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abstract. We extend the traditional Gale-Stewart algorithm
(backward induction) for the combinatorial graph game to an asym-
metric variant; the extension makes the algorithm non-monotonic,
but a linear-time formulation is still possible.

1 Introduction

If G is a graph, the (symmetric) combinatorial game on G is played by
two players pushing a token on the graph. Whoever moves the token into
a terminal node, wins. An example of a game of this type is the game of
Nim (removing matches from a number of rows of matches until the game
board is empty). If G was cyclic, then it is not guaranteed that one of the
players will push the token into a terminal node. An infinite walk through
G is considered a draw in the combinatorial game.1

Combinatorial games are perfect information games with simple payoff
sets, and thus by the Gale-Stewart Theorem determined [GalSte53]. You
can determine the winner of the game by unfolding the game into a game

*The authors would like to thank Philipp Rohde (Aachen) and Nick Bezhanishvili
(Amsterdam) for fruitful discussions of topics connected to different aspects of this paper.

1More details can be found in the four-volume second edition of Winning Ways by
Berlekamp, Conway and Guy.
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tree TG, then labelling the tree via the Gale-Stewart labelling and read off
the winner from the label of the node s.

However, analyzing combinatorial games via their game trees might not
be optimal for several reasons:

Firstly, if G was cyclic, the game tree will be infinite and the labelling of
the game tree will be an infinitary, possibly transfinite procedure.

Secondly, the Gale-Stewart procedure is not metamathematically parsi-
monious. There are computable trees with no computable winning strategy,
and the Gale-Stewart theorem on determinacy of open games is equivalent
to a nontrivial metamathematical statement of second-order arithmetic by
a theorem of Steel.2

Thus, a labelling procedure directly on the graph that doesn’t need un-
folding into the game tree is a desideratum. The existence of such a proce-
dure is well-known in automata theory (cf., e.g., [Maz02, Exercise 2.6]); in
this paper we consider a variant of the standard combinatorial game, which
gives rise to an interesting complication for the corresponding labelling pro-
cedure.

The asymmetric combinatorial game on G (starting at s) is a variant of
the combinatorial games where one player has to play into terminal nodes
and the other has to keep the game alive for an infinite number of steps.
Again, this game is a perfect information game with simple payoff, and thus
could be analyzed via the Gale-Stewart technique with similar drawbacks.

It is the goal of this paper to give a finitary algorithm for asymmetric
combinatorial games directly on G. The algorithm we give is strongly influ-
enced by the non-monotonic Gale-Stewart technique developed in [Löw03].

In Section 2, we define some basic graph-theoretical notions used in Sec-
tion 3 where we define our games and discuss labellings and their connections
to games abstractly, understanding labellings on graphs as quotients of the
labellings on their associated game trees.

Finally, following the ideas of quotient labellings, in Section 4 we develop
two variant algorithms for the asymmetric combinatorial games (shown in
Figures 3 and 4) and discuss their running times.

2 Graphs

2.1 Graphs & Bisimulations

Our graphs G = 〈VG, EG〉 are directed graphs (digraphs), i.e., VG is a set
of vertices and E ⊆ VG × VG is an arbitrary binary relation. If ≡ is an

2The statement is ATR0, a set-theoretic existence statement for sets defined by transfi-
nite recursion along an arithmetically defined wellorder. Cf. [Ste76, Tan90]; for a detailed
overview in the context of Reverse Mathematics, cf. [Sim99, §V.8].
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equivalence relation on VG, we can define a graph structure on the set of
≡-equivalence classes VG/≡ := {[v]≡ ; v ∈ VG} as follows:

〈[v]≡, [w]≡〉 ∈ EG/≡ :⇐⇒ ∃v′, w′(v ≡ v′ & w ≡ w′ & 〈v, w〉 ∈ EG).

We write G/≡ := 〈VG/≡, EG/≡〉 for the quotient graph.
If s ∈ VG, we call the pair 〈G, s〉 a pointed graph. As usual, the natural

numbers are identified with the sets of their predecessors, i.e., 0 = ∅ and
n + 1 = {0, . . . , n}. If N ∈ N ∪ {N}, we call a function W : N → V a walk
through 〈G, s〉 of length N if

1. for each n + 1 ∈ N , we have 〈W (n),W (n + 1)〉 ∈ EG, and
2. W (0) = s.

