
Modal Fixed-Point Logi and Changing ModelsJohan van Benthem1 and Daisuke Ikegami21 Universiteit van Amsterdam Plantage Muidergraht 24, 1018 TV, Amsterdam, TheNetherlands, johan�siene.uva.nl, http://staff.siene.uva.nl/�johan/2 Universiteit van Amsterdam Plantage Muidergraht 24, 1018 TV, Amsterdam, TheNetherlands, ikegami�siene.uva.nlThis paper is dediated to Professor Boris Trakhtenbrot, whose workand spirit have inspired us and so many others in our �eld.Abstrat. We show that propositional dynami logi and the modal�-alulus are losed under produt modalities, as de�ned in urrentdynami-epistemi logis. Our analysis lari�es the latter systems, whilealso raising some new questions about �xed-point logis.1 Basi Closure Properties of LogisStandard �rst-order logi has some simple but important losure properties.First, it is losed under relativization : for every formula � and unary prediateletter P , there is a formula (�)P whih says that � holds in the sub-modelonsisting of all objets satisfying P . One usually thinks of relativization asa syntati operation whih transforms the given formula by relativizing eahquanti�er 9x to 9x(Px^ and eah quanti�er 8x to 8x(Px !. But one an alsothink of evaluating the original formula itself, but then in a hanged semantimodel. The onnetion between the two viewpoints is stated inFat 1 (Relativization Lemma).M; s � (�)P () M jP; s � �:where M j P is the restrition of the model M to its sub-model de�ned bythe prediate (or formula with one free variable) P . Relativization is a usefulproperty of abstrat logis, and it is used extensively in proofs of Lindstr�omtheorems. Also useful is losure under prediate substitutions [ =P ℄�, whih mayagain be read as either a syntati operation, or as a shift to evaluation in asuitably hanged model, via the following well-knownFat 2 (Substitution Lemma).M; s � [ =P ℄� () M[P :=  M℄; s � �:where M[P :=  M℄ is the model M with the denotation of the prediate letterP hanged as indiated. Substitutions may be viewed as translations of basiprediates into newly de�ned ones.



Even more ambitious operations on models our in the theory of relativeinterpretation between theories. E.g., embedding the �rst-order ordering theoryof the rational numbers into that of the integers requires taking rationals asordered pairs of relatively prime integers (a de�nable subset of the full Cartesianprodut Z�Z), and rede�ning their order < aordingly. Thus, we now also havea produt onstrution where ertain de�nable tuples beome the new objets.As is easy to see, the �rst-order language is also losed under suh produtonstrutions - in a sense whih we will not spell out. For our purpose here, wewill de�ne a preise sense of `produt losure' in terms of modal logi below,returning to the general situation at the end.The three mentioned properties also hold of many languages extending �rst-order logi, suh as LFP(FO), �rst-order logi with added �xed-point operators.But as we just said, our fous in this note will be on modal languages, whihare rather fragments of a full �rst-order logi over direted graphs with unaryprediates, although we also add �xed-point operators later on. For suh modallanguages, and espeially vividly, in their epistemi interpretation as logis ofknowledge and information ow, the above properties aquire speial meaningsof independent interest.2 Closure Properties of Modal Languages2.1 Epistemi LogiTake a modal language with proposition letters, Boolean operators, and uni-versal modalities [i℄ whih we read as stating what agent i knows, or maybebetter : what is true to the best of i's information. More preisely, in epistemipointed graph models M with atual world s, representing the information of agroup of agents :M; s � [i℄� () for all t; if sRit; then M; t � �:2.2 Publi Announement and De�nable SubmodelsIn this epistemi setting, taking the relativization of the urrent model M; s toits sub-model M j P; s onsisting of all points satisfying the formula P is thenatural rendering of an informational event !P of publi announement that P isurrently true. Thus, model hange reets information update. The language ofpubli announement logi PAL extends epistemi logi, making these updatesexpliit by adding modal operators [!P ℄ for truthful announement ations :M; s � [!P ℄� () if M; s � P; then M jP; s � �:Here is the relevant ompleteness result.



Theorem 1. PAL is axiomatized by the minimal modal logi for the new oper-ators [i℄ plus four redution axioms :[!P ℄q $ P ! q for atomi fats q;[!P ℄:� $ P ! :[!P ℄�;[!P ℄� ^  $ [!P ℄� ^ [!P ℄ ;[!P ℄[i℄� $ P ! [i℄(P ! [!P ℄�):We an read these priniples as a omplete reursive analysis of what agentsknow after they have reeived new information. But as was pointed out in vanBenthem 2000 [4℄, this ompleteness theorem due to Plaza and Gerbrandy reallyjust states the standard reursive lauses for performing syntati relativizationof modal formulas. Thus the tehnial question beomes whih modal languagesare losed under relativization.This is not always the ase. E.g., onsider an epistemi language with anoperator of ommon knowledge (everyone knows that everyone knows that, andso on � � � . ), or semantially :M; s � CG� () for all worlds t reahable from s by some �nitesequene of �i steps (i 2 G);M; t � �:This amounts to adding an operator of reexive-transitive losure over the unionof all individual aessibility relations. This in�nitary operation takes us fromthe basi modal language into a fragment of so-alled propositional dynamilogi (PDL). It an be shown that this fragment does not have the relativizationproperty: indeed, the formula [!p℄CGq is not de�nable without modalities [!p℄.Van Benthem, van Eijk & Kooi 2006 [5℄ proved this and go on to propose riherepistemi languages, using riher fragments of PDL whih do have relativizationlosure, using so-alled `onditional ommon knowledge' CG(�;  ) whih saysthat � is true in every world reahable with steps staying inside the  -worlds.Remark 1. These observations are reminisent of the fat that languages withgeneralized quanti�ers may lak relativization losure. An example is �rst-orderlogi with the added quanti�er \for most objets". To get the losure, one needsto add a truly binary quanti�er \Most � are  ".2.3 General Observation and Produt UpdatePubli announement is just one mehanism of information ow. In real-lifesenarios, di�erent agents often have di�erent powers of observation. To modelthis, dynami-epistemi logi (DEL) works with event modelsA = (E; fRigi;PRE):Here the preondition funtion maps events e to preondition formulas PREewhih must hold in order for the event to our. Just as worlds in epistemi



