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Abstract 
We present a new model of language learning which is based on the following idea: if a language 
learner does not know which phrase-structure trees should be assigned to initial sentences, s/he 
allows (implicitly) for all possible trees and lets linguistic experience decide which is the ‘best’ 
tree for each sentence. The best tree is obtained by maximizing ‘structural analogy’ between a 
sentence and previous sentences, which is formalized by the most probable shortest combination 
of subtrees from all trees of previous sentences. Corpus-based experiments with this model on the 
Penn Treebank and the Childes database indicate that it can learn both exemplar-based and rule-
based aspects of language, ranging from phrasal verbs to auxiliary fronting. By having learned the 
syntactic structures of sentences, we have also learned the grammar implicit in these structures, 
which can in turn be used to produce new sentences. We show that our model mimicks children’s 
language development from item-based constructions to abstract constructions, and that the model 
can simulate some of the errors made by children in producing complex questions. 
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1  Introduction 
 

It used to be a cliché that humans produce and understand new utterances by constructing 
analogies with utterances they experienced previously.1 A formal articulation of this idea was, 
however, lacking for a long time. Although the notion of analogy has been successfully worked 
out for phonology (e.g. MacWhinney 1978) and morphology (e.g. Skousen 1989), linguistic theory 
seems to have given up on the problem of developing a formal notion of syntactic analogy. 
Common wisdom has had it that analogy is intrinsically flawed for syntax where unlimited 
generative capacity is needed.  

In Bod (1998) we argued that this common wisdom is wrong. We developed a model of 
syntactic analysis which derives new sentences by combining fragments from a corpus of 
previously derived sentences. This model, known as Data-Oriented Parsing (DOP) (Scha 1990), 
was general enough to be instantiated for various linguistic representations, such as lexical-
functional grammar (Bod and Kaplan 1998), head-driven phrase-structure grammar (Neumann and 
Flickinger 2002) and tree-adjoining grammar (Hoogweg 2003). The original  DOP model (Bod 
1998) operates on simple phrase-structure trees and maximizes a notion of “structural analogy” 
between a sentence and a corpus of previous sentence-structures. That is, it produces a new 
sentence-structure out of largest and most frequent overlaps with structures of previously 
experienced sentences. The model could used both for sentence analysis and sentence generation. 
While the DOP approach was successful in some respects, for instance in modeling acceptability 
judgments (Bod 2001), ambiguity resolution (Scha et al. 1999) and construction learning 
(Borensztajn et al. 2008), it had an important shortcoming as well: The approach did not account 
for the acquisition of initial structures. The DOP approach assumes that the structures of previous 
linguistic experiences are given and stored in a corpus. As such, DOP can at best account for adult 
language, and has nothing to say about how these structures are acquired. While we conjectured in 
Bod (2006a) that the approach can be extended to language learning, we left a gap between the 
intuitive idea and its concrete instantiation. 

In the current paper we want to start to close that gap. We propose a generalization of DOP, 
termed U-DOP (“Unsupervised DOP”), which starts with the notion of tree structure. Our 
cognitive claim is that if a language learner does not know which tree structures should be 
assigned to initially perceived sentences, s/he allows (implicitly) for all possible tree structures and 
lets linguistic experience decide which structures are most useful for parsing new input. Similar to 
DOP, U-DOP analyzes a new sentence out of largest and most frequent subtrees from trees of 
previous sentences. The fundamental difference with the supervised DOP approach is that U-DOP 
takes into account subtrees from all possible (binary) trees of previous sentences rather than from 
a set of manually annotated trees.  

Although we do not claim that the U-DOP model in this paper provides any near-to-
complete theory of language acquisition, we will show that it can learn various linguistic 
phenomena, ranging from phrasal verbs to auxiliary fronting. Once we have learned the syntactic 
structures of sentences, we have also learned the grammar implicit in these structures, which can 
be used to produce new sentences. We will test this implicit grammar against children’s language 
production from the Childes database, which indicates that children learn discontiguous 
dependencies at a very early age. We will show that complex syntactic phenomena, such as 
auxiliary fronting, can be learned by U-DOP without having seen them in the linguistic input and 

                                                           
1 Chomsky (1966) argues that he found this view in Bloomfield, Hockett, Paul, Saussure, Jespersen, and “many 
others”. For an historical overview, see Esper (1973). 
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without assuming that they are hard-wired in the mind. Instead, we will demonstrate that 
phenomena such as auxiliary fronting can be learned from simpler sentences by means of 
structural analogy. We argue that our results may shed new light on the well-known Poverty of the 
Stimulus argument according to which linguistic evidence is hopelessly underdetermined such that 
innate prior knowledge is needed (Chomsky 1965, 1971). 

In the following section, we will first give a review of Data-Oriented Parsing. In Section 3, 
we will show how DOP can be generalized to language learning, resulting in the U-DOP model. In 
Section 4, we show how the approach can accurately learn structures for adult language, and in 
Section 5, we will extend our experiments to child language from the Childes database showing 
that the model can simulate the incremental learning of separable particle verbs. We will 
generalize our approach to language generation in Section 6 and perform some experiments with 
producing complex yes/no questions with auxiliary fronting. We end with a conclusion in Section 
7. 
 

2  Review of DOP: integrating rules and exemplars 
 

One of the main motivations behind the DOP framework was to integrate rule-based and 
exemplar-based approaches to language processing (Scha 1990; Bod 1992, 1998; Kaplan 1996; 
Zollmann and Sima’an 2005; Zuidema 2006). While rules or generalizations are typically the 
building blocks in grammar-based theories of language (Chomsky 1965; Pinker 1999), exemplars 
or “stored linguistic tokens” are taken to be the primitives in usage-based theories (cf. Barlow and 
Kemmer 2000; Bybee 2006). However, several researchers have emphasized that both rules and 
exemplars play a role in language use and acquisition (Langacker 1987; Goldberg 2006; Abbott-
Smith and Tomasello 2006). The DOP model is consonant with this view but takes it one step 
further: It proposes that rules and exemplars are part of the same distribution, and that both can be 
represented by subtrees from a corpus of tree structures of previously encountered sentences (Bod 
2006a). DOP uses these subtrees as the productive units by which new sentences are produced and 
understood. The smallest subtrees in DOP correspond to the traditional notion of phrase-structure 
rule, while the largest subtrees correspond to full phrase-structure trees. But DOP also takes into 
account the middle ground between these two extremes which consists of all intermediate subtrees 
that are larger than phrase-structure rules and smaller than full sentence-structures.  

To give a very simple example, assume that the phrase-structure tree for Mary saw John in 
Figure 1 constitutes our entire corpus. Then the set of all subtrees from this corpus is given in 
Figure 2.  
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Figure 1. Phrase structure tree for Mary saw John  
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Figure 2. Subtrees from the tree in Figure 1 
 
Thus the top-leftmost subtree in Figure 2 is equivalent to the traditional context-free rewrite rule S 

→ NP VP, while the bottom-rightmost subtree corresponds to a phrase-structure tree for the entire 
sentence. But there is also a set of intermediate subtrees between these two endpoints that 
represent all other possible exemplars, such as Mary V John, NP saw NP, Mary V NP, etcera. The 
key idea of DOP which has been extensively argued for in Bod (1998) is the following: Since we 

do not know beforehand which subtrees are important, we should not restrict them but take them 

all and let the statistics decide. The DOP approach is thus congenial to the usage-based view of 
construction grammar where patterns are stored even if they are fully compositional (Croft 2001). 

DOP generates new sentences by combining subtrees from a corpus of previously analyzed 
sentences. To illustrate this in some detail, consider a corpus of two sentences with their syntactic 
analyses given in Figure 3. 
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Figure 3. An extremely small corpus of two phrase-structure trees 
 

On the basis of this corpus, the (new) sentence She saw the dress with the telescope can for 
example be derived by combining two subtrees from the corpus, as shown in Figure 4. The 
combination operation between subtrees is referred to as label substitution. This operation, 
indicated as °, identifies the leftmost nonterminal leaf node of the first subtree with the root node 

of the second subtree, i.e., the second subtree is substituted on the lefmost nonterminal leaf node 
of the first subtree provided that their categories match. 
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Figure 4. Analyzing a new sentence by combining subtrees from Figure 3 
 

Notice that in Figure 4, the sentence She saw the dress with the telescope is interpreted 
analogously to the corpus sentence She saw the dog with the telescope: both sentences receive the 
same phrase structure where the prepositional phrase with the telescope is attached to the VP saw 

the dress.  
We can also derive an alternative phrase structure for the test sentence, namely by 

combining three (rather than two) subtrees from Figure 3, as shown in Figure 5. We will write (t ° 

u) ° v  as t ° u ° v with the convention that ° is left-associative. 
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Figure 5. A different derivation for She saw the dress with the telescope 
 
In Figure 5, the sentence She saw the dress with the telescope is analyzed in a different way where 
the PP with the telescope is attached to the NP the dress, corresponding to a different meaning 
than the tree in Figure 4. Thus the sentence is ambiguous in that it can be derived in (at least) two 
different ways which is analogous either to the first tree or to the second tree in Figure 3.  

Note that an unlimited number of sentences can be generated by combining subtrees from 
the corpus in Figure 3, such as She saw the dress on the rack with the telescope and She saw the 

dress with the dog on the rack with the telescope, etc. Thus we obtain unlimited productivity by 
finite means. Note also that most sentences generated by this DOP model are highly ambiguous: 
many different analyses can be assigned to each sentence due to a combinatorial explosion of 
different prepositional-phrase attachments. Yet, most of the analyses are not plausible: They do 
not correspond to the interpretations humans perceive. There is thus a question how to rank 
different candidate-analyses of a sentence (or in case of generation, how to rank different 
candidate-sentences for a meaning to be conveyed). Initial DOP models proposed an exclusively 
frequency-based metric where the most probable tree or sentence was computed from the 
frequencies of the subtrees in the corpus (Bod 1998). 
 While it is well known that the frequency of a structure is an important factor in language 
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comprehension and production (see Jurafsky 2003), it is not the only factor. Discourse context, 
semantics and recency also play an important role. DOP can straightforwardly take into account 
semantic and discourse information if we have e.g. semantically annotated corpora from which we 
take the subtrees (Bonnema et al 1997). The notion of recency can furthermore be incorporated by 
a frequency-adjustment function which adjusts subtrees from recently perceived trees upwards 
while less recently perceived subtrees are adjusted downwards, possibly down to zero (Bod 1998, 
1999).  

There is, however, an important other factor which does not correspond to the notion of 
frequency: this is the simplicity of a structure (cf. Chater 1999). In Bod (2000 2002), we 
formalized the simplest structure by the shortest derivation of a sentence, i.e. consisting of the 
fewest subtrees from the corpus. Note that the shortest derivation will include the largest possible 
subtrees from the corpus, thereby maximizing the structural commonality between a sentence and 

previous sentence-structures. Only in case the shortest derivation is not unique, the frequencies of 
the subtrees are used to break ties. That is, DOP selects the tree with most frequent subtrees from 
the shortest derivations. This so-called ‘best tree’ of a sentence under DOP is defined as the Most 
Probable tree generated by the Shortest Derivation (“MPSD”) of the sentence.  

