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Abstract. We show that propositional dynamic logic and the modal
p-calculus are closed under product modalities, as defined in current
dynamic-epistemic logics. Our analysis clarifies the latter systems, while
also raising some new questions about fixed-point logics.

1 Basic Closure Properties of Logics

Standard first-order logic has some simple but important closure properties.
First, it is closed under relativization: for every formula ¢ and unary predicate
letter P, there is a formula (¢)F which says that ¢ holds in the sub-model
consisting of all objects satisfying P. One usually thinks of relativization as
a syntactic operation which transforms the given formula by relativizing each
quantifier 3z to Jz(PzA and each quantifier Vz to Vz(Pz —. But one can also
think of evaluating the original formula itself, but then in a changed semantic
model. The connection between the two viewpoints is stated in

Fact 1 (Relativization Lemma).
M,sE (¢)F < M|P,sE 6.

where M | P is the restriction of the model M to its sub-model defined by
the predicate (or formula with one free variable) P. Relativization is a useful
property of abstract logics, and it is used extensively in proofs of Lindstrém
theorems. Also useful is closure under predicate substitutions [/ P]¢, which may
again be read as either a syntactic operation, or as a shift to evaluation in a
suitably changed model, via the following well-known

Fact 2 (Substitution Lemma).
M, s E [/Plp <= M[P:=yM] sE ¢.

where M[P:= M] is the model M with the denotation of the predicate letter
P changed as indicated. Substitutions may be viewed as translations of basic
predicates into newly defined ones.



Even more ambitious operations on models occur in the theory of relative
interpretation between theories. E.g., embedding the first-order ordering theory
of the rational numbers into that of the integers requires taking rationals as
ordered pairs of relatively prime integers (a definable subset of the full Cartesian
product Z x Z), and redefining their order < accordingly. Thus, we now also have
a product construction where certain definable tuples become the new objects.
Asg is easy to see, the first-order language is also closed under such product
constructions - in a sense which we will not spell out. For our purpose here, we
will define a precise sense of ‘product closure’ in terms of modal logic below,
returning to the general situation at the end.

The three mentioned properties also hold of many languages extending first-
order logic, such as LFP(FO), first-order logic with added fixed-point operators.
But as we just said, our focus in this note will be on modal languages, which
are rather fragments of a full first-order logic over directed graphs with unary
predicates, although we also add fixed-point operators later on. For such modal
languages, and especially vividly, in their epistemic interpretation as logics of
knowledge and information flow, the above properties acquire special meanings
of independent interest.

2 Closure Properties of Modal Languages

2.1 Epistemic Logic

Take a modal language with proposition letters, Boolean operators, and uni-
versal modalities [;] which we read as stating what agent ¢ knows, or maybe
better: what is true to the best of i’s information. More precisely, in epistemic
pointed graph models M with actual world s, representing the information of a
group of agents:

M, s F [i]¢p < for all t,if sR;t,then M, t F ¢.

2.2 Public Announcement and Definable Submeodels

In this epistemic setting, taking the relativization of the current model M, s to
its sub-model M | P, s consisting of all points satisfying the formula P is the
natural rendering of an informational event ! P of public announcement that P is
currently true. Thus, model change reflects information update. The language of
public announcement logic PAL extends epistemic logic, making these updates
explicit by adding modal operators [!P] for truthful announcement actions:

M,sE [IP]¢p <= if M,sF P,then M|P,s E ¢.

Here is the relevant completeness result.



Theorem 1. PAL is axiomatized by the minimal modal logic for the new oper-
ators [i] plus four reduction azioms:

[[Plg < P —q for atomic facts q,
[[Pl-¢ <+ P — —[\Plo,

[(Plpny < [IPloA[IP]y,
[[Pllilp <+ P —[i](P— [\P]®).

We can read these principles as a complete recursive analysis of what agents
know after they have received new information. But as was pointed out in van
Benthem 2000 [4], this completeness theorem due to Plaza and Gerbrandy really
just states the standard recursive clauses for performing syntactic relativization
of modal formulas. Thus the technical question becomes which modal languages
are closed under relativization.

This is not always the case. E.g., consider an epistemic language with an
operator of common knowledge (everyone knows that everyone knows that, and
soon ---. ), or semantically:

M, s F Cg¢p <= for all worlds ¢ reachable from s by some finite
sequence of ~; steps (i € G),M,t F ¢.

This amounts to adding an operator of reflezive-transitive closure over the union
of all individual accessibility relations. This infinitary operation takes us from
the basic modal language into a fragment of so-called propositional dynamic
logic (PDL). It can be shown that this fragment does not have the relativization
property: indeed, the formula [!p]Csq is not definable without modalities [!p].
Van Benthem, van Eijck & Kooi 2006 [5] proved this and go on to propose richer
epistemic languages, using richer fragments of PDL which do have relativization
closure, using so-called ‘conditional common knowledge’ Cq(¢,v) which says
that ¢ is true in every world reachable with steps staying inside the -worlds.

Remark 1. These observations are reminiscent of the fact that languages with
generalized quantifiers may lack relativization closure. An example is first-order
logic with the added quantifier “for most objects”. To get the closure, one needs
to add a truly binary quantifier “Most ¢ are ”.

2.3 General Observation and Product Update

Public announcement is just one mechanism of information flow. In real-life
scenarios, different agents often have different powers of observation. To model
this, dynamic-epistemic logic (DEL) works with event models

A = (E,{R;};,PRE).