models, events an be related by aessibility relations fRig for agents. Now`produt update' turns a urrent modelM; s into a modelM�A; (s; e) reordingthe information of di�erent agents after some event e has taken plae in theepistemi setting represented by A. Produt update rede�nes the universe ofrelevant possible worlds, and the epistemi aessibility relations between them:M�A has domain f(s; a) j s a world in M; a an event in A; (M; s) � PREag:The new unertainties satisfy (s; a)Ri(t; b) if both sRit and aRib:The valuation for proposition letters on (s; e) is just as that for s in M:Here unertainty among new worlds (s; a); (t; b) an only ome from old un-ertainty among s; t via indistinguishable events a; b. In general, this produtonstrution an blow up the size of the input model M - it does not just goto a de�nable sub-model. In what follows, we will assume that the event modelsare �nite, though in�nitary versions are possible.Despite the apparent omplexity of this produt onstrution, there is a nat-ural mathing dynami epistemi language DEL with a new modality [A; e℄ :M; s � [A; e℄� () if M; s � PREe; then M�A; (s; e) � �:Theorem 2. DEL is ompletely axiomatizable.Proof. The argument, due to Baltag, Moss & Soleki 1998 [2℄, is as follows. Theatomi and Boolean redution axioms involved are like the earlier ones for publiannounement, but here is the essential lause for the knowledge modality:[A; e℄[i℄� () PREe ! ^eRif in A[i℄[A; f ℄�:By suessive appliation of suh priniples, all dynami modalities an be elim-inated to obtain a standard epistemi formula. utWe sum this up, somewhat loosely, by stating the following:Fat 3. Basi epistemi logi is produt-losed.But again, the situation gets more ompliated when we add ommon knowl-edge. In this ase, no redution to the language without [A; e℄ modalities is pos-sible. Van Benthem, van Eijk & Kooi 2006 [5℄ solve this problem by movingto the language E-PDL whih is just the propositional dynami logi version ofepistemi logi, but now allowing the formation of arbitrary `omplex agents'using the standard PDL program voabulary:basi agents i, tests ?� on arbitrary formulas � of the language,unions, ompositions, and Kleene iteration.They provide an expliit axiomatization for the dynami-epistemi versionof this with added modalities [A; e℄�. Thus E-PDL has a ompleteness theoremlike the earlier ones; but f. Setion 4 for remaining desiderata.



For present purposes, however, we summarize the gist of this result as follows:`E-PDL is losed under the produt onstrution'. In what follows, for onve-niene, we use obvious existential ounterparts to the earlier universal modalities.Here is the entral observation of the above paper :Theorem 3. For all � 2E-PDL, and all ation models A with event a, theformula hA; ai� has an equivalent formula in E-PDL.Publi announements !P are speial ation models with just one event withpreondition P , equally visible to all agents. Thus, the theorem also says thatE-PDL, or PDL, is losed under relativization - as observed earlier in van Ben-them 2000 [4℄. In addition, E-PDL has been shown to be losed under prediatesubstitutions in Kooi 2007 [11℄.The point of the urrent paper is to analyze this situation more formally,in terms of general losure properties of modal languages, and their �xed-pointextensions. In partiular, we provide a new proof of Theorem 3 larifying itsbakground in modal �xed-point logi.3 Closure under Relativization for Modal StandardLanguagesIt is easy to see that the basi modal language is losed under relativization. Theproedure relativizes modalities, just as one does with quanti�ers in �rst-orderlogi. Likewise, we already mentioned that propositional dynami logi is losedunder relativization. This requires an operation whih also transforms programexpressions, as follows: ([�℄�)P = [� jP ℄(�)P :Here one must also relativize programs � to programs � jP , as follows:i jP = ?P ; i; ?P?� jP = ?(� ^ P )(� [ �) jP = � jP [ � jP(�; �) jP = � jP ; � jP(��) jP = (� jP )�:Finally, onsider the most elaborate modal �xed-point language, the so-alled�-alulus. Formulas �(q) with only positive ourrenes of the proposition letterq de�ne a monotoni set transformation in any model M :FM� (X) = fs 2M j (M[q := X ℄; s) � �:gThe formula �q ��(q) de�nes the smallest �xed point of this transformation,whih an be omputed in ordinal stages starting from the empty set as a �rstapproximation. Likewise, �q � �(q) de�nes the greatest �xed point of FM� , with



ordinal stages starting from the whole domain of M as a �rst approximation.Both exist for monotone maps, by the Tarski-Knaster theorem (Brad�eld andStirling 2006 [8℄). For onveniene, we assume that eah ourrene of a �xed-point operator binds a unique proposition letter. Here is our �rst observation.Fat 4. The modal �-alulus is losed under relativization.Proof. We show the universal validity of the following interhange law:h!P i�q � �(q)$ P ^ �q � h!P i�(q): (1)Here the ourrenes of q are still syntatially positive in h!P i�(q) - in anobvious sense. Now to prove (1), ompare the following identities, for all setsX � PM : FMh!P i�(X) =fs 2M jM[q := X ℄; s � h!P i�(q)g=fs 2M jP j (M jP )[q := X ℄; s � �(q)g=FMjP� (X):It should be lear that the approximation maps on both sides now work inexatly the same way. utStill, there is a di�erene with standard �xed-point logi. One usually thinksof, e.g., a smallest �xed-point formula �q��(q) as de�ning the limit of a sequeneof ordinal approximations starting from the empty set, whose suessor stagesare omputed by substitution of earlier ones :�0 = ?; ��+1 = �(��=q):But this analogy breaks down between the two sides of the above equation (2).The approximation sequenes de�ned in a diret manner will diverge. Considerthe modal formulas �(q) = �q; P = }>in a model onsisting of the numbers 1; 2; 3 in their natural order. Both sequenesin equation (2) start with the empty set, de�ned by ?, but then they diverge:for h!}>i�q ��q : for }>^ �q � h!}>i�q :h!}>i�?; only true at 2 }> ^ h!}>i�?; only true at 2h!}>i��?; true at 1; 2 }> ^ h!}>i�h!}>i�?; only true at 2:The reason for the divergene is that the formula on the right-hand side keepspre�xing formulas with dynami model-hanging modalities, so that we are nowevaluating in models of the form (M jP ) jP , et.The general observation explaining this divergene involves another basilosure property of logial languages that we mentioned in Setion 1, viz. losureunder substitutions :



