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Abstract

We give a new simpler proof of a theorem of Jayne–Rogers.

1 Introduction

In this paper we will give a new proof of a theorem of Jayne and Rogers. First
recall from [2] the following definitions:

Definition 1. Let X, Y be metric spaces. A function f : X → Y is said to be
∆0

2-function if f−1(S) ∈ Σ0
2 for every S ∈ Σ0

2 (equivalently, f−1(U) ∈ ∆0
2 for

every open U ⊆ Y ). Sometimes these functions are also called first level Borel
functions (see [2]).

The function f is said to be piecewise continuous if X can be expressed as
the union of an increasing sequence X0, X1, . . . of closed sets such that f � Xn

is continuous for every n ∈ ω.

Observe that f is piecewise continuous if and only if1 there is a ∆0
2-partition

〈Dn | n ∈ ω〉 of X such that f � Dn is continuous for every n ∈ ω. For one
direction, if f is piecewise continuous then putting D0 = X0 and Dn+1 =
Xn+1 \Xn we have the desired partition. Conversely, let Pm,n ∈ Π0

1 be such
that Dn =

⋃
m∈ω Pm,n and Pm,n ⊆ Pm′,n for every m ≤ m′ and n ∈ ω, and let

Xn =
⋃

i≤n Pn,i. It is easy to check that the Xn are increasing and closed, and
that f � Xn is continuous (since Pn,i ∩Pn,j = ∅ whenever i 6= j). Thus, in the
rest of this paper, when we will refer to some piecewise continuous function
we will generally have in mind a function with this “partition” property.
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1A third equivalent definition is that X can be covered by a countable family P0, P1, . . .
of closed sets such that f � Pn is continuous for every n ∈ ω.
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Definition 2. A set S in a metric space is said to be Souslin-F set if it
belongs to AΠ0

1, where A is the usual Souslin operation (see Definition 25.4
in [1]).

A metric space X is said to be an absolute Souslin-F set if X is a Souslin-
F set in the completion of X under its metric.

Observe that if X is separable then it is an absolute Souslin-F set if and
only if it is Souslin, that is if and only if it is the continuous image of the Baire
space ωω.

Now we are ready to give the statement of the original Theorem.

Theorem 1.1 (Jayne–Rogers). If X is an absolute Souslin-F set, then f : X →
Y is a ∆0

2-function if and only if it is piecewise continuous.

According to the authors of [2], their proof “even in the case when X and Y
are separable, is complicated”. Sixteen years later, S lawomir Solecki provided
in [3] a new proof of Theorem 1.1 in the case when X and Y are separable and
X is Souslin (in fact he proved a much stronger result which refines Theorem
1.1), but even in that case the proof was quite complicated. Our goal is to
provide a simpler proof of Theorem 1.1 that works under the same conditions
of Solecki’s version of the theorem — see Corollary 2.2.

We will assume ZF + DC(R) throughout the paper (note that the Jayne–
Rogers’ and Solecki’s proofs are carried out in ZFC, but by a simple absolute-
ness argument the result must hold also in ZF+DC(R)). All spaces considered
are metric. Our notation will be quite standard: the set of the natural num-
bers will be denoted by ω, while if X is any topological space and A is a subset
of X we will denote the closure of A with Cl(A). The set of all the binary se-
quences of finite length will be denoted by <ω2, and ω2 will denote the Cantor
space. A function f : X → Y will be said of Baire class 1 if it is the pointwise
limit of a sequence of continuous functions fn : X → Y . Finally, if (X, d) is
any metric space, a set U ⊆ X will be called basic open if it is an open ball
of X, i.e. if U = {x ∈ X | d(x, x0) < r} where x0 ∈ X and r ∈ R+. For all
the other undefined symbols and notions we refer the reader to the standard
monograph [1].

2 The proof of the Jayne–Rogers Theorem

The main result of this paper is the following Theorem, from which the Jayne–
Rogers Theorem will follow — see Corollary 2.2.