Rather than computing the most probable tree for a sentence per se, this model thus 
computes the most probable tree from among the distribution of trees that share maximal overlaps 
with previous sentence-structures. The MPSD maximizes what we call the structural analogy 
between a sentence and previous sentence-structures.2 The shortest derivation may be seen as a 
formalization of the principle of ‘least effort’ or ‘parsimony’, while the notion of probability of a 
tree may be seen as a general memory-based frequency bias (cf. Conway and Christiansen 2006). 
 We can illustrate DOP’s notion of structural analogy with the linguistic example given in the 
figures above. DOP predicts that the tree structure in Figure 4 is preferred because it can be 
generated by just two subtrees from the corpus. Any other tree structure, such as in Figure 5, 
would need at least three subtrees from the training set in Figure 3. Note that the tree generated by 
the shortest derivation indeed has a larger overlap with a corpus tree than the tree generated by the 
longer derivation. 
 Had we restricted the subtrees to smaller sizes -- for example to depth-1 subtrees, which 
makes DOP equivalent to a simple (probabilistic) context-free grammar -- the shortest derivation 
would not be able to distinguish between the two trees in Figures 3 and 5 as they would both be 
generated by 9 rewrite rules. The same is true if we used subtrees of maximal depth 2 or 3. As 
shown by Carroll and Weir (2000) only if we do not restrict the subtree depth, can we take into 
account arbitrarily far-ranging dependencies – both structurally and sequentially -- and model new 
sentences as closely as possible on previous sentence-analyses. 

When the shortest derivation is not unique, DOP selects the tree with most frequent subtrees 
from the shortest derivations, i.e. the MPSD. Of course, even the MPSD may not be unique, in 
which case there is more than one best tree for the particular sentence; but such a situation does 
never occur in practice. In the following, we will define how the frequencies of the subtree that 
make up a parse tree can be compositionally combined to compute the MPSD. It is convenient to 
first give definitions for a parse tree under DOP and the shortest derivation. 

 

                                                           
2 We prefer the term “analogy” to other terms like “similarity” since it reflects DOP’s property to analyze a new 
sentence analogously to previous sentences, that is, DOP searches for relations between parts of a sentence(-structure) 
and corpus sentence(s) and maps the structure of previous sentences to new ones. This is consonant with the use of 
analogy in Gentner and Markman (1997). 



 7

Definition of a tree of a sentence generated by DOP 

Given a corpus C of trees T1, T2,..,Tn, and a leftmost label substitution operation °, then a tree of a 

word string W with respect to C is a tree T such that (1) there are subtrees t1, t2,..,tk in T1, T2,..,Tn 

for which t1 ° t2 °  ... ° tk = T, and (2) the yield of T is equal to W. 

 
The tree generated by the shortest derivation, Tsd according to DOP is defined as follows: 

 
Definition of the shortest derivation of a sentence 

Let L(d) be the length of derivation d in terms of its number of subtrees, that is, if d = t1°...°tk then 

L(d) = k. Let dT be a derivation which results in tree T. Then Tsd is the tree which is produced by a 

derivation of minimal length: 
 

Tsd  =  argmin L(dT) 

       T  
 
If Tsd is not unique, DOP selects from among the trees produced by the shortest derivations the 

tree with highest probability. The probability of a tree is defined in terms of the probabilities of the 
derivations that generate it, which are in turn defined in terms of the probabilities of the subtrees 
these derivations consist of, as defined below. 
 
Definition of the probability of a subtree 

The probability of a subtree t, P(t), is the number of occurrences of t in any tree in the corpus, 
written as | t |, divided by the total number of occurrences of subtrees in the corpus that have the 
same root label as t.3 Let r(t) return the root label of t. Then we may write: 

 

P(t)  =   

| t |

Σ t': r(t')=r(t)  | t' |  
 
Definition of the probability of a derivation 

The probability of a derivation t1°...°tk is defined as the product of the probabilities of its subtrees 

ti: 

 

P(t1°...°tk)  =  Πi P(ti) 

 
Definition of the probability of a tree 

Since DOP’s subtrees can be of arbitrary size, it is typically the case that there are several 
derivations that generate the same parse tree. The probability of a tree T is defined as the sum of 
the probabilities of its distinct derivations. Let tid be the i-th subtree in the derivation d that 

produces tree T, then the probability of T is given by 
 

                                                           
3 The subtree probabilities are smoothed by simple Good-Turing estimation (see Bod 1998: 85). 
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P(T)  =  ΣdΠi P(tid) 

 
Definition of the best tree of a sentence 

The best tree is the most probable tree from among the trees generated by the shortest derivation of 
a given sentence, also called the MPSD. The best tree, Tbest maximizes the probability of Tsd 

given word string W: 
 

Tbest  =  argmax P(Tsd | W) 

  Tsd  
 

We will give a concrete illustration of how the best tree can be computed in the following section 
when we generalize DOP to language acquisition. Although we have only dealt with the 
probabilities of derivations and trees, the model can also provide probabilities for each sentence 
generated by DOP, being the sum of the probabilities of all derivations generating that sentence. 
While DOP has mainly been applied to parsing, it was extended in Bonnema et al. (1997) to 
semantic interpretation and generation: given a meaning to be conveyed (e.g. a logical form), 
DOP’s MPSD computes the best sentence for that meaning. We will come back to sentence 
generation in Section 6. The Appendix gives a summary of efficient algorithms for DOP. 
 Formally, the DOP model explained above is equivalent to a probabilistic tree-substitution 
grammar (PTSG). The grammatical backbone of a PTSG is a generalization over the well-known 
context-free grammars (CFG) and a subclass of Tree Adjoining Grammars (Joshi 2004). The 
original DOP model in Bod (1992), which only computed the most probable tree of each sentence 
(DOP1), had an inconsistent estimator: Johnson (2002) showed that the most probable trees do not 
converge to the correct trees when the corpus grows to infinity. However, Zollmann and Sima’an 
(2005) showed that a DOP model based on the shortest derivation is statistically consistent. 
Consistency is not to be confused with “tightness”, i.e. the property that the total probability mass 
of the trees generated by a probabilistic grammar is equal to one (Chi and Geman 1998). Since 
DOP’s PTSGs are weakly stochastically equivalent to so-called Treebank-PCFGs (Bod 1998), the 
probabilities of all trees for all sentences sum up to one (see Chi and Geman 1998). 

 

3  U-DOP: generalizing DOP to language learning  
 

In the current paper we generalize DOP to language learning by using the same principle as 
before: language users maximize the structural analogy between a new sentence and previous 
sentences by computing the most probable shortest derivation. However, in language learning we 
cannot assume that the phrase-structure trees of sentences are already given. We therefore propose 
the following straightforward generalization of DOP which we refer to as “Unsupervised DOP” or 
U-DOP: if a language learner does not know which phrase-structure tree should be assigned to a 

sentence, s/he initially allows for all possible trees and let linguistic experience decide which is 

the ‘best’ tree by maximizing structural analogy. As a first approximation we will limit the set of 
all possible trees to unlabeled binary trees. However, we can easily relax the binary restriction, and 
we will briefly come back to learning category labels at the end of this paper. Conceptually, we 
can distinguish three learning phases under U-DOP (though we will see that U-DOP operates 
rather differently from a computation point of view): 
 
 (i) Assign all possible (unlabeled binary) trees to a set of given sentences 
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 (ii) Divide the binary trees into all subtrees 
 (iii) Compute the best tree (MPSD) for each sentence 
 

The only prior knowledge assumed by U-DOP is the notion of tree and the concept of structural 
analogy (MPSD). U-DOP thus inherits the agnostic approach of DOP: we do not constrain the 
units of learning beforehand, but take all possible fragments and let a statistical notion of analogy 
decide.  

In the following we will illustrate U-DOP with a simple example, by describing each of the 
three learning phases above separately. 
 

(i) Assign all unlabeled binary trees to a set of sentences  
Suppose that a hypothetical language learner hears the two sentences watch the dog and the dog 

barks. How could the learner figure out the appropriate tree structures for these sentences? U-DOP 
conjectures that a learner does so by allowing (initially) any fragment of the heard sentences to 
form a productive unit and to try to reconstruct these sentences out of most probable shortest 
combinations. 
 The set of all unlabeled binary trees for the sentences watch the dog and the dog barks is 
given in Figure 6, which for convenience we shall again refer to as the “corpus”. Each node in 
each tree in the corpus is assigned the same category label X, since we do not (yet) know what 
label each phrase will receive. To keep our example simple, we do not assign category labels X to 
the words, but this can be done as well (and will be done later). 
 

watch the dog

X

X

    

X

watch the dog

X

 
 

the dog

X

X

barks       

X

X

the dog barks  
 

Figure 6. The unlabeled binary tree set for watch the dog and the dog barks 
 
Although the number of possible binary trees for a sentence grows exponentially with sentence 
length, these binary trees can be efficiently represented in quadratic space by means of a “chart” or 
“tabular diagram”, which is a standard technique in computational linguistics (see e.g. Kay 1980; 
Manning and Schütze 1999; Huang and Chiang 2005). By adding pointers between the nodes we 
obtain a structure known as a “shared parse forest” (Billot and Lang 1989). However, for 
explaining the conceptual working of U-DOP we will mostly exhaustively enumerate all trees, 
keeping in mind that the trees are usually stored by a compact parse forest. 
 

(ii) Divide the binary trees into all subtrees  
Figure 7 lists the subtrees that can be extracted from the trees in Figure 6. The first subtree in each 
row represents the whole sentence as a chunk, while the second and the third are “proper” 
subtrees.  
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Figure 7. The subtree set for the binary trees in Figure 6. 
 
Note that while most subtrees occur once, the subtree [the dog]X occurs twice. The number of 

subtrees in a binary tree grows exponentially with sentence length, but there exists an efficient 
parsing algorithm that parses a sentence by means of all subtrees from a set of given trees. This 
algorithm converts a set of subtrees into a compact reduction which is linear in the number of tree 
nodes (Goodman 2003). We will come back to this reduction method below under (iii). 
 

(iii) Compute the MPSD for each sentence  
From the subtrees in Figure 7, U-DOP can compute the ‘best trees’ (MPSD) for the corpus 
sentences as well as for new sentences. Consider the corpus sentence the dog barks. On the basis 
of the subtrees in Figure 7, two phrase-structure trees can be generated by U-DOP for this 
sentence, shown in Figure 8. Both tree structures can be produced by two different derivations, 
either by trivially selecting the largest possible subtrees from Figure 7 that span the whole 
sentence or by combining two smaller subtrees.  
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Figure 8. Parsing the dog barks from the subtrees in Figure 7 
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Thus the shortest derivation is not unique: the sentence the dog barks can be trivially parsed by 
any of its fully spanning trees, which is a direct consequence of U-DOP’s property that subtrees of 
any size may play a role in language learning. This situation does not usually occur when 
structures for new sentences are learned. For example, the shortest derivation for the new 
‘sentence’ watch dog barks (using subtrees from Figure 7) is unique and given in Figure 9.  
 

watch

X

X

X

dog barks

o

 
 

Figure 9. Unique shortest derivation for watch dog barks from the subtrees in Figure 7 
 
But to decide between the trees in Figure 8 we need the subtree frequencies to break ties, that is, 
U-DOP computes the most probable tree from among the trees produced by the shortest 
derivations of the dog barks. The probability of a tree is computed from the frequencies of its 
subtrees in the same way as in the supervised version of DOP. Since the subtree [the dog] is the 
only subtree that occurs more than once, we can predict that the most probable tree corresponds to 
the structure [[the dog] barks] in Figure 7 where the dog is a constituent. This can also be shown 
formally by applying the probability definitions given in Section 2. 
 Thus the probability of the tree structure [the [dog barks]], is equal to the sum of the 
probabilities of its derivations in Figure 8. The probability of the first derivation consisting of the 
fully spanning tree is simply equal to the probability of selecting this tree from the space of all 
subtrees in Figure 7, which is 1/12. The probability of the second derivation of [the [dog barks]] in 

Figure 8 is equal to the product of the probabilities of selecting the two subtrees which is 1/12 × 
1/12 = 1/144. The total probability of the tree is the probability that it is generated by any of its 
derivations which is the sum of the probabilities of the derivations: 
 

P([the [dog barks]]) = 1/12 + (1/12 × 1/12) = 13/144.  
 

