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t. We show that propositional dynami
 logi
 and the modal�-
al
ulus are 
losed under produ
t modalities, as de�ned in 
urrentdynami
-epistemi
 logi
s. Our analysis 
lari�es the latter systems, whilealso raising some new questions about �xed-point logi
s.1 Basi
 Closure Properties of Logi
sStandard �rst-order logi
 has some simple but important 
losure properties.First, it is 
losed under relativization : for every formula � and unary predi
ateletter P , there is a formula (�)P whi
h says that � holds in the sub-model
onsisting of all obje
ts satisfying P . One usually thinks of relativization asa synta
ti
 operation whi
h transforms the given formula by relativizing ea
hquanti�er 9x to 9x(Px^ and ea
h quanti�er 8x to 8x(Px !. But one 
an alsothink of evaluating the original formula itself, but then in a 
hanged semanti
model. The 
onne
tion between the two viewpoints is stated inFa
t 1 (Relativization Lemma).M; s � (�)P () M jP; s � �:where M j P is the restri
tion of the model M to its sub-model de�ned bythe predi
ate (or formula with one free variable) P . Relativization is a usefulproperty of abstra
t logi
s, and it is used extensively in proofs of Lindstr�omtheorems. Also useful is 
losure under predi
ate substitutions [ =P ℄�, whi
h mayagain be read as either a synta
ti
 operation, or as a shift to evaluation in asuitably 
hanged model, via the following well-knownFa
t 2 (Substitution Lemma).M; s � [ =P ℄� () M[P :=  M℄; s � �:where M[P :=  M℄ is the model M with the denotation of the predi
ate letterP 
hanged as indi
ated. Substitutions may be viewed as translations of basi
predi
ates into newly de�ned ones.



Even more ambitious operations on models o

ur in the theory of relativeinterpretation between theories. E.g., embedding the �rst-order ordering theoryof the rational numbers into that of the integers requires taking rationals asordered pairs of relatively prime integers (a de�nable subset of the full Cartesianprodu
t Z�Z), and rede�ning their order < a

ordingly. Thus, we now also havea produ
t 
onstru
tion where 
ertain de�nable tuples be
ome the new obje
ts.As is easy to see, the �rst-order language is also 
losed under su
h produ
t
onstru
tions - in a sense whi
h we will not spell out. For our purpose here, wewill de�ne a pre
ise sense of `produ
t 
losure' in terms of modal logi
 below,returning to the general situation at the end.The three mentioned properties also hold of many languages extending �rst-order logi
, su
h as LFP(FO), �rst-order logi
 with added �xed-point operators.But as we just said, our fo
us in this note will be on modal languages, whi
hare rather fragments of a full �rst-order logi
 over dire
ted graphs with unarypredi
ates, although we also add �xed-point operators later on. For su
h modallanguages, and espe
ially vividly, in their epistemi
 interpretation as logi
s ofknowledge and information 
ow, the above properties a
quire spe
ial meaningsof independent interest.2 Closure Properties of Modal Languages2.1 Epistemi
 Logi
Take a modal language with proposition letters, Boolean operators, and uni-versal modalities [i℄ whi
h we read as stating what agent i knows, or maybebetter : what is true to the best of i's information. More pre
isely, in epistemi
pointed graph models M with a
tual world s, representing the information of agroup of agents :M; s � [i℄� () for all t; if sRit; then M; t � �:2.2 Publi
 Announ
ement and De�nable SubmodelsIn this epistemi
 setting, taking the relativization of the 
urrent model M; s toits sub-model M j P; s 
onsisting of all points satisfying the formula P is thenatural rendering of an informational event !P of publi
 announ
ement that P is
urrently true. Thus, model 
hange re
e
ts information update. The language ofpubli
 announ
ement logi
 PAL extends epistemi
 logi
, making these updatesexpli
it by adding modal operators [!P ℄ for truthful announ
ement a
tions :M; s � [!P ℄� () if M; s � P; then M jP; s � �:Here is the relevant 
ompleteness result.



Theorem 1. PAL is axiomatized by the minimal modal logi
 for the new oper-ators [i℄ plus four redu
tion axioms :[!P ℄q $ P ! q for atomi
 fa
ts q;[!P ℄:� $ P ! :[!P ℄�;[!P ℄� ^  $ [!P ℄� ^ [!P ℄ ;[!P ℄[i℄� $ P ! [i℄(P ! [!P ℄�):We 
an read these prin
iples as a 
omplete re
ursive analysis of what agentsknow after they have re
eived new information. But as was pointed out in vanBenthem 2000 [4℄, this 
ompleteness theorem due to Plaza and Gerbrandy reallyjust states the standard re
ursive 
lauses for performing synta
ti
 relativizationof modal formulas. Thus the te
hni
al question be
omes whi
h modal languagesare 
losed under relativization.This is not always the 
ase. E.g., 
onsider an epistemi
 language with anoperator of 
ommon knowledge (everyone knows that everyone knows that, andso on � � � . ), or semanti
ally :M; s � CG� () for all worlds t rea
hable from s by some �nitesequen
e of �i steps (i 2 G);M; t � �:This amounts to adding an operator of re
exive-transitive 
losure over the unionof all individual a

essibility relations. This in�nitary operation takes us fromthe basi
 modal language into a fragment of so-
alled propositional dynami
logi
 (PDL). It 
an be shown that this fragment does not have the relativizationproperty: indeed, the formula [!p℄CGq is not de�nable without modalities [!p℄.Van Benthem, van Eij
k & Kooi 2006 [5℄ proved this and go on to propose ri
herepistemi
 languages, using ri
her fragments of PDL whi
h do have relativization
losure, using so-
alled `
onditional 
ommon knowledge' CG(�;  ) whi
h saysthat � is true in every world rea
hable with steps staying inside the  -worlds.Remark 1. These observations are reminis
ent of the fa
t that languages withgeneralized quanti�ers may la
k relativization 
losure. An example is �rst-orderlogi
 with the added quanti�er \for most obje
ts". To get the 
losure, one needsto add a truly binary quanti�er \Most � are  ".2.3 General Observation and Produ
t UpdatePubli
 announ
ement is just one me
hanism of information 
ow. In real-lifes
enarios, di�erent agents often have di�erent powers of observation. To modelthis, dynami
-epistemi
 logi
 (DEL) works with event modelsA = (E; fRigi;PRE):Here the pre
ondition fun
tion maps events e to pre
ondition formulas PREewhi
h must hold in order for the event to o