A walk is called finite if N ∈ N. It is called maximal if it is either infinite
or finite of length n + 1 where W (n) is a terminal node of G. We define
the connected component of v in G (in symbols: Cv

G) to be the set of
vertices w such that there is a walk W of length n + 1 ∈ N through 〈G, v〉
with W (n) = w. A pointed graph 〈G, v〉 is called connected if VG = Cv

G.
If 〈G, s〉 and 〈H, t〉 are pointed graphs, then a function Z : VG → VH is

called a bounded epimorphism if the following conditions hold:

1. Z(s) = t;
2. Z is surjective;
3. if v0 ∈ VG and 〈v0, v1〉 ∈ EG, then 〈Z(v0), Z(v1)〉 ∈ EH; and
4. if w0 ∈ VH and 〈w0, w1〉 ∈ EH and Z(v0) = w0, then there is some

v1 ∈ VG such that Z(v1) = w1 and 〈v0, v1〉 ∈ EG.

If Z is a bounded epimorphism between G and H, and we can define an
equivalence relation ≡Z on VG by

v ≡Z w :⇐⇒ Z(v) = Z(w).

Proposition 1. Let 〈G, s〉 and 〈H, t〉 be pointed graphs and Z a bounded
epimorphism between them. Let ≡Z be the equivalence relation on VG

defined via Z. Then 〈G/≡Z , [s]≡Z
〉 ∼= 〈H, t〉.

Proof. Define Ẑ : VG/≡Z → VH by

Ẑ([v]≡Z
) := Z(v).

This function is clearly well-defined and a bijection. Using the fact that Z
is a bounded epimorphism, it is easy to see that Ẑ is structure preserving.

q.e.d.
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2.2 The unravelled tree and the alternating graph

Let 〈G, s〉 be a pointed graph. Define the set VTs
G

to be the set of finite
walks through 〈G, s〉 (i.e., finite sequences of nodes in Cs

G connected by
EG and starting with s). For walks W0 of length n and W1 of length
n + 1, we let 〈W0,W1〉 ∈ ETs

G
if and only if W0 = W1↾n. Furthermore, let

rootG,s := {〈0, s〉} be the unique walk of length 1. Then

Ts
G := 〈VTs

G
, ETs

G
〉.

We call 〈Ts
G, rootG,s〉 the unravelled tree of 〈G, s〉.

In the following, we will use the parity function par : N→ 2 assigning to
each natural number its parity. Let VAG

:= 2× VG,

〈〈e, v〉, 〈1− e, w〉〉 ∈ EAG
:⇐⇒ 〈v, w〉 ∈ EG,

and call AG := 〈VAG
, EAG

〉 the alternating graph of G. If s ∈ VG, then
we let As

G be the connected component of 〈0, s〉 in AG.

Proposition 2. If 〈G, s〉 is a pointed graph, there are bounded epimor-
phisms from 〈Ts

G, rootG,s〉 to 〈G, s〉, from 〈As
G, 〈0, s〉〉 to 〈G, s〉 and from

〈Ts
G, rootG,s〉 to 〈As

G, 〈0, s〉〉.

Proof. Let e ∈ 2, v ∈ VG, and dom(W ) = n + 1 with W (n) = v. Then
define

ZT(W ) := v,

ZA(〈e, v〉) := v, and

ZT,A(W ) := 〈par(n), v〉.

The functions ZT, ZA and ZT,A are bounded epimorphisms. q.e.d.

If 〈G, s〉 is a pointed graph, v ∈ VG and W is a walk through 〈G, s〉 of
length n + 1 such that W (n) = v, then the connected component of W in
Ts

G and the graph Tv
G are isomorphic as graphs. As a consequence, we get

a slightly more general version of Proposition 2:

Proposition 3. Let 〈G, s〉 be a pointed graph, and W be a walk through
〈G, s〉 of length n + 1 such that W (n) = v. Then there are bounded epi-
morphisms from 〈Ts

G,W 〉 to 〈G, v〉 and from 〈Ts
G,W 〉 to 〈Av

G, 〈0, v〉〉.

