total(g) =
P

(I,O)∈Bij
O(g) the num-

ber of g’s produced when bid Bij is accepted.
In modelling Problem 1, bij ∈ {0, 1} is a decision variable

where bij=1 says that the jth multi-set in the bid of agent i
is accepted. The requirement of producing enough goods is
captured by the following equations (one for each good g):

Uin(g) +
X

i

X
j

bij · (O
Bij

total(g)− IBij

total(g)) ≥ Uout(g)

As in the original approach, pij represents the price and solv-
ing Problem 1 amounts to finding a solution that maximizes
the sum

P
ij bij · pij .

Problem 2 deals with the position of each transformation
in the sequence. The first step is to define an arbitrary
enumeration over the transformations found in Problem 1.
Then, variables posm

n ∈ {0, 1} are used to model the position
of transformations in the sequence, where posm

n =1 if trans-
formation n is placed at position m. Using these variables,
we can easily model what constitutes a valid sequence: each
transformation and each position must be used exactly once,
and the set of goods available to the auctioneer must be a
superset of the input goods required for the next transfor-
mation at each step (implementability).

To find a solution it is, in general, not sufficient to first
solve Problem 1 and then solve Problem 2. It can be the
case that an allocation found in Problem 1 does not contain
any solution for Problem 2. This means that Problem 1
must be solved anew, while excluding the previously found
solution, using a simple linear constraint. This repeated
solving makes the worst case performance of this approach
not very good. However, as the experimental results will
show, it does perform well in some (relevant) situations.

Finally, observe that although the number of variables in
Problem 2 is still quadratic in the number of transforma-
tions, there is a reduction in the number of variables used
when compared to the original algorithm. Because it will
generally not be the case that all transformations are in-
cluded in solutions to Problem 1, the number of variables
used in Problem 2 is (typically significantly) lower.

5. EXPERIMENTATION
In this section we report on our experiments aimed at testing
the relative performance of the three algorithms for “realis-
tic” auction instances.



5.1 Generation of Test Sets
We have used two different test set generators. The first,
due to Vinyals et al. [8], distinguishes three types of trans-
formations: Input transformations, Output transformations
and Input-Output transformations. Input transformations
contain only input goods, Output transformations contain
only output goods, and Input-Output transformations con-
tain both.

The second generator [6] takes account of the fact that
transformations often reflect an underlying structure. Take
as an example the construction of a bicycle. A bicycle con-
sists of a pair of wheels, a frame, a handlebar, a chain and
so on. A transformation that represents the construction of
a bicycle might take as input the pair of wheels, the frame,
the handlebar, the chain and output a bike. Such a trans-
formation now represents the fact that all the goods in the
input are contained in, or needed in the construction of, the
goods in the output. In other words, there is an underlying
graph structure from which such transformations are taken.
We therefore subdivide Input-Output transformations into
Structured and Unstructured transformations. The former
are taken from an acyclic goods graph and can be used to
model construction or deconstruction of goods, while the
latter can take arbitrary forms and may model trade or ex-
change of goods.

5.2 Results
Our tests where carried out using ECLiPSe and CPLEX 10.2
and are reported in the Master’s thesis of the first author [6].
Due to lack of space, we only summarise our main findings
here, rather than describing the experiments themselves.

First, the results show that the CP approach is clearly
outperformed by both the original IP approach and the di-
vision approach.

Second, on the data generated using the approach of
Vinyals et al. [8], our implementation of the original IP-
based algorithm appears to achieve a somewhat better per-
formance than theirs. However, the difference does not seem
significant and can can probably be explained by the fact
that we have used a more recent version of CPLEX and
similar factors.

We have then compared the performance of the original IP
algorithm and the division algorithm. The tests performed
using the generator of Vinyals et al. [8] suggest that the orig-
inal approach is more consistent in terms of running times.
However, for some situations the division approach is sig-
nificantly better. Furthermore, the two algorithms do not
always agree on which problem instances are the hardest.

Finally, we have run similar tests using the second gen-
erator, with both Structured and Unstructured transforma-
tions. Overall, the division approach performs better than
the original approach on this second dataset. In particular,
the division approach outperforms the original IP approach
by several orders of magnitude on structured auctions. Ar-
guably, structured auctions (or certainly hybrid auctions
with a high degree of structure) are likely to play an impor-
tant role in applications. Our tests also show that problems
with Unstructured transformations are much harder to solve
than other types of problem instances.

6. CONCLUSIONS
Mixed multi-unit combinatorial auctions are a novel gener-
alisation of combinatorial auctions. In this paper we have

added to the further understanding of the WDP for MMU-
CAs. We have shown that it can be decomposed into two
simpler problems that both are NP-complete in their own
right. Furthermore, we have introduced two new algo-
rithms and empirically compared them to the original IP
approach [1]. While the new CP algorithm is outperformed
by both other approaches, the performance of the division
algorithm is promising for auction instances with a high de-
gree of structure regarding transformations.

Future work should be directed towards gaining a better
understanding of which algorithm is to be preferred under
which circumstances and towards further fine-tuning the di-
vision algorithm. A very recent proposal by Giovannucci
et al. [4] may prove useful in this respect. It shows how
to reduce the number of possible solution sequences, based
on cycles in the goods graph. Finally, while the particu-
lar CP approach presented here turned out to perform less
favourably in practice, we believe that the fundamental ideas
present in this approach are still worth pursuing further.
To date, this is the only approach that avoids an explicit
use of a quadratic number of decision variables. Improve-
ments might, for example, be made by using more global
constraints. Also, further advances in CP in dealing with
the specific types of constraints required may take this line
of work further.
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