Here the precondition function maps events e to precondition formulas PRE,
which must hold in order for the event to occur. Just as worlds in epistemic



models, events can be related by accessibility relations {R;} for agents. Now
‘product update’ turns a current model M, s into a model Mx A, (s, e) recording
the information of different agents after some event e has taken place in the
epistemic setting represented by A. Product update redefines the universe of
relevant possible worlds, and the epistemic accessibility relations between them :

M x A has domain {(s,a) | s a world in M, a an event in A, (M, s) F PRE,}.
The new uncertainties satisfy (s, a)R;(t,b) if both sR;t and aR;b.

The valuation for proposition letters on (s,e) is just as that for s in M.

Here uncertainty among new worlds (s,a), (¢,b) can only come from old un-
certainty among s,t via indistinguishable events a,b. In general, this product
construction can blow up the size of the input model M - it does not just go
to a definable sub-model. In what follows, we will assume that the event models
are finite, though infinitary versions are possible.

Despite the apparent complexity of this product construction, there is a nat-
ural matching dynamic epistemic language DEL with a new modality [A, e]:

M,sF[A)e]p < if M,sF PRE,, then Mx A, (s,e) E ¢.
Theorem 2. DEL is completely axiomatizable.

Proof. The argument, due to Baltag, Moss & Solecki 1998 [2], is as follows. The
atomic and Boolean reduction axioms involved are like the earlier ones for public
announcement, but here is the essential clause for the knowledge modality :

[A,ellilp <> PRE. —» A [i][A, flo.
eR;f in A

By successive application of such principles, all dynamic modalities can be elim-
inated to obtain a standard epistemic formula. O

We sum this up, somewhat loosely, by stating the following:
Fact 3. Basic epistemic logic is product-closed.

But again, the situation gets more complicated when we add common knowl-
edge. In this case, no reduction to the language without [A, e] modalities is pos-
sible. Van Benthem, van Eijck & Kooi 2006 [5] solve this problem by moving
to the language E-PDL which is just the propositional dynamic logic version of
epistemic logic, but now allowing the formation of arbitrary ‘complex agents’
using the standard PDL program vocabulary:

basic agents i, tests 7¢ on arbitrary formulas ¢ of the language,
unions, compositions, and Kleene iteration.

They provide an explicit axiomatization for the dynamic-epistemic version
of this with added modalities [A,e]¢. Thus E-PDL has a completeness theorem
like the earlier ones; but cf. Section 4 for remaining desiderata.



For present purposes, however, we summarize the gist of this result as follows:
‘E-PDL is closed under the product construction’. In what follows, for conve-
nience, we use obvious existential counterparts to the earlier universal modalities.
Here is the central observation of the above paper:

Theorem 3. For all ¢ €E-PDL, and all action models A with event a, the
formula (A,a)¢ has an equivalent formula in E-PDL.

Public announcements !P are special action models with just one event with
precondition P, equally visible to all agents. Thus, the theorem also says that
E-PDL, or PDL, is closed under relativization - as observed earlier in van Ben-
them 2000 [4]. In addition, E-PDL has been shown to be closed under predicate
substitutions in Kooi 2007 [11].

The point of the current paper is to analyze this situation more formally,
in terms of general closure properties of modal languages, and their fixed-point
extensions. In particular, we provide a new proof of Theorem 3 clarifying its
background in modal fixed-point logic.

3 Closure under Relativization for Modal Standard
Languages

It is easy to see that the basic modal language is closed under relativization. The
procedure relativizes modalities, just as one does with quantifiers in first-order
logic. Likewise, we already mentioned that propositional dynamic logic is closed
under relativization. This requires an operation which also transforms program
expressions, as follows:

([x]o)" = [x| P)(¢)".
Here one must also relativize programs 7 to programs 7| P, as follows:

i|P =17P;i;?P

2%|P = 2(4AP)
(mUB)|P = w|PUG|P
(m;0)|P = w|P;6|P

(x)| P = (x| P)".

Finally, consider the most elaborate modal fixed-point language, the so-called
p-calculus. Formulas ¢(g) with only positive occurrences of the proposition letter
q define a monotonic set transformation in any model M:

F'(X) ={s e M| (M[g := X],5) F ¢.}

The formula pq e ¢(q) defines the smallest fixed point of this transformation,
which can be computed in ordinal stages starting from the empty set as a first
approximation. Likewise, vq ® ¢(q) defines the greatest fixed point of FM, with



ordinal stages starting from the whole domain of M as a first approximation.
Both exist for monotone maps, by the Tarski-Knaster theorem (Bradfield and
Stirling 2006 [8]). For convenience, we assume that each occurrence of a fixed-
point operator binds a unique proposition letter. Here is our first observation.

Fact 4. The modal p-calculus is closed under relativization.

Proof. We show the universal validity of the following interchange law:

(\Pyug e ¢(q) <> P A pg e (!{P)p(q). (1)

Here the occurrences of ¢ are still syntactically positive in (!P)¢(q) - in an
obvious sense. Now to prove (1), compare the following identities, for all sets
X C PM.

Fipys(X) ={s € M| Mg := X],s £ (IP)é(q)}
={s e M|P | (M| P)[q := X],5 F ¢(q)}

M|P
=F"P (x).

It should be clear that the approximation maps on both sides now work in
exactly the same way. O

Still, there is a difference with standard fixed-point logic. One usually thinks
of, e.g., a smallest fixed-point formula pge ¢(q) as defining the limit of a sequence
of ordinal approximations starting from the empty set, whose successor stages
are computed by substitution of earlier ones:

¢’ =1, 6" =o(6"/a).