Theorem 2.1. Let X and Y be metric spaces with X Polish, and let f : X →
Y be of Baire class 1. If f is a ∆0

2-function then it is piecewise continuous.
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Recall that if f : X → Y is of Baire class 1 then it is also Σ0
2-measurable,

i.e. f−1(U) ∈ Σ0
2 for every open set U ⊆ Y , but the converse in general fails.

Nevertheless, if we require that X and Y are separable and that X is zero-
dimensional then f is of Baire class 1 just in case it is Σ0

2-measurable (see e.g.
Theorem 24.10 in [1]).

Corollary 2.2. Let X and Y be separable metric spaces with X Souslin. Then
f : X → Y is a ∆0

2-function if and only if it is piecewise continuous.

Proof. One direction is trivial. For the other direction, assume toward a con-
tradiction that f is a ∆0

2-function but not piecewise continuous. Let F be the
collection of all the closed sets C of (the completion of) X such that f � C
is continuous. By Corollary 1 of [4], we have that either there is a countable
family of sets in F which cover X, or else there is some Z ⊆ X which is
homeomorphic to the Baire space ωω and such that Z can not be covered by
a countable family of sets from F . Since the first alternative easily implies
that f is piecewise continuous, we can assume that the second alternative
holds and therefore that f ′ = f � Z is not piecewise continuous. Note that
we can assume also that f ′ is of Baire class 1 (otherwise, since Z is Polish
and zero-dimensional and Y is separable, we would have that f ′ is not even
Σ0

2-measurable and hence not a ∆0
2-function), and therefore we can apply

Theorem 2.1 to f ′: this gives the desired contradiction.

Before proving Theorem 2.1 we need a couple of technical lemmas. For the
next few results, X ′ will be an arbitrary subset of the Polish space X. Given
A,B ⊆ Y we will say that A and B are strongly disjoint if Cl(A)∩Cl(B) = ∅.
Moreover if h : X ′ → Y is any function we put Ah = h−1(Y \ Cl(A)). Note
that for every A,B ⊆ Y one has (A ∪ B)h = Ah ∩ Bh. If h is Σ0

2-measurable
and U, V ⊆ Y are strongly disjoint, then we have that if h � Uh and h � V h are
both piecewise continuous then the whole h is piecewise continuous. In fact,
Uh and V h is a finite Σ0

2-covering of X ′ (by the strongly disjointness of U and
V ), which by the reduction property of Σ0

2 can be refined to a ∆0
2-partition

〈D0, D1〉 of X ′ such that D0 ⊆ Uh, D1 ⊆ V h, and hence both h � D0 and
h � D1 are piecewise continuous. But if h′ : X ′ → Y is such that for some
∆0

2-partition 〈D′
n | n ∈ ω〉 of X ′ we have that h′ � D′

n is piecewise continuous
for every n, then h′ is piecewise continuous on the whole X ′: therefore h is
piecewise continuous as well.

Now let h : X ′ → Y be a Σ0
2-measurable function, x ∈ X ′, and A be

any subset of Y . We say that x is h-irreducible outside A if for every open
neighborhood V ⊆ X ′ of x the function h � Ah∩V is not piecewise continuous.
Otherwise we say that x is h-reducible outside A. It is easy to check that if
x is h-irreducible outside A and A′ ⊆ A then x is also h-irreducible outside
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A′. Moreover if X ′′ ⊆ X ′ and x ∈ X ′′ is h′-irreducible outside A (where
h′ = h � X ′′) then x is also h-irreducible outside A.

Lemma 2.3. Suppose h : X ′ → Y is a Σ0
2-measurable function and U0, . . . , Un ⊆

Y are basic open sets of Y such that range(h) ∩ Cl(Ui) = ∅ for every i ≤ n.
Then h is not piecewise continuous if and only if (∗) there is an x ∈ X ′ and
a basic open set U ⊆ Y strongly disjoint from U0, . . . , Un such that h(x) ∈ U
and x is h-irreducible outside U .