Similarly, we can compute the probability of the alternative tree structure, [[the dog] barks], which 
follows from its derivations in Figure 8. Note that the only difference is the probability of the 

subtree [the dog] being 2/12 (as it occurs twice). The total probability of this tree structure is: 
 

P([[the dog] barks]) =  1/12 + (1/12 × 2/12) = 14/144.  
 
Thus the second tree wins, although with just a little bit. We leave the computation of the 
conditional probabilities of each tree given the sentence the dog barks to the reader (these are 
computed as the probability of each tree divided by the sum of probabilities of all trees for the dog 

barks). The relative difference in probability is small because the derivation consisting of the 
entire tree takes a considerable part of the probability mass (1/12). This simple example is only 
intended to illustrate U-DOP’s probability model. In our experiments we will be mostly interested 
in learning structures for new sentences, where it is not the case that every sentence can be parsed 
by all fully spanning trees, as occurred with the example watch dog barks in Figure 9 which leads 
to a unique shortest derivation of largest possible chunks from the corpus. 
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For the sake of simplicity, we only used trees without lexical categories. But it is straightforward 
to assign abstract labels X to the words as well. If we do so for the sentences in Figure 6, then one 
of the possible subtrees for the sentence watch the dog is given in Figure 10. This subtree has a 
discontiguous yield watch X dog, which we will therefore refer to as a discontiguous subtree. 
 

X

watch dog

X

X X X

 
 

Figure 10. A discontiguous subtree 
 

Discontiguous subtrees are important for covering a range of linguistic constructions, as those 
given in italics in sentences (1)-(6): 
 

(1) BA carried more people than cargo in 2005. 
(2) What’s this scratch doing on the table? 
(3) Don’t take him by surprise. 
(4) Fraser put dollie nighty on.         
(5) Most software companies in Vietnam are small sized.    
 

These constructions have been discussed at various places in the literature (e.g. Bod 1998, 
Goldberg 2006), and all of them are discontiguous. They range from idiomatic, multi-word units 
(e.g. (1)-(3)) and particle verbs (e.g. (4)) to regular syntactic phenomena as in (5). The notion of 
subtree can easily capture the syntactic structure of these discontiguous constructions. For 
example, the construction more ... than … in (1) may be represented by the subtree in Figure 11.  
  

more than

XX

X X

X

X X

 
 

Figure 11. Discontiguous subtree for the construction more...than... 

 
In our experiments in the following sections we will isolate the contribution of non-adjacent 
dependencies in learning the correct structures of utterances as well as in learning syntactic facets 
such as auxiliary fronting. 

We should stress that the illustration of U-DOP’s (and DOP’s) working above has been 
mainly conceptual: in practice we do not compute the MPSD by first extracting all subtrees but by 
using a compact reduction of DOP proposed in Goodman (1996, 2003). This reduction is 
explained in the Appendix at the end of this paper and reduces the exponentially large number of 
corpus-subtrees to exactly 8 indexed ‘PCFG’ (Probabilistic Context-Free Grammar) rules for each 
internal node in a corpus-tree. This set of indexed PCFG rules generates the same derivations with 
the same probabilities as DOP and U-DOP and is therefore said to be isomorphic to (U-)DOP 
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(even though the term ‘PCFG’ is not entirely correct since the set of ‘indexed PCFG rules’ does 
not correspond to a standard PCFG in the literature – see the Appendix). The importance of the 
PCFG reduction method can hardly be overestimated, as may be illustrated by the combinatorial 
explosion of subtrees before applying the reduction method. For example, for the WSJ10 corpus of 
7422 sentences no longer than 10 words, the number of subtrees assigned by U-DOP corresponds 
to almost 500 million while the number of indexed rules in the PCFG reduction is “only” 328 
thousand (which is not a particularly large number in the current parsing systems – see Section 4). 
For conceptual reasons, we will often talk about ‘subtrees’ rather than ‘indexed PCFG rules’ as 
long as no confusion arises.  

 

4  Experiments with Adult language 
 

The illustration of U-DOP in the previous section was mainly based on artificial examples. How 
well does U-DOP learn constituent structures for sentences from more realistic settings? In this 
section we will carry out a (corpus-based) experiment with adult language, after which we will 
extend our experiments to child language in the following section. The main reason to test U-DOP 
on adult language is that it allows for comparing the model against a state-of-the-art approach to 
structure induction (Klein and Manning 2004). Only in Sections 5 and 6 will we investigate U-
DOP’s capacity to learn specific syntactic facets such as particle verbs and auxiliary inversion. 
 

4.1 Experiments with the Penn, Negra and Chinese treebank 
The Penn treebank (Marcus et al. 1993) has become a gold standard in evaluating natural language 
processing  systems (see Manning and Schütze 1999) and has also been employed in linguistic 
research (Pullum and Scholz 2002). More recently, the Penn treebank has been used to evaluate 
unsupervised language learning models as well. Early approaches by van Zaanen (2000) and Clark 
(2001) tested on Penn’s ATIS corpus, as did Solan et al. (2005), while Klein and Manning (2002, 
2004, 2005) tested their systems on the larger Wall Street Journal corpus in the Penn treebank, as 
well as on the Chinese Treebank and the German Negra corpus. While these corpora are limited to 
specific domains of adult language use, it has been argued that relative frequencies of words, 
phrases etc. are rather stable across different domains (see Clark 2005).  
 U-DOP distinguishes itself from other learning models by its agnostic approach: All 
subtrees, be they contiguous or discontiguous, may contribute to learning the correct constituent 
structures. This is different from other learning approaches, including the well-known Constituent-
Context Model (CCM) by Klein and Manning (2002, 2005). While CCM takes into account “all 
contiguous subsequences of a sentence” (Klein and Manning 2005: 1410), it neglects 
dependencies that are non-contiguous such as between closest and to in the closest station to 

Union Square. Moreover, by learning from linear subsequences only, CCM may underrepresent 
structural context. It is therefore interesting to experimentally compare U-DOP to these 
approaches and to assess whether there is any quantitative contribution of U-DOP’s discontiguous 
subtrees.  

As a first test, we evaluated U-DOP on the same data as Klein and Manning (2002, 2004, 
2005): the Penn treebank WSJ10 corpus, containing human-annotated phrase-structure trees for 
7422 sentences ≤ 10 words after removing punctuation, the German NEGRA10 corpus (Skut et al. 
1997) and the Chinese CTB10 treebank (Xue et al. 2002) both containing annotated tree structures 
for 2200+ sentences ≤ 10 words after removing punctuation. As with most other unsupervised 
parsing models, we train and test on word strings that are already enriched with the Penn treebank 
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part-of-speech sequences rather than on word sequences directly. The actual goal is of course to 
directly test on word sequences, which will be carried out in the following sections.  

For example, the word string Investors suffered heavy losses is annotated with the part-of-
speech string NNS VBD JJ NNS, and is next assigned a total of five binary trees by U-DOP, listed 
in Figure 12 (where NNS stands for plural noun, VBD for past tense verb, and JJ for adjective).  

 

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

X

   

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

X

     

NNS VBD JJ NNS

Investors suffered heavy losses

X
X

X

 
 

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

X

    

NNS VBD JJ NNS

Investors suffered heavy losses

XX

X

 
 

Figure 12. All binary trees for the WSJ sentence Investors suffered heavy losses 
 
 We used Goodman’s reduction method to convert the set of U-DOP’s trees (and subtrees) 
into a compact set of indexed PCFG rules (see Appendix). For the 7422 sentences from the WSJ10 
corpus, this resulted in 328,018 different indexed PCFG-rules. This number is not exceptionally 
large in the field of natural language processing: Current parsing models often use more than one 
million rules (Collins and Duffy 2002; Bod 2003) or even several millions of rules (Chiang 2007).  

We will use the same evaluation metrics as Klein and Manning (2002, 2004), i.e. ‘unlabeled 
precision’ (UP) and ‘unlabeled recall’ (UR). These metrics compute respectively the percentage of 
correctly predicted constituents with respect to all constituents predicted by the model (UP), and 
the percentage of correctly predicted constituents with respect to the constituents in the treebank 
(UR). The two metrics of UP and UR are combined by the f-score F1 which is the harmonic mean 
of UP and UR: F1 = 2*UP*UR/(UP+UR). It should be kept in mind that this evaluation metric is 
taken from the evaluation procedures of supervised parsing systems which aim at mimicking the 
treebank annotations. Since the trees in the Penn treebank are quite shallow, this evaluation metric 
punishes systems that learn binary trees. Therefore, the treebank trees are (automatically) binarized 
in the same way as Klein and Manning (2002, 2004). For our first experiment we test on the full 
corpora, just as in Klein and Manning’s work, after which we will employ n-fold cross-validation. 

Tabel 1 shows the unlabeled precision (UP), unlabeled recall (UR) and the f-scores (F1, 
given in bold) of U-DOP against the scores of the CCM model in Klein and Manning (2002), the 
dependency learning model DMV in Klein and Manning (2004) as well as their combined model 
DMV+CCM which is based on both constituency and dependency. The table also includes a 
previous experiment with U-DOP in Bod (2006b), which we refer to as U-DOP’2006, where only 
a random sample of the subtrees was used.  
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Model English 

(WSJ10) 
 UP      UR     F1 

German 

(NEGRA10) 
UP      UR     F1 

Chinese 

(CTB10) 
UP      UR     F1 

CCM 64.2   81.6   71.9 48.1   85.5   61.6 34.6   64.3   45.0 

DMV 46.6   59.2   52.1 38.4   69.5   49.5 35.9   66.7   46.7 

DMV+CCM 69.3   88.0   77.6 49.6   89.7   63.9 33.3   62.0   43.3 

U-DOP’2006 70.8   88.2   78.5 51.2   90.5   65.4 36.3   64.9   46.6 

U-DOP 75.9   90.9   82.7 52.4   91.0   66.5 37.6   65.7   47.8 

 
Table 1. Unlabeled Precision, Unlabeled Recall and F1-scores of U-DOP tested on the full English 

WSJ10, German NEGRA10 and Chinese CTB10, compared to other models. 
 

The table indicates that U-DOP obtains competitive results compared to Klein and Manning’s 
models, for all three metrics. The relatively high scores of U-DOP may be explained by the fact 
that the model takes into account (also) non-contiguous context in learning trees. We will 
investigate this hypothesis below. Note that the precision and recall scores differ substantially, 
especially for German. While most models obtain good recall scores (except for Chinese), the 
precision scores are disappointingly low. The table also shows that U-DOP’s use of the entire 
subtree-set outperforms the experiment in Bod (2006b) where only a sample of the subtrees was 
used. More subtrees apparently lead to better predictions for the correct trees (we will come back 
to this in more detail in Section 5.3). Note that the scores for German and Chinese are lower than 
for English; we should keep in mind that the WSJ10 corpus is almost four times as large as the 
NEGRA10 and CTB10 corpora. It would be interesting to study the effect of reducing the size of 
the WSJ10 to roughly the same size as NEGRA10 and CTB10. We therefore carried out the same 
experiment on a smaller, random selection of 2200 WSJ10 sentences. On this selection, U-DOP 
obtained an f-score of 68.2%, which is comparable to the f-score on German sentences (66.5%) 
but still higher than the f-score on Chinese sentences (47.8%). This result is to some extent 
consonant with work in supervised parsing of Chinese which generally obtains lower results than 
parsing English (cf. Hearne and Way 2004). 