But this analogy breaks down between the two sides of the above equation (2).
The approximation sequences defined in a direct manner will diverge. Consider
the modal formulas

#(q) =0q, P=OT

in a model consisting of the numbers 1, 2, 3 in their natural order. Both sequences
in equation (2) start with the empty set, defined by L, but then they diverge:

for (IO T)ug e Og: for T A pg e (1OT)Og:
(1OT)OL, only true at 2 OT A(IOTIOL, only true at 2
(IoTHYOdL, true at 1,2 ST A(STIO(IOTYAL, only true at 2.

The reason for the divergence is that the formula on the right-hand side keeps
prefixing formulas with dynamic model-changing modalities, so that we are now
evaluating in models of the form (M|P)|P, etc.

The general observation explaining this divergence involves another basic
closure property of logical languages that we mentioned in Section 1, viz. closure
under substitutions:



Fact 5. The Substitution Lemma fails even for the basic modal language when
announcement modalities (\P) are added.

E.g., consider again our three-point model M, with a proposition letter p true
at 2 only, and let ¢ be the formula (!$T)Op. Now consider the substitution
[((!$T)T)/p]. First consider the model after performing this substitution: it will
assign p to {1,2}. Hence [p := (({GT)T)MIOT)Op will be true in 1. Next per-
form the substitution syntactically to obtain the formula (! T)O ((!OT)T): this
is true nowhere in the model M.

Since the modal language is simply translatable into first-order logic, a similar
observation holds for first-order logic with relativization operators (¢)F added
as part of its syntax. The resulting language does not satisfy the usual Substitu-
tion Lemma, since the model-changing operators ()¥ create new contexts where
formulas can change their truth values. So, model-changing operators are nice
devices, but they exact a price.

Remark 2 (Alternative dynamic definitions of substitution).

Fact 5 holds for the straightforward operational definition of substitutions
[¢/p]Y as syntactically replacing each occurrence of p in ¢ by an occurrence of
¢. However, there is an alternative. In line with earlier approaches in ‘dynamic
semantics’ of first-order logic (cf. van Benthem 1996 [3]), Kooi 2007 [11] treats
substitutions [¢/p] as modalities changing the current model in its denotation for
p. These new modalities satisfy obvious recursive axioms pushing them through
Booleans and standard modal operators. To push them also through public an-
nouncement modalities, one can first rewrite the latter via their PAL recursion
axioms, and only then apply the substitution to the components. Van Eijck
2007 [9] shows how this provides an alternative syntactic operational definition
of substitution, working inside out. One first reduces innermost PAL or DEL
formulas to their basic modal equivalents, and then performs standard syntac-
tic substitution in these. Though not compositional, this procedure is effective.
When applied to the two approximation sequences in our earlier problematic
example, these would now come out being the same after all.

Thus, dynamic modal languages are closed under semantic substitutions,
but finding the precise corresponding syntactic operation in their static base
language requires some care.

4 Closure of Dynamic Logic under Products

Theorem 3 said that the language E-PDL is closed under the product opera-
tion (A, e)¢. The proof in van Benthem, van Eijck & Kooi 2006 [5] uses special
arguments involving Kleene’s Theorem for finite automata and program trans-
formations. We provide a new proof which provides further insight by restating
the situation within modal fixed-point logic.

First, consider the obvious inductive proof of Theorem 3, the ‘Main Re-
duction’. Its steps follow the construction of the formula ¢. The atomic case,



Booleans =, V, and basic epistemic modalities (i) are taken care of by the stan-
dard DEL reduction axioms. The remaining case is that of formulas (A, a)(7)y
with an E-PDL modality involving a complex epistemic program 7. To proceed,
we need a deeper analysis of program structure. The following result can be
proved together with Theorem 3 by a simultaneous induction:

Theorem 4. For all A,a, and programs ©' € E-PDL, there exist E-PDL pro-
grams ij (for each b € A) such that, for all E-PDL formulas 1,

M, s E(A,a)(n')) <= M,sk \/ (T5)(A, by
beA

Proof. We use induction on the construction of the program =’.
Case 1: 7' = 4.

(A,a)(i) < PRE,and \/ (i)}(A, D).
aR;b in A
This can be brought into our special form by setting
"y =?PREq;i if aR;bin A, and T, = L, otherwise.
Case 2: ' =7« for some formula a.
(A,a)(?a)y) <= (A,a)(aANY) <=
(A a)a A{A,a)p <= (?((A,a)a))(A,a).

Here the less complex formula (A, a)a can be taken to be in the language of
E-PDL already, by the simultaneous induction proving Theorem 3. It is easy to
then define the correct transition predicates TZ% for all events b € A.

Case 3: 7' = a U S for some formulas a, 3.

(A,a)(aU By <= (Aa)(a)yV (B)Y) <=
(A, a)(a)p V (A, a)(B)p "EE \/ (T2, ) (A0 v \/ (T2 ,)(A, b))

beA beA

and, by recombining parts of this disjunction, using the valid PDL-equivalence
() V (B)) > {(aU BY1h, we get the required normal form.
Case 4: ' = «; 8 for some formulas «, 3.

(A, aas B)p = (A, a)(a)(B)y "2LP
\/ (T2 A, B8y P2\ [ (1) \/ (TENA, o))
beA beA ceEA

and here, using the minimal logic of PDL again, substituting one special form
in another once more yields a special form. E.g., we have the equivalence

(@({(B)pV (M) <= (a;B)p V(7).



Case 5: ' = 7* for some program 7.