Proof. Put C = Cl(U0) ∪ . . . ∪ Cl(Un). We will prove that h is piecewise
continuous if and only if (∗) does not hold. If h is piecewise continuous then
the same must hold for h � X ′′ where X ′′ is any subset of X ′, therefore one
direction is trivial. For the other direction, assume toward a contradiction
that (∗) does not hold, i.e. for every x ∈ X ′ and every open set U ⊆ Y
strongly disjoint from C such that h(x) ∈ U we have that x is h-reducible
outside U , that is there is some open neighborhood V ⊆ X ′ of x such that
h � Uh ∩ V is piecewise continuous. Let Q be the union of all the open sets
W ⊆ X ′ such that h � W is piecewise continuous (this clearly implies that
also h � Q is piecewise continuous since X ′ is assumed to be separable). We
claim that h � X ′ \Q is continuous (from this easily follows that h is piecewise
continuous). To see this we fix any x ∈ X ′ \Q and let U ⊆ Y be any open set
such that h(x) ∈ U . We want to show that there is some open neighborhood
V of x such that h“(V ∩ (X ′ \Q)) ⊆ U . Let U ′ ⊆ Y be basic open, strongly
disjoint from C, and such that Cl(U ′) ⊆ U (U ′ exists since Y is metric). Let
V ⊆ X ′ be given by the failure of (∗) on the inputs x and U ′, and assume
toward a contradiction that h(x′) /∈ Cl(U ′) for some x′ ∈ V ∩ (X ′ \ Q). In
this case we can clearly find a basic open U ′′ ⊆ Y strongly disjoint from U ′

and C, and such that h(x′) ∈ U ′′. Let V ′ ⊆ X ′ be the open set given by the
failure of (∗) on inputs x′ and U ′′. Since V and V ′ have been chosen in such a
way that h � (U ′)h ∩V and h � (U ′′)h ∩V ′ are piecewise continuous, and since
{(U ′)h∩V, (U ′′)h∩V ′} is a Σ0

2-covering of V ∩V ′, by the strong disjointness of
U ′ and U ′′ we must have that h � V ∩V ′ is piecewise continuous, and therefore
V ∩ V ′ ⊆ Q: but this means that x′ ∈ Q, a contradiction!

Lemma 2.4. Let h : X ′ → Y be a Σ0
2-measurable function, x ∈ X ′, A ⊆ Y ,

and U0, . . . , Un be a sequence of strongly disjoint open subsets of Y . If x is h-
irreducible outside A then there is at most one i ≤ n such that x is h-reducible
outside A ∪ Ui.

Proof. Assume that i ≤ n is such that x is h-reducible outside A ∪ Ui, i.e.
that there is an open neighborhood V ⊆ X ′ of x such that h � (A ∪ Ui)h ∩ V
is piecewise continuous. If there were some j 6= i with the same property,
then there must be some open neighborhood V ′ ⊆ X ′ of x such that h �
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(A ∪ Uj)h ∩ V ′ is piecewise continuous. But since Ui and Uj are strongly
disjoint, this would imply that h � Ah ∩ V ∩ V ′ is piecewise continuous as
well, and thus V ∩V ′ would contradict the fact that x is h-irreducible outside
A.

Finally observe that if f : X → Y is the pointwise limit of a sequence of
functions 〈fm : X → Y | m ∈ ω〉, then we have the following property: if x ∈ X
and U0, U1, . . . are pairwise disjoint open sets such that for infinitely many n’s
there is an m for which fm(x) ∈ Un, then f(x) /∈ Un for each n (otherwise,
fm(x) ∈ Un for all but finitely many m’s contradicting our hypothesis).

