
Simulation of Negotiation Policies in Distributed
Multiagent Resource Allocation

Hylke Buisman, Gijs Kruitbosch, Nadya Peek and Ulle Endriss

Artificial Intelligence Programme
University of Amsterdam

{hbuisman,gkruitbo,npeek,ulle}@science.uva.nl

Abstract. In distributed approaches to multiagent resource allocation,
the agents belonging to a society negotiate deals in small groups at a local
level, driven only by their own rational interests. We can then observe and
study the effects such negotiation has at the societal level, for instance in
terms of the economic efficiency of the emerging allocations. Such effects
may be studied either using theoretical tools or by means of simulation.
In this paper, we present a new simulation platform that can be used
to compare the effects of different negotiation policies and we report
on initial experiments aimed at gaining a deeper understanding of the
dynamics of distributed multiagent resource allocation.

1 Introduction

Many complex application domains can be modelled as multiagent systems in
which agents of varying capabilities interact. Building such artificial societies
of autonomous software agents and devising suitable interaction mechanisms
presents a formidable research challenge. Within such a society, agents will have
to negotiate on a number of issues, including the best possible distribution of
the resources available in the system amongst the individual agents. The field of
multiagent resource allocation [1] is concerned with the design and analysis of
mechanisms for finding a suitable assignment of resources to agents, given the
individual interests of the agents as well as any technical constraints imposed
by the system. In distributed approaches to multiagent resource allocation, the
computational burden of the process of allocating resources is shared by all
the agents in the society. In centralised approaches, notably combinatorial auc-
tions [2], on the other hand, the task of computing the optimal allocation is
relegated to an external entity (e.g. an auctioneer). Here we concentrate on dis-
tributed approaches, which provide a particularly rich setting in which to study
interaction in multiagent systems.

The specific resource allocation framework we adopt has previously been
studied by a number of authors [3–5]. It assumes that a finite number of indi-
visible goods needs to be allocated to a finite number of agents. Goods cannot
be shared by more than one agent, and we assume that some initial allocation
is given to begin with. Each agent expresses their preferences in terms of a val-
uation function mapping bundles of goods to the (positive) reals, and will only



accept deals (possibly involving monetary side-payments) resulting in a strict
increase in utility for themselves (so-called myopic individual rationality). De-
tailed definitions will be given in Section 2. We are interested in the effects such
locally conducted and individually rational deals have on the agent society as
a whole. In particular, we seek to understand under what circumstances a se-
quence of deals will converge to an allocation that would be considered optimal
in view of a particular aggregation of the individual agent preferences. Here we
consider both measures for economic efficiency, such as Pareto optimality or the
sum of individual utilities, and notions of fairness, such as envy-freeness or the
level of utility enjoyed by a society’s poorest member [6, 7, 1].

Previous work has studied such convergence properties mostly from a the-
oretical point of view [3, 4]. Where it is possible to derive general theorems on
(guaranteed) convergence to a socially desirable allocation, this seems indeed the
best approach. However, for many realistic scenarios some of the assumptions on
which the correctness of such theorems rests simply will not hold. The amount
of time available to negotiate in will be limited, and therefore perhaps not suffi-
cient to attain an optimal state. To allow any kind of deal includes allowing very
complex deals involving many agents and resources, which is computationally
expensive. To be able to find convergence trends, it then becomes interesting
to simulate many runs of a distributed negotiation process, under similar condi-
tions, to see whether it may be possible to make empirically founded predictions.
Previous work along these lines includes that of Andersson and Sandholm [8] and
Estivie and colleagues [9, 10]. The former have studied the effects of sequencing
different types of deals (such as deals involving only a single resource at a time,
or deals involving the swapping of two items), while the latter have concentrated
on understanding under what circumstances we can expect to see fair allocations
emerge when rational agents negotiate. These works offer interesting insights into
the dynamics of distributed multiagent resource allocation. However, what has
been missing so far is a generic simulation platform that would allow the experi-
menter to vary a wide range of parameters, to run simulations for different types
of agent valuations and different negotiation policies, and to evaluate outcomes
with respect to a range of different efficiency and fairness criteria.