The crux lies in this final case: combinations with Kleene iterations
(A, a){m*)1p do not reduce as before. But even so, we can analyze them in the
same style, using a simultaneous fized-point operator uqpe defining the propo-
sitions (A, b)(m*)1 for all events b € A in one fell swoop. The need for this si-
multaneous recursion explains earlier difficulties in the literature with reduction
axioms for common knowledge with product update. To find the right schema,
first recall the PDL fixed-point equation for Kleene iteration:

(A,a) (") = (A,a)(P vV (m)(r")y) =

(A, v (A, aym) () "D (AL ayp v \/ (T (AL B
beA

Here, again because of the simultaneous inductive proof with Theorem 3, we
can think of the first disjunct as being some formula a, of E-PDL. The result
of this unpacking are simultaneous equivalences of the form (with propositional
variables ¢, for each a € A):

IRETVAVR LAY (+)
beA

Lemma 1. The denotations of the modal formulas (A,a)(m*) in a model M
are precisely the a-projections of the smallest fixed-point solution to the simulta-
neous equations ().

Proof (Lemma 1). Here, smallest fixed-points for simultaneous equations in the
p—calculus are computed just as those for single fixed-point equations. lemma
1 follows by a simple induction, showing that the standard meanings of the
modal formulas (A, a)(7*)¢ in a model M are contained in any solution for the
simultaneous fixed-point equation.

We calculate the meaning of the least fixed-point of (x) through the approx-
imation procedure and show it is equal to that of (A, a){(7*)¢ (a € A).

From now on, we identify formulas by their truth sets in M, reading ¢ as
{m e M | (M, m) k ¢}. For simplicity, we rewrite () as follows:

g =a; V \/ (T7;)¢; (1<i<n)
1<j<n

Let F' be the monotone operator from P(M)™ to itself induced by the right
hand side of (x), where n is the number of elements in A. More precisely, for
X =(X1, - ,Xn) e PM)"™, F(X) = (Y1,---,Y,) where for each 1 <i <n,

Yi={meM|M[{g := X;}j=1,-nlm) Fa; v \/ (T7))g}.

1<j<n



Next, for X € P(M)", define (F¢(X) | £ € On) as follows:

FOX)=X
FEU(X) = F(F8 (X))
F&(X) = | F"(X) if £ is a limit ordinal.

n<§

For any m € w, we can prove the following equation by induction on m.

Fm(J-) = { \/ [ai \4 <Tz ]1>a]1 <Tzﬂ]1><TJZ ]2>aj2

1<g1,92, 0 . jm—1<n

VAT TS o) AT %] i
Hence

F(L) ={@m <) @jr - sim) T (T i}

which implies F* (L) = F**1(L): the least fixed-point is reached in w steps.
Therefore we only have to show that {(A, a2>( Mli<icn = FY(L).
Recall that, by the defining property of T7., for any E-PDL formula ¢’, any
1 <i < n and any state s in M,

z]’
M, s E (A, a)(m)p' <= M,sE \/ (T7;)(A, a;)¢".
1<<n

By using this condition repeatedly, we get the following equivalence: for any
n-tuple s of elements in M and any ¢ with 1 <14 <mn,

M, s; E (A, a;) (7"
< (Im e w) M, s; E (A, a;){(m)"¢
= (Fm € w) (1) M, si = (T, (A, aj, ) (m) ™'y
< (Im € w) (Fj1,72) M, s; E (Tfﬁ)(TJ’: J2>(A,aj2>(7r>m*2z/1
= Fm e w) G,y dm) M, si BT NKTT 50 (T A @, )00

— (Elm € w) (Eljl, e 7]m) M)Si F <T ><T]T;7]2> <T]T,l:n 1,]m>ajm
= s; € (FY(1)),

where (F“(J_))i is the i-th coordinate of F“(L). Hence
(Vi) (M, s; F (A, a;)(7*)¢y) <= s € F“(L),

which is what we desired. a



What really happens here is this. Computing the explicit solutions for the pred-
icates ¢; after w steps, one gets the countable disjunction over all finite ‘path
formulas’ of the form (T7; ;TF . ;.- s TT p)ak. And the latter are exactly the
meanings of the original propositions (A, a){(7*)1).

But we are not done yet. What we need to show next is that the solutions
obtained in this way are actually in the language E-PDL! The following lemma
tells us the relevant fact about the u-calculus. Simultaneous fixed-point equations
of the above special disjunctive shape (x) can be solved one by one, and the
solutions lie inside dynamic logic.

Lemma 2. Any system of simultaneous fized-point equations of (x) has an ez-
plicit minimal solution for each q, in E-PDL. Moreover, the solutions retain the
special disjunctive form described in Theorem 4.

Proof (Lemma 2). The inductive procedure producing explicit E-PDL solutions
works line by line - like Gaussian Elimination in a system of linear equations.

— Case 1. There is only one g-variable, as with public announcements.
The line reads ¢1 <> a1 V (B1,1)¢1- The explicit solution works just as in
standard dynamic logic, in the

@ = (ﬁfﬁal-

— Case 2. There are n lines in the recursion schema, with n > 1.
We first solve for the variable g; as in Case 1 - obtaining an explicit E-PDL
formula o1 (ga,- - ,¢n) in the other recursion variables. We then substitute
this solution in the remaining n — 1 equations, and solve these inductively.
Finally, the solutions thus obtained for the g¢o,---,q, are substituted in
o1(q2, "+ ,qn) to also solve for ¢.

Some syntactic checking will show that these solutions remain in the syntactic
format described in Theorem 4. But of course, we also need to show that this is
really a solution for the above fixed-point equations (x), and indeed the smallest
one. To prove that, we formulate the algorithm more formally in the following
way (cf. Arnold & Niwinski [1] for a more extensive treatment).