Now we are ready to prove Theorem 2.1. The proof essentially uses recur-
sively Lemma 2.3 applied to smaller and smaller subspaces of X to construct
some sequences, and Lemma 2.4 will guarantee that at each stage the con-
struction can be carried out. This is the reason for which we have proved both
the Lemmas for arbitrary functions h with domain a generic subset X ′ of the
Polish space X: in fact we will generally apply them to the restriction of the
original function f to some subset of X, that is with h = f � X ′.

Proof of Theorem 2.1. Assume that f : X → Y is of Baire class 1 (hence also
Σ0

2-measurable) but not piecewise continuous, and let 〈fn | n ∈ ω〉 be a
sequence of continuous functions which converges pointwise to f . We will
construct an open set Û ⊆ Y such that f−1(Û) is a complete Σ0

2-set, and this
will imply that f is not a ∆0

2-function. To be more specific, we will construct
(together with Û) a continuous reduction from the Σ0

2-complete set

S = {z ∈ ω2 | ∃i∀j ≥ i(z(j) = 0)}

to f−1(Û), i.e. a function g : ω2 → X such that

z ∈ S ⇐⇒ g(z) ∈ f−1(Û).

The function g will be defined using a weak Cantor scheme 〈Vs | s ∈ <ω2〉 (that
is a classical Cantor scheme in which we drop the condition Vsa0 ∩ Vsa1 = ∅)
such that for every s, t ∈ <ω2 we have:

1) Vs is an open subset of X;

2) if s ( t then Cl(Vt) ⊆ Vs;

3) diam(Vs) ≤ 2−length(s).

It is straightforward to check that, given such a scheme, the function g : ω2 →
X : z 7→

⋂
n∈ω Vz�n is well-defined (by the completeness of X) and continuous

(in fact it is Lipschitz with constant 1).
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The construction will be carried out by recursion on the rank of s ∈ <ω2
with respect to the order � defined by

s � t ⇐⇒ length(s) < length(t) ∨ (length(s) = length(t) ∧ s ≤lex t),

where≤lex is the usual lexicographical order on <ω2 (the strict part of� will be
denoted by ≺). In fact we will define, together with a scheme 〈Vs | s ∈ <ω2〉
with the properties above, a sequence 〈xs | s ∈ <ω2〉 of points of X and a
sequence 〈Us | s ∈ <ω2〉 of subsets of Y such that for every s ∈ <ω2:

i) xs ∈ Vs;

ii) f(xs) ∈ Us;

iii) Us is basic open and for every t ∈ <ω2 we have that Us and Ut are either
equal or strongly disjoint;

iv) there is some m ∈ ω such that fm“Vs ⊆ Us;

v) xt is f -irreducible outside A for every t � s, where A =
⋃

t′�s Ut′ ;

vi) if s = s′a1 then Us 6= Ut for every2 t � s′a0 (and therefore, in particular,
for every t ⊆ s′).

As already noted, to construct these sequences we will recursively apply
Lemma 2.3 to the restriction of f to smaller and smaller pieces.

At the first stage, let x and U be given as in Lemma 2.3 applied to the whole
f , and let V = f−1

m (U) where m ∈ ω is such that fm(x) ∈ U (such an m must
exists by the fact that f is the limit of the fn’s). Then put V∅ = V , x∅ = x
and U∅ = U . Now let s 6= ∅ and suppose we have defined Vt, xt and Ut for
t ≺ s. If the last digit of s is a 0, that is s = s′a0, then simply put Vs = W ,
xs = xs′ and Us = Us′ , where W is any open set such that Cl(W ) ⊆ Vs′ ,
xs ∈ W and diam(W ) ≤ 2−length(s). Otherwise s = s′a1: by the inductive
hypothesis, condition v) implies that h0 = f � Af ∩Vs′ , where A =

⋃
t�s′a0 Ut,

is not piecewise continuous (otherwise, since xs′a0 ∈ Vs′a0 ⊆ Vs′ , xs′a0 should
be f -reducible outside A).