In order to fill this gap, we have developed a simulation platform called the
MultiAgent Distributed Resource Allocation Simulator (MADRAS). Using this
platform, a user can easily generate a scenario with given numbers of agents and
resources, in which the agents have their own preferences. The agents are able to
negotiate amongst themselves to establish trades using money. Using such a sce-
nario, the user is able to run a variety of experiments to see under what circum-
stances the agents most beneficially manage to reallocate their resources. Finally
the platform provides possibilities for visualising several experiment statistics.
In this paper, we introduce the MADRAS platform and report on a set of initial
experiments that we have conducted using the platform.

The remainder of this paper is organised as follows: Section 2 briefly maps
out the formal resource allocation framework we use and recalls a relevant re-
sult from the literature regarding the convergence of negotiation processes to a



socially optimal allocation. Then Section 3 describes the MADRAS platform,
which consists of three modules: the generation of resource allocation scenar-
ios (in particular the generation of valuation functions); the simulation of ne-
gotiation processes conforming to a chosen negotiation policy for the agents;
and an experimentation support module for evaluating and visualising the data
produced during simulation. A selection of the experiments we have run using
MADRAS are documented in Section 4. Section 5 concludes with a brief discus-
sion of possible directions for future work.

2 Preliminaries

In this section, we briefly review the basic definitions of the resource allocation
framework we adopt and we recall a fundamental convergence result linking
the negotiation behaviour of individual agents and the emergence of optimal
allocations at the societal level. Full details are available elsewhere [4].

2.1 Formal Framework

Let A = {1, . . . , n} be a set of agents, and let R = {r1, . . . , rm} be a set of
resources (or goods). An allocation A : A → 2R is a division of the resources inR
amongst the agents in A. Any allocation A has to assign each resource to exactly
one agent. Agents may have different preferences dictating which resources they
want, and how much they want them. A valuation function v : 2R → R maps any
given bundle of resources to a value in real numbers (this may be restricted to
the positive reals and zero). We write vi(A) for vi(A(i)), the valuation assigned
by agent i to the bundle it receives in allocation A.

A deal δ = (A,A′) is defined by the transition between two allocations
(before/after). This model allows for any number of resources being reallo-
cated amongst any number of agents within a single deal. Deals may be paired
with monetary side payments. These are modelled using a payment function
p : A → R, satisfying

∑
i∈A p(i) = 0. A positive p(i) indicates that agent i has

to pay, while a negative p(i) means that i will receive money. The utility enjoyed
by an agent i in a given negotiation state is computed by subtracting the sum
of previous payments made by i from the valuation i assigns to the bundle of
resources it currently holds (quasi-linear utility).

Whether an agent will accept a given deal (including side payments) depends
entirely on whether that deal seems rational to the agent. There are a number
of different rationality criteria that we could consider [7]. In this paper we shall
concentrate on a myopic form of individual rationality [3]. A deal δ = (A,A′) is
called individually rational (and considered acceptable) iff it increases the utility
of each of the agents involved. That is, we require vi(A′)−vi(A) > p(i) for every
agent i involved in the deal (non-involved agents may receive money, but cannot
be required to pay anything).

In the most general case, we assume that there are no restrictions on time or
computational resources: any deal that is individually rational may eventually be



identified and implemented. For more realistic scenarios, besides the restriction
imposed by the agents’ rationality requirements, we may also impose structural
restrictions on deals. In this paper, we are going to be interested in two such
classes of deals. The class of 1-resource deals is the class of deals involving the
reallocation of a single item only (and hence only two agents). The class of
bilateral deals is the class of deals involving only two agents (but any number of
resources at a time).

2.2 Convergence

Given this framework, the question arises what kinds of allocations we can expect
agents to negotiate. We are interested in assessing the quality of an allocation in
terms of various criteria for economic efficiency and fairness, borrowed from the
literature on social choice theory and welfare economics [6, 11]. Several examples
will be given in Section 3.3. For now, let us just recall the notion of utilitarian
social welfare. The utilitarian social welfare swu(A) of an allocation A is given
by the sum of individual agent valuations:

swu(A) =
∑
i∈A

vi(A)

Observe that taking past payments into account does not affect this definition
(as they always add up to zero). High social welfare implies high average utility,
which justifies this as a metric for assessing the quality of an allocation.