Proof. Compose the bounded epimorphisms ZT between Tv
G and G and

ZT,A between Tv
G and Av

G with the mentioned graph isomorphism. q.e.d.
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3 Games

3.1 Games and game equivalences

Given a graph G = 〈VG, EG〉 and s ∈ VG, we define the (symmetric)
combinatorial game on 〈G, s〉 (in symbols: S(G, s)): at the beginning
of the game, a token is positioned in the vertex s; players 0 and 1 move
in turn with player 0 starting by pushing the token along the edges of G;
the player making the last move wins the game. If the game goes on for
infinitely many steps, the outcome of the game is a draw. We define the
inverted symmetric combinatorial game S(G, s) to be the game played
like the symmetric combinatorial game, just with the rôles of the two players
interchanged, i.e., player 1 starts.

In the asymmetric version, the rôles of player 1 and the draw are in-
terchanged: Given a graph G = 〈VG, EG〉 and s ∈ VG, we define the
asymmetric combinatorial game on 〈G, s〉 (in symbols: A(G, s)): at
the beginning of the game, a token is positioned in the vertex s; players 0
and 1 move in turn with player 0 starting by pushing the token along the
edges of G; if player 0 pushes the token into a terminal node, he wins; if
player 1 pushes the token into a terminal node, the game is a draw. If the
game goes on for infinitely many steps, player 1 wins. Again, we define
the inverted asymmetric game A(G, s) to be the game with the players
interchanged.

Strategies in these combinatorial games are simply functions that tell
the players which edge 〈v0, v1〉 to use if they are presented with the token
in vertex v0 (it is obvious that such memory-free strategies suffice for these
games). A strategy is winning if the player following the strategy wins
the game regardless of how the other player plays, and a strategy is called
nonlosing if the game in which one player follows the strategy results in
either a win for that player or a draw.

By the determinacy theorem of Gale and Stewart (for details, cf. Section
3.2) each of the games X ∈ {A,A,S,S} defined above will have one of the
following three values, denoted by val(X):

W. Player 0 has a winning strategy,

D. both players have a nonlosing strategy,

L. Player 1 has a winning strategy.

On the set L = {L,D,W} of these values, we define a lattice structure by
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L ≤ D ≤W and an inversion function inv : L→ L defined by

W 7→ L

D 7→ D

L 7→ W.

Let X,Y ∈ {A,A,S,S}. We say that X and Y are equivalent if they
have the same value. We say that they are anti-equivalent if val(X) =
inv(val(Y)).

We define the notion of a X-Y-(anti)-equivalence: Let G and H be graphs
and let f : VG → VH be a function. Then f is called a X-Y-(anti)-
equivalence if for all v ∈ VG, we have that X(G, v) and Y(H, f(v)) are
(anti)-equivalent.

There are some obvious facts about equivalence of combinatorial games:

Proposition 4. For every pointed graph 〈G, v〉, the games S(G, v) and
S(G, v) are anti-equivalent. In other words, id : VG → VG is an S-S-anti-
equivalence.

Proof. Obvious. q.e.d.

Proposition 5. Let G and H be graphs, let X ∈ {S,S,A,A}, and let
F : VG → VH be a function. If F is a bounded epimorphism, then it is a
X-X-equivalence.

Proof. Obvious. q.e.d.

An immediate consequence of Propositions 2, 3 and 5 is that in order to
analyze arbitrary combinatorial games, it is enough to analyze games on
trees:

Corollary 6. Let X ∈ {S,S,A,A} and let 〈G, s〉 be a pointed graph. Then
the games X(G, s) and X(Ts

G, rootG,s) are equivalent. Also, for any walk
W through 〈G, s〉 with length n + 1 and W (n) = v, the games X(G, v) and
X(Ts

G,W ) are equivalent.

3.2 A translation into the usual Gale-Stewart theory of infinite
games

Corollary 6 is the underlying methodology of the Gale-Stewart theory
[GalSte53]. Instead of looking at the (possibly cyclic) graph, we look at
the unravelled tree and analyze the game on the tree via backwards induc-
tion with a (possibly transfinite) labelling construction.
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We shall translate our tree games into the usual topological notation of
Gale-Stewart theory: Look at the space VG

N of functions from N into VG,
endowed with the product topology of the discrete topology on VG.

We define three infinite games G0(G, v), G1(G, v), and H1(G, v). In all
of the games, players 0 and 1 play elements of VG in turn and produce an
element of VG

N, let’s call it X. We assume that X(0) = v and that player
0 plays the odd digits and player 1 plays the even digits. The payoff sets of
the games are defined as follows:

• In G0(G, v), player 0 wins if the least n + 1 such that X↾n + 1 is not
a walk through 〈G, v〉 exists and is odd. Otherwise, player 1 wins.