For any monotone operator G, let G, denote the least fixed point of G.
Let F: P(M)™ — P(M)™ be the monotone operator induced by the n equa-
tions in (x). Now take any X, ---,X, € P(M) and fix them. Next, define
Fx,... x,: P(M) = P(M) as follows:

Fx, .. x,(X1)= (F(Xl,--- ’X"))1’

where (X); is the i-th coordinate of X . Since F' is monotone, Fx, ... x, is also
monotone. Then define Fy, ... x, : P(M) — P(M):

FX:S"“’Xn (X2) = (F((FX27"'7X'n.)*7X27 T aXn))Q‘



This is also monotone because F' and the function (X, -+, X,) = (Fx,,... x, )«

)

are both monotone. Continue this process until we define Fj. Then the solution
of the earlier ‘Gaussian’ algorithm is the unique F such that

(FD)i = (Frn)ign(7).), (1<i<n).

Note how we compute the rightmost fixed-point first here, and then substitute
leftward. Hence all we have to show is the following:

Claim 1. F, = F}.

The proof is in Arnold & Niwinski [1] (see Section 1.4. in this book). To make
our paper self-contained, we will put a proof in an Appendix below. O

This concludes the proofs of Theorems 3 and 4. O

Illustration 1. We compute the solutions for the update model A =

1 1
) v
(O——(D:
PRE, = p, PRE, =T
This describes a security scenario where agent 1 correctly observes that event a
is taking place, while agent 2 mistakenly believes that b occurs. Here is a descrip-

tion of the non-trivial common knowledge for 1,2 arising from this scenario, by
writing out the fived point equation for (A,a) ((1U2)*)r.

By step 1 in the proof,

T;,a =?PRE,;1 ="p; 1, Ta17b =1

T,ia =1, Tbl,b =?PREy;1 =1
Ta27a =1, Tj’b =?7PRE,;2 =7p;2
T2, =1, T?, =?PREy;2 = 2.

Then by step 3,

T, =Ty UT;, =1, 1,5 =T}, UT?, =7p;2
T,}}f = Tbl,a U T,ia =1, Tblim = Tb{b U T,ib =102

Now put

da = (A,a) (LU2)")r, g = (A, b){((1U2)")r.



Then by (),
Ga = (A, a)r V (T)2%)qa V (T057)a
= (PRE, A7)V (?p;2)qy V (?p; 1)qa
=((pAr)V(p;2)g) V (?P; 1)qa
and
@ = (A, b)r V(T V (T a
= (PRE[, A T‘) vV <]. U 2>q17
=7V (1U2)q.

Since the order of eliminating variables does not influence the solutions, we first
solve qp as follows:

g = {((1U2)*)r.
By substituting this solution in the above equation for qq,
G = ((PAT)V (205 2) (1U2)")7) V (?p; 1)qa
= ((pAr) vV (?p;2;(1U2)")r) V (79 1)qa-
Hence
¢ = (o )" ) ((p A7)V (79325 (LU 2)")r)
=(p; D) Ar) V(TP )% 7p; 25 (10U 2)%)r

We can easily check that these q.,qy satisfy the equations we gave by an
independent semantic argument.

Remark 3. The calculation in this example is really just the following well-known
fact about the modal u-calculus:

Let ¢(q1,¢92), ¥(q1,q2) be positive formulas in the modal p-calculus. Then
the simultaneous least fixed points of these formulas is

(M(h D1, g2 Y(q1,q2))s g2 (a1 9(q15 G2), (12)) .

In the proof of Claim 1 (cf. the Appendix), we only use the condition that F'
is monotone. This means we can generalize the result as follows:

Corollary 1. The modal p-calculus is closed under the formation of simultane-
ous fized-point operators.

5 Closure of the p-calculus under Products

Finally, we show how the preceding analysis also extends to the p-calculus itself,
where it even becomes simpler.



Theorem 5. The p-calculus is closed under product operators.

Proof. We prove the statement by induction on the complexity of formulas. We
only consider the fixed point case, as the others go like before.

Our main task is to analyze fixed-point computations in product models
M x A in terms of similar computations in the original model M. The following
idea turns out to work here. Let X be a subset of M x A. Modulo the event
preconditions possibly ruling out some pairs, we can describe X, without loss
of information, in terms of the sequence of its projections to the events in A,
viewed as a finite set of indices. Thus, we can describe the computation in M x A
by means of a finite set of computations in M. The following set of definitions
and observations makes this precise.

Take any Kripke model M and any event model A. Let n be the num-
ber of elements of A and let A = {a;}i1<j<n. There are canonical mappings
m: PM)" - P(M x A) and ¢t: P(M x A) - P(M)" with 7o =1id:

(X)) = |J (X; x{g;})n (M x A),
1<j<n

uY) ={Y;}hi<j<n,

where V; = {x e M | (z,a;) € Y}.
Given a positive formula ¢(q) in the modal u-calculus, let F;VIXA :P(M x A)

— P(MxA) be the monotone function induced by ¢(q). Define F*(4) : P(M)" —
P(M)™ as follows:

Fo9) = 0 F;)VIXA o,

We claim that F;VIXA is monotone if and only if F¢(%) is monotone. Suppose
F;VIXA is monotone. Since m,t are monotone and compositions of monotone

functions are monotone, F®(@ is also monotone. To prove the converse, suppose
F%(9) is monotone. Pick any X,Y € P(M x A) with X C Y. First note that
FYPA(X) € Fy™A(Y) holds if and only if 1o F)"*A(X) C 1o F)™A(Y) holds.
Hence all we have to check is ¢ o F;VIXA(X) Cuo F;VIXA(Y). But

vo FYPAX) = vo By (o (X)) = 1o FYPA o m(u(X)
— 9@ (L(X)) C Fo(@) (L(Y)) =1 oFdl)vI><A OW(L(Y))
=10 F;VIXA(ﬂ' ou(Y)) =10 F;;VIXA(Y),

where the above inclusion follows from the monotonicity of F¢(@) and ..