Now, what is the connection between the local concept of individual rational-
ity driving negotiation and the global concept of social welfare? An important
result establishes that any sequence of individually rational deals will eventually
result in an allocation with maximal utilitarian social welfare [3]. That is, no
central point of control is required. We can let agents negotiate in a distributed
manner following only their own selfish interests and still guarantee that the
system will, at some point, reach a state that would be considered optimal from
a social point of view. While this may seem surprising at first, it is actually
not difficult to prove. They key insight is that, in fact, a deal turns out to be
individually rational iff it increases social welfare [4]. However, we stress that the
above convergence result holds only if we do not place any structural restrictions
on deals. For instance, if agents will only negotiate individually rational bilateral
deals, then the social optimum may not be reachable.

3 The MADRAS Platform

This section explains the functionality of the MADRAS simulation platform for
distributed resource allocation. The platform consists of three modules:

1. The scenario generator is used to generate problem instances, characterised
by sets of agents and resources, valuation functions for these agents, and an



initial allocation of resources. Scenarios may be defined manually or gen-
erated automatically (using user-defined constraints). We have also defined
an XML-based language to store and communicate scenario descriptions.
Section 3.1 discusses the most challenging task falling under this module,
namely the automatic generation of valuation functions.

2. The module for negotiation simulation reads in a scenario description and
then simulates a negotiation process. How this works exactly is determined
by the chosen negotiation policy. Such a policy fixes choices regarding the
rationality criterion used by the agents, structural restrictions imposed on
deals, and the search algorithms used to identify the next deal meeting the
specified requirements. This will be discussed in Section 3.2. The module can
save a record of the resulting negotiation process on file.

3. The experimentation support module reads in one or several files document-
ing particular negotiation runs and can produce a wide range of experimenta-
tion statistics from this data. In particular, it can be used to plot how social
welfare and similar metrics develop as negotiation progresses. Examples are
given in Section 3.3.

3.1 Generating Agent Valuations

We have opted for a logic-based representation of valuation functions based on
weighted propositional formulas [12, 1]. In this representation, agents may ex-
press goals as propositional formulas over the set of atomic propositions given
by the resource names {r1, . . . , rm}. For example, the goal r1∧(r2∨r3) indicates
that the agent in question desires to obtain r1 and at least one of r2 and r3.
Furthermore, agents assign numerical weights to these goals. An agent’s valua-
tion for a given bundle R is then given by the sum of the weights of the goals
that are satisfied by R.1 For example, if an agent has the weighted goals (r1, 3)
and (r1 ∧ r2, 1), then they will assign value 3 to the bundle {r1}, value 4 to the
bundle {r1, r2}, and value 0 to both {r2} and the empty bundle. This logic-based
representation is not only very flexible and natural, but also fully expressive and
often allows for representing interesting valuation functions in a concise man-
ner. As far as the automatic generation of valuation functions is concerned, the
current implementation is restricted to goals that are conjunctions of atomic
propositions. This is isomorphic to the so-called k-additive form of representing
valuation functions [13, 1].

After having specified the number of agents and resources in the scenario
generation module of MADRAS, the user can initiate the automatic generation
of valuations. To this end, the user may manipulate the following parameters:

– The maximum length k (number of atoms in a conjunction) for all goals
in the valuation function. Either a precise value can be given, or k can be
taken from a user-specified uniform or normal distribution. This parameter
determines the degree of synergy between different resources.

1 Here we interpret bundles R as models of propositional logic: an atomic proposition
r is taken to be true in a model characterised by R iff r is an element of R.



– A function specifying the number of the goals of a given length that will actu-
ally be generated. This parameter determines the range of different bundles
that an agent may wish to obtain.

– A distribution from which to pick the numerical weights for our goals.