ur. Just as worlds in epistemi




models, events 
an be related by a

essibility relations fRig for agents. Now`produ
t update' turns a 
urrent modelM; s into a modelM�A; (s; e) re
ordingthe information of di�erent agents after some event e has taken pla
e in theepistemi
 setting represented by A. Produ
t update rede�nes the universe ofrelevant possible worlds, and the epistemi
 a

essibility relations between them:M�A has domain f(s; a) j s a world in M; a an event in A; (M; s) � PREag:The new un
ertainties satisfy (s; a)Ri(t; b) if both sRit and aRib:The valuation for proposition letters on (s; e) is just as that for s in M:Here un
ertainty among new worlds (s; a); (t; b) 
an only 
ome from old un-
ertainty among s; t via indistinguishable events a; b. In general, this produ
t
onstru
tion 
an blow up the size of the input model M - it does not just goto a de�nable sub-model. In what follows, we will assume that the event modelsare �nite, though in�nitary versions are possible.Despite the apparent 
omplexity of this produ
t 
onstru
tion, there is a nat-ural mat
hing dynami
 epistemi
 language DEL with a new modality [A; e℄ :M; s � [A; e℄� () if M; s � PREe; then M�A; (s; e) � �:Theorem 2. DEL is 
ompletely axiomatizable.Proof. The argument, due to Baltag, Moss & Sole
ki 1998 [2℄, is as follows. Theatomi
 and Boolean redu
tion axioms involved are like the earlier ones for publi
announ
ement, but here is the essential 
lause for the knowledge modality:[A; e℄[i℄� () PREe ! ^eRif in A[i℄[A; f ℄�:By su

essive appli
ation of su
h prin
iples, all dynami
 modalities 
an be elim-inated to obtain a standard epistemi
 formula. utWe sum this up, somewhat loosely, by stating the following:Fa
t 3. Basi
 epistemi
 logi
 is produ
t-
losed.But again, the situation gets more 
ompli
ated when we add 
ommon knowl-edge. In this 
ase, no redu
tion to the language without [A; e℄ modalities is pos-sible. Van Benthem, van Eij
k & Kooi 2006 [5℄ solve this problem by movingto the language E-PDL whi
h is just the propositional dynami
 logi
 version ofepistemi
 logi
, but now allowing the formation of arbitrary `
omplex agents'using the standard PDL program vo
abulary:basi
 agents i, tests ?� on arbitrary formulas � of the language,unions, 
ompositions, and Kleene iteration.They provide an expli
it axiomatization for the dynami
-epistemi
 versionof this with added modalities [A; e℄�. Thus E-PDL has a 
ompleteness theoremlike the earlier ones; but 
f. Se
tion 4 for remaining desiderata.



For present purposes, however, we summarize the gist of this result as follows:`E-PDL is 
losed under the produ
t 
onstru
tion'. In what follows, for 
onve-nien
e, we use obvious existential 
ounterparts to the earlier universal modalities.Here is the 
entral observation of the above paper :Theorem 3. For all � 2E-PDL, and all a
tion models A with event a, theformula hA; ai� has an equivalent formula in E-PDL.Publi
 announ
ements !P are spe
ial a
tion models with just one event withpre
ondition P , equally visible to all agents. Thus, the theorem also says thatE-PDL, or PDL, is 
losed under relativization - as observed earlier in van Ben-them 2000 [4℄. In addition, E-PDL has been shown to be 
losed under predi
atesubstitutions in Kooi 2007 [11℄.The point of the 
urrent paper is to analyze this situation more formally,in terms of general 
losure properties of modal languages, and their �xed-pointextensions. In parti
ular, we provide a new proof of Theorem 3 
larifying itsba
kground in modal �xed-point logi
.3 Closure under Relativization for Modal StandardLanguagesIt is easy to see that the basi
 modal language is 
losed under relativization. Thepro
edure relativizes modalities, just as one does with quanti�ers in �rst-orderlogi
. Likewise, we already mentioned that propositional dynami
 logi
 is 
losedunder relativization. This requires an operation whi
h also transforms programexpressions, as follows: ([�℄�)P = [� jP ℄(�)P :Here one must also relativize programs � to programs � jP , as follows:i jP = ?P ; i; ?P?� jP = ?(� ^ P )(� [ �) jP = � jP [ � jP(�; �) jP = � jP ; � jP(��) jP = (� jP )�:Finally, 
onsider the most elaborate modal �xed-point language, the so-
alled�-
al
ulus. Formulas �(q) with only positive o

urren
es of the proposition letterq de�ne a monotoni
 set transformation in any model M :FM� (X) = fs 2M j (M[q := X ℄; s) � �:gThe formula �q ��(q) de�nes the smallest �xed point of this transformation,whi
h 
an be 
omputed in ordinal stages starting from the empty set as a �rstapproximation. Likewise, �q � �(q) de�nes the greatest �xed point of FM� , with



ordinal stages starting from the whole domain of M as a �rst approximation.Both exist for monotone maps, by the Tarski-Knaster theorem (Brad�eld andStirling 2006 [8℄). For 
onvenien
e, we assume that ea
h o

urren
e of a �xed-point operator binds a unique proposition letter. Here is our �rst observation.Fa
t 4. The modal �-
al
ulus is 
losed under relativization.Proof. We show the universal validity of the following inter
hange law:h!P i�q � �(q)$ P ^ �q � h!P i�(q): (1)Here the o

urren
es of q are still synta
ti
ally positive in h!P i�(q) - in anobvious sense. Now to prove (1), 
ompare the following identities, for all setsX � PM : FMh!P i�(X) =fs 2M jM[q := X ℄; s � h!P i�(q)g=fs 2M jP j (M jP )[q := X ℄; s � �(q)g=FMjP� (X):It should be 
lear that the approximation maps on both sides now work inexa
tly the same way. utStill, there is a di�eren
e with standard �xed-point logi
. One usually thinksof, e.g., a smallest �xed-point formula �q��(q) as de�ning the limit of a sequen
eof ordinal approximations starting from the empty set, whose su

essor stagesare 
omputed by substitution of earlier ones :�0 = ?; ��+1 = �(��=q):But this analogy breaks down between the two sides of the above equation (2).The approximation sequen
es de�ned in a dire
t manner will diverge. Considerthe modal formulas �(q) = �q; P = }>in a model 
onsisting of the numbers 1; 2; 3 in their natural order. Both sequen
esin equation (2) start with the empty set, de�ned by ?, but then they diverge:for h!}>i�q ��q : for }>^ �q � h!}>i�q :h!}>i�?; only true at 2 }> ^ h!}>i�?; only true at 2h!}>i��?; true at 1; 2 }> ^ h!}>i�h!}>i�?; only true at 2:The reason for the divergen
e is that the formula on the right-hand side keepspre�xing formulas with dynami
 model-
hanging modalities, so that we are nowevaluating in models of the form (M jP ) jP , et
.The general observation explaining this divergen
e involves another basi

losure property of logi
al languages that we mentioned in Se
tion 1, viz. 
losureunder substitutions :