Claim. There are xs ∈ Vs′ and Us ⊆ Y such that f(xs) ∈ Us, Us is basic
open and strongly disjoint from A (which in particular implies Us 6= Ut for
every t � s′a0), and xt is f -irreducible outside A ∪ Us for every t � s.

Proof of the Claim. By Lemma 2.3 applied to h0 there must be an x0 ∈ Vs′

and a basic open set U0 strongly disjoint from A such that f(x0) = h0(x0) ∈ U0

2Note that s′a0 is the immediate predecessor of s with respect to �.
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and x0 is h0-irreducible outside U0 (hence also h0-irreducible outside A ∪ U0,
since range(h0)∩Cl(A) = ∅, and thus f -irreducible outside A∪U0). If there is
some t � s′a0 such that xt is f -reducible outside A ∪ U0, we can again apply
Lemma 2.3 to h1 = h0 � (A∪U0)f (h1 is not piecewise continuous because x0

is h0-irreducible outside A ∪ U0) to find x1 ∈ Vs′ and a basic open U1 such
that f(x1) ∈ U1, U1 is strongly disjoint from A ∪ U0, and x1 is h1-irreducible
outside A ∪ U0 ∪ U1 (hence also f -irreducible outside A ∪ U1). Moreover, by
Lemma 2.4 it must be the case that also xt is f -irreducible outside A ∪ U1

(in fact xt must be f -irreducible outside A ∪ U for every open set U which
is strongly disjoint from A ∪ U0). Now, it could be the case that there is
another t′ � s′a0 such that xt′ is f -reducible outside A ∪ U1: if this is the
case, apply Lemma 2.3 to h2 = h1 � (A∪U0∪U1)f to get x2 and U2 such that
f(x2) ∈ U2, U2 is basic open and strongly disjoint from A∪U0 ∪U1, and x2 is
h2-irreducible outside A∪U0∪U1∪U2 (hence, in particular, x2 is f -irreducible
outside A∪U2). By Lemma 2.4 again, we must have that both xt and xt′ are
f -irreducible outside A ∪ U2. Arguing inductively in this way, after (at most)
k = |{t ∈ <ω2 | t � s′a0}| + 1-stages we will have found some xk = xs ∈ Vs′

and Uk = Us such that f(xs) ∈ Us, Us is basic open and strongly disjoint from
A, xs is f -irreducible outside A ∪ Us, and xt is f -irreducible outside A ∪ Us

for every t � s′a0 as well. � Claim

Let W ⊆ X be an open neighborhood of xs such that diam(W ) ≤ 2−length(s),
Cl(W ) ⊆ Vs′ and fm“W ⊆ Us for some m, and define Vs = W . This completes
the recursive definition of the sequences required.

It is easy to check that the scheme 〈Vs | s ∈ <ω2〉 and the sequences
〈xs | s ∈ <ω2〉 and 〈Us | s ∈ <ω2〉 constructed in this way are as required,
i.e. that they satisfy 1)–3) and i)–vi). Now put Û =

⋃
s∈<ω2 Us, and let

g : ω2 → X be obtained from 〈Vs | s ∈ <ω2〉 as described above. We have
only to check that g is a reduction of S to f−1(Û). Let 〈Uk | k ∈ ω〉 be an
enumeration without repetitions of 〈Us | s ∈ <ω2〉, so that by condition iii)
the Uk’s are pairwise disjoint and Û =

⋃
k∈ω Uk. If z ∈ S, then for some n̄ ∈ ω

we will have that xz�m = xz�n̄ = x̄ for every m ≥ n̄, therefore g(z) = x̄ and
f(g(z)) = f(x̄) ∈ Uz�n̄ ⊆ Û . Assume now z /∈ S: by conditions vi) and iv),
for infinitely many k’s there is some m ∈ ω such that fm(g(z)) ∈ Uk (since
g(z) ∈ Vz�n for every n ∈ ω), and therefore f(g(z)) /∈ Û by the observation
preceding this proof.
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