Fat 5. The Substitution Lemma fails even for the basi modal language whenannounement modalities h!P i are added.E.g., onsider again our three-point model M, with a proposition letter p trueat 2 only, and let � be the formula h!}>i}p. Now onsider the substitution[(h!}>i>)=p℄. First onsider the model after performing this substitution: it willassign p to f1; 2g. Hene [p := (h!}>i>)M℄h!}>i}p will be true in 1. Next per-form the substitution syntatially to obtain the formula h!}>i}�h!}>i>� : thisis true nowhere in the model M.Sine the modal language is simply translatable into �rst-order logi, a similarobservation holds for �rst-order logi with relativization operators (�)P addedas part of its syntax. The resulting language does not satisfy the usual Substitu-tion Lemma, sine the model-hanging operators ()P reate new ontexts whereformulas an hange their truth values. So, model-hanging operators are niedevies, but they exat a prie.Remark 2 (Alternative dynami de�nitions of substitution).Fat 5 holds for the straightforward operational de�nition of substitutions[�=p℄ as syntatially replaing eah ourrene of p in  by an ourrene of�. However, there is an alternative. In line with earlier approahes in `dynamisemantis' of �rst-order logi (f. van Benthem 1996 [3℄), Kooi 2007 [11℄ treatssubstitutions [�=p℄ as modalities hanging the urrent model in its denotation forp. These new modalities satisfy obvious reursive axioms pushing them throughBooleans and standard modal operators. To push them also through publi an-nounement modalities, one an �rst rewrite the latter via their PAL reursionaxioms, and only then apply the substitution to the omponents. Van Eijk2007 [9℄ shows how this provides an alternative syntati operational de�nitionof substitution, working inside out. One �rst redues innermost PAL or DELformulas to their basi modal equivalents, and then performs standard synta-ti substitution in these. Though not ompositional, this proedure is e�etive.When applied to the two approximation sequenes in our earlier problematiexample, these would now ome out being the same after all.Thus, dynami modal languages are losed under semanti substitutions,but �nding the preise orresponding syntati operation in their stati baselanguage requires some are.4 Closure of Dynami Logi under ProdutsTheorem 3 said that the language E-PDL is losed under the produt opera-tion hA; ei�. The proof in van Benthem, van Eijk & Kooi 2006 [5℄ uses speialarguments involving Kleene's Theorem for �nite automata and program trans-formations. We provide a new proof whih provides further insight by restatingthe situation within modal �xed-point logi.First, onsider the obvious indutive proof of Theorem 3, the `Main Re-dution'. Its steps follow the onstrution of the formula �. The atomi ase,



Booleans :;_, and basi epistemi modalities hii are taken are of by the stan-dard DEL redution axioms. The remaining ase is that of formulas hA; aih�i with an E-PDL modality involving a omplex epistemi program �. To proeed,we need a deeper analysis of program struture. The following result an beproved together with Theorem 3 by a simultaneous indution:Theorem 4. For all A; a, and programs �0 2 E-PDL, there exist E-PDL pro-grams T �0a;b (for eah b 2 A) suh that, for all E-PDL formulas  ,M; s � hA; aih�0i () M; s � _b2AhT �0a;bihA; bi :Proof. We use indution on the onstrution of the program �0.Case 1: �0 = i.hA; aihii () PREa and _aRib in AhiihA; bi :This an be brought into our speial form by settingT ia;b =?PREa; i if aRib in A; and T ia;b = ?; otherwise.Case 2: �0 =?� for some formula �.hA; aih?�i () hA; ai(� ^  ) ()hA; ai� ^ hA; ai () h?(hA; ai�)ihA; ai :Here the less omplex formula hA; ai� an be taken to be in the language ofE-PDL already, by the simultaneous indution proving Theorem 3. It is easy tothen de�ne the orret transition prediates T ?�a;b for all events b 2 A.Case 3: �0 = � [ � for some formulas �, �.hA; aih� [ �i () hA; ai(h�i _ h�i ) ()hA; aih�i _ hA; aih�i ind:hyp:() _b2AhT�a;bihA; bi _ _b2AhT �a;bihA; bi and, by reombining parts of this disjuntion, using the valid PDL-equivaleneh�i _ h�i $ h� [ �i , we get the required normal form.Case 4: �0 = �;� for some formulas �, �.hA; aih�;�i () hA; aih�ih�i ind. hyp.1()_b2AhT�a;bihA; bih�i ind. hyp.2() _b2A(hT�a;bi _2AhT �b;ihA; i )and here, using the minimal logi of PDL again, substituting one speial formin another one more yields a speial form. E.g., we have the equivaleneh�i(h�ip _ hiq) () h�;�ip _ h�; iq:



Case 5: �0 = �� for some program �.The rux lies in this �nal ase : ombinations with Kleene iterationshA; aih��i do not redue as before. But even so, we an analyze them in thesame style, using a simultaneous �xed-point operator �qb� de�ning the propo-sitions hA; bih��i for all events b 2 A in one fell swoop. The need for this si-multaneous reursion explains earlier diÆulties in the literature with redutionaxioms for ommon knowledge with produt update. To �nd the right shema,�rst reall the PDL �xed-point equation for Kleene iteration:hA; aih��i () hA; ai( _ h�ih��i ) ()hA; ai _ hA; aih�ih��i ind. hyp.() hA; ai _ _b2AhT �a;bihA; bih��i :Here, again beause of the simultaneous indutive proof with Theorem 3, wean think of the �rst disjunt as being some formula �a of E-PDL. The resultof this unpaking are simultaneous equivalenes of the form (with propositionalvariables qa for eah a 2 A) :qa $ �a _ _b2AhT �a;biqb: (�)Lemma 1. The denotations of the modal formulas hA; aih��i in a model Mare preisely the a-projetions of the smallest �xed-point solution to the simulta-neous equations (�).Proof (Lemma 1). Here, smallest �xed-points for simultaneous equations in the��alulus are omputed just as those for single �xed-point equations. lemma1 follows by a simple indution, showing that the standard meanings of themodal formulas hA; aih��i in a model M are ontained in any solution for thesimultaneous �xed-point equation.We alulate the meaning of the least �xed-point of (�) through the approx-imation proedure and show it is equal to that of hA; aih��i (a 2 A).From now on, we identify formulas by their truth sets in M, reading � asfm 2M j (M;m) � �g. For simpliity, we rewrite (�) as follows:qi = �i _ _1�j�nhT �i;jiqj (1 � i � n)Let F be the monotone operator from P(M)n to itself indued by the righthand side of (�), where n is the number of elements in A. More preisely, forX = (X1; � � � ; Xn) 2 P(M)n, F (X) = (Y1; � � � ; Yn) where for eah 1 � i � n,Yi = �m 2M j (M[fqj := Xjgj=1;��� ;n℄;m) � �i _ _1�j�nhT �i;jiqj	:



Next, for X 2 P(M)n, de�ne hF �(X) j � 2 Oni as follows:F 0(X) =XF �+1(X) = F (F �(X))F �(X) = [�<� F �(X) if � is a limit ordinal.For any m 2 !, we an prove the following equation by indution on m.Fm(?) = � _1�j1;j2;��� ;jm�1�n[�i _ hT �i;j1i�j1 _ hT �i;j1ihT �j1;j2i�j2_ � � � _ hT �i;j1ihT �j1;j2i � � � hT �jm�2;jm�1i�jm�1 ℄	1�i�n:HeneF!(?) =n(9m < !) (9j1; � � � ; jm�1) hT �i;j1i � � � hT �jm�2;jm�1i�jm�1o1�i�n;whih implies F!(?) = F!+1(?) : the least �xed-point is reahed in ! steps.Therefore we only have to show that fhA; aiih��i g1�i�n = F!(?).Reall that, by the de�ning property of T �i;j , for any E-PDL formula  0, any1 � i � n and any state s in M,M; s � hA; aiih�i 0 () M; s � _1�j�nhT �i;jihA; aji 0:By using this ondition repeatedly, we get the following equivalene: for anyn-tuple s of elements in M and any i with 1 � i � n,M; si � hA; aiih��i () (9m 2 !) M; si � hA; aiih�im () (9m 2 !) (9j1) M; si � hT �i;j1ihA; aj1 ih�im�1 () (9m 2 !) (9j1; j2) M; si � hT �i;j1ihT �j1;j2ihA; aj2 ih�im�2 () � � �() (9m 2 !) (9j1; � � � ; jm) M; si � hT �i;j1ihT �j1;j2i � � � hT �jm�1;jmihA; ajmi () (9m 2 !) (9j1; � � � ; jm) M; si � hT �i;j1ihT �j1;j2i � � � hT �jm�1;jmi�jm() si 2 �F!(?)�iwhere �F!(?)�i is the i-th oordinate of F!(?). Hene(8i) �M; si � hA; aiih��i � () s 2 F!(?);whih is what we desired. ut



What really happens here is this. Computing the expliit solutions for the pred-iates qi after ! steps, one gets the ountable disjuntion over all �nite `pathformulas' of the form hT �i;ji ;T �j1;j2 ; � � � ;T �jn;ki�k. And the latter are exatly themeanings of the original propositions hA; aih��i .But we are not done yet. What we need to show next is that the solutionsobtained in this way are atually in the language E-PDL! The following lemmatells us the relevant fat about the �-alulus. Simultaneous �xed-point equationsof the above speial disjuntive shape (�) an be solved one by one, and thesolutions lie inside dynami logi.Lemma 2. Any system of simultaneous �xed-point equations of (�) has an ex-pliit minimal solution for eah qa in E-PDL. Moreover, the solutions retain thespeial disjuntive form desribed in Theorem 4.Proof (Lemma 2). The indutive proedure produing expliit E-PDL solutionsworks line by line - like Gaussian Elimination in a system of linear equations.{ Case 1. There is only one q-variable, as with publi announements.The line reads q1 $ �1 _ h�1;1iq1. The expliit solution works just as instandard dynami logi, in theq1 = h��1;1i�1:{ Case 2. There are n lines in the reursion shema, with n > 1.We �rst solve for the variable q1 as in Case 1 - obtaining an expliit E-PDLformula �1(q2; � � � ; qn) in the other reursion variables. We then substitutethis solution in the remaining n � 1 equations, and solve these indutively.Finally, the solutions thus obtained for the q2; � � � ; qn are substituted in�1(q2; � � � ; qn) to also solve for q1.Some syntati heking will show that these solutions remain in the syntatiformat desribed in Theorem 4. But of ourse, we also need to show that this isreally a solution for the above �xed-point equations (�), and indeed the smallestone. To prove that, we formulate the algorithm more formally in the followingway (f. Arnold & Niwinski [1℄ for a more extensive treatment).For any monotone operator G, let G� denote the least �xed point of G.Let F : P(M)n ! P(M)n be the monotone operator indued by the n equa-tions in (�). Now take any X2; � � � ; Xn 2 P(M) and �x them. Next, de�neFX2;��� ;Xn : P(M)! P(M) as follows:FX2;��� ;Xn(X1) = �F (X1; � � � ; Xn)�1;where (X)i is the i-th oordinate of X. Sine F is monotone, FX2;��� ;Xn is alsomonotone. Then de�ne FX3;��� ;Xn : P(M)! P(M) :FX3;��� ;Xn(X2) = �F ((FX2;��� ;Xn)�; X2; � � � ; Xn)�2:



This is also monotone beause F and the funtion (X2; � � � ; Xn) 7! (FX2;��� ;Xn)�are both monotone. Continue this proess until we de�ne F;. Then the solutionof the earlier `Gaussian' algorithm is the unique F 0� suh that(F 0�)i = �F(F 0�)i+1;��� ;(F 0�)n�� (1 � i � n):Note how we ompute the rightmost �xed-point �rst here, and then substituteleftward. Hene all we have to show is the following:Claim 1. F� = F 0�.The proof is in Arnold & Niwinski [1℄ (see Setion 1.4. in this book). To makeour paper self-ontained, we will put a proof in an Appendix below. utThis onludes the proofs of Theorems 3 and 4. utIllustration 1. We ompute the solutions for the update model A =GFED�ABCa1�� 2 // GFED�ABCb1�� 2rrPREa = p; PREb = >This desribes a seurity senario where agent 1 orretly observes that event ais taking plae, while agent 2 mistakenly believes that b ours. Here is a desrip-tion of the non-trivial ommon knowledge for 1; 2 arising from this senario, bywriting out the �xed point equation for hA; ai h(1 [ 2)�ir.By step 1 in the proof,T 1a;a =?PREa; 1 =?p; 1; T 1a;b = ?T 1b;a = ?; T 1b;b =?PREb; 1 = 1T 2a;a = ?; T 2a;b =?PREa; 2 =?p; 2T 2b;a = ?; T 2b;b =?PREb; 2 = 2:Then by step 3,T 1[2a;a = T 1a;a [ T 2a;a =?p; 1; T 1[2a;b = T 1a;b [ T 2a;b =?p; 2T 1[2b;a = T 1b;a [ T 2b;a = ?; T 1[2b;b = T 1b;b [ T 2b;b = 1 [ 2:Now put qa = hA; ai h(1 [ 2)�ir; qb = hA; bi h(1 [ 2)�ir:



Then by (�), qa = hA; air _ hT 1[2a;a iqa _ hT 1[2a;b iqb= (PREa ^ r) _ h?p; 2iqb _ h?p; 1iqa= ((p ^ r) _ h?p; 2iqb) _ h?p; 1iqaand qb = hA; bir _ hT 1[2b;a iqa _ hT 1[2b;b iqb= (PREb ^ r) _ h1 [ 2iqb= r _ h1 [ 2iqb:Sine the order of eliminating variables does not inuene the solutions, we �rstsolve qb as follows : qb = h(1 [ 2)�ir:By substituting this solution in the above equation for qa,qa = �(p ^ r) _ h?p; 2i h(1 [ 2)�ir� _ h?p; 1iqa= �(p ^ r) _ h?p; 2; (1 [ 2)�ir� _ h?p; 1iqa:Hene qa = h(?p; 1)�i�(p ^ r) _ h?p; 2; (1 [ 2)�ir�= h(?p; 1)�i(p ^ r) _ h(?p; 1)�; ?p; 2; (1 [ 2)�irWe an easily hek that these qa; qb satisfy the equations we gave by anindependent semanti argument.Remark 3. The alulation in this example is really just the following well-knownfat about the modal �-alulus :Let �(q1; q2),  (q1; q2) be positive formulas in the modal �-alulus. Thenthe simultaneous least �xed points of these formulas is��q1:�(q1; �q2: (q1; q2)); �q2: (�q1:�(q1; q2); q2)�:In the proof of Claim 1 (f. the Appendix), we only use the ondition that Fis monotone. This means we an generalize the result as follows:Corollary 1. The modal �-alulus is losed under the formation of simultane-ous �xed-point operators.5 Closure of the �-alulus under ProdutsFinally, we show how the preeding analysis also extends to the �-alulus itself,where it even beomes simpler.



Theorem 5. The �-alulus is losed under produt operators.Proof. We prove the statement by indution on the omplexity of formulas. Weonly onsider the �xed point ase, as the others go like before.Our main task is to analyze �xed-point omputations in produt modelsM�A in terms of similar omputations in the original model M. The followingidea turns out to work here. Let X be a subset of M � A. Modulo the eventpreonditions possibly ruling out some pairs, we an desribe X , without lossof information, in terms of the sequene of its projetions to the events in A,viewed as a �nite set of indies. Thus, we an desribe the omputation inM�Aby means of a �nite set of omputations in M . The following set of de�nitionsand observations makes this preise.Take any Kripke model M and any event model A. Let n be the num-ber of elements of A and let A = fajg1�j�n. There are anonial mappings� : P(M)n ! P(M�A) and � : P(M�A)! P(M)n with � Æ � = id:�(X) = [1�j�n(Xj � fajg) \ (M�A);�(Y ) =fYjg1�j�n;where Yj = fx 2M j (x; aj) 2 Y g:Given a positive formula �(q) in the modal �-alulus, let FM�A� : P(M�A)! P(M�A) be the monotone funtion indued by �(q). De�ne F�(q) : P(M)n !P(M)n as follows: F�(q) = � Æ FM�A� Æ �:We laim that FM�A� is monotone if and only if F�(q) is monotone. SupposeFM�A� is monotone. Sine �; � are monotone and ompositions of monotonefuntions are monotone, F�(q) is also monotone. To prove the onverse, supposeF�(q) is monotone. Pik any X;Y 2 P(M � A) with X � Y . First note thatFM�A� (X) � FM�A� (Y ) holds if and only if �ÆFM�A� (X) � �ÆFM�A� (Y ) holds.Hene all we have to hek is � Æ FM�A� (X) � � Æ FM�A� (Y ). But� Æ FM�A� (X) = � Æ FM�A� �� Æ �(X)� = � Æ FM�A� Æ ���(X)�= F�(q)��(X)� � F�(q)��(Y )� = � Æ FM�A� Æ ���(Y )�= � Æ FM�A� �� Æ �(Y )� = � Æ FM�A� (Y );where the above inlusion follows from the monotoniity of F�(q) and �.Moreover, there is a further anonial orrespondene: if X is an F�(q)-�xedpoint, then �(X) is an FM�A� -�xed-point, and if Y is an FM�A� -�xed-point,then �(Y ) is an F�(q)-�xed-point. Hene the least F�(q)-�xed-point orrespondsto the least FM�A� -�xed-point.