Moreover, there is a further canonical correspondence: if X is an F¢(9)-fixed
point, then 7(X) is an Fdl)VIXA—ﬁxed—point, and if Y is an FyXA—ﬁxed—point,
then +(Y) is an F?(9)_fixed-point. Hence the least F*(9)-fixed-point corresponds
to the least Fdl)\/IXA—ﬁxed—point.



Remark 4 (Relating fized-point computations in different models). The argument
above may be seen as a special case of the “Transfer Lemma” (Theorem 1.2.15)
in Arnold & Niwinski [1]. This lemma only uses our ¢ function, while we added
the function 7 for clarity, to restrict an input to the inverse image of + — which
is why the equation 7w o + = id holds. For further background to this kind of
argument, cf. Bloom and Esik [7].

So far, we have seen that the least F;)VIXA

-fixed-point can be correlated with

the least F®(@-fixed-point in a natural way. Our next task is to show that
(A, a)uq.¢(q) is actually definable in the modal u-calculus. For that purpose,
first note that (A, a;) pg e ¢(q) defines the j-th coordinate of the least F;VIXA—
fixed-point. By the definition of ¢, it is also the j-th coordinate of the least
F?(@)_fixed-point. Now, since the modal pi-calculus is closed under simultaneous
fixed-point operators by Corollary 1, if we can express F*(9) by a formula of the
modal p-calculus with positive variables, we are done.

To prove this, we generalize the syntactic analysis employed in Section 4 to
formulas with many variables ¢ = ¢q1,- - , ¢m- For any formula ¢(q) in the modal
p-calculus, define Fdl)\f[qx)A: PM x A)™ — P(M x A) as follows:

Fy st (Y) = {(s,a) | (M x A)lgr := Yil, (s,0)) F é(q)},

where Y € (M x A)™.

Claim 2. For any formula ¢(q) in the modal p-calculus, there are formulas 14
such that F¢(9) = F}/Yi where F*@) . P(M)™" — P(M)" and

(x) For any 1 < k < m, if all the occurrences of q in ¢ are positive (negative
resp.), then for each 1 < j,j' < n, all the occurrences of pi; in (Yy); are
positive (negative resp.),

Proof (Claim 2). In the following definitions, we only display the essential argu-
ment variables needed to understand the function values. We prove the statement
by induction on the complexity of ¢. As in the proof of Lemma 1, we identify
formulas with their truth sets. Also, if 4 is a sequence of formulas, v; is the j-th
coordinate of 1.

— Case 1: ¢ = p (p is not in q).
Fola) — (p APRE,,, - ,pAPRE,,).

Hence (Y4(q)); = p A PRE,;. It is easy to check (x).
— Case 2: ¢ = qi (qr is the k-th coordinate of q).

F¢(q) (X) e {Xk,] A PREa]}lgjgn

Hence (14(q))j = Pr,j A PRE,;, where py ; is the j-th variable in the k-th
block corresponding to g. It is also easy to check (x).



— Case 3: ¢ = ¢1 A ¢o.

Fd)(q) = ¢¢1 A ¢¢2'

Hence 9 4(q) = ¥ g, Ay, It is easy to check ().
— Case 4: ¢ = ¢’

Fd’(q) — {ﬁ(w¢r)J A PREa]}ISJSn

Hence (Y4(q)); = =(1¢); A PREq;. It is easy to check () by our induc-
tive hypothesis, and the simultaneous definition for positive and negative
occurrences.

— Case 5: ¢ = (i)¢'.
Forany 1 <j<nandz € M,

z e (FP9(X)), <=
(1 <3 <n) By eM) (:URiy ANajR;a; ANy € (Fd”(q)(X))j,).

To see that this is true, observe that the condition y € (F¢'(@) (X ))j, implies
(y,a;) € M x A. Therefore, we can put

Ws); =V Osw);-

ajRiajr

— Case 6: ¢ = ug' o ¢', where all the occurrences of ¢’ are positive in ¢'.
o(q) _f(pMxA
FoO () ={ (P38 (7O}

={(FYG =00}
=(X"+— Fx, (X', X))

*7

where (F(+)), is the least F-fixed-point. By induction hypothesis, all the
occurrences of p’; are positive in (g ); for any 1 < j,j' < n, where p’
corresponds to ¢'. Since the modal p-calculus is closed under simultaneous
fixed-point operators, we can put ¥ gq) = up’ e 4 (q), that are also in the
modal p-calculus. Since p-operators do not change the positivity (negativity)
of variables not bounded by them, (*) also holds in this case.

O

The proof of the last case explains why we needed to ‘blow-up’ in the number
of variables in Claim 2. Also, we proved the claim for arbitrary formulas (not
only for positive ones) because otherwise we cannot use the induction hypothesis
in Case 4 (if ¢ is positive, then ¢’ must be negative). O

Remark 5 (Effective reduction axioms).

As in Fact 4, we could also an explicit reduction axiom for (A, a;)ug.¢(q) by
taking the j-th coordinate of the simultaneous fixed-point expression pq.14(q)-
Since our proof is effective, we can effectively compute the shape of the axiom.



The common point of the proofs of Theorems 3,4 and Theorem 5 is that
both E-PDL and the modal u-calculus are closed under simultaneous fixed point
operators (in the case of E-PDL, such operators have the special form of (x)).
The proof of that fact is essentially the same (it is that of Claim 1) but the case
of the full u-calculus is easier because we have arbitrary p-operators, while in
E-PDL, we have to check if the solution is also in E-PDL.