We stress that a choice of different parameters would have been possible as
well. While the present implementation gives the experimenter a good degree
of control and allows for the generation of a wide range of scenarios, further
research is required to establish useful guidelines for generating interesting and
application-relevant sets of valuations.

Similar problems have been addressed in the context of research on combi-
natorial auctions, in particular for the development of the combinatorial auction
test suite CATS [14]. Like for our logic-based language, bids in combinatorial
auctions are symbolic expressions for encoding valuation functions. CATS can
generate such bids. It is intended to model realistic bidding behaviour, for differ-
ent types of real-world scenarios (such as spectrum auctions or temporal schedul-
ing), and has been developed for testing the performance of winner determination
algorithms for combinatorial auctions. Unfortunately, this data cannot (at least
not immediately) be used for simulating distributed multiagent resource alloca-
tion. One problem is the fact that CATS does not label bids with the name of
the agent bidding (the reason being that this information is not relevant from
the viewpoint of testing the performance of winner determination algorithms).2

3.2 Simulating Negotiation Policies

We emphasise that our aim has not been to build negotiating agents. We are only
interested in simulating negotiation by generating sequences of deals that would
be acceptable to the agents (given their valuation functions) and to evaluate
how these deals affect social welfare. An important aspect for a simulation is the
negotiation policy used. This is determined by the following parameters:

– Rationality criterion: What rationality criterion do agents use to decide
whether a given deal is acceptable to them? At this stage, only individual
rationality has been implemented.

– Payment functions: Are side payments allowed? If so, and if the payments
are not uniquely determined by the rationality criterion, what are the exact
payments that agents have to make for a given deal? At this stage, we have
implemented two simple payment functions, the globally uniform payment
function and the locally uniform payment function [10].

– Structural restrictions: What types of deals are possible? We have imple-
mented 1-resource deals and (a particular form of) bilateral deals.

– Search algorithms: Given the structural and rationality-related restrictions,
how do we actually find a deal to implement? This requires a search algo-
rithm. For 1-resource deals, this is not difficult: we simply search through

2 For a discussion of exploiting CATS in the context of distributed multiagent resource
allocation we refer to Estivie [9].



pairs of agents (i, j) and resources r (owned by i or j) and check whether
reallocating r from from one to the other agent would be individually ra-
tional (or conformant to whichever rationality criterion we wish to apply).
For bilateral deals (between two randomly chosen agents i and j), we have
implemented a search algorithm that determines an optimal partial realloca-
tion (OPR) of the union of the resources currently held by i and j amongst
these two agents. This will be described in more detail below.

Running a simulation for a given scenario requires choosing a negotiation policy
and specifying how long the simulation should run for. This could be done by
providing a time limit, an upper bound on the number of new allocations, or an
upper bound on the number of attempts of forging a deal (and hence moving to
a new allocation). In MADRAS, we have opted for the latter. While running,
the system will record the sequence of allocations encountered, as well as the
payments made along the way. This data can later be used to calculate social
welfare and other experiment statistics.

In the remainder of this section we shall outline our approach to implementing
the search algorithm for the OPR negotiation policy. After having selected a
pair of agents (i, j) at random, this policy attempts to find the best possible
bilateral deal between i and j. That is, it will try to find a reallocation of the
items held by i and j that would maximise the sum of the valuations of i and
j. To find an optimal partial reallocation, we use the A* algorithm [15]. This
approach is inspired by work of Sandholm on optimal algorithms for the winner
determination problem in combinatorial auctions [16].

When using A*, one must define the set of states making up the search space,
the range of moves between states, the goal states, and a heuristic for moving
through the state space effectively. In our case, a state is characterised by the
set of resources for which we have already made a decision as to which of the
two agents should receive it. Initially, all resources are unallocated. Each move
assigns another resource to one of the agents, and the goal state is reached when
there are no more resources to allocate.