Remark 4 (Relating �xed-point omputations in di�erent models). The argumentabove may be seen as a speial ase of the \Transfer Lemma" (Theorem 1.2.15)in Arnold & Niwinski [1℄. This lemma only uses our � funtion, while we addedthe funtion � for larity, to restrit an input to the inverse image of � { whihis why the equation � Æ � = id holds. For further bakground to this kind ofargument, f. Bloom and �Esik [7℄.So far, we have seen that the least FM�A� -�xed-point an be orrelated withthe least F�(q)-�xed-point in a natural way. Our next task is to show thathA; ai�q:�(q) is atually de�nable in the modal �-alulus. For that purpose,�rst note that hA; aji �q � �(q) de�nes the j-th oordinate of the least FM�A� -�xed-point. By the de�nition of �, it is also the j-th oordinate of the leastF�(q)-�xed-point. Now, sine the modal �-alulus is losed under simultaneous�xed-point operators by Corollary 1, if we an express F�(q) by a formula of themodal �-alulus with positive variables, we are done.To prove this, we generalize the syntati analysis employed in Setion 4 toformulas with many variables q = q1; � � � ; qm. For any formula �(q) in the modal�-alulus, de�ne FM�A�(q) : P(M�A)m ! P(M�A) as follows:FM�A�(q) (Y ) = f(s; a) j �(M�A)[qk := Yk℄; (s; a)� � �(q)g;where Y 2 (M�A)m.Claim 2. For any formula �(q) in the modal �-alulus, there are formulas  �suh that F�(q) = FM � where F�(q) : P(M)m�n ! P(M)n and(�) For any 1 � k � m, if all the ourrenes of qk in � are positive (negativeresp.), then for eah 1 � j; j0 � n, all the ourrenes of pk;j in ( �)j0 arepositive (negative resp.),Proof (Claim 2). In the following de�nitions, we only display the essential argu-ment variables needed to understand the funtion values. We prove the statementby indution on the omplexity of �. As in the proof of Lemma 1, we identifyformulas with their truth sets. Also, if  is a sequene of formulas,  j is the j-thoordinate of  .{ Case 1: � = p (p is not in q).F�(q) = �p ^ PREa1 ; � � � ; p ^ PREan�:Hene ( �(q))j = p ^ PREaj . It is easy to hek (�).{ Case 2: � = qk (qk is the k-th oordinate of q).F�(q)(X) = fXk;j ^ PREajg1�j�n:Hene ( �(q))j = pk;j ^ PREaj , where pk;j is the j-th variable in the k-thblok orresponding to qk. It is also easy to hek (�).



{ Case 3: � = �1 ^ �2. F�(q) =  �1 ^  �2 :Hene  �(q) =  �1 ^  �2 . It is easy to hek (�).{ Case 4: � = :�0. F�(q) = f:( �0)j ^ PREajg1�j�n:Hene ( �(q))j = :( �0)j ^ PREaj . It is easy to hek (�) by our indu-tive hypothesis, and the simultaneous de�nition for positive and negativeourrenes.{ Case 5: � = hii�0:For any 1 � j � n and x 2M ,x 2 �F�(q)(X)�j ()(1 � 9j0 � n) (9y 2M) �xRiy ^ ajRiaj0 ^ y 2 �F�0(q)(X)�j0�:To see that this is true, observe that the ondition y 2 �F�0(q)(X)�j0 implies(y; aj0) 2M�A. Therefore, we an put� �(q)�j = _ajRiaj0 hii� �0(q)�j0 :{ Case 6: � = �q0 � �0, where all the ourrenes of q0 are positive in �0.F�(q)(X) =n�FM�A�q0��0(q0;q)(�(X))�jo1�j�n=n�(FM�A�0(q0;q)(�(X)))��jo1�j�n=�X0 7! FM �0 (X0;X)��;where (F (�))� is the least F -�xed-point. By indution hypothesis, all theourrenes of p0j are positive in ( �0)j0 for any 1 � j; j0 � n, where p0orresponds to q0. Sine the modal �-alulus is losed under simultaneous�xed-point operators, we an put  �(q) = �p0 � �0(q), that are also in themodal �-alulus. Sine �-operators do not hange the positivity (negativity)of variables not bounded by them, (�) also holds in this ase. utThe proof of the last ase explains why we needed to `blow-up' in the numberof variables in Claim 2. Also, we proved the laim for arbitrary formulas (notonly for positive ones) beause otherwise we annot use the indution hypothesisin Case 4 (if � is positive, then �0 must be negative). utRemark 5 (E�etive redution axioms).As in Fat 4, we ould also an expliit redution axiom for hA; aji�q:�(q) bytaking the j-th oordinate of the simultaneous �xed-point expression �q: �(q).Sine our proof is e�etive, we an e�etively ompute the shape of the axiom.



The ommon point of the proofs of Theorems 3,4 and Theorem 5 is thatboth E-PDL and the modal �-alulus are losed under simultaneous �xed pointoperators (in the ase of E-PDL, suh operators have the speial form of (�)).The proof of that fat is essentially the same (it is that of Claim 1) but the aseof the full �-alulus is easier beause we have arbitrary �-operators, while inE-PDL, we have to hek if the solution is also in E-PDL.6 Conlusions and Further DiretionsT he preeding results plae urrent modal logis of information update in a moregeneral light, relating their `redution axiom' approah for obtaining onservativedynami extensions of existing stati logis to abstrat losure properties of �xed-point logis. Our observations also suggest a number of more general issues, ofwhih we mention a few.Fine-struture of the �-alulus Our results show that produt losure holdsfor basi modal logi, propositional dynami logi PDL, and the �-alulus itself.We think that there are further natural fragments with this property, inludingthe �-!-alulus, whih only allows �xed-points whose omputations stop uni-formly by stage !. Another ase to look for produt losure is the hierarhy ofnested �xed-point alternation. Our proof removes modal produt operators bymeans of simultaneous �xed-points, whih an then be removed by nested singleones, but we have not yet analyzed its preise syntati details.On another matter, our proof method in Setion 4 suggests that PDL isdistinguished inside the �-alulus as the smallest fragment losed under somevery simple `additive' �xed-point equations. This seems related to the fat thatthe semantis of dynami logi only desribes linear omputation traes, andno more omplex onstruts, suh as arbitrary �nite trees. Can this equationalobservation be turned into a haraterization of PDL?Connetions with automata theory The �rst proof of produt losure forPDL in van Benthem & Kooi 2004 [6℄ used �nite automata to serve as `on-trollers' restriting state sequenes in produt modelsM�A. The seond, di�er-ent proof in Van Benthem, van Eijk & Kooi 2006 [5℄ involved a non-trivial useof Kleene's Theorem for regular languages, and hene again a onnetion with�nite automata. What is the exat onnetion of this proof with our speialunwinding of simultaneous `disjuntive' �xed-point equations inside PDL? CanKleene's Theorem be interpreted as a normal-form result in �xed-point logi?There may also be a more general automata-based take on our arguments,given the strong onnetion between automata theory and �-alulus.33 Added in print. Martin Otto (p..) has proposed using the produt losure of MSOLand the bisimulation invariane of the mu-alulus with added produt modalitiesfor an alternative proof of our Theorem 5, by an appeal to the Janin-WalukiewizTheorem.