Fa
t 5. The Substitution Lemma fails even for the basi
 modal language whenannoun
ement modalities h!P i are added.E.g., 
onsider again our three-point model M, with a proposition letter p trueat 2 only, and let � be the formula h!}>i}p. Now 
onsider the substitution[(h!}>i>)=p℄. First 
onsider the model after performing this substitution: it willassign p to f1; 2g. Hen
e [p := (h!}>i>)M℄h!}>i}p will be true in 1. Next per-form the substitution synta
ti
ally to obtain the formula h!}>i}�h!}>i>� : thisis true nowhere in the model M.Sin
e the modal language is simply translatable into �rst-order logi
, a similarobservation holds for �rst-order logi
 with relativization operators (�)P addedas part of its syntax. The resulting language does not satisfy the usual Substitu-tion Lemma, sin
e the model-
hanging operators ()P 
reate new 
ontexts whereformulas 
an 
hange their truth values. So, model-
hanging operators are ni
edevi
es, but they exa
t a pri
e.Remark 2 (Alternative dynami
 de�nitions of substitution).Fa
t 5 holds for the straightforward operational de�nition of substitutions[�=p℄ as synta
ti
ally repla
ing ea
h o

urren
e of p in  by an o

urren
e of�. However, there is an alternative. In line with earlier approa
hes in `dynami
semanti
s' of �rst-order logi
 (
f. van Benthem 1996 [3℄), Kooi 2007 [11℄ treatssubstitutions [�=p℄ as modalities 
hanging the 
urrent model in its denotation forp. These new modalities satisfy obvious re
ursive axioms pushing them throughBooleans and standard modal operators. To push them also through publi
 an-noun
ement modalities, one 
an �rst rewrite the latter via their PAL re
ursionaxioms, and only then apply the substitution to the 
omponents. Van Eij
k2007 [9℄ shows how this provides an alternative synta
ti
 operational de�nitionof substitution, working inside out. One �rst redu
es innermost PAL or DELformulas to their basi
 modal equivalents, and then performs standard synta
-ti
 substitution in these. Though not 
ompositional, this pro
edure is e�e
tive.When applied to the two approximation sequen
es in our earlier problemati
example, these would now 
ome out being the same after all.Thus, dynami
 modal languages are 
losed under semanti
 substitutions,but �nding the pre
ise 
orresponding synta
ti
 operation in their stati
 baselanguage requires some 
are.4 Closure of Dynami
 Logi
 under Produ
tsTheorem 3 said that the language E-PDL is 
losed under the produ
t opera-tion hA; ei�. The proof in van Benthem, van Eij
k & Kooi 2006 [5℄ uses spe
ialarguments involving Kleene's Theorem for �nite automata and program trans-formations. We provide a new proof whi
h provides further insight by restatingthe situation within modal �xed-point logi
.First, 
onsider the obvious indu
tive proof of Theorem 3, the `Main Re-du
tion'. Its steps follow the 
onstru
tion of the formula �. The atomi
 
ase,



Booleans :;_, and basi
 epistemi
 modalities hii are taken 
are of by the stan-dard DEL redu
tion axioms. The remaining 
ase is that of formulas hA; aih�i with an E-PDL modality involving a 
omplex epistemi
 program �. To pro
eed,we need a deeper analysis of program stru
ture. The following result 
an beproved together with Theorem 3 by a simultaneous indu
tion:Theorem 4. For all A; a, and programs �0 2 E-PDL, there exist E-PDL pro-grams T �0a;b (for ea
h b 2 A) su
h that, for all E-PDL formulas  ,M; s � hA; aih�0i () M; s � _b2AhT �0a;bihA; bi :Proof. We use indu
tion on the 
onstru
tion of the program �0.Case 1: �0 = i.hA; aihii () PREa and _aRib in AhiihA; bi :This 
an be brought into our spe
ial form by settingT ia;b =?PREa; i if aRib in A; and T ia;b = ?; otherwise.Case 2: �0 =?� for some formula �.hA; aih?�i () hA; ai(� ^  ) ()hA; ai� ^ hA; ai () h?(hA; ai�)ihA; ai :Here the less 
omplex formula hA; ai� 
an be taken to be in the language ofE-PDL already, by the simultaneous indu
tion proving Theorem 3. It is easy tothen de�ne the 
orre
t transition predi
ates T ?�a;b for all events b 2 A.Case 3: �0 = � [ � for some formulas �, �.hA; aih� [ �i () hA; ai(h�i _ h�i ) ()hA; aih�i _ hA; aih�i ind:hyp:() _b2AhT�a;bihA; bi _ _b2AhT �a;bihA; bi and, by re
ombining parts of this disjun
tion, using the valid PDL-equivalen
eh�i _ h�i $ h� [ �i , we get the required normal form.Case 4: �0 = �;� for some formulas �, �.hA; aih�;�i () hA; aih�ih�i ind. hyp.1()_b2AhT�a;bihA; bih�i ind. hyp.2() _b2A(hT�a;bi _
2AhT �b;
ihA; 
i )and here, using the minimal logi
 of PDL again, substituting one spe
ial formin another on
e more yields a spe
ial form. E.g., we have the equivalen
eh�i(h�ip _ h
iq) () h�;�ip _ h�; 
iq:



Case 5: �0 = �� for some program �.The 
rux lies in this �nal 
ase : 
ombinations with Kleene iterationshA; aih��i do not redu
e as before. But even so, we 
an analyze them in thesame style, using a simultaneous �xed-point operator �qb� de�ning the propo-sitions hA; bih��i for all events b 2 A in one fell swoop. The need for this si-multaneous re
ursion explains earlier diÆ
ulties in the literature with redu
tionaxioms for 
ommon knowledge with produ
t update. To �nd the right s
hema,�rst re
all the PDL �xed-point equation for Kleene iteration:hA; aih��i () hA; ai( _ h�ih��i ) ()hA; ai _ hA; aih�ih��i ind. hyp.() hA; ai _ _b2AhT �a;bihA; bih��i :Here, again be
ause of the simultaneous indu
tive proof with Theorem 3, we
an think of the �rst disjun
t as being some formula �a of E-PDL. The resultof this unpa
king are simultaneous equivalen
es of the form (with propositionalvariables qa for ea
h a 2 A) :qa $ �a _ _b2AhT �a;biqb: (�)Lemma 1. The denotations of the modal formulas hA; aih��i in a model Mare pre
isely the a-proje
tions of the smallest �xed-point solution to the simulta-neous equations (�).Proof (Lemma 1). Here, smallest �xed-points for simultaneous equations in the��
al
ulus are 
omputed just as those for single �xed-point equations. lemma1 follows by a simple indu
tion, showing that the standard meanings of themodal formulas hA; aih��i in a model M are 
ontained in any solution for thesimultaneous �xed-point equation.We 
al
ulate the meaning of the least �xed-point of (�) through the approx-imation pro
edure and show it is equal to that of hA; aih��i (a 2 A).From now on, we identify formulas by their truth sets in M, reading � asfm 2M j (M;m) � �g. For simpli
ity, we rewrite (�) as follows:qi = �i _ _1�j�nhT �i;jiqj (1 � i � n)Let F be the monotone operator from P(M)n to itself indu
ed by the righthand side of (�), where n is the number of elements in A. More pre
isely, forX = (X1; � � � ; Xn) 2 P(M)n, F (X) = (Y1; � � � ; Yn) where for ea
h 1 � i � n,Yi = �m 2M j (M[fqj := Xjgj=1;��� ;n℄;m) � �i _ _1�j�nhT �i;jiqj	:



Next, for X 2 P(M)n, de�ne hF �(X) j � 2 Oni as follows:F 0(X) =XF �+1(X) = F (F �(X))F �(X) = [�<� F �(X) if � is a limit ordinal.For any m 2 !, we 
an prove the following equation by indu
tion on m.Fm(?) = � _1�j1;j2;��� ;jm�1�n[�i _ hT �i;j1i�j1 _ hT �i;j1ihT �j1;j2i�j2_ � � � _ hT �i;j1ihT �j1;j2i � � � hT �jm�2;jm�1i�jm�1 ℄	1�i�n:Hen
eF!(?) =n(9m < !) (9j1; � � � ; jm�1) hT �i;j1i � � � hT �jm�2;jm�1i�jm�1o1�i�n;whi
h implies F!(?) = F!+1(?) : the least �xed-point is rea
hed in ! steps.Therefore we only have to show that fhA; aiih��i g1�i�n = F!(?).Re
all that, by the de�ning property of T �i;j , for any E-PDL formula  0, any1 � i � n and any state s in M,M; s � hA; aiih�i 0 () M; s � _1�j�nhT �i;jihA; aji 0:By using this 
ondition repeatedly, we get the following equivalen
e: for anyn-tuple s of elements in M and any i with 1 � i � n,M; si � hA; aiih��i () (9m 2 !) M; si � hA; aiih�im () (9m 2 !) (9j1) M; si � hT �i;j1ihA; aj1 ih�im�1 () (9m 2 !) (9j1; j2) M; si � hT �i;j1ihT �j1;j2ihA; aj2 ih�im�2 () � � �() (9m 2 !) (9j1; � � � ; jm) M; si � hT �i;j1ihT �j1;j2i � � � hT �jm�1;jmihA; ajmi () (9m 2 !) (9j1; � � � ; jm) M; si � hT �i;j1ihT �j1;j2i � � � hT �jm�1;jmi�jm() si 2 �F!(?)�iwhere �F!(?)�i is the i-th 
oordinate of F!(?). Hen
e(8i) �M; si � hA; aiih��i � () s 2 F!(?);whi
h is what we desired. ut



What really happens here is this. Computing the expli
it solutions for the pred-i
ates qi after ! steps, one gets the 
ountable disjun
tion over all �nite `pathformulas' of the form hT �i;ji ;T �j1;j2 ; � � � ;T �jn;ki�k. And the latter are exa
tly themeanings of the original propositions hA; aih��i .But we are not done yet. What we need to show next is that the solutionsobtained in this way are a
tually in the language E-PDL! The following lemmatells us the relevant fa
t about the �-
al
ulus. Simultaneous �xed-point equationsof the above spe
ial disjun
tive shape (�) 
an be solved one by one, and thesolutions lie inside dynami
 logi
.Lemma 2. Any system of simultaneous �xed-point equations of (�) has an ex-pli
it minimal solution for ea
h qa in E-PDL. Moreover, the solutions retain thespe
ial disjun
tive form des
ribed in Theorem 4.Proof (Lemma 2). The indu
tive pro
edure produ
ing expli
it E-PDL solutionsworks line by line - like Gaussian Elimination in a system of linear equations.{ Case 1. There is only one q-variable, as with publi
 announ
ements.The line reads q1 $ �1 _ h�1;1iq1. The expli
it solution works just as instandard dynami
 logi
, in theq1 = h��1;1i�1:{ Case 2. There are n lines in the re
ursion s
hema, with n > 1.We �rst solve for the variable q1 as in Case 1 - obtaining an expli
it E-PDLformula �1(q2; � � � ; qn) in the other re
ursion variables. We then substitutethis solution in the remaining n � 1 equations, and solve these indu
tively.Finally, the solutions thus obtained for the q2; � � � ; qn are substituted in�1(q2; � � � ; qn) to also solve for q1.Some synta
ti
 
he
king will show that these solutions remain in the synta
ti
format des
ribed in Theorem 4. But of 
ourse, we also need to show that this isreally a solution for the above �xed-point equations (�), and indeed the smallestone. To prove that, we formulate the algorithm more formally in the followingway (
f. Arnold & Niwinski [1℄ for a more extensive treatment).For any monotone operator G, let G� denote the least �xed point of G.Let F : P(M)n ! P(M)n be the monotone operator indu
ed by the n equa-tions in (�). Now take any X2; � � � ; Xn 2 P(M) and �x them. Next, de�neFX2;��� ;Xn : P(M)! P(M) as follows:FX2;��� ;Xn(X1) = �F (X1; � � � ; Xn)�1;where (X)i is the i-th 
oordinate of X. Sin
e F is monotone, FX2;��� ;Xn is alsomonotone. Then de�ne FX3;��� ;Xn : P(M)! P(M) :FX3;��� ;Xn(X2) = �F ((FX2;��� ;Xn)�; X2; � � � ; Xn)�2:



This is also monotone be
ause F and the fun
tion (X2; � � � ; Xn) 7! (FX2;��� ;Xn)�are both monotone. Continue this pro
ess until we de�ne F;. Then the solutionof the earlier `Gaussian' algorithm is the unique F 0� su
h that(F 0�)i = �F(F 0�)i+1;��� ;(F 0�)n�� (1 � i � n):Note how we 
ompute the rightmost �xed-point �rst here, and then substituteleftward. Hen
e all we have to show is the following:Claim 1. F� = F 0�.The proof is in Arnold & Niwinski [1℄ (see Se
tion 1.4. in this book). To makeour paper self-
ontained, we will put a proof in an Appendix below. utThis 
on
ludes the proofs of Theorems 3 and 4. utIllustration 1. We 
ompute the solutions for the update model A =GFED�ABCa1�� 2 // GFED�ABCb1�� 2rrPREa = p; PREb = >This des
ribes a se
urity s
enario where agent 1 
orre
tly observes that event ais taking pla
e, while agent 2 mistakenly believes that b o

urs. Here is a des
rip-tion of the non-trivial 
ommon knowledge for 1; 2 arising from this s
enario, bywriting out the �xed point equation for hA; ai h(1 [ 2)�ir.By step 1 in the proof,T 1a;a =?PREa; 1 =?p; 1; T 1a;b = ?T 1b;a = ?; T 1b;b =?PREb; 1 = 1T 2a;a = ?; T 2a;b =?PREa; 2 =?p; 2T 2b;a = ?; T 2b;b =?PREb; 2 = 2:Then by step 3,T 1[2a;a = T 1a;a [ T 2a;a =?p; 1; T 1[2a;b = T 1a;b [ T 2a;b =?p; 2T 1[2b;a = T 1b;a [ T 2b;a = ?; T 1[2b;b = T 1b;b [ T 2b;b = 1 [ 2:Now put qa = hA; ai h(1 [ 2)�ir; qb = hA; bi h(1 [ 2)�ir:



Then by (�), qa = hA; air _ hT 1[2a;a iqa _ hT 1[2a;b iqb= (PREa ^ r) _ h?p; 2iqb _ h?p; 1iqa= ((p ^ r) _ h?p; 2iqb) _ h?p; 1iqaand qb = hA; bir _ hT 1[2b;a iqa _ hT 1[2b;b iqb= (PREb ^ r) _ h1 [ 2iqb= r _ h1 [ 2iqb:Sin
e the order of eliminating variables does not in
uen
e the solutions, we �rstsolve qb as follows : qb = h(1 [ 2)�ir:By substituting this solution in the above equation for qa,qa = �(p ^ r) _ h?p; 2i h(1 [ 2)�ir� _ h?p; 1iqa= �(p ^ r) _ h?p; 2; (1 [ 2)�ir� _ h?p; 1iqa:Hen
e qa = h(?p; 1)�i�(p ^ r) _ h?p; 2; (1 [ 2)�ir�= h(?p; 1)�i(p ^ r) _ h(?p; 1)�; ?p; 2; (1 [ 2)�irWe 
an easily 
he
k that these qa; qb satisfy the equations we gave by anindependent semanti
 argument.Remark 3. The 
al
ulation in this example is really just the following well-knownfa
t about the modal �-
al
ulus :Let �(q1; q2),  (q1; q2) be positive formulas in the modal �-
al
ulus. Thenthe simultaneous least �xed points of these formulas is��q1:�(q1; �q2: (q1; q2)); �q2: (�q1:�(q1; q2); q2)�:In the proof of Claim 1 (
f. the Appendix), we only use the 
ondition that Fis monotone. This means we 
an generalize the result as follows:Corollary 1. The modal �-
al
ulus is 
losed under the formation of simultane-ous �xed-point operators.5 Closure of the �-
al
ulus under Produ
tsFinally, we show how the pre
eding analysis also extends to the �-
al
ulus itself,where it even be
omes simpler.



Theorem 5. The �-
al
ulus is 
losed under produ
t operators.Proof. We prove the statement by indu
tion on the 
omplexity of formulas. Weonly 
onsider the �xed point 
ase, as the others go like before.Our main task is to analyze �xed-point 
omputations in produ
t modelsM�A in terms of similar 
omputations in the original model M. The followingidea turns out to work here. Let X be a subset of M � A. Modulo the eventpre
onditions possibly ruling out some pairs, we 
an des
ribe X , without lossof information, in terms of the sequen
e of its proje
tions to the events in A,viewed as a �nite set of indi
es. Thus, we 
an des
ribe the 
omputation inM�Aby means of a �nite set of 
omputations in M . The following set of de�nitionsand observations makes this pre
ise.Take any Kripke model M and any event model A. Let n be the num-ber of elements of A and let A = fajg1�j�n. There are 
anoni
al mappings� : P(M)n ! P(M�A) and � : P(M�A)! P(M)n with � Æ � = id:�(X) = [1�j�n(Xj � fajg) \ (M�A);�(Y ) =fYjg1�j�n;where Yj = fx 2M j (x; aj) 2 Y g:Given a positive formula �(q) in the modal �-
al
ulus, let FM�A� : P(M�A)! P(M�A) be the monotone fun
tion indu
ed by �(q). De�ne F�(q) : P(M)n !P(M)n as follows: F�(q) = � Æ FM�A� Æ �:We 
laim that FM�A� is monotone if and only if F�(q) is monotone. SupposeFM�A� is monotone. Sin
e �; � are monotone and 
ompositions of monotonefun
tions are monotone, F�(q) is also monotone. To prove the 
onverse, supposeF�(q) is monotone. Pi
k any X;Y 2 P(M � A) with X � Y . First note thatFM�A� (X) � FM�A� (Y ) holds if and only if �ÆFM�A� (X) � �ÆFM�A� (Y ) holds.Hen
e all we have to 
he
k is � Æ FM�A� (X) � � Æ FM�A� (Y ). But� Æ FM�A� (X) = � Æ FM�A� �� Æ �(X)� = � Æ FM�A� Æ ���(X)�= F�(q)��(X)� � F�(q)��(Y )� = � Æ FM�A� Æ ���(Y )�= � Æ FM�A� �� Æ �(Y )� = � Æ FM�A� (Y );where the above in
lusion follows from the monotoni
ity of F�(q) and �.Moreover, there is a further 
anoni
al 
orresponden
e: if X is an F�(q)-�xedpoint, then �(X) is an FM�A� -�xed-point, and if Y is an FM�A� -�xed-point,then �(Y ) is an F�(q)-�xed-point. Hen
e the least F�(q)-�xed-point 
orrespondsto the least FM�A� -�xed-point.