A* refers to two functions: The function g maps each state to the value (sum
of valuations of the two agents) we get for the resources already allocated in
that state. The heuristic function h estimates the additional value we can still
expect to generate by allocating also the remaining items. A* maintains a so-
called fringe of states in the search space, and will always pursue the state s
from the fringe which maximises g(s) + h(s). By a classical result, A* will be
guaranteed to find the optimal allocation provided the heuristic function h is
admissible [15]. In our context, admissibility means that h never underestimates
the real additional value still obtainable. For the heuristic function we are using
the following formula (for a state s and agents i and j):

h(s) =

 ∑
(G,α)∈Γi(s)

α

 +

 ∑
(G,α)∈Γj(s)

α





Here Γi(s) is the set of weighted goals in the representation of the valuation
function of agent i that are not yet satisfied in state s, but that could still be
satisfied in a follow-up state (if i were to receive all remaining resources, for
instance). Formally, if s(i) is the set of resources allocated to i in state s and if
U(s) is the set of resources not allocated to anyone in state s, then (G, α) ∈ Γi(s)
iff s(i) 6|= G and s(i)∪U(s) |= G. That is, for the heuristic we are computing the
marginal valuation for each individual agent in the most optimistic manner and
then sum these up without regard for possible conflicts. As we are restricting
ourselves to positively weighted conjunctions of atomic propositions, it is not
difficult to see that this constitutes an admissible heuristic for A*. While being
simplistic (and certainly still subject to improvements), our heuristic already
results in a very significant speed-up in comparison to a simple breadth-first
search and allows us to run interesting experiments.

3.3 Evaluating and Visualising Results

The third module is a grapher that can be used to visualise the results obtained
during simulation. Specifically, we can plot the social welfare of a sequence of al-
locations passed through during a simulation run. This allows the experimenter
to evaluate and compare different negotiation policies in view of different desider-
ata. As far as the quality of allocations is concerned, MADRAS allows for plotting
graphs visualising the following concepts:

– Utilitarian social welfare: As explained in Section 2.2, this is given by the
sum of individual utilities, and is a good measure for economic efficiency.

– Egalitarian social welfare: This is an alternative way of defining social wel-
fare, emphasising fairness rather than efficiency. The egalitarian social wel-
fare of a negotiation state (possibly involving past payments) is the utility
assigned to that state by the least happy agent [11].

– Elitist social welfare: This is defined as the utility of the happiest agent [7].
– Envy: Another fairness criterion is envy-freeness [17]. An agent i is said

to envy another agent j iff agent i would prefer to own agent j’s bundle
of resources. Envy-free allocations are difficult to obtain through distributed
negotiation, and may not even exist at all. MADRAS can plot how the degree
of envy develops as negotiation progresses, for different interpretations of
that concept. For instance, we can plot the maximum or the average envy
experienced by any one agent, or we can plot the number of envious agents
in the society.

MADRAS can also generate graphs showing the number of resources held by
each agent across allocations. The closer the system gets to an optimal state,
the more difficult it becomes to find a possible deal. To visualise such effects,
MADRAS can plot graphs showing the number of implemented reallocations per
amount of attempts at finding a deal between two randomly chosen agents.

Fig. 1 is an example for the kind of graphs generated by MADRAS. It shows
how three different kinds of social welfare develop as negotiation progresses. For



Fig. 1. Comparing utilitarian, egalitarian and elitist social welfare

this particular example, we have created 50 resources and only 2 agents, and
the chosen negotiation policy requires agents to negotiate individually rational
1-resource deals using the locally uniform payment function (which means that
payments are arranged so as to evenly distribute the social surplus generated by
a deal amongst the participating agents [10]).

Note that for the special case of a society with only two agents, the utilitarian
social welfare is actually the sum of the egalitarian and the elitist social welfare,
and this is clearly visible in Fig. 1. Furthermore, we can see that utilitarian social
welfare monotonically increases over time, as predicted by the aforementioned
result linking individual rationality and utilitarian social welfare [4]. Egalitarian
and elitist social welfare are computed with respect to utility (rather than valu-
ation, meaning that previous side payments are taken into account). Hence, as
each deal is individually rational, also these must increase monotonically. Due to
our particular choice of payment function, they furthermore increase at exactly
the same rate. Hence, while egalitarian social welfare does increase, negotiation
does not affect the relative fairness of the allocation: the difference in utility
between the two agents does not change.