Logial languages and general produt losure Finally, we know nowthat many modal languages are produt-losed. What about logial systems ingeneral? We would like to have an abstrat formulation whih applies to a widerlass of logial systems, suh as �rst-order logi and its extensions in abstratmodel theory. We feel that produt losure is a natural requirement on expressivepower, espeially given its earlier motivation in terms of relative interpretability.But the orret formulation may have to be stronger than our notion in thispaper. Even in the modal ase, our proofs would also go through if we allowed,say, de�nable substitutions for atomi proposition letters in produt models.Also, one might also try to split our modal notion into full produt losure plusprediate substitutions, treating our use of preonditions as a ase of de�nabledomain relativization.There may also be a onnetion here with the Feferman-Vaught Theorem,and produt onstrutions reduing truth in the produt to truth of relatedstatements in the omponent models. After all, our proof of uniform de�nabilityof dynami modal operators hA; ai� indues an obvious translation relating truthof � in a produt model M�A to that of some e�etive translation of � in theomponent model M.Finally, one way of seeing how strong produt losure really is would be toask a onverse question. For instane, assume that a fragment of the �-alulus isprodut-losed. Does it follow that it is losed under simultaneous �xed-points?In all, our results, though somewhat tehnial and limited in sope, seem toprovide a vantage point for raising many interesting new questions.AknowledgementsWe thank Balder ten Cate, Jan van Eijk, Martin Otto, Olivier Roy, Luigi San-toanale, and Yde Venema for their remarks and suggestions on this draft.Referenes1. Andr�e Arnold and Damian Niwinski. Rudiments of �-alulus, volume 146. North-Holland, 2001. Studies in Logi and the Foundations of Mathematis.2. Alexandru Baltag, Lawrene S. Moss, and Slawomir Soleki. The logi of publiannounements, ommon knowledge, and private suspiions, 30 1999.3. Johan van Benthem. Exploring Logial Dynamis. CSLI Publiations, StanfordUniversity, 1996.4. Johan van Benthem. Information update as relativization. Tehnial report, Insti-tute for Logi, Language and Computation, Universiteit van Amsterdam, 2000.5. Johan van Benthem, Jan van Eijk, and Barteld Kooi. Logis of ommuniationand hange. Inform. and Comput., 204(11):1620{1662, 2006.6. Johan van Benthem and Barteld Kooi. Redution axioms for epistemi ations.Proeedings Advanes in Modal Logi, Department of Computer Siene, pages197{211, 2004. University of Manhester, Report UMCS-04 9-1, Renate Shmidt,Ian Pratt-Hartmann, Mark Reynolds, Heinrih Wansing (eds.).



7. Stephen L. Bloom and Zolt�an �Esik. Iteration theories : the equational logi ofiterative presses. Springer-Verlag, 1993.8. Julian Brad�eld and Colin Stirling. Modal mu-aluli. In Handbook of Modal Logi(Studies in Logi and Pratial Reasoning, vol. 3). Elsevier Siene, 2006.9. Jan van Eijk. The proper de�nition of substitution in dynami logis. workingnote, CWI, Amsterdam, 2007.10. Ga�elle Fontaine. Continuous fragment of the �-alulus. 2008. Submitted.11. Barteld Kooi. Expressivity and ompleteness for publi update logis via redutionaxioms. J. Appl. Non-Classial Logi, 17(2):231{253, 2007.7 Appendix7.1 Proof of Claim 1Proof (Claim 1). By the property of F 0�, it suÆes to show the following:(F�)i = �F(F�)i+1;��� ;(F�)n��(1 � i � n):We prove that by indution on i.{ Case 1: i = 1.Sine F(F�)2;��� ;(F�)n((F�)1) = (F (F�))1 = (F�)1;(F�)1 is a �xed point of F(F�)2;��� ;(F�)n . Sine �F(F�)2;��� ;(F�)n�� is the least�xed point of F(F�)2;��� ;(F�)n , �F(F�)2;��� ;(F�)n�� � (F�)1.Sine �F(F�)2;��� ;(F�)n�� � (F�)1 and F is monotone,F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n� � F ((F�)1; (F�)2; � � � ; (F�)n)= F�:Hene�F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n��j � (F�)j (2 � j � n):Combining this with�F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n��1=F(F�)2;��� ;(F�)n�(F(F�)2;��� ;(F�)n)�� = (F(F�)2;��� ;(F�)n)�;we get �F �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n��j���(F(F�)2;��� ;(F�)n��; (F�)2; � � � ; (F�)n��jfor any 1 � j � n, whih means that �(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n� isan F -pre�xed point.Sine F� is the least F -pre�xed point, F� is a subset of�(F(F�)2;��� ;(F�)n)�; (F�)2; � � � ; (F�)n�, whih implies (F�)1 � (F(F�)2;��� ;(F�)n)�.