Remark 4 (Relating �xed-point 
omputations in di�erent models). The argumentabove may be seen as a spe
ial 
ase of the \Transfer Lemma" (Theorem 1.2.15)in Arnold & Niwinski [1℄. This lemma only uses our � fun
tion, while we addedthe fun
tion � for 
larity, to restri
t an input to the inverse image of � { whi
his why the equation � Æ � = id holds. For further ba
kground to this kind ofargument, 
f. Bloom and �Esik [7℄.So far, we have seen that the least FM�A� -�xed-point 
an be 
orrelated withthe least F�(q)-�xed-point in a natural way. Our next task is to show thathA; ai�q:�(q) is a
tually de�nable in the modal �-
al
ulus. For that purpose,�rst note that hA; aji �q � �(q) de�nes the j-th 
oordinate of the least FM�A� -�xed-point. By the de�nition of �, it is also the j-th 
oordinate of the leastF�(q)-�xed-point. Now, sin
e the modal �-
al
ulus is 
losed under simultaneous�xed-point operators by Corollary 1, if we 
an express F�(q) by a formula of themodal �-
al
ulus with positive variables, we are done.To prove this, we generalize the synta
ti
 analysis employed in Se
tion 4 toformulas with many variables q = q1; � � � ; qm. For any formula �(q) in the modal�-
al
ulus, de�ne FM�A�(q) : P(M�A)m ! P(M�A) as follows:FM�A�(q) (Y ) = f(s; a) j �(M�A)[qk := Yk℄; (s; a)� � �(q)g;where Y 2 (M�A)m.Claim 2. For any formula �(q) in the modal �-
al
ulus, there are formulas  �su
h that F�(q) = FM � where F�(q) : P(M)m�n ! P(M)n and(�) For any 1 � k � m, if all the o

urren
es of qk in � are positive (negativeresp.), then for ea
h 1 � j; j0 � n, all the o

urren
es of pk;j in ( �)j0 arepositive (negative resp.),Proof (Claim 2). In the following de�nitions, we only display the essential argu-ment variables needed to understand the fun
tion values. We prove the statementby indu
tion on the 
omplexity of �. As in the proof of Lemma 1, we identifyformulas with their truth sets. Also, if  is a sequen
e of formulas,  j is the j-th
oordinate of  .{ Case 1: � = p (p is not in q).F�(q) = �p ^ PREa1 ; � � � ; p ^ PREan�:Hen
e ( �(q))j = p ^ PREaj . It is easy to 
he
k (�).{ Case 2: � = qk (qk is the k-th 
oordinate of q).F�(q)(X) = fXk;j ^ PREajg1�j�n:Hen
e ( �(q))j = pk;j ^ PREaj , where pk;j is the j-th variable in the k-thblo
k 
orresponding to qk. It is also easy to 
he
k (�).



{ Case 3: � = �1 ^ �2. F�(q) =  �1 ^  �2 :Hen
e  �(q) =  �1 ^  �2 . It is easy to 
he
k (�).{ Case 4: � = :�0. F�(q) = f:( �0)j ^ PREajg1�j�n:Hen
e ( �(q))j = :( �0)j ^ PREaj . It is easy to 
he
k (�) by our indu
-tive hypothesis, and the simultaneous de�nition for positive and negativeo

urren
es.{ Case 5: � = hii�0:For any 1 � j � n and x 2M ,x 2 �F�(q)(X)�j ()(1 � 9j0 � n) (9y 2M) �xRiy ^ ajRiaj0 ^ y 2 �F�0(q)(X)�j0�:To see that this is true, observe that the 
ondition y 2 �F�0(q)(X)�j0 implies(y; aj0) 2M�A. Therefore, we 
an put� �(q)�j = _ajRiaj0 hii� �0(q)�j0 :{ Case 6: � = �q0 � �0, where all the o

urren
es of q0 are positive in �0.F�(q)(X) =n�FM�A�q0��0(q0;q)(�(X))�jo1�j�n=n�(FM�A�0(q0;q)(�(X)))��jo1�j�n=�X0 7! FM �0 (X0;X)��;where (F (�))� is the least F -�xed-point. By indu
tion hypothesis, all theo

urren
es of p0j are positive in ( �0)j0 for any 1 � j; j0 � n, where p0
orresponds to q0. Sin
e the modal �-
al
ulus is 
losed under simultaneous�xed-point operators, we 
an put  �(q) = �p0 � �0(q), that are also in themodal �-
al
ulus. Sin
e �-operators do not 
hange the positivity (negativity)of variables not bounded by them, (�) also holds in this 
ase. utThe proof of the last 
ase explains why we needed to `blow-up' in the numberof variables in Claim 2. Also, we proved the 
laim for arbitrary formulas (notonly for positive ones) be
ause otherwise we 
annot use the indu
tion hypothesisin Case 4 (if � is positive, then �0 must be negative). utRemark 5 (E�e
tive redu
tion axioms).As in Fa
t 4, we 
ould also an expli
it redu
tion axiom for hA; aji�q:�(q) bytaking the j-th 
oordinate of the simultaneous �xed-point expression �q: �(q).Sin
e our proof is e�e
tive, we 
an e�e
tively 
ompute the shape of the axiom.