4 Experiments

In this section we report on a couple of initial experiments which we have carried
out using MADRAS.



Fig. 2. Social welfare using 1-resource vs. OPR deals in modular domains

4.1 Comparing Negotiation Policies in Modular Domains

This first experiment is aimed at comparing the two negotiation policies currently
implemented in MADRAS in view of reaching an allocation that maximises
utilitarian social welfare when all agents are known to have modular valuation
functions. Recall that a valuation function v is called modular iff it satisfies
v(R1∪R2) = v(R1)+v(R2)−v(R1∩R2) for all R1, R2 ⊆ R. That is, in modular
domains an agent’s valuation for a given bundle R can be computed by adding
up its valuations for the elements of R.

It is known that any sequence of individually rational 1-resource deals will
eventually result in an allocation with maximal utilitarian social welfare, pro-
vided that all agents use modular valuation functions [4]. Given that the bilateral
OPR policy subsumes the 1-resource deal policy,3 the same must be true for the
former. That is, both negotiation policies guarantee optimal outcomes in mod-
ular domains. The question is which policy does so faster.

Intuition suggests that the OPR policy should be faster in the sense that
fewer deals are required to reach the optimum (as each individual deal can be
expected to result in a greater increase in overall utility). What is not clear
is how significant the difference is, and whether that advantage would not be
outweighed by the fact that finding an individual deal under the OPR policy is

3 The bilateral OPR policy subsumes the 1-resource deal policy in the sense that
whenever there is a 1-resource deal that would be applicable between two agents,
the OPR policy will either implement that same deal or a deal that is even better.



considerably more complex than under the 1-resource deal policy (NP-complete
as opposed to linear).

Fig. 2 confirms our intuitions. This experiment involves 10 agents with mod-
ular valuations over 50 resources, with each agent assigning a positive weight
drawn from a uniform distribution over [1..100] to 20 randomly selected re-
sources. The graphs show an average of 20 experiment runs from one scenario
description. Fig. 2 shows that convergence is in fact much faster for full bilateral
negotiation using the OPR policy than for 1-resource deals, at least if “time”
is measured in terms of the number of attempts made at forging an acceptable
deal. Additionally, data not shown in Fig. 2 suggests that the real time required
for reaching the optimum is of a similar order of magnitude for both negotiation
policies. It appears that the high complexity of the search involved in comput-
ing an optimal partial reallocation in the bilateral scheme is traded off against
the overhead in search required to find matching trading partners under the
1-resource policy. Of course, our findings regarding real-time performance need
to be interpreted with some care: they are strongly dependent on the specific
implementation choices made in the MADRAS system.

4.2 Comparing Negotiation Policies for Varying Degrees of Synergy

Our second set of experiments is aimed at comparing the performance of our two
negotiation policies for varying degrees of synergy in the agent valuations. Mod-
ular valuations (as studied in Section 4.1) are representable as sets of weighted
goals, each of which has length k = 1. If we allow proper conjunctions in the
goals (of length k > 1), then this may be understood as synergies between the
items occurring together in the same conjunction. For instance, if an agent has
the goal (r1 ∧ r2, 5), they will only receive the value of 5 if they own both of r1

and r2 together ; the individual items by themselves may have no value at all.
We have produced two groups of experiments for valuation functions repre-

sented by sets of goals of length ≤ k, with k ranging from 1 to 6. The results
are shown in Figures 3 and 4, respectively. As before, there are 10 agents and
50 resources. For each value of k, we have generated 3 different scenarios and
run 10 simulations for each of the two negotiation policies for each such scenario
(so each of the curves shown represents the average of 30 runs). The only differ-
ence between the two groups of experiments, corresponding to Figures 3 and 4,
concerns the number of weighted goals generated for each agent. In the case of
Fig. 3, we have generated 20 goals of each of the required lengths for each agent.
So, for instance, if k = 3 then an agent will have 20 goals of length 1, 20 goals
of length 2, and 20 goals of length 3. All weights are drawn independently from
a uniform distribution over [1..100]. In the case of Fig. 4, we have generated 30
goals in total for each agent (32 in the case of k = 4). For instance, for k = 2 we
have generated 15 goals of length 1 and 15 goals of length 2; while for k = 3 we
have generated only 10 goals of each length. For each pair of curves, the upper
curve (better performance) corresponds to the OPR policy, and the other one to
the 1-resource policy. In Fig. 4 the pairs are clearly visible as such; in Fig. 3 we



Fig. 3. Results when the number of goals per agent is proportional to k

have included some additional markers, which also indicate the maximum level
of utilitarian social welfare achieved by each policy.