6 Conclusions and Further Directions

T he preceding results place current modal logics of information update in a more
general light, relating their ‘reduction axiom’ approach for obtaining conservative
dynamic extensions of existing static logics to abstract closure properties of fixed-
point logics. Our observations also suggest a number of more general issues, of
which we mention a few.

Fine-structure of the p-calculus Our results show that product closure holds
for basic modal logic, propositional dynamic logic PDL, and the u-calculus itself.
We think that there are further natural fragments with this property, including
the p-w-calculus, which only allows fixed-points whose computations stop uni-
formly by stage w. Another case to look for product closure is the hierarchy of
nested fixed-point alternation. Our proof removes modal product operators by
means of simultaneous fixed-points, which can then be removed by nested single
ones, but we have not yet analyzed its precise syntactic details.

On another matter, our proof method in Section 4 suggests that PDL is
distinguished inside the p-calculus as the smallest fragment closed under some
very simple ‘additive’ fixed-point equations. This seems related to the fact that
the semantics of dynamic logic only describes linear computation traces, and
no more complex constructs, such as arbitrary finite trees. Can this equational
observation be turned into a characterization of PDL?

Connections with automata theory The first proof of product closure for
PDL in van Benthem & Kooi 2004 [6] used finite automata to serve as ‘con-
trollers’ restricting state sequences in product models M x A. The second, differ-
ent proof in Van Benthem, van Eijck & Kooi 2006 [5] involved a non-trivial use
of Kleene’s Theorem for regular languages, and hence again a connection with
finite automata. What is the exact connection of this proof with our special
unwinding of simultaneous ‘disjunctive’ fixed-point equations inside PDL? Can
Kleene’s Theorem be interpreted as a normal-form result in fixed-point logic?

There may also be a more general automata-based take on our arguments,
given the strong connection between automata theory and p-calculus.?

3 Added in print. Martin Otto (p.c.) has proposed using the product closure of MSOL
and the bisimulation invariance of the mu-calculus with added product modalities
for an alternative proof of our Theorem 5, by an appeal to the Janin-Walukiewiz
Theorem.



Logical languages and general product closure Finally, we know now
that many modal languages are product-closed. What about logical systems in
general? We would like to have an abstract formulation which applies to a wider
class of logical systems, such as first-order logic and its extensions in abstract
model theory. We feel that product closure is a natural requirement on expressive
power, especially given its earlier motivation in terms of relative interpretability.
But the correct formulation may have to be stronger than our notion in this
paper. Even in the modal case, our proofs would also go through if we allowed,
say, definable substitutions for atomic proposition letters in product models.
Also, one might also try to split our modal notion into full product closure plus
predicate substitutions, treating our use of preconditions as a case of definable
domain relativization.

There may also be a connection here with the Feferman-Vaught Theorem,
and product constructions reducing truth in the product to truth of related
statements in the component models. After all, our proof of uniform definability
of dynamic modal operators (A, a)¢ induces an obvious translation relating truth
of ¢ in a product model M x A to that of some effective translation of ¢ in the
component model M.

Finally, one way of seeing how strong product closure really is would be to
ask a converse question. For instance, assume that a fragment of the u-calculus is
product-closed. Does it follow that it is closed under simultaneous fixed-points?

In all, our results, though somewhat technical and limited in scope, seem to
provide a vantage point for raising many interesting new questions.
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Appendix

Proof of Claim 1

Proof (Claim 1). By the property of F, it suffices to show the following:

(F)i = (F(r)iga, (F).) (1 <0 < ).

We prove that by induction on i.

— Casel:7=1.

Since
F(p,)s (P, (F)1) = (F(F))h = (Foi,

(F.)1 is a fixed point of Fip,y, ... (r.).- Since (F(g,),,... (F.),), 15 the least
fixed point of F(F*)27...7(F*)n, (F(F*)g,---7(F*)n)* C (Fy)1-
Since (F(p, ), (F.).), C (Fx)1 and F is monotone,

F((F(F*)z, ,(F*)n)*a (F*)27 ) (F*)n) g F((F*)17 (F*)Qa Tty (F*)n)
= F,.
Hence

(F((Firys (poya)es (Fo)ay+ 5 (F)a)) € (R); 2<j<n),

J

Combining this with

(F(Frgare (royn)es (Bl (Fo)n) )
=F(r)e (Foyn (F(E ) (B0 )x) = (F(E oy (B0 )5

we get

(F(Fr o ) (Foa, o, (F)))
g (((F(F*)z, ,(F*)n)*’ (F*)27 ) (F*)n))

for any 1 < j < n, which means that ((F(g,),,... (F.). )« (Fx)2, -5 (Fi)n) is
an F-prefixed point.
Since Fj is the least F-prefixed point, F} is a subset of

((F(F*)z,“' ,(F*)'n,)*’ (F*)27 Tty (F*)n)7 which implies (F*)l - (F(F*)zw'w(F*)n)*'



— Case 2: 17> 1.
By the induction hypothesis,

Fryipr (R, (Fe)i) = (F(FY))i = (F)i

Therefore, (F.); is a fixed point of Fiz,),, ... .(r,), - Since (F(F*)i+1y"' ,(F*)n)*
is the least fixed point of F(F*)i+17'“7(F*)n’ (F(F*)i+17“'7(F*)n)* C (Fy)i.