The 
ommon point of the proofs of Theorems 3,4 and Theorem 5 is thatboth E-PDL and the modal �-
al
ulus are 
losed under simultaneous �xed pointoperators (in the 
ase of E-PDL, su
h operators have the spe
ial form of (�)).The proof of that fa
t is essentially the same (it is that of Claim 1) but the 
aseof the full �-
al
ulus is easier be
ause we have arbitrary �-operators, while inE-PDL, we have to 
he
k if the solution is also in E-PDL.6 Con
lusions and Further Dire
tionsT he pre
eding results pla
e 
urrent modal logi
s of information update in a moregeneral light, relating their `redu
tion axiom' approa
h for obtaining 
onservativedynami
 extensions of existing stati
 logi
s to abstra
t 
losure properties of �xed-point logi
s. Our observations also suggest a number of more general issues, ofwhi
h we mention a few.Fine-stru
ture of the �-
al
ulus Our results show that produ
t 
losure holdsfor basi
 modal logi
, propositional dynami
 logi
 PDL, and the �-
al
ulus itself.We think that there are further natural fragments with this property, in
ludingthe �-!-
al
ulus, whi
h only allows �xed-points whose 
omputations stop uni-formly by stage !. Another 
ase to look for produ
t 
losure is the hierar
hy ofnested �xed-point alternation. Our proof removes modal produ
t operators bymeans of simultaneous �xed-points, whi
h 
an then be removed by nested singleones, but we have not yet analyzed its pre
ise synta
ti
 details.On another matter, our proof method in Se
tion 4 suggests that PDL isdistinguished inside the �-
al
ulus as the smallest fragment 
losed under somevery simple `additive' �xed-point equations. This seems related to the fa
t thatthe semanti
s of dynami
 logi
 only des
ribes linear 
omputation tra
es, andno more 
omplex 
onstru
ts, su
h as arbitrary �nite trees. Can this equationalobservation be turned into a 
hara
terization of PDL?Conne
tions with automata theory The �rst proof of produ
t 
losure forPDL in van Benthem & Kooi 2004 [6℄ used �nite automata to serve as `
on-trollers' restri
ting state sequen
es in produ
t modelsM�A. The se
ond, di�er-ent proof in Van Benthem, van Eij
k & Kooi 2006 [5℄ involved a non-trivial useof Kleene's Theorem for regular languages, and hen
e again a 
onne
tion with�nite automata. What is the exa
t 
onne
tion of this proof with our spe
ialunwinding of simultaneous `disjun
tive' �xed-point equations inside PDL? CanKleene's Theorem be interpreted as a normal-form result in �xed-point logi
?There may also be a more general automata-based take on our arguments,given the strong 
onne
tion between automata theory and �-
al
ulus.33 Added in print. Martin Otto (p.
.) has proposed using the produ
t 
losure of MSOLand the bisimulation invarian
e of the mu-
al
ulus with added produ
t modalitiesfor an alternative proof of our Theorem 5, by an appeal to the Janin-WalukiewizTheorem.



Logi
al languages and general produ
t 
losure Finally, we know nowthat many modal languages are produ
t-
losed. What about logi
al systems ingeneral? We would like to have an abstra
t formulation whi
h applies to a wider
lass of logi
al systems, su
h as �rst-order logi
 and its extensions in abstra
tmodel theory. We feel that produ
t 
losure is a natural requirement on expressivepower, espe
ially given its earlier motivation in terms of relative interpretability.But the 
orre
t formulation may have to be stronger than our notion in thispaper. Even in the modal 
ase, our proofs would also go through if we allowed,say, de�nable substitutions for atomi
 proposition letters in produ
t models.Also, one might also try to split our modal notion into full produ
t 
losure pluspredi
ate substitutions, treating our use of pre
onditions as a 
ase of de�nabledomain relativization.There may also be a 
onne
tion here with the Feferman-Vaught Theorem,and produ
t 
onstru
tions redu
ing truth in the produ
t to truth of relatedstatements in the 
omponent models. After all, our proof of uniform de�nabilityof dynami
 modal operators hA; ai� indu
es an obvious translation relating truthof � in a produ
t model M�A to that of some e�e
tive translation of � in the
omponent model M.Finally, one way of seeing how strong produ
t 
losure really is would be toask a 
onverse question. For instan
e, assume that a fragment of the �-
al
ulus isprodu
t-
losed. Does it follow that it is 
losed under simultaneous �xed-points?In all, our results, though somewhat te
hni
al and limited in s
ope, seem toprovide a vantage point for raising many interesting new questions.A
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, 17(2):231{253, 2007.7 Appendix7.1 Proof of Claim 1Proof (Claim 1). By the property of F 0�, it suÆ
es to show the following:(F�)i = �F(F�)i+1;��� ;(F�)n��(1 � i � n):We prove that by indu
tion on i.{ Case 1: i = 1.Sin
e F(F�)2;��� ;(F�)n((F�)1) = (F (F�))1 = (F�)1;(F�)1 is a �xed point of F(F�)2;��� ;(F�)n . Sin
e �F(F�)2;��� ;(F�)n�� is the least�xed point of F(F�)2;��� ;(F�)n , �F(F�)2;��� ;(F�)n�� � (F�)1.Sin
e �F(F�)2;��� ;(F�)n�� � (F�)1 and F is monotone,F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n� � F ((F�)1; (F�)2; � � � ; (F�)n)= F�:Hen
e�F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n��j � (F�)j (2 � j � n):Combining this with�F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n��1=F(F�)2;��� ;(F�)n�(F(F�)2;��� ;(F�)n)�� = (F(F�)2;��� ;(F�)n)�;we get �F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n��j���(F(F�)2;��� ;(F�)n��; (F�)2; � � � ; (F�)n��jfor any 1 � j � n, whi
h means that �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n� isan F -pre�xed point.Sin
e F� is the least F -pre�xed point, F� is a subset of�(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n�, whi
h implies (F�)1 � (F(F�)2;��� ;(F�)n)�.