{ Case 2: i > 1.By the indution hypothesis,F(F�)i+1;��� ;(F�)n((F�)i) = (F (F�))i = (F�)i:Therefore, (F�)i is a �xed point of F(F�)i+1;��� ;(F�)n . Sine �F(F�)i+1;��� ;(F�)n��is the least �xed point of F(F�)i+1;��� ;(F�)n , �F(F�)i+1;��� ;(F�)n�� � (F�)i.Let Fj (1 � j � i) be the ones uniquely determined by the followingequations: Fj = �FFj+1 ;��� ;Fi;(F�)i+1;��� ;(F�)n��; (1 � j � i� 1)Fi = �F(F�)i+1;��� ;(F�)n��:By the same argument as before, we an prove�F (F1; � � � ; Fi; (F�)i+1; � � � ; (F�)n)�j � Fj (1 � j � i);Fj � (F�)j (1 � j � i):Hene F �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n�� �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n�;whih means �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n� is an F -pre�xed point. Sine F� is the least F -pre�xed point,F� � �F1; � � � ; Fi�1; (F(F�)i+1;��� ;(F�)n)�; (F�)i+1; � � � ; (F�)n�, whih implies(F�)i � �F(F�)i+1;��� ;(F�)n��. ut7.2 Produt losure of CF(P )In this subsetion, we show how our methods apply to the so-alled `ontinuousfragment' of the modal mu-alulus, where the operators orresponding to for-mulas are Sott ontinuous. (Hene, in partiular, all �xed-points are reaheduniformly in all models by stage omega.) This fragment was reently harater-ized syntatially in Fontaine [10℄.De�nition 1. Let PROP be the set of all proposition letters, and P any subsetof PROP. Let I be the set of all agents. We de�ne the ontinuous fragmentsCF(P ) by indution by indution on the omplexity of formulas in the modal�-alulus as follows:CF(P ) : � ::= p 2 P j  j � _ � j � ^ � j hii� j �x � �(x)where  is any formula in the modal �-alulus without any free variable in P ,i is an agent in I, and �(x) is a formula in CF(P [ fxg) and x is not in P .The following is easy to hek:



Remark 6. fCF(P ) j P � PROPg is losed under simultaneous �xed points inthe following sense: Let P , fx1; � � � ; xng be sets of propositional letters whih aredisjoint. Then if �1(x1; � � � ; xn); � � � ; �n(x1; � � � ; xn) are in CF(P[fx1; � � � ; xng),then following formula is in CF(P ):�0BBB� x1x2...xn1CCCA �0BBB� �1(x1; � � � ; xn)�2(x1; � � � ; xn)...�n(x1; � � � ; xn)1CCCAProposition 1. For any P � PROP, CF(P ) is produt losed.Proof. We prove the statement by indution on the omplexity of formulas. Weonly onsider the �xed point ase, as other ases go in a standard way. We willuse the same notations as in the proof of Theorem 5.The proof is almost all the same as the ase for the modal �-alulus. Thedi�erene is that CF(P ) is not losed under �xed points. But by using the aboveRemark, we an deal with this problem.By the same argument in Theorem 5, if we an express F�(q) by a formulain CF(P [ fx1; � � � ; xng) for some fresh variables x1; � � � ; xn, we are done.To prove this, we need the following Claim:Claim 3. For any set of propositional letters Q, the following is true:Let �(q) be a formula in CF(Q) where q is a sequene of free variables (pos-sibly not in �) with length m. Take free variables xk;j(1 � k � m; 1 � j � n) sothat they do not appear in any preondition formulas in A or in q or in Q. Wemay assume this situation in any subformula of �(q) by hoosing fresh variablesproperly. Then there is a sequene of formulas  �(q) in CF(Q [ fxk;jg) withlength n suh that F�(q) = FM �(q) .Proof. In the following de�nitions, we only display the essential argument vari-ables needed to understand the funtion values. We prove the statement byindution on the omplexity of �. We identify formulas with their truth sets.Also, if  is a sequene of formulas,  j is the j-th oordinate of  .{ Case 1: � = p (p is not in q).F�(q) = �p ^ PREa1 ; � � � ; p ^ PREan�:Hene ( �(q))j = p ^ PREaj and this is in CF(Q). Sine eah xk;j does notappear in any preondition formulas in A, ( �(q))j is also in CF(Q[fxk;jg).{ Case 2: � = qk0 (qk0 is the k0-th oordinate of q).F�(q)(X) = fXk0;j ^ PREajg1�j�n:Hene ( �(q))j = xk0 ;j ^PREaj . By the same reasoning as in Case 1, PREajis in CF(Q [ fxk;jg) and hene xk0;j ^ PREaj is also in CF(Q [ fxk;jg).



{ Case 3: � = �1 _ �2. F�(q) =  �1 _  �2 :Hene  �(q) =  �1 _  �2 is in CF(Q [ fxk;jg) by indution hypothesis.{ Case 4: � = �1 ^ �2. F�(q) =  �1 ^  �2 :Hene  �(q) =  �1 ^  �2 is in CF(Q [ fxk;jg) by indution hypothesis.{ Case 5: � = hii�0:For any 1 � j � n and x 2M ,x 2 �F�(q)(X)�j ()(1 � 9j0 � n) (9y 2M) �xRiy ^ ajRiaj0 ^ y 2 �F�0(q)(X)�j0�:To see that this is true, observe that the ondition y 2 �F�0(q)(X)�j0 implies(y; aj0) 2M�A. Therefore, we an put� �(q)�j = _ajRiaj0 hii� �0(q)�j0 ;whih is in CF(Q [ fxk;jg).{ Case 6: � = �q0 � �0, where �0 is in CF(Q [ fq0g).F�(q)(X) =n�FM�A�q0��0(q0;q)(�(X))�jo1�j�n=n�(FM�A�0(q0;q)(�(X)))��jo1�j�n=�X0 7! FM �0 (X0;X)��;where (F (�))� is the least F -�xed-point. By indution hypothesis,  �0 are inCF(Q [ fxk;jg [ fyjg) where fyjg orresponds to X0 in the above formulaand satis�es the ondition required in the Claim. Then by Remark, we anput  �(q) = �yj � �0 , that are in CF(Q [ fxk;jg). utThis ompletes the proof of Proposition 1. ut