We now come to isolating the effect of non-linear context in structure learning, as encoded 
by discontiguous subtrees, a feature which is not in the models of Klein and Manning. In order to 
test for statistical significance, we divide each of the three corpora into 10 training/test set splits 
where each training set constitutes 90% of the data and each test set 10% of the data (10-fold 
cross-validation). The strings in each training set were assigned all possible binary trees that were 
employed by U-DOP to compute the best tree for each string from the corresponding test set. For 
each of the 10 splits, we performed two experiments: one with all subtrees and one without 
discontiguous subtrees – or isomorphic PCFG-reductions thereof (Goodman 2003, p. 134, showed 
that his reduction method can just as well be applied to restricted subtree sets rather than DOP’s 
full subtree set – see the Appendix). In Figure 13, subtree (a) is discontiguous, while the other two 
subtrees (b) and (c) are contiguous.  
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NNS NNS

Investors losses

X

X

X

   

NNS VBD

Investors suffered

X

X

X

   

JJ NNS

heavy losses

X

 
  

(a)      (b)         (c) 
 

Figure 13. One discontiguous subtree and two contiguous subtrees from Figure 12 
 
Table 2 shows the results of these experiments, where we focus on the average f-scores of U-DOP 
using all subtrees and of U-DOP using only contiguous subtrees. We also added the f-scores 
obtained by Klein and Manning’s CCM, DMV and DMV+CCM models that were tested on the 
entire corpora. 
 

Model English 

 (WSJ10) 
German 

 (NEGRA10) 
Chinese 

 (CTB10) 

U-DOP With All Subtrees 80.3 64.8 46.1 

U-DOP Without Discontiguous Subtrees  72.1 60.3 43.5 

CCM 71.9 61.6 45.0 

DMV 52.1 49.5 46.7 

DMV+CCM 77.6 63.9 43.3 

 
Table 2. F-scores of U-DOP for WSJ10 with and without discontiguous subtrees using 10-fold 

cross-validation 
 
As seen in the table, the full U-DOP model scores consistently better than the U-DOP model 
without discontiguous information.4 All differences in f-scores were statistically significant 
according to paired t-testing (p<0.02 or smaller). The f-scores of Klein and Manning’s models are 
only added for completeness, since they were obtained on the entire corpus, rather than on 10 
splits. Although exact comparison is not possible, it is interesting that without discontiguous 
subtrees U-DOP obtains results that are similar to the CCM model which is based on contiguous 
dependencies only. In any case, our experiments show that discontiguous dependencies contribute 
to significantly higher f-score in predicting the correct trees. This result is consonant with U-
DOP’s cognitive claim that all possible subtrees should be taken into account, or in other words, 
that no structural-lexical relation should be neglected in learning the syntactic analyses of 
sentences. We will go into a more qualitative analysis of discontiguous subtrees in the following 
sections. The coverage (i.e. the percentage of sentences that could be parsed) by U-DOP was 
100% for all training/test set splits. This is not surprising, because every label X can be substituted 
into every other label X in U-DOP. The actual challenge is to find the best structure for a sentence.  
 We should keep in mind that all experiments so far have been carried out with tagged 
sentences. Children do not learn language from sentences enriched with part-of-speech categories, 
and if we want to investigate the cognitive plausibility of U-DOP we need to apply the model 

                                                           
4 Note that the best f-scores in Table 2 are somewhat lower than U-DOP’s f-scores in Table 1. This is due to testing on 
smaller parts of the corpora (n-fold testing) rather than testing on the full corpora. 
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directly to word strings from child language, which we will do so in Section 5. For completeness 
we mention that an experiment with U-DOP on WSJ10 word strings yielded only 51.7% f-score. 
By adding an unsupervised part-of-speech tagger based on distributional clustering (Clark 2000), 
we obtain an f-score of 76.4%, which is just 6% lower than by testing on the WSJ10 part-of-
speech sequences. It would be interesting to generalize unsupervised part-of-speech tagging to 
German and Chinese, and test U-DOP on these data as well, but this falls beyond the scope of this 
paper. 
 

4.2 The problem of ‘distituents’ 
There is an important question as to whether U-DOP does not overlearn highly frequent word 
combinations that are non-constituents, also known as ‘distituents’. For example, word 
combinations consisting of a preposition followed by a determiner, such as in the, on the, at the 
etc., occur in the top four most frequent co-occurences in the Wall Street Journal, and yet they do 
not form a constituent. The constituent boundary always lies between the preposition and the 
determiner, as in [in [the city]], which in the Penn treebank part-of-speech notation corresponds to 
[IN [DT NN]]. There are many types of combinations that are far less frequent than IN DT and 
that do form constituents. How does U-DOP deal with this? 

Let’s have a look at the most frequent constituent types learned by U-DOP in our 
experiments on the WSJ10 (Table 1) and compare them with the most frequent substrings from the 
same corpus. As in Klein and Manning (2002), we mean by a constituent type a part-of-speech 
sequence that constitutes a yield (i.e. a sequence of leaves) of a subtree in the best tree. Table 3 
shows the 10 most frequently induced constituent types by U-DOP together with the 10 actually 
most frequently occurring constituent types in the WSJ10, and the 10 most frequently occurring 
part-of-speech sequences (which turn out all to be bigrams). We thus represent the constituent 
types by their corresponding lexical categories. For instance, DT NN in the first column refers to a 
determiner-(singular)noun pair, while DT JJ NN refers to determiner-adjective-(singular)noun 
triple.5 

 

                                                           
5 The full list of lexical categories in the Penn Treebank II (Marcus et al. 1993) are: CC - Coordinating conjunction; 
CD - Cardinal number; DT - Determiner; EX - Existential there; FW - Foreign word; IN - Preposition or subordinating 
conjunction; JJ – Adjective; JJR - Adjective, comparative; JJS - Adjective, superlative; LS - List item marker; MD – 
Modal; NN - Noun, singular or mass; NNS - Noun, plural; NNP - Proper noun, singular; NNPS - Proper noun, plural; 
PDT – Predeterminer; POS - Possessive ending; PRP - Personal pronoun; PRP$ - Possessive pronoun; RB – Adverb; 
RBR - Adverb, comparative; RBS - Adverb, superlative; RP – Particle; SYM – Symbol; TO – to; UH – Interjection; 
VB - Verb, base form; VBD - Verb, past tense; VBG - Verb, gerund or present participle; VBN - Verb, past participle; 
VBP - Verb, non-3rd person singular present; VBZ - Verb, 3rd person singular present; WDT - Wh-determiner; WP - 
Wh-pronoun; WP$ - Possessive wh-pronoun; WRB - Wh-adverb. 
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Rank Most frequent  

U-DOP constituents 
Most frequent 

WSJ10 constituents 
Most frequent 

WSJ10 substrings 

1 DT NN DT NN NNP NNP 

2 NNP NNP NNP NNP DT NN 

3 DT JJ NN CD CD JJ NN 
4 IN DT NN JJ NNS IN DT 

5 CD CD DT JJ NN NN IN 

6 DT NNS DT NNS DT JJ 

7 JJ NNS JJ NN JJ NNS 

8 JJ NN CD NN NN NN 

9 VBN IN IN NN CD CD 

10 VBD NNS IN DT NN NN VBZ 

 

Table 3. Most frequently learned constituent types by U-DOP for WSJ10, compared with most 
frequently occurring constituent types in Penn treebank WSJ10, and the most frequently occurring 

part-of-speech sequences in Penn treebank WSJ10 
 

In the table we see that a distituent type like IN DT (in the, on the, at the etc.) occurs indeed very 
frequently as a substring in the WSJ10 (third column), but not among U-DOP’s induced 
constituents in the first column, and neither among the hand-annotated constituents in the middle 
column. Why is this? First note that there is another substring DT NN which occurs even more 
frequently than the substring IN DT (see third column of Table 3). U-DOP's probability model will 
then favor a covering subtree for IN DT NN which consists of a division into IN X and DT NN 
rather than into IN DT and X NN. As a consequence IN DT will not be assigned a constituent in 
the most probable tree. The same kind of reasoning can be made for a subtree for DT JJ NN where 
the constituent JJ NN occurs more frequently as a substring than the distituent DT JJ. In other 
words: while distituents like IN DT and DT JJ occur in the top most frequent part-of-speech 
strings, they are not learned as constituents by U-DOP’s probability model. This shows that the 
influence of frequency is more subtle than often assumed. For example, in Bybee and Hopper 
(2001:14) we read that “Constituent structure is determined by frequency of co-occurrence [...]: 
the more often two elements occur in sequence the tighter will be their constituent structure”). This 
idea, as attractive as it is, is incorrect. It is not the simple frequency of co-occurrence that 
determines constituent learning, but the probability of the structure of that co-occurrence. (This is 
not to say that a collocation of the form IN DT cannot form a phonetic phrase. What we have 
shown is that the learning of syntactic phrases, such as noun phrase and prepositional phrase, is 
more complex than applying simple frequency.) 
  

5  Experiments with the Childes database  
 
To test U-DOP on child language, we used the Eve corpus (Brown 1973) in the Childes database 
(MacWhinney 2000). Our choice was motivated by the accurate syntactic annotations that have 
recently been released for this corpus (Sagae et al. 2007), as well as its central role in child 
language acquisition research (cf. Moerk 1983). The Eve corpus consists of 20 chronologically 
ordered files each of about 1-1.5 hour dialog between child and adult that cover the period of 
Eve’s language development from age 1;6 till age 2;3 (with two-week intervals). During this 
period, Eve’s language changes from two-word utterances like More cookie and Papa tray to 
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relatively long sentences like Someone’s in kitchen with Dinah and I made my baby sit in high 

chair. In our learning experiments in this section we only use the files that were manually 
annotated and checked, which correspond to the first 15 files of the Eve corpus covering the age 

span 1;6-2;1 (but note that in section 6 we will use all files in our generation experiments). The 

hand-annotations contain dependency structures for a total of 65,363 words. Sagae et al. (2007) 
labeled the dependencies by 37 distinct grammatical categories, and used the part-of-speech 
categories as described in MacWhinney (2000). Of course there is a question whether the same 
categories can be applied to different stages of child language development. But since we will 
discard the category labels in our unlabeled trees in our evaluations (as U-DOP does not learn 
categories), we will not go into this question for the moment. We will see that unlabeled tree 
structures are expressive enough to distinguish, for example, between holophrases (as represented 
by fully lexicalized subtrees) and constructions with open slots (as represented by partially 
lexicalized subtrees). 

The annotations in Sagae et al (2007) were automatically converted to unlabeled binary 
constituent structures using standard techniques (Xia and Palmer 2001). Arities larger than 2 were 
converted into binary right-branching such that we obtained a unique binary tree for each 
dependency structure. This resulted in a test corpus of 18,863 fully hand-annotated, manually 
checked utterances, 10,280 adult and 8,563 child. For example, the binary tree structure for the 
Eve sentence (from file 15) I can blow it up is given in Figure 14.  
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X
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Figure 14. Binary tree for Childes sentence I can blow it up (Eve corpus) 
 

5.1 Learning structures for the Eve corpus by U-DOP 
Our main goal is to investigate in how far U-DOP can be used to incrementally model child 
language development. But as a baseline we first evaluate the non-incremental U-DOP model on 
the Eve corpus. We applied U-DOP to the word strings from the 15 annotated Eve files, where we 
distinguished between two subcorpora: Child (8,563 utterances) and Adult (10,280 utterances). As 
before, we used a PCFG reduction of U-DOP which resulted in a total of 498,826 indexed PCFG 
rules (remember that the number of subtrees and indexed PCFG rules increases when we add 
abstract labels to the words, as done for the Eve corpus). 

As a first experiment we wanted to test in how far U-DOP could learn structures for the 
Child utterances on the basis of the Adult utterances only. This can be carried out by assigning all 
binary trees to the Adult utterances by which the best structures for Child utterances were 
computed (after which the outcome was evaluated against the hand annotations). However, for 
comparison we also lumped the Adult and Child utterances together as input, and used 
respectively the Child’s structures as output. Additionally, we also carried out an experiment 
where the Child utterances are used as input and the Child structures as output (even though a 
child does of course not learn the structures entirely from its own language). Next, we did the 
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same for Adult utterances as input and Adult structures as output. Finally, to make our first set of 
experiments ‘complete’ we used Child utterances as input and Adult structures as output. 