The experiments reveal some very interesting, and arguably surprising, ef-
fects. We know that for k = 1 (modular valuations), both negotiation policies
will reach the same (optimal) state and that the OPR policy can be expected to
get there in fewer steps than the 1-resource deal policy. This is visible in both
figures. Now, as k increases (as valuations move further away from the simple
modular case), we would have expected that the much more sophisticated OPR
policy would outperform 1-resource negotiation even more significantly. For both
policies, we would not expect to be able to reach an optimal state anymore (and
this is indeed the case; data not shown here), but we would expect OPR deals to
typically converge to a state with (maybe much) higher utilitarian social welfare
than is attainable through 1-resource deals alone. As it turns out, this is the
case only to a very limited extent. In Fig. 3, we can see that the gap between
OPR and 1-resource increases as k increases up to k = 3, but then it becomes
smaller again. So besides the expected trend described above, there must also
be a second trend causing this gap to decrease again for larger values of k.

Our hypothesis is that this trend can be explained by the fact that the longer
a goal, the lower the probability that all the required resources can be found in
the set of items owned by the two agents supposed to forge a deal. Hence, having
large amounts of long goals available in addition to the short goals present in all



Fig. 4. Results when the total number of goals per agent is constant

the scenarios actually has very little effect on the outcomes. In fact, the presence
of long goals may even be detrimental to achieving high social welfare (at least
if the weights for goals of any length are drawn from the same distribution, as
is the case for our experiments). The reason is that satisfying a single long goal
may prevent a whole set of shorter goals (of other agents) from being satisfied.

In Fig. 4, the reduction in the gap between the two policies is less visible,
but in any case it is still surprisingly small for larger values of k. Here we can
also clearly observe a second effect: the attainable social welfare goes down as k
increases. We expect this to be a consequence of there being fewer short goals in
the scenarios with larger k (for Fig. 4 the total number of goals is constant, so
the more different lengths there are, the fewer goals there are per length). These
short goals are the easiest to satisfy, so the more there are the higher the sum of
utilities. Indeed, further analysis of our data reveals that goals of length greater
than 3 practically never get satisfied in the final allocation, and that for goals
of length 3 typically no more than 1–2% get satisfied. This means that, really,
what matters are the short goals of length 1 and 2.

A tentative conclusion based on these experiments would be that any form
of bilateral negotiation (even if as seemingly sophisticated as OPR) is unlikely
to be able to reach allocations that would satisfy goals that involve three or
more resources. The reason for this is that chances are low that all the required
resources would be present in the set of items jointly held by a particular pair
of agents before negotiation between them starts. And those improvements over



the status quo that are possible by means of bilateral negotiation then also seem
to be achievable by means of its most basic form, namely 1-resource negotiation.
Still, the OPR policy tends to achieve those moderate results in significantly
fewer negotiation steps than the 1-resource policy (in terms of the number of
deals attempted).

5 Conclusion

Dividing resources amongst a society of agents who have varying preferences can
become a very complex task. Approaching this problem in a distributed man-
ner and having the agents share the computational burden of the task seems
promising on the one hand, but also raises serious challenges in terms of design-
ing suitable interaction protocols. To be able to let the agents find an optimal
allocation, there are many practical issues to consider. For instance, which nego-
tiation policies are the fastest and still guarantee convergence to an optimum?
How do behavioural criteria of individual agents influence the evolution of the
system? A simulation platform such as MADRAS can be useful to test hypothe-
ses about these issues. In this paper we have presented the basic functionality
of MADRAS and explained the underlying principles. We have also reported
on a number of experiments carried out using MADRAS. These experiments
were aimed at comparing the performance of two negotiation policies in view of
reaching a state with high utilitarian social welfare. In the first policy, agents
negotiate individually rational deals that involve reallocating a single resource
at a time. In the second policy, pairs of agents negotiate the best possible re-
allocation of the resources they own together amongst themselves. Despite the
limited scope of these experiments, we can offer two tentative conclusions:

– Optimal partial reallocations between two agents tend to achieve the same
or a higher level of social welfare than one-resource-at-a-time negotiation,
and the former tend to do so in fewer steps than the latter.