{ Case 2: i > 1.By the indu
tion hypothesis,F(F�)i+1;��� ;(F�)n((F�)i) = (F (F�))i = (F�)i:Therefore, (F�)i is a �xed point of F(F�)i+1;��� ;(F�)n . Sin
e �F(F�)i+1;��� ;(F�)n��is the least �xed point of F(F�)i+1;��� ;(F�)n , �F(F�)i+1;��� ;(F�)n�� � (F�)i.Let Fj (1 � j � i) be the ones uniquely determined by the followingequations: Fj = �FFj+1 ;��� ;Fi;(F�)i+1;��� ;(F�)n��; (1 � j � i� 1)Fi = �F(F�)i+1;��� ;(F�)n��:By the same argument as before, we 
an prove�F (F1; � � � ; Fi; (F�)i+1; � � � ; (F�)n)�j � Fj (1 � j � i);Fj � (F�)j (1 � j � i):Hen
e F �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n�� �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n�;whi
h means �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n� is an F -pre�xed point. Sin
e F� is the least F -pre�xed point,F� � �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n�, whi
h implies(F�)i � �F(F�)i+1;��� ;(F�)n��. ut7.2 Produ
t 
losure of CF(P )In this subse
tion, we show how our methods apply to the so-
alled `
ontinuousfragment' of the modal mu-
al
ulus, where the operators 
orresponding to for-mulas are S
ott 
ontinuous. (Hen
e, in parti
ular, all �xed-points are rea
heduniformly in all models by stage omega.) This fragment was re
ently 
hara
ter-ized synta
ti
ally in Fontaine [10℄.De�nition 1. Let PROP be the set of all proposition letters, and P any subsetof PROP. Let I be the set of all agents. We de�ne the 
ontinuous fragmentsCF(P ) by indu
tion by indu
tion on the 
omplexity of formulas in the modal�-
al
ulus as follows:CF(P ) : � ::= p 2 P j  j � _ � j � ^ � j hii� j �x � �(x)where  is any formula in the modal �-
al
ulus without any free variable in P ,i is an agent in I, and �(x) is a formula in CF(P [ fxg) and x is not in P .The following is easy to 
he
k:



Remark 6. fCF(P ) j P � PROPg is 
losed under simultaneous �xed points inthe following sense: Let P , fx1; � � � ; xng be sets of propositional letters whi
h aredisjoint. Then if �1(x1; � � � ; xn); � � � ; �n(x1; � � � ; xn) are in CF(P[fx1; � � � ; xng),then following formula is in CF(P ):�0BBB� x1x2...xn1CCCA �0BBB� �1(x1; � � � ; xn)�2(x1; � � � ; xn)...�n(x1; � � � ; xn)1CCCAProposition 1. For any P � PROP, CF(P ) is produ
t 
losed.Proof. We prove the statement by indu
tion on the 
omplexity of formulas. Weonly 
onsider the �xed point 
ase, as other 
ases go in a standard way. We willuse the same notations as in the proof of Theorem 5.The proof is almost all the same as the 
ase for the modal �-
al
ulus. Thedi�eren
e is that CF(P ) is not 
losed under �xed points. But by using the aboveRemark, we 
an deal with this problem.By the same argument in Theorem 5, if we 
an express F�(q) by a formulain CF(P [ fx1; � � � ; xng) for some fresh variables x1; � � � ; xn, we are done.To prove this, we need the following Claim:Claim 3. For any set of propositional letters Q, the following is true:Let �(q) be a formula in CF(Q) where q is a sequen
e of free variables (pos-sibly not in �) with length m. Take free variables xk;j(1 � k � m; 1 � j � n) sothat they do not appear in any pre
ondition formulas in A or in q or in Q. Wemay assume this situation in any subformula of �(q) by 
hoosing fresh variablesproperly. Then there is a sequen
e of formulas  �(q) in CF(Q [ fxk;jg) withlength n su
h that F�(q) = FM �(q) .Proof. In the following de�nitions, we only display the essential argument vari-ables needed to understand the fun
tion values. We prove the statement byindu
tion on the 
omplexity of �. We identify formulas with their truth sets.Also, if  is a sequen
e of formulas,  j is the j-th 
oordinate of  .{ Case 1: � = p (p is not in q).F�(q) = �p ^ PREa1 ; � � � ; p ^ PREan�:Hen
e ( �(q))j = p ^ PREaj and this is in CF(Q). Sin
e ea
h xk;j does notappear in any pre
ondition formulas in A, ( �(q))j is also in CF(Q[fxk;jg).{ Case 2: � = qk0 (qk0 is the k0-th 
oordinate of q).F�(q)(X) = fXk0;j ^ PREajg1�j�n:Hen
e ( �(q))j = xk0 ;j ^PREaj . By the same reasoning as in Case 1, PREajis in CF(Q [ fxk;jg) and hen
e xk0;j ^ PREaj is also in CF(Q [ fxk;jg).



{ Case 3: � = �1 _ �2. F�(q) =  �1 _  �2 :Hen
e  �(q) =  �1 _  �2 is in CF(Q [ fxk;jg) by indu
tion hypothesis.{ Case 4: � = �1 ^ �2. F�(q) =  �1 ^  �2 :Hen
e  �(q) =  �1 ^  �2 is in CF(Q [ fxk;jg) by indu
tion hypothesis.{ Case 5: � = hii�0:For any 1 � j � n and x 2M ,x 2 �F�(q)(X)�j ()(1 � 9j0 � n) (9y 2M) �xRiy ^ ajRiaj0 ^ y 2 �F�0(q)(X)�j0�:To see that this is true, observe that the 
ondition y 2 �F�0(q)(X)�j0 implies(y; aj0) 2M�A. Therefore, we 
an put� �(q)�j = _ajRiaj0 hii� �0(q)�j0 ;whi
h is in CF(Q [ fxk;jg).{ Case 6: � = �q0 � �0, where �0 is in CF(Q [ fq0g).F�(q)(X) =n�FM�A�q0��0(q0;q)(�(X))�jo1�j�n=n�(FM�A�0(q0;q)(�(X)))��jo1�j�n=�X0 7! FM �0 (X0;X)��;where (F (�))� is the least F -�xed-point. By indu
tion hypothesis,  �0 are inCF(Q [ fxk;jg [ fyjg) where fyjg 
orresponds to X0 in the above formulaand satis�es the 
ondition required in the Claim. Then by Remark, we 
anput  �(q) = �yj � �0 , that are in CF(Q [ fxk;jg). utThis 
ompletes the proof of Proposition 1. ut