We should keep in mind that we did not use any part-of-speech annotations from the Eve 
corpus: we directly learned structures for word strings. This leads to the problem of unknown 
words, especially for the experiment from Child to Adult. As in Bod (1998, 2003), we assigned 
wildcards to unknown words such that they could match with any known word. Table 4 shows the 
results (unlabeled precision, unlabeled recall and f-score) where we again distinguish between 
using all subtrees and only contiguous subtrees. To the best of our knowledge these are the first 
published results on unsupervised structure induction for Childes data evaluated against the hand-
assigned structures by Sagae et al. (2007).  
 

Experimental Setting 

 

Full U-DOP 

 

 
   UP      UR        F1 

U-DOP without 

discontiguous subtrees 

 
    UP       UR         F1 

Adult to Child 77.0     87.2      81.8    75.2     85.9       80.2 

Child to Adult   45.5     51.4      48.3    44.1     50.3       47.0 

Full corpus to Child   85.8     92.7     89.1    84.7     91.4       87.9 

Full corpus to Adult   79.6     89.6     84.3  79.0     88.3       83.4 

Child to Child   86.6     91.3     88.9  85.2     90.8       87.9 

Adult to Adult   79.7     89.9     84.5  78.4     89.5        83.6 

 
Table 4. Unlabeled Precision, Unlabeled Recall and F1-scores of  U-DOP against hand-annotated 

Eve data in the Childes, under different experimental settings 
 
The first thing that strikes us in Table 4 is the relatively low f-score for Child to Adult (48.3%). 
This low score is actually not surprising since the lexicon, as well as the grammar, of an adult are 
much larger than those of a child, which makes it hard to learn to parse adult sentences from child 
utterances only. Even when we discard all Adult sentences that have unknown words in the Child 
data, we still obtain an f-score of just 58.0%. What is more interesting, is that the cognitively more 
relevant experimental setting, Adult to Child, obtains a relatively high f-score of 81.8%. While this 
f-score is lower than Child to Child (88.9%), and the differences were statistically significant 
according to 10-fold cross-validation (p < 0.01), it is of course harder for U-DOP to learn the 
Child structures from Adult utterances, than it is to learn the Child structures from the child’s own 
utterances. Yet, children do not learn a language by just listening to their own sentences, thus the 
Adult to Child setting is more relevant to the goal of modeling language learning. On the other 
hand, we should not rule out the possibility that children’s utterances have an effect on their own 
learning. This is reflected by the Full corpus to Child setting, which obtains slightly better results 
than the Child to Child setting (the differences were not statistically significant according to 10-
fold cross-validation) but it definitely obtained better results than Adult to Child (for which the 
differences were statistically significant, p < 0.01). 

Table 4 shows that the use of all subtrees consistently outperforms the use of only 
contiguous subtrees. This is consonant with our results in the previous section. An additional 
experiment with 10-fold testing showed that the differences in f-score between full U-DOP and U-
DOP without discontiguous subtrees are statistically significant for all data (p < 0.05 or smaller).6 
                                                           
6
 For reasons of completeness we have also evaluated several other versions of  U-DOP. By testing U-DOP by means 
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Note that the precision and recall scores for each setting differ much less than in the experiments 
on adult language in Section 4 (Table 1), which can be considered an improvement with respect to 
the adult language experiments.  
 

5.2 Extending U-DOP towards incremental learning  
We will now extend U-DOP towards incremental learning by inducing the structures for the child 
utterances of each Eve file on the basis of the accumulated files of previous utterances up to the 
particular file. We took (respectively) the total Child utterances up to a certain file, the total Adult 
utterances up to certain file, and the total Child and Adult utterances taken together (i.e. what we 
called Full corpus above) in order to derive the structures for Eve for a particular (non-
accumulated) file – which had the same file number as the last file of the accumulated files. In this 
way we create a first extension of U-DOP towards incremental learning: each file in the Eve 
corpus corresponds to a certain stage in Eve’s language development, and we want to figure out in 
how far the structures for Eve can be derived from the accumulated language experiences (of 
Child, Adult and Full corpus) at each stage. Figure 15 gives the f-scores for each file where we 
distinguish between Accumulated Child to Child (Series 1), Accumulated Adult to Child (Series 
2), and Accumulated Child and Adult to Child (Series 3). Remember that file 1 corresponds to age 
1;6 and file 15 to age 2;1, with 2 week intervals between consecutive files. 
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of the most probable tree only (i.e. without the shortest derivation), significantly lower f-scores were obtained both 
with and without discontiguous subtrees. It thus seems to be important to first compute the distribution of structurally 

most analogous trees, after which the statistics is applied. To investigate other notions of “distribution of most 
analogous trees”, we have tested also varieties of U-DOP by using the k-shortest (second shortest, third shortest etc.) 
derivations instead of the shortest derivation alone. While such an approach slightly improved the f-score for 
supervised DOP (cf. Bod 2002), it significantly deteriorated the f-scores for U-DOP. 
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Figure 15. F-scores for the Eve corpus, where U-DOP is tested on Accumulated Child to Child 

(Series1), Accumulated Adult to Child (Series2), and Accumulated Child and Adult to Child 

(Series3). 
 
Figure 15 supports the observation that Adult to Child (Series2) is mostly harder than Child to 
Child (Series1), except for files 11 and 12 where Adult to Child outperforms Child to Child 
(remember that the f-scores are only computed on the most recent non-accumulated Child file). 
We do not know why this is; a closer look at the utterances gave no more hints than that Eve uses 
for the first time gerunds (e.g. Sue giving some milk), which occurred earlier and more frequently 
in Adult data than in Child data, and were parsed correctly only in the Adult to Child setting. Note 
that the Full corpus to Child (Series3) results obtains the best f-score in most cases. However, only 
for the Adult to Child setting there is a global increas in f-score from file 1 to file 15, while for the 
other two settings there is no improvement from file 1 to file 15. This is perhaps not surprising 
since the structure induction for Eve is accomplished in these settings by using Eve’s utterances 
themselves as well (which is not the case in Adult to Child setting where U-DOP induced Eve’s 
structures by means of the Adult utterances alone). 
 It may also be interesting to have a closer look at what happens with the f-score at file 3: 
Child to Child decreases while Adult to Child increases. This may indicate that there are new 
syntactic constructs that appear in file 3 which were not (yet) in the Child data but already 
available in the Adult data. A qualitative comparison between files 2 (age 1;6) and 3 (age 1;7) 
seemed to support this. For example, in file 3 Eve uses full-fledged sentences with the auxiliary is 
as in the dog is stuck (which previously would only occur as dog stuck). Moreover, Eve uses in file 
3 for the first time verb combinations like ‘d help in I’d help stool away. These kind of 
constructions are very hard to process without examples from Adults.  

Although an incremental model is cognitively more realistic than a non-incremental model, 
we should keep in mind that the data in the Eve corpus is not dense enough to model each step in 
Eve’s language development. Yet, this data sparseness may perhaps be overcome if we apply U-
DOP within one and the same Eve-file. In this way, we can test U-DOP’s performance in a 
sentence-by-sentence way on Eve’s data (rather than on a file-by-file way). One of the phenomena 
we have been interested in is the acquisition of discontiguous constructions, such as separable 
particle verbs. How does U-DOP simulate this learning process? To deal with this question, we 
applied the incremental version of U-DOP (using the Adult and Child to Child setting) to a 
sequence of Eve’s utterances with the separable particle verb blow … up from file 15. Figure 16 
lists these utterances with blow … up.  
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1. *CHI: I trying a blow it up Fraser . 

2. *CHI: there I blow it up . 

3. *CHI: there I blow it up . 

4. *CHI: I can't . 

5. *CHI: there I blow it up . 

6. *CHI: I blow . 

7. *CHI: I have blow it up up big . 

8. *CHI: yeah . 

9. *MOT: you have to blow it up big ? 

10.*MOT: well I don't think you can Eve . 

11.*MOT: because there's knot in the balloon that I cannot get untied . 

12.*MOT: we'll have to get another one . 

13.*CHI: I can blow this up . 

14.*MOT: I don't think you can . 

15.*CHI: I can blow it in my mouth . 

 

Figure 16. Dialog between Eve and her mother with the discontiguous phrase blow … up  
 

Up to sentence 5 (in Figure 16), Eve seems to use the phrase blow it up as one unit in that there is 
no evidence for any internal structure of the phrase. U-DOP learned at sentence 2 that blow it up is 
a separate constituent, but was not able to induce any further internal structure for this constituent, 
and thus left open all possibilities (i.e. it maintained two different trees for blow it up). In sentence 
6 Eve produces I blow, which led U-DOP to induce that blow is a separate constituent, but without 
being able to decide whether it is attached to blow or to up. The next major sentence is 13: I can 

blow this up. The new word this occurs between blow and up which led U-DOP to induce two 
possible subtrees: [[blow X] up] and [blow [X up]] without breaking ties yet. Finally, in sentence 
15, Eve produces blow it without up, which led U-DOP to assign the subtree [[blow X] up] a 
higher frequency than [blow [X up]]. This means that (1) U-DOP has correctly learned the 
separable particle verb blow … up at this point, and (2) DOP’s MPSD will block the production at 
this point of ‘incorrect’ constructions such as blow up it since only the larger (learned) 
construction will lead to the shortest derivation (we will extensively come back to generation in 
the next section).   

A limitation of the experiment above may be that U-DOP could only learn the particle verb 
construction from the utterances produced by both her mother and by Eve herself (i.e. the Child 
and Adult to Child set-up). It would be interesting to explore whether U-DOP can also learn 
discontiguous phrasal verbs from adult utterances alone (i.e. Adult to Child set-up), such as the 
particle verb  put … in, as shown in Figure 17. 

 
1. *MOT: well we can put it in . 

2. *MOT: yeah . 

3. *MOT: Mom can put the stick in . 

4. *MOT: we just can't put any air in . 

 
Figure 17. Mother utterances from the Eve corpus with discontiguous phrase put … in 

 
The four sentences in Figure 17 suffice for U-DOP to learn the construction put X in. At sentence 
3, U-DOP induced that can put it in and can put the stick in are generalized by can put X in. But 
the internal structure remains unspecified. At sentence 4, U-DOP additionally derived that put X in 
can occur separately from can, resulting in an additional constituent boundary. Thus by initially 
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leaving open all possible structures, U-DOP incrementally rules out incorrect structures until the 
correct construction put X in is learned. In this example, U-DOP was not able to decide on any 
further internal structure for put X in, leaving open all (i.e. two) possibilities at this point. This is 
equivalent to saying that according to U-DOP put X in has no internal structure at this point.  

Note that in both examples (i.e. blow it up and put it in), U-DOP follows a route from 
concrete constructions to more abstract constructions with open slots. The subtrees that partake in 
U-DOP’s MPSD initially correspond to ‘holophrases’ after which they get more abstract resulting 
in the discontiguous phrasal verb. This is consonant with studies of child language acquisition 
(Peters 1983; Tomasello 2003) which indicate that children move from item-based constructions 
to contructions with open positions. Although this is an interesting result, we must keep in mind 
that Eve’s files are separated by two-week time intervals during which there were important 
learning steps that have not been recorded and that can therefore not be modeled by U-DOP. Yet, 
we will see in Section 6 that the grammar underlying U-DOP’s induced structures triggers some 
interesting new experiments regarding language generation. 
 