Let F; (1 < j < i) be the ones uniquely determined by the following
equations:

F; = (FF].“,...,Fi,(p*)i“,...,(p*)n)*, (1 <j<i-— 1)
Fy = (F(r)ign, (P
By the same argument as before, we can prove
(F(Fla ana(F*)z+1a a(F*)n))J gFj (1 S] SZ),
FC(B); (1<j<i).
Hence

F(F17 ot 7Fi—17 (F(F*)lurl,--- ,(F*)n)*a (F*)i+17 Ty (F*)n)
- (F17 e 7Fi—17 (F(F*)i+1,"' ,(F*)n)*a (F*)i+17 ) (F*)TL)7

which means (Fi,- -+, Fi_1, (F(F.), 1, ,(F)o s (Fe)ig1s -+ 5 (Fu)n) is an F-
prefixed point. Since Fy is the least F-prefixed point,

F* g (Fl, v 7Fi—1, (F(F*)i+1,-“ 7(F>k)n)*’ (F*)i+17 e, (F*)n), which implies
(Fe)i € (F(F*)i+17"'7(F*)n)*' u

7.2 Product closure of CF(P)

In this subsection, we show how our methods apply to the so-called ‘continuous
fragment’ of the modal mu-calculus, where the operators corresponding to for-
mulas are Scott continuous. (Hence, in particular, all fixed-points are reached
uniformly in all models by stage omega.) This fragment, was recently character-
ized syntactically in Fontaine [10].

Definition 1. Let PROP be the set of all proposition letters, and P any subset
of PROP. Let I be the set of all agents. We define the continuous fragments
CF(P) by induction by induction on the complexity of formulas in the modal
pu-calculus as follows:

CF(P): p==peP|p|oVe|oNng|(i)¢]|pzep(z)

where ¢ is any formula in the modal p-calculus without any free variable in P,
i is an agent in I, and p(x) is a formula in CF(P U {z}) and x is not in P.

The following is easy to check:



Remark 6. {CF(P) | P C PROP} is closed under simultaneous fixed points in
the following sense: Let P, {x1,--- ,x,} be sets of propositional letters which are
disjoint. Then if ¢y (21, -+ ,2n),  + ,Pn(®1,- - ,2,) arein CF(PU{z1, -+ ,2,}),
then following formula is in CF(P):

T (1,0, %)

T Pa(x1, -+, %)
pl| |

Tn ¢n($1a"'7wn)

Proposition 1. For any P C PROP, CF(P) is product closed.

Proof. We prove the statement by induction on the complexity of formulas. We
only consider the fixed point case, as other cases go in a standard way. We will
use the same notations as in the proof of Theorem 5.

The proof is almost all the same as the case for the modal p-calculus. The
difference is that CF(P) is not closed under fixed points. But by using the above
Remark, we can deal with this problem.

By the same argument in Theorem 5, if we can express F?(4) by a formula
in CF(PU{xy,---,z,}) for some fresh variables z1,--- ,z,, we are done.

To prove this, we need the following Claim:

Claim 3. For any set of propositional letters @, the following is true:

Let ¢(q) be a formula in CF(Q) where q is a sequence of free variables (pos-
sibly not in ¢) with length m. Take free variables x;, ;(1 <k <m,1<j<n) so
that they do not appear in any precondition formulas in A or in q or in Q). We
may assume this situation in any subformula of ¢(q) by choosing fresh variables
properly. Then there is a sequence of formulas v 4q) in CF(Q U {z;}) with

length n such that F(@ = Flﬂ/[ .
(q)

Proof. In the following definitions, we only display the essential argument vari-
ables needed to understand the function values. We prove the statement by
induction on the complexity of ¢. We identify formulas with their truth sets.
Also, if 9 is a sequence of formulas, ¢; is the j-th coordinate of ).

— Case 1: ¢ = p (p is not in q).
Fola) — (p APRE,,,--- ,pAPRE,,).

Hence (Y4(q)); = P A PRE,; and this is in CF(Q). Since each z ; does not
appear in any precondition formulas in A, (¢4(q)); is also in CF(QU{ws ;}).
— Case 2: ¢ = qir (qr is the k'-th coordinate of q).

FPO(X) = {Xp; A PRE, }1<j<n-

Hence (14(q)); = ®1',; APRE,;. By the same reasoning as in Case 1, PRE,;
is in CF(Q U {zt,;}) and hence zy j A PRE,; is also in CF(Q U {x;}).



— Case 3: ¢ = ¢1 V ¢o.

F¢(Q) = ¢¢1 \% ¢¢2'

Hence 9 4(q) = %4, V ¥y, is in CF(Q U {1 ;}) by induction hypothesis.
— Case 4: ¢ = ¢1 A po.

rola) — Yo, ANbg,.
Hence v 4(q) = ¥ ¢, ANy, is in CF(Q U {z;}) by induction hypothesis.
— Case 5: ¢ = (i)¢'.
Forany 1 <j<nandz € M,
z € (FY(X)), <
(1 <3 <n) By eM) (:URiy AajRiaj Ny € (F? (q)(X))j,).

To see that this is true, observe that the condition y € (Fd’l(q) (X))j, implies
(y,aj) € M x A. Therefore, we can put

Wo); = V @) (s@),

ajRiajr

which is in CF(Q U {z ;})-
— Case 6: ¢ = ug' o ¢, where ¢’ is in CF(Q U {¢'}).

Fo@ (X) ={ (F%fé}(ng) (W(X)))j}lgjgn

={(FMA (m(X))).)

=(X"= Fyl (X', X))

j}1§j§n
)

where (F'(+))« is the least F-fixed-point. By induction hypothesis, 94 are in
CF(Q U {z,;} U{y;}) where {y;} corresponds to X’ in the above formula
and satisfies the condition required in the Claim. Then by Remark, we can

put ¥y(q) = 1yj ® Py, that are in CF(Q U {x;}). O

This completes the proof of Proposition 1. O