• In G1(G, v), player 0 wins if either X is an infinite walk through 〈G, v〉,
or the least n + 1 such that X↾n + 1 is not a walk through 〈G, v〉 is
odd. Otherwise, player 1 wins.

• In H1(G, v), player 0 wins if there is a least n+1 such that X↾n+1 is
not a walk through 〈G, v〉 and either n+1 is odd or X(n) is a terminal
node of G. Otherwise, player 1 wins.

The payoff sets for player 0 in the defined three games are either open
(G0 and H1) or closed (G1) in the topology defined on VG

N, and by the usual
Gale-Stewart theorem for open and closed games without draw, one of the
two players has a winning strategy, i.e., the values are either W or L.

It is easy to see that these infinite Gale-Stewart games correspond to the
combinatorial games as follows:

Proposition 7. For every pointed graph 〈G, v〉, the following equivalences
hold:

val(G0(G, v)) = W ⇐⇒ val(S(Tv
G, rootG,v)) = W

⇐⇒ val(A(Tv
G, rootG,v)) = W

val(G0(G, v)) = L ⇐⇒ player 1 has a nonlosing strategy for
S(Tv

G, rootG,v)
⇐⇒ player 1 has a nonlosing strategy for

A(Tv
G, rootG,v)

val(G1(G, v)) = W ⇐⇒ player 0 has a nonlosing strategy for
S(Tv

G, rootG,v)
val(G1(G, v)) = L ⇐⇒ val(S(Tv

G, rootG,v)) = L

val(H1(G, v)) = W ⇐⇒ player 0 has a nonlosing strategy for
A(Tv

G, rootG,v)
val(H1(G, v)) = L ⇐⇒ val(A(Tv

G, rootG,v)) = L

As a consequence, we get a proof of the claim (see above) that the values
W, L and D are the only possible values for our games.
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3.3 Sound labellings

Let L := {L,D,W}, G be a graph and X ∈ {S,S,A,A}. An L-labelling
ℓ : VG → L is called X-sound if it is a total function and if for each vertex
v ∈ VG, we have

ℓ(v) = val(X(G, v)).

Because of Proposition 4, the notions of S-soundness and S-soundness are
closely connected:

Corollary 8. Let G be a graph and ℓ : VG → L be S-sound. Then ℓ defined
by ℓ(v) := inv(ℓ(v)) is S-sound.

The Gale-Stewart analysis for games on trees gives a (possibly transfinite)
recursive procedure to actually compute an S-sound labelling:

Theorem 9 (Gale & Stewart; 1953). If T is a tree, then there is recur-
sive procedure that computes (in less than Card(VT)+ steps) the S-sound
labelling ℓ.

Proposition 10. Let 〈G, s〉 be a connected pointed graph. If ℓ is the S-
sound labelling on Ts

G, then the quotient labelling ℓ/≡ZT
on G defined

by
ℓ/≡ZT

(v) := ℓ(W )

(where W is any walk through 〈G, s〉 with length n+1 such that W (n) = v)
is well-defined and is the S-sound labelling for G.

Proof. Let us show that ≡ZT
respects ℓT:

Suppose W ≡ZT
W ′, i.e., ZT(W ) = ZT(W ′) = v for some v. Corollary

6 tells us that S(Ts
G,W ) and S(Ts

G,W ′) are both equivalent to S(G, v), so
in particular, ℓ(W ) = ℓ(W ′), and the quotient labelling is sound. q.e.d.

For asymmetric combinatorial games, we don’t have the symmetry of
Corollary 8:

Proposition 11. If val(A(G, v)) = W, then val(A(G, v)) 6= L. All other
combinations are possible.

Proof. For player 0, a winning strategy is a strategy that forces the token
into a terminal node in an odd number of moves. Such a strategy is a
non-losing strategy for player 1 in the inverted game.

In Figure 1, examples for all eight combinatorially possible situations are
given. q.e.d.

Because of the asymmetry indicated by Proposition 11, we define the
following notion: A (partial) function ℓ : VG → L2 is called a (partial)
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W/W W/D W/L

• • impossible
by Proposition 11

D/W D/D D/L

• • •

L/W L/D L/L

• • •

Figure 1. Examples for the eight possible value combinations in the asym-
metric and the inverted asymmetric combinatorial game.