5.3 The effect of subtree size 
Before going into generation experiments with U-DOP/DOP, we want to test whether we can 
obtain the same (or perhaps better) f-scores by putting constraints on U-DOP. By limiting the size 
of U-DOP’s subtrees we can instantiate various other models. We define the size of a subtree by 
its depth, which is the length of the longest path from root to leaf in a subtree. For example, by 
restricting the maximum depth of the subtrees to one, we obtain an unsupervised version of 
probabilistic context-free grammar or PCFG (such a PCFG should not be confused with a ‘PCFG’-
reduction of DOP’s PTSG for which each node in the tree receives 8 indexed PCFG-rules, and 
which is not equal to the standard notion of a PCFG – see Appendix). When we allow subtrees of 
at most depth 2, we obtain an extension towards a lexicalized tree-substitution grammar. The 
larger the depth of the subtrees, and consequently the width, the more (sequential and structural) 
dependencies can be taken into account. But there is a question whether we need subtrees of 
arbitrary depth to get the highest f-score. In particular, do we need such large productive units for 
the earliest stages of Eve’s language development? To test this, we split the hand-annotated part of 
the Eve corpus into three equal periods, each of which contains 5 files. 

Table 5 shows the f-scores of U-DOP on the Adult to Child learning task for the three 
different periods with different maximum subtree depths. The average sentence length (a.s.l.) is 
also given for each period. 
 

Maximum 

Subtree Depth 

File 1-5 

a.s.l. = 1.84 

File 6-10 

a.s.l. = 2.59 

File 11-15 

a.s.l. = 3.01 

1 (PCFG) 49.5 44.2 35.6 

2 76.2 64.0 57.9 

3 88.7 78.6 68.1 
4 88.6 80.5 74.0 

5 88.7 84.9 75.8 
6 88.6 84.9 76.3 

All (U-DOP) 88.7 84.9 77.8 

 
Table 5. F-scores of U-DOP on the Adult to Child learning task for three periods, where the 

subtrees are limited to a certain maximum depth. The a.s.l. refers to the average number of words 
per sentence (average sentence length). For all periods there are subtrees larger than depth 6. 
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The table shows that for the first period (file 1-5; age 1;6-1;8) the f-score increases up to subtree 
depth 3, while for the second period (age 1;8-1;10) the f-score increases up to subtree depth 5, and 
in the third period (age 1;11-2;1) there is a continuous increase in f-score with increasing subtree 
size. Thus the f-score decreases if the subtrees are limited to a simple PCFG, for all periods, and 
the subtree-depth for which maximum f-score is obtained increases with age (and corresponding 
average sentence length). This suggests that children’s grammars move from small building blocks 
to grammars based on increasingly larger units. It is remarkable that the f-score continues to grow 
in the third period. We will study the qualitative effect of subtree-size in more detail in our 
generation experiment below. 
 

6  Generation experiments with auxiliary fronting  
 
So far we have shown how U-DOP can infer to some extent the syntactic structures of Child 
utterances from Adult utterances. But once we have learned these structures, we have also learned 
the grammar implicit in these structures by which we can generate new utterances, namely by 
combining subtrees from the learned structures. This DOP/PTSG model will of course 
overgenerate due to its lack of labels and absence of semantics. In principle, we need a DOP 
model that computes the best string for a given meaning representation, such as in Bod (1998). But 
in the absence of meaning in the current version of U-DOP, we can at least test whether the 
derived PTSG correctly generates certain syntactic facets of (child) language. In this section we
will test our method on the phenomenon known as auxiliary fronting. We will deal with the 
phenomenon in two ways: first in a ‘logical’ way, similar to Clark and Eyraud (2006); next, in an 
empirical way by using the induced structures from the Eve corpus.  

The phenomenon of auxiliary fronting is often taken to support the well-known “Poverty of 
the Stimulus” argument and is called by Crain (1991) the “parade case of an innate constraint”. 
Let’s start with the typical examples which are the same as those used in Crain (1991), 
MacWhinney (2005), Clark and Eyraud (2006) and many others: 
 
(5) The man is hungry 
 
If we turn sentence (5) into a (polar) interrogative, the auxiliary is is fronted, resulting in sentence 
(6). 
 
(6) Is the man hungry? 
 
A language learner might derive from these two sentences that the first occurring auxiliary is 
fronted. However, when the sentence also contains a relative clause with an auxiliary is, it should 
not be the first occurrence of is that is fronted but the one in the main clause: 
 
(7) The man who is eating is hungry 
 
(8) Is the man who is eating hungry? 
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Many researchers have argued that there is no reason that children should favor the correct 
auxiliary fronting. Yet children do produce the correct sentences of the form (7) and rarely of the 
form (9) even if they have not heard the correct form before (Crain and Nakayama 1987).9 
 
(9) *Is the man who eating is hungry? 
 
According to the nativist view and the poverty of the stimulus argument, sentences of the type in (8) 
are so rare that children must have innately specified knowledge that allows them to learn this 
facet of language without ever having seen it (Crain and Nakayama 1987). On the other hand, it 
has been claimed that this type of sentence can be learned from experience (Lewis and Elman 
2001; Reali and Christiansen 2005). We will not enter the controversy on this issue (see Pullum 
and Scholz 2002; Kam et al. 2005), but believe that both viewpoints overlook an alternative 
possibility, namely that auxiliary fronting needs neither be innate nor in the input data to be 
learned, but that its underlying rule may be an emergent property of a structure learning algorithm. 
We will demonstrate that by U-DOP’s shortest derivation, the phenomenon of auxiliary fronting 
does not have to be in the input data and yet can be learned.  
 

6.1 Learning auxiliary fronting from a constructed example 
The learning of auxiliary fronting can proceed when we have induced tree structures for the 
following two sentences (we will generalize over these sentences in Section 6.2): 
 
(10) The man who is eating is hungry  
(11) Is the boy hungry? 
 
Note that these sentences do not contain an example of complex fronting where the auxiliary 
should be fronted from the main clause rather than from the relative clause. The tree structures for 
(10) and (11) can be derived from exactly the same sentences as in Clark and Eyraud (2006): 
 
(12) The man who is eating mumbled 
(13) The man is hungry 
(14) The man mumbled 
(15) The boy is eating 
 
The best trees for (10) and (11) computed by U-DOP from (10)-(15) are given in Figure 18.  
 

                                                           
9 Crain and Nakayama (1987) found that children never produced the incorrect form (9). But in a more detailed 
experiment on eliciting auxiliary fronting questions from children, Ambridge et al. (2008) found that the correct form 
was produced 26.7% of the time, the incorrect form in (9) was produced 4.55% of the time, and auxiliary doubling 
errors were produced 14.02% of the time. The other produced questions corresponded to shorter forms of the 
questions, unclassified errors and other excluded responses.  



 27

is

X

X

X

X

X

X

is eating

X X

hungry

X

the man

X X

X

who

X

  

X

X

X

X

X

the boy

X X

is hungry  
 

(a)        (b) 
 

Figure 18. Tree structures for the man who is eating is hungry and is the boy hungry? learned by 
U-DOP from the sentences (10)-(15) 

 
Given these trees, we can easily prove that the shortest derivation produces the correct auxiliary 
fronting. That is, in order to produce the correct AUX-question, Is the man who is eating hungry, 
we only need to combine the following two subtrees in Figure 19 from the acquired structures in 
Figure 18 (note that the first subtree is discontiguous)9. 
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Figure 19. Producing the correct auxiliary fronting by combining two subtrees from Figure 18 
 
Instead, to produce the incorrect AUX-question *Is the man who eating is hungry? we would need 
to combine at least four subtrees from Figure 18 (which would in fact never be produced by the 
shortest derivation), which are given in Figure 20: 
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Figure 20. Producing the incorrect aux-fronting by combining four subtrees from Figure 18 

                                                           
10  We are implicitly assuming a DOP model which computes the most probable shortest derivation given a certain 
meaning to be conveyed, such as in Bonnema et al. (1997) and Bod (1998). 
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Clearly the derivation in Figure 19 is the shortest one and produces the correct sentence, thereby 
overruling the incorrect form. Although our argument is based on one example only (which we 
will extend in Section 6.2), it suggests the following explanation for auxiliary fronting: the shortest 
derivation provides the maximal similarity or analogy between the new sentence (with complex 
fronting) and old sentences, that is, there is maximal structure sharing between new and old forms 
(cf. Gentner and Markman 1997). As an effect, the shortest derivation substitutes the simple NP 
the boy for the complex NP the man who is eating, leading to the correct fronting (see Bod 2007b). 

The example above thus shows that *Is the man who eating is hungry? is blocked by the 
MPSD, provided that we have sentences like (10)-(15) (which we will generalize to the entire Eve 
corpus in Section 6.2). But we have not yet shown that a sentence like *Is the man who is eating is 

hungry? is also blocked. This incorrect sentence can in fact also be generated by only two subtrees 
from Figure 18 (i.e. by combining the subtree [isX X]X from 18b and the entire tree from 18a) and 
would thus compete with the correct Is the man who is eating hungry? Interestingly, Crain and 
Nakayama (1987) report that children make the same type of error with auxiliary doubling (also 
discussed in Ambridge et al. 2008). Yet if we additionally take into account the frequencies of the 
subtrees, it turns out that the MPSD is unique and predicts the correct fronting. This can be 
informally seen as follows. Since we also heard a sentence like (12) above (The man who is eating 

mumbled), the total frequency of the subtree for The man who is eating is twice as high as the 
subtree for The man who is eating is hungry, which means that the sentence with the correct 
auxiliary placement will win in this specific case. And in the more general case, a subtree for a 
sentence like The man who is eating X, where X stands for another constituent will be more 
frequent than a (sub)tree for the specified sentence The man who is eating is hungry (because the 
former sentence can occur with different fillers for X). Our argument does therefore not hinge on 
the specific example in this section. Thus if we leave out frequency, the shortest derivation 
generates one other incorrect auxiliary fronting, which is however also produced by children in the 
Crain and Nakayama (1987) experiment. But when we take into account frequency, the correct 
fronting will get a higher probability than the incorrect fronting. 

 

6.2 Learning auxiliary fronting from the Eve corpus 
The example in the previous section is limited to just a couple of artificial sentences. There is an 
important question as to whether we can generalize our artificial result to actual data. So far we 
have only shown that U-DOP/DOP can infer a complex AUX-question from a simple AUX-
question and a complex declarative. But a language learner does not need to hear each time a new 
pair of sentences to produce a new AUX-question -- such as Is the girl alone? and The girl who is 

crying is alone in order to produce Is the girl who is crying alone?. In the following we will 
investigate whether U-DOP can learn auxiluary fronting from the Eve utterances rather than from 
constructed examples, and whether the model can derive the abstract generalization for the 
phenomenon. 

First note that the patterns of respectively a complex declarative and a simple question in 
(10) and (11) can also be represented by (16) and (17) (with the only difference that P in (10) 
refers to the man while in (11) it refers to the boy, but this does not change our argument). 
 
(16)  P who is Q is R 
(17)  is P R? 
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We will assume that the variables P, Q and R can be of any (lexical or syntactic) category, except 
the auxiliary is. This assumption can lead to the production of implausible and unacceptable 
sentences, but our first goal will be to test whether U-DOP can generate the correct pattern Is P 

who is Q R? from (16) and (17) -- and we will see below that the AUX-questions generated by 
DOP are mostly acceptable, due to its preference of using largest possible chunks. Our question is 
thus whether U-DOP can assign structures to (16) and (17) on the basis of the Eve corpus such that 
the complex pattern (18) is generated by the (most probable) shortest derivation while the patterns 
(19) and (20) are not. For convenience we will refer to pattern (19) as “incorrect auxiliary 
fronting” and to pattern (20) as “auxiliary doubling”. 
 
(18)  Is P who is Q R? 
(19)  *Is P who Q is R? 
(20)  *Is P who is Q is R? 
 