– Even sophisticated forms of bilateral negotiation (such as optimal partial re-
allocations) are not well adapted to negotiation in domains with high degrees
of synergies between large numbers of resources. In fact, in such domains the
most basic form of negotiation (1-resource deals) can often achieve results
very similar to those achieved by more sophisticated bilateral negotiation
(although requiring a higher number of negotiation steps).

Even when studying the theoretical aspects of multiagent resource allocation
closely, we are often surprised by the data that MADRAS generates. To fully
understand the implications of varying any of the parameters incorporated into
MADRAS we have to both analyse them theoretically and be able to explain
the behaviour they generate in practice.

Our approach may be described as a middle-way between purely theoretical
studies of convergence in multiagent resource allocation [3, 7, 4, 5] and work in
agent-based computational economics [18, 19]. Epstein and Axtell [18], for in-
stance, also study the emergence of various phenomena, but they do not specifi-
cally seek to understand the mathematical laws underlying such phenomena (and



indeed, these may often be too complex to be easily understood or described).
Here, on the contrary, we still see a mathematical explanation of emergent phe-
nomena as an important goal, but the simulation of negotiation processes can
serve as a tool for discovering the laws of distributed resource allocation mecha-
nisms. Understanding these laws, in turn, will allow us to build better and more
robust multiagent systems.

We should stress that certain design choices and features of the implemen-
tation of MADRAS are likely to have influenced (some of) our experimental
results. To what extent this is the case will require further analysis. For in-
stance, the heuristic we use for optimal partial reallocations is very important.
Using the A* algorithm does not per se determine how to allocate goods that
are not desired by either one of the agents involved in a bilateral deal. In our
current implementation these uncontested resources remain with the agent they
were initially allocated to, but other solutions such as random redistribution over
the two agents involved are possible as well. The specific choices made during
implementation in this regard may unwillingly influence not only the runtime of
the algorithm but also the quality of the final allocation. Aspects such as these
will require further study before we can fully bridge the gap between theoretical
findings and implementation.

In addition to the above, a large number of interesting experiments remain
to be done. Future work should further explore the constraints on preferences
and agent rationality that are necessary to guarantee social optima. We conclude
by giving three examples for specific directions of research that are being made
possible by the availability of a simulation platform such as MADRAS:

– Pigou-Dalton transfers [11, 7, 20] are deals used in attempts at reducing in-
equality between agents.4 However, it is known that, in the case of indivisible
resources, using Pigou-Dalton transfers alone cannot guarantee convergence
to an allocation with maximal egalitarian social welfare [4]. Using MADRAS
would allow us to conduct research aimed at identifying constraints under
which an egalitarian optimum will be found.

– MADRAS provides extensive possibilities for customising the agents’ prefer-
ences. An interesting course of research would be to systematically examine
the influence of certain classes of valuation functions on the reachability of
certain social optima. For instance, while theoretical research has provided
a good understanding of convergence behaviour in either the fully general
case or the very simple case of modular valuations [4], little is known about
convergence by means of structurally simple deals in case of valuations that
are subjected to severe restrictions other than modularity.

– MADRAS also provides for another research approach which would not be
possible without such a platform. This approach is to run many “arbitrary”
experiments and examine these to form hypotheses (possibly using machine
learning techniques). An approach of this type may produce findings which
are not intuitive and would otherwise not be encountered easily.

4 A Pigou-Dalton transfer is a deal between two agents that results in a transfer of
utility from the stronger to the weaker agent, without reducing their sum of utilities.
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