L-bilabelling on G. We write ℓ(v) = 〈ℓ0(v), ℓ1(v)〉. An L-bilabelling
ℓ : VG → L2 is called A-sound if it’s total and for each vertex v ∈ V , we
have

ℓ0(v) = val(A(G, v)) and ℓ1(v) = val(A(G, v)).

In analogy to Theorem 9, the Gale-Stewart analysis gives us the existence
of A-sound labellings for trees T. Among several ways to produce such a
labelling, there is one procedure that was the motivation for the algorithm
described in Section 4: in [Löw03], the author gives a non-monotone variant
of the Gale-Stewart procedure which can be used to construct the A-sound
labelling for trees.

Proposition 12. Let 〈G, s〉 be a connected pointed graph. If ℓ is the A-
sound labelling on Ts

G, then the quotient labelling ℓ/≡ZT,A
on As

G defined
by

ℓ/≡ZT,A
(〈e, v〉) := ℓ(W )

(where W is any walk through 〈G, s〉 with length 2n + e + 1 such that
W (2n + e) = v) is well-defined and is the A-sound labelling for As

G.

We would like to extend this to an A-sound bilabelling, but not all nodes
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in G are necessarily reachable by both players. The following simple con-
struction helps:

If 〈G, s〉 is a connected pointed graph, let G∗
s be defined by

VG∗

s
:= VG ∪ {x},

EG∗

s
:= EG ∪ {〈x, s〉}

(where x /∈ VG). The connectedness of 〈G, s〉 implies that

C
〈0,s〉
AG
∪C

〈0,x〉
AG∗

s

= 2× VG;

moreover, if W is a walk through 〈Ts
G, rootG,s〉 of length n + 1 and W ′ is

a walk through 〈Tx
G∗

s
, rootG∗

s ,x〉 of length m + 1 with W (n) = W ′(m) and

par(n) = par(m), then they represent exactly the same position in the game
on G (albeit with different game histories), so if ℓ is A-sound on Ts

G and ℓ∗

is A-sound on Tx
G∗

s
, then ℓ(W ) = ℓ∗(W ′). As a consequence, we get:

Proposition 13. If 〈G, s〉 is a connected pointed graph, ℓ is an A-sound
labelling on Ts

G and ℓ∗ is an A-sound labelling on Tx
G∗

s
, then the bilabelling

ℓ† defined by

ℓ†e(v) :=

{
ℓ/≡ZT,A

(〈e, v〉) if 〈e, v〉 ∈ C
〈0,s〉
AG

, or
ℓ∗/≡ZT,A

(〈e, v〉) otherwise

is welldefined, total and an A-sound bilabelling on G.

In the following section, we shall give an algorithm to compute ℓ† directly
without going through the tree unravelling.

4 The algorithm

We fix a graph G. For the purpose of this section, we assume that VG is
finite. Using the lattice structure on L, we can define an ordering ≤∗ on L2

as the product ordering of 〈L,≤〉 with 〈L,≤〉 as depicted in Figure 2.3

As mentioned, a labelling procedure for the graph (instead of the unrav-
elled tree) is a “folk result” in automata theory (see for instance [Fra97,
p. 15], albeit in a more graph-theoretic context). We call this procedure
Backward Induction (Graph) to distinguish it from the Gale-Stewart
tree analysis.

We let BIG0(v) := L for all terminal nodes v. After that, we define

3Here ≤ denotes the inverse ordering of ≤.
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L/W

D/W L/D

W/W D/D L/L

W/D D/L

[W/L]

Figure 2. The ordering ≤∗ on L2.

BIGn+1(v) :=






BIGn(v) if v ∈ dom(BIGn),
W if there is 〈v, w〉 ∈ E and BIGn(w) = L, or
L if for all 〈v, w〉 ∈ E, we have BIGn(w) = W.

For some N , we have BIGN = BIGN+1, then we let

BIG(v) :=

{
BIGN (v) if v ∈ dom(BIGN ), or

D otherwise.

This algorithm produces an S-sound labelling in O(|VG| + |EG|) steps,
and is essentially the quotient labelling of the Gale-Stewart labelling on
TG: we label a vertex v ∈ VG as soon as some W with ZT(W ) = v is
labelled in the Gale-Stewart construction. As the Gale-Stewart procedure,
this labelling is monotonic in the sense that whenever a vertex is labelled,
it will retain that label for ever.