We should first mention that there is no occurrence of the complex AUX-question (18) in the Eve 
corpus. Thus U-DOP cannot learn the complex pattern by simply using a large subtree from a 
single sentence. Moreover, there is no occurrence of the complex declarative (16) (P who is Q is 

R) in the Eve corpus either (although there are many instances of simple polar interrogatives like 
(17) as well as many relative clauses with who). This means that we cannot show by our 
experiment that the complex AUX-question can be derived from an observed complex declarative 
and a simple AUX-question. But it is interesting to investigate whether we can derive the complex 
AUX-question from raw data by learning first the structure of a complex declarative. Such an 
experiment could connect our ‘logical’ argument in Section 6.1 with a more empirical argument. 
Thus we first tested whether the structures of (16) and (17) could be derived from the Eve corpus. 
We used U-DOP’s inferred structures in the Adult to Child setting from Section 5 to compute the 
MPSD for the two patterns P who is Q is R.and is P R? where P, Q and R were taken as wildcards. 
By employing the Adult to Child setting, we only use the structures learned for Eve’s utterances 
which means that our result does not depend on the structures of Adult utterances.  
          The induced structures by U-DOP’s MPSD for (16) and (17) are given in (21) and (22). For 
readability we will leave out the labels X at the internal nodes (in the sequel we only show the 
label X if it appears at an external node, for example in a subtree-yield). 
 
(21)  [[[P] [who [is Q]]] [is R]] 
(22)  [is [P R]]? 
 
Note that (21) and (22) are virtually equivalent to the structures 14(a) and 14(b) modulo the 
internal structure of P which in (21) and (22) is taken as a whole constituent. On the basis of these 
two structures, DOP will generate the correct AUX-question by the shortest derivation in the same 
way as shown in Section 6.1 (Figure 19), namely by combining the two subtrees [is [X R]] and 
[[P] [who [is Q]]], while the sentence with incorrect auxiliary fronting can be generated only by 
(at least) four subtrees (and the same argument in Section 6.1 can also be used for the auxiliary 
doubling). While this empirical result thus generalizes over the artificial result above, our 
experiment is based on the assumption that the structures (21) and (22) are the only trees that 
contribute to generating the AUX-question Is P who is Q R?. This is an unrealistic assumption: 
there are many other utterances in the Eve corpus whose subtrees may contribute to generating 
AUX-questions.  
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         In our next experiment we will therefore use U-DOP’s induced structures for Eve’s 
utterances to compute the most probable shortest derivations directly for the patterns (18)-(20), 
rather than via the complex declarative. Table 10 gives for each AUX-pattern the minimal number 
of subtrees from Eve’s utterance-structures that generated it, and the probability of the most 
probable tree among the shortest derivations. 
 

Pattern 

 

Length of 

shortest 

derivation 

MPSD 

(probability of 
best tree) 

Is P who is Q R? 3 4.4 ⋅ 10-17 

*Is P who Q is R? 3 2.1 ⋅ 10-18 

*Is P who is Q is R? 3 1.8 ⋅ 10-18 

 
Table 10. Patterns of auxiliary fronting together with the length of the shortest derivation and the 

probability of the MPSD, as generated by subtrees from the induced structures of Eve’s data. 
 

Different from the artificial example above, all patterns are now generated by three subtrees – both 
the correct, incorrect and auxiliary-doubling patterns (remember that the correct AUX-question 
cannot be generated anymore from the complex declarative, as the latter does not appear in the 
Eve corpus). Tabel 10 shows that the probability of the correct fronting pattern is one order of 
magnitude higher than the probabilities of the other two patterns. The incorrect fronting pattern is 
slightly more likely than the auxiliary doubling pattern, while the study by Ambridge et al (2008) 
shows that auxiliary doubling is actually generated three times more often by children than the 
incorrect fronting in eliciting complex AUX-questions (roughly 14% against 4.5%). Yet, our 
experiment is not directly comparable to Ambridge et al. (2008) because the children in Ambridge 
et al. are on average 3.5 years older than Eve. It would be interesting to know the kind of auxiliary 
fronting sentences elicited from children of Eve’s age – if possible at all. In any case, our 
experiment correctly predicts that the correct fronting has the highest probability.  
         While this experiment demonstrates that on the basis of unsupervised learning the correct 
abstract ‘rule’-pattern for auxiliary fronting obtains a higher probability than the incorrect ‘rule’-
patterns, we should keep in mind that it is a parsing experiment rather than a generation 
experiment: we have parsed pre-given patterns instead of generating them. Children do of course 
not produce sequences of words with open slots but sequences of consecutive words. In our third 
experiment we therefore want to randomly generate a large number of complex AUX-questions so 
as to determine the percentage of the different auxilary patterns produced by U-DOP’s derived 
PTSG. Note that we cannot exhaustively generate all possible questions, since there are infinitely 
many of them. Even the generation of all possible AUX-questions of maximally 8 words from the 
Eve corpus already leads to an unmanageably large number of sentences. Thus we must somehow 
sample from the distribution of possible AUX-questions if we want to investigate the percentages 
of various AUX-questions produced by U-DOP/DOP. Since we know that the correct AUX-
question can be generated by three subtrees, we will produce our random generations by selecting 
(randomly) three subtrees of the following types:  

(1) a subtree with the word is at the leftmost terminal of the subtree-yield (without any other 
restrictions),  

(2) a subtree with the word who at any position in the subtree-yield, 
(3) a subtree with the word is at any position in the subtree-yield .  
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Next we combine these 3 subtrees in the order of being sampled (if they can be combined at all). If 
the resulting sentence has all slots filled with words, we accept it, otherwise we discard it. In this 
way, we effectively sample from the distribution of shortest derivations for sentences of a large 
variety of patterns, many of which may be ‘unacceptable’, but which include patterns (18)-(20). If 
more than one derivation for the same sentence was generated then their probabilities were added, 
so as to take into account the MPSD. A total of 10 million sentences were randomly generated in 
this way, of which 3,484 had all slots filled. These were automatically compared with the three 
patterns (18)-(20). Table 11 gives the percentage of these patterns, as well as the other patterns that 
resulted from the generation experiment. 
 

Pattern 

 

Percentage 

 

Is P who is Q R? 40.5 

*Is P who Q is R? 6.9 

*Is P who is Q is R? 7.0 

 
Other: 

*Is P Q who is R? 
*Is P Q R who is? 
*Is who is P Q R? 
*Is who P is Q R? 
*Is who P Q R is? 
*Is P is who Q R? 

Etc… 
Total Other: 

 
 

10.7 
6.7 
4.0 
3.8 
2.5 
2.0 

 
45.6 

 
Table 11. Percentage of generated AUX-patterns by random generation of derivations of three 

subtrees with the words is, who, and is. 
 
Table 11 shows a distribution where the correct fronting pattern is most likely, while the incorrect 
fronting and the auxiliary doubling are again almost equally likely. Although the correct fronting 
occurs only 40.5% of the time, it corresponds to the MPSD. Almost half of the generated 
sentences (45.6%) did not correspond to one of the three original patterns. In particular, the pattern 
*Is P Q who is R? was generated quite frequently (10.7%). This pattern was not investigated in 
detail in the study by Ambridge et al. (2008), although under “other excluded responses” in 
Appendix E of their paper they list several sentences that are very similar to this pattern (e.g. Is the 

boy washing the elephant who’s tired). The other incorrect patterns in Table 11 are not reported in 
Ambridge et al. (2008). It has of course to be seen which of these incorrect patterns will still be 
generated if we extend U-DOP with category induction (as we discuss in Section 7). But it is 
promising that our results are more in line with the recent experiments by Ambridge et al., in 
which various incorrect auxiliary fronting errors are reported, than with the older study by Crain 
and Nakayama (1987), in which incorrect fronting was never generated by children. 
        If we have a look at the sentences corresponding to the correct AUX-fronting pattern Is P 

who is Q R?, then it is remarkable that many of them are syntactically well-formed, and some of 
them are semantically plausible, even though there were no restrictions on the lexical/syntactic 
categories. This may be due to U-DOP/DOP’s use of large chunks that tend to maintain 
collocational relations. Table 12 gives the ten most frequently generated AUX-questions of the 
pattern Is P who is Q R?, together with their unlabeled bracketings and their frequencies of being 
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generated (as well as the percentage corresponding to this frequency in the class of correct AUX-
questions). It turns out that these sentences have roughly the same structure as in Figure 18(a). 
Note that the most frequently generated sentences also seem to correspond to the syntactically 
most acceptable and semantically most plausible sentences. 
 
 

AUX-questions of the pattern Is P who is Q R? with 

induced unlabeled bracketings 

 

Frequency of 

being generated 

[Is [[Fraser [who [is crying]]] going]] 37    (2.6%) 

[Is [[Fraser [who [is that]]] [having coffee]]] 30    (2.1%) 

[Is [[Fraser [who [is crying]]] [having coffee]]] 28   (2.0%) 

[Is [[that [who [is crying]]] [some noodles]]] 27   (1.9%) 

[Is [[that [who [is [some [more tapioca]]]] [some noodles]]] 23   (1.6%) 

[Is [[Fraser [who [is [some [more tapioca]]]] [having coffee]]] 22   (1.5%) 

[Is [[Fraser [who [is that]]] going]] 20   (1.4%) 

[Is [[Fraser [who [is [some [more tapioca]]]] going]] 18   (1.3%) 

[Is [[that [who [is that]]] [some noodles]]] 7   (0.50%) 

[Is [[that [who [is that]]] going]] 3   (0.21%) 

 
Table 12. Ten most frequently generated AUX-questions of the correct pattern with their 

bracketings together with their frequencies and their percentage from the total number of sentences 
of the correct pattern. 

 
Finally, we also investigated the effects of the depth and the absence of discontiguous subtrees on 
predicting the correct auxiliary fronting by our random generation method. For each maximum 
subtree depth, we generated 10 million sentences as before by derivations of 3 subtrees, except for 
maximum subtree depths 1 and 2, for which the shortest derivations that could generate the correct 
AUX-pattern consisted respectively of 11 and 5 subtrees. For maximum subtree depths 1 and 2, 
we therefore generated (10 million) sentences by randomly selecting resp. 11 and 5 subtrees, for 
which at least two subtrees had to contain the word is and at least one subtree had to contain the 
word who. For maximum subtree depth 3 and larger, there was always a shortest derivation of 3 
subtrees that could generate the correct auxiliary fronting. Next, we checked which was the most 
frequently generated AUX-pattern for each maximum depth. Table 13 lists for each maximum 
subtree depth: (1) the length of the shortest derivation, (2) whether or not the correct AUX-pattern 
was predicted by the MPSD using all subtrees (followed by the predicted pattern), (3) as under (2) 
but now with only contiguous subtrees. 



 33

 
Maximum 

Subtree Depth 

Length of 

shortest 

derivation 

Correct AUX-fronting? 

(all subtrees) 

 

Correct AUX-fronting? 

(contiguous subtrees only) 

1 (PCFG) 11 NO: *Is P Q R who is? NO: *Is P Q R who is? 

2 5 NO: *Is P Q who is R? NO: *Is P Q who is R? 

3 3 NO: *Is P Q who is R? NO: *Is P Q R who is? 
4 3 YES: Is P who is Q R? NO: *Is P Q R who is? 

5 3 YES: Is P who is Q R? NO: *Is P Q who is R? 
6 3 YES: Is P who is Q R? YES: Is P who is Q R? 

All (DOP) 3 YES: Is P who is Q R? NO: *Is P Q who is R? 

 
Table 13. Effect of subtree depth and discontiguous subtrees on predicting the correct AUX-

fronting. For each maximum subtree depth the table gives: (1) the length of the shortest derivation 
that can generate the correct AUX-pattern, (2) whether or not the correct AUX-pattern was 

predicted by the MSPD using all subtrees (together with the predicted pattern),  (3) as under (2) 
using only contiguous subtrees. 