Following this idea and injecting non-monotonicity in the spirit of [Löw03,
§ 5] into the procedure, we shall now give an algorithm NMBIG (for “non-
monotonic backward induction (graph)”) that produces the A-sound bil-
abelling.

We give the algorithm in pseudocode in Figure 3. Let us explain the two
special datatypes label and graph used in the pseudocode:

Variables of type label can take the values W, D, and L representing W,
D, and L. We have a binary relation < defined for variables of type label,
and X < Y is TRUE if and only if X < Y. In addition, there is a unary function
INV defined on label corresponding to the inversion function inv.

The datatype graph encodes the bilabelled graph structure. Let 〈G, ℓ〉
be a bilabelled graph with VG = {vi ; 0 ≤ i ≤ N}. If G is a variable of type
graph representing 〈G, ℓ〉, then the following objects are defined:
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Procedure:MAIN(G:graph)

for i ← 1 to Nvert[G] do
3 Ell[G,i,0] ← L;

4 Ell[G,i,1] ← W;

for i ← 1 to Nvert[G] do

if Outbound[G,i] == ∅ then
7 Ell[G,i,0] ← D;

8 Ell[G,i,1] ← L;

9 foreach j ∈ Inbound[G,i] do
Label(G,j,1);

Label(G,j,0);

Procedure:Label(G:graph;i:integer;e:binary)

13 aux ← L;

14 foreach j ∈ Outbound[G,i] do
15 aux ← aux + INV[Ell[G,j,1-e]];

if Ell[G,i,e] 6= aux then
17 Ell[G,i,e] ← aux;

18 foreach j ∈ Inbound[G,i] do
Label(G,j,1-e);

Figure 3. The algorithm NMBIG for non-monotonic backward induction
graph labelling.

• Nvert[G], the number of vertices of the graph, i.e., N + 1;

• for each i ≤ N , the objects Outbound[G, i] and Inbound[G, i] represent-
ing the sets {vj ; 〈vi, vj〉 ∈ EG} and {vj ; 〈vj , vi〉 ∈ EG}, respectively;

• for each i ≤ N and e ∈ 2, an object Ell[G, i, e] of type label, repre-
senting ℓe(vi).

If the graph structure is stored using an adjacency matrix, then iterating
over the outbound or inbound set for a particular vertex can be done in
linear time with respect to the size of the vertex set.

We run the algorithm NMBIG on (a representation of) G. For any t ∈ N,
we let ℓt

e(vi) be the value of Ell[G, i, e] at time t of the algorithm,4 and

ℓt(vi) := 〈ℓt
0(vi), ℓ

t
1(vi)〉.

4Code lines 3 and 4 make sure that the values ℓe(t)(vi) are defined early on in the
algorithm (in step e · N + i), so from step 2 · N onwards, ℓt is a total function. In the
following, we shall mostly ignore these first 2 · N steps of the algorithm.
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Proposition 14. For each i ≤ N , the sequence 〈ℓt(vi) ; t ∈ N〉 is ≤∗-
decreasing in L2. Equivalently, the sequence 〈ℓt

0(vi) ; t ∈ N〉 is ≤-decreasing
and the sequence 〈ℓt

1(vi) ; t ∈ N〉 is ≤-decreasing.

Proof. Let t + 1 be the least number such that ℓt+1(vi) <∗ ℓt(vi) for some
i. Clearly, the value of the bilabeling can only be changed by code lines 7,
8 and 17 of the algorithm.

Since the procedure MAIN can only change the values at terminal nodes
from L/W to D/W and then to D/L, the lines 7 and 8 cannot create a
decrease in ≤∗. Note that this means that vi is not a terminal node since
Label(G, i, e) is only called if there is an edge from vi to somewhere.

Also, we cannot be in the first call of Label(G, i, e) at time t since the
bilabelling is initialized with L/W which is the top element of 〈L2,≤∗〉.
Consequently, there are some s0 < s1 < t such that at both s0 and s1, the
procedure Label(G, i, e) is called. Let s0 be largest with that property. By
our assumption, we have that ℓt+1(vi) <∗ ℓt(vi) = ℓs1(vi). By code lines 13
to 15, we have

ℓt+1
e (vi) := sup

≤
{inv(ℓs1

1−e(w)) ; 〈vi, w〉 ∈ EG}, and

ℓs1

e (vi) := sup
≤
{inv(ℓs0

1−e(w)) ; 〈vi, w〉 ∈ EG}.

But this means that there is some w such that ℓs0(w) <∗ ℓs1(w), contra-
dicting the choice of t + 1 as minimal. q.e.d.

Proposition 15. The procedure Label is called at most 4 · |EG| times.

Proof. By the loops 9 and 18, each call of Label(G, i, e) is associated with
an edge 〈vi, w〉, and by code lines 7, 8 and 17, preceded by a change of ℓ(w).
By Proposition 14, this means that each such an edge can be used for calls
of the procedure Label at most four times. q.e.d.

Theorem 16. The running time of NMBIG is O(|VG| + |EG|
2). If G is

connected, this is O(|EG|
2).

Proof. The procedure NMBIG itself (without the recursive calls of Label)
takes at most 4 · |VG|+ 2 · |EG| steps. Each call of Label has running time
O(|EG|), so by Proposition 15, the entire running time is O(|VG|+ |EG|

2).
q.e.d.
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The critical lines in the algorithm that push the running time from linear
to quadratic are the loop from line 14: every time we run Label for vi, we
have to check the current values of all its successors. Let Gn be the graph
with a root v0 and n immediate successors of the root which are terminal
nodes, i.e., |EGn

| = n. Then Label(G, 1, e) is called n times (once for each
terminal node) and each time its running time is at least n because it has
to check each of the terminal nodes, so the total running time is at least
|EGn

|2.
The running time can be pushed to linear in the size of the edge set, at

the cost of making the algorithm significantly less readable. In Section 4.1
we give the refined algorithm, and show that it computes the same labelling
as NMBIG. The proof of the following theorem is however less tedious on the
simpler algorithm:

Theorem 17. If run on the graph G, the algorithm NMBIG computes the
A-sound bilabelling on G.

Proof. Again, let ℓt
e(vi) be the value of Ell[G, i, e] at time t. By Theorem

16, these values stabilize at some finite time N . Let ℓe(vi) := ℓN
e (vi) be the

eventual value.
This proof follows essentially the idea of the Gale-Stewart proof (a.k.a.

“backwards induction”). The main ingredient of that idea is that players
have strategies that force the following to be true: if W is a run of the
game according to the strategy, then the sequence of time indices of the
label assignments of W (n) during the algorithm is a decreasing sequence of
integers. By wellfoundedness of N, it can be deduced that we hit one of the
basic cases eventually. Unfortunately, in our case, the nonmonotonicity of
the algorithm causes some problems: it is possible that vertex v is labelled
at time t, but some successors receive their label later. In order to deal with
this, we have to go through the different cases in detail.

For any v ∈ VG, let

inde(v) := min{t ; ℓt
e(v) = ℓe(v)}

be the e-index of vi. (Note that by Proposition 14, for all inde(v) ≤ t ≤ N ,
we have that ℓt

e(v) = ℓe(t).)

We shall discuss the properties of the six possible cases:

Case 1. If ℓ0(vi) = W, then there is some w with 〈vi, w〉 ∈ EG, ℓ1(w) = L,
and ind1(w) < ind0(vi).
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[The vertex vi has been labelled by code line 15, and this means
that in the preceding call of code line 15 some successor was 1-
labelled L. By Proposition 14, a 1-label L can never be changed
anymore.]

Case 2. If ℓ0(vi) = D, then there is no w with 〈vi, w〉 ∈ EG and ℓ1(w) = L.
Also, either vi is terminal or there is some w with 〈vi, w〉 ∈ EG and ℓ1(w) =
D, and for all such w, ind1(w) < ind0(vi).

[If vi is terminal, the claim is trivial, so let vi be nonterminal.
Let t := ind0(vi) which is the time of a call of code line 15.
Therefore, at time t, we have

(⋆t) ∀w (〈vi, w〉 ∈ EG → ℓt
1(w) 6= L) &

∃w (〈vi, w〉 ∈ EG & ℓt
1(w) = D).

By Proposition 14, none of the vertices that are 1-labelled L

can change their labelling anymore and the vertices 1-labelled
D can only change their label to L. Suppose that there is some
t < s ≤ N such that (⋆s) is not true anymore. Then at time
s, we have a call of code line 15 and all successors of vi are 1-
labelled L. In the subsequent call of Label[G, i, 0], the label of
vi will be changed to W in contradiction to