 
The table shows that in order to generate the correct auxiliary fronting we need to include 
discontiguous subtrees of depth 4, which supports our ‘logical’ argument in Section 6.1 where also 
(discontiguous) subtrees of up to depth 4 were needed (Figure 19). Note that if only contiguous 
subtrees are used in the generation process, the correct AUX-fronting is almost never produced, 
and the only correct prediction at subtree-depth 6 seems to be anomalous. These results support 
our previous results on constraining subtree depth and discontiguity in Sections 4 and 5. Although 
for auxiliary fronting subtrees of maximum depth 4 suffice, we have shown in Section 5.3 that 
even larger subtrees are needed to predict the correct structures for Eve’s longer utterances. 
        As a matter of precaution, we should keep in mind that Eve does not generate any complex 
auxiliary fronting construction in the corpus -- but she could have done so by combining chunks 
from her own language experiences using simple substitution. This loosely corresponds to the 
observation that auxiliary fronting (almost) never occurs in spontaneous child language, but that it 
can be easily elicited from children (as e.g. in Ambridge et al. 2008). 
       Auxiliary fronting has been previously dealt with in other probabilistic models of structure 
learning. Perfors et al. (2006) show that Bayesian model selection can choose the right grammar 
for auxiliary fronting. Yet, their problem is different in that Perfors et al. start from a set of given 
grammars from which their selection model has to choose the correct one. Our logical analysis in 
Section 6.1 is more similar to Clark and Eyraud (2006) who show that by distributional analysis in 
the vein of Harris (1954) auxiliary fronting can be correctly predicted from the same sentences as 
used in Section 6.1 (which are in turn taken from MacWhinney 2005). However, Clark and Eyraud 
do not test their model on a corpus of child language or child-directed speech. More importantly, 
perhaps, is that Clark and Eyraud show that their model is equivalent to a PCFG, whereas our 
experiments indicate that subtrees of up to depth 4 are needed to learn the correct auxiliary 
fronting from the Eve corpus. Of course it may be that auxiliary fronting can be learned by a non-
binary PCFG with rich lexical-syntactic categories (which we have not tested in this paper). But it 
is well-known that PCFGs are inadequate for capturing large productive units and their 
grammatical structure at the same time. For example, for a PCFG to capture a multi-word unit like 
Everything you always wanted to know about X but were afraid to ask, we need to take this entire 
expression as right-handside of the PCFG-rule. While such a PCFG can thus recognize this long 
multi-word unit, it would completely neglect the internal structure of the expression. A PTSG is 
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more flexible in this respect, in that it allows for productive units that include both the full 
expressions as well as their syntactic structure. We could enhance PCFGs by cleverly indexing its 
rules such that the relation between the various rules can be remembered as in a PTSG-subtree. 
But then we actually obtain a “PCFG”-encoding of a PTSG as explained in the Appendix. (For a 
mathematical proof that the class of PTSGs is actually stochastically stronger than the class of 
PCFGs, see Bod 1998: 27ff.)  
        Auxiliary fronting has also been dealt with in non-hierarchical models of language. For 
example, Lewis and Elman (2001) and Reali and Christiansen (2005) have shown that auxiliary 
fronting can be learned by linear processing models. Lewis and Elman trained a simple recurrent 
network (SRN), while Reali and Christiansen used a trigram model that could predict the correct 
auxiliary fronting. However, it is not clear what these models learn about the structure-dependent 
properties of auxiliary fronting since trigram models do not learn structural relations between 
words. Kam et al. (2005) argue that some of the success of Reali and Christiansen’s models 
depend on ‘accidental’ English facts. The U-DOP/DOP approach, instead, can learn both the 
correct auxiliary fronting and its corresponding (unlabeled) syntactic structure. More than that, our 
method learned the abstract auxiliary fronting rule for complex interrogatives (sentence 18) from 
the original complex declarative (sentence 16) and a simple interrogative (sentence 17). Simple 
recurrent networks and trigram models miss dependencies between words when they are separated 
by arbitrarily long sequences of other words, while such dependencies are straightforwardly 
captured by PTSGs. 
        It would be interesting to investigate whether U-DOP/DOP can also simulate auxiliary 
fronting in other languages, such as Dutch and German that have verb final word order in relative 
clauses. And there is a further question whether our approach can model children’s questions in 
general, given an appropriate corpus of child utterances (see e.g. Rowland 2007). Research into 
this direction will be reported in due time. 
      

7  Conclusion 
 

The experiments in this paper should be seen as a first investigation of U-DOP/DOP’s simulation 
of (child) language behavior. As a general model of language learning, our approach is of course 
too limited and needs to be extended in various ways. The learning of lexical and syntactic 
categories may be one of the most urgent extensions. Previous work has noted that category 
induction is a relatively easier task than structure induction (Klein and Manning 2005; Redington 
et al. 1998). Yet it is not trivial to integrate category learning in the U-DOP model in an 
incremental way. In principle, the U-DOP approach can be generalized to category learning as 
follows: assign initially all possible categories to every node in all possible trees (from a finite set 
of n abstract categories C1…Cn) and let the MPSD decide which are best trees corresponding to the 
best category assignments. But apart from the computational complexity of such an approach, it 
neglects the fact that categories can change quite substantially in the course of child language 
acquisition. Experiments with incremental category learning will have to await future research.  
 A major difference between our model and other computational learning models is that we 
start out with the notion of tree structure, but since we do not know which tree structures are 
correct, we allow for all of them and let the notion of structural analogy decide. Thus we implicitly 
assume that the language faculty has prior knowledge about constituent structure, but no more than 
that. We have seen that our use of tree structures allows for capturing linguistic phenomena that 
are reliant on non-adjacent, discontiguous dependencies. Other approaches are often limited to 
contiguous dependencies only, either in learning (Klein and Manning 2005) or in generation (e.g. 
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Freudenthal et al. 2007). We have not yet evaluated our approach against some other learning 
models such as Solan et al. (2005) and Dennis (2005) mainly because these models use test 
corpora different from ours. We hope that our work motivates others to test against the (annotated) 
Eve corpus as well.  

Finally, it may be noteworthy that while U-DOP presents a usage-based approach to 
language learning, U-DOP’s use of recursive trees has a surprising precursor: Hauser, Chomksy 
and Fitch (2002) claim that the core language faculty comprises just recursion and nothing else. If 
we take this idea seriously, then U-DOP may be the first computational model that instantiates it. 
U-DOP’s trees encode the ultimate notion of recursion where every label can be recursively 
substituted for any other label. All else is analogy. 
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Appendix: Computing the MPSD 
 

There is an extensive literature on the computational properties of DOP and U-DOP (see e.g. 
Sima’an 1996; Scha et al. 1999; Goodman 2003; Bod 2006b, 2007a; Zuidema 2007). This 
appendix summarizes the main results of U-DOP/DOP’s computational background, and focuses 
on an efficient and compact PCFG reduction of DOP.  

The way (U-)DOP combines subtrees into new trees is formally equivalent to a Tree-
Substitution Grammar or TSG, and its probabilistic extension is equivalent to a Probabilistic TSG 
or PTSG (Bod 1998). There are standard algorithms that compute the tree structures (a packed 

parse forest) of an input string given a PTSG. These algorithms run in Gn3 time, where G is the 
size of the grammar (the number of subtrees) and n is the length of the input string (the number of 
words). Existing parsing algorithms for context-free grammars or CFGs, such as the CKY 
algorithm (Younger 1967), can be straightforwardly extended to TSGs by converting each subtree 

t into a context-free rewrite rule where the root of t is rewritten by its yield: root(t) → yield(t). 
Indices are used to link each rule to its original subtree. Next, the MPSD can be computed by a 
best-first beam search technique known as Viterbi optimization (Manning and Schütze 1999). 
However, the direct application of these techniques to DOP and U-DOP is intractable because the 
number of subtrees grows exponentially with the number of nodes in the corpus (Sima’an 1996). 
Goodman (1996, 2003) showed that the unwieldy DOP grammar can be reduced to a compact set 
of indexed PCFG-rules which is linear rather than exponential in the number of nodes in the 
corpus. Goodman's PCFG reduction was initially developed for the probabilistic version of DOP 
but it can also be applied to computing the shortest derivation, as we will see below.  
 Goodman’s method starts by assigning every node in every tree a unique number which is 
called its address. The notation A@k denotes the node at address k where A is the nonterminal 
labeling that node. A new nonterminal is created for each node in the training data. This 
nonterminal is called Ak. Let aj represent the number of subtrees headed by the node A@j, and let 

a represent the number of subtrees headed by nodes with nonterminal A, that is a = Σj aj. Then 

there is a ‘PCFG’ with the following property: for every subtree in the training corpus headed by 
A, the grammar will generate an isomorphic subderivation with probability 1/a. For example, for a 



 36

node (A@j (B@k, C@l)), the following eight rules are generated, where the number in parentheses 
following a rule is its probability: 
 

Aj → BC       (1/aj)  A → BC        (1/a) 

Aj → BkC      (bk/aj)  A → BkC      (bk/a) 

Aj → BCl      (cl/aj)  A → BCl         (cl/a) 

Aj → BkCl     (bkcl/aj)  A → BkCl       (bkcl/a) 

 

It can be shown by simple induction that this construction produces derivations isomorphic to 
DOP derivations with equal probability (Goodman 2003: 130-133). It should be kept in mind that 
the above reduction is not equivalent to a standard PCFG (cf. Manning and Schütze 1999). 
Different from standard PCFGs, the ‘PCFG’ above can have several derivations that produce the 
same tree (up to node relabeling). But as long as no confusion arises, we will refer to this 
reduction as a ‘PCFG-reduction of DOP’ and refer to the rules above as ‘indexed PCFG rules’. 
Goodman (2003) also shows that similar reduction methods exist for DOP models in which the 
number of lexical items or the size of the subtrees are contrained. 

Note that the reduction method can also be used for computing the shortest derivation, 
since the most probable derivation is equal to the shortest derivation if each subtree is given equal 
probability. This can be seen as follows. Suppose we give each subtree a probability p, e.g. 0.5, 

then the probability of a derivation involving n subtrees is equal to pn, and since 0<p<1 the 
derivation with the fewest subtrees has the greatest probability. 

While Goodman’s reduction method was developed for supervised DOP where each 
training sentence is annotated with exactly one tree, the method can be easily generalized to U-
DOP where each sentence is annotated with all possible trees stored in a shared parse forest or 
packed chart (Billot and Lang 1989). A shared parse forest is usually represented by an AND-OR 
graph where AND-nodes correspond to the usual parse tree nodes, while OR-nodes correspond to 
distinct subtrees occurring in the same context. In Bod (2006b, 2007a), Goodman’s reduction 
method is straightforwardly applied to shared parse forests by assigning a unique addresses to each 
node in the parse forest, just as with the supervised version of DOP. 

The shortest derivation(s) and the most probable tree, and hence the MPSD, can be 
efficiently computed by means of standard best-first parsing algorithms. As explained above, by 
assigning each subtree equal weigth, the most probable derivation becomes equal to the shortest 
derivation, which is computed by a Viterbi-based chart parsing algorithm (see Manning and 
Schütze 1999: 332ff). Next, the most probable tree is equal to the sum of the probabilities of all 
derivations, which can be estimated by k-best parsing (Huang and Chiang 2005). In this paper, we 
set the value k to 1,000, which means that we estimate the most probable tree from the 1,000 most 
probable derivations (in case the shortest derivation is not unique). However, in computing the 
1,000 most probable derivations by means of Viterbi it is often prohibitive to keep track of all 
subderivations at each edge in the chart. We therefore use a simple pruning technique (as in 

Collins 1999) which deletes any item with a probability less than 10−5 times of that of the best 
item from the chart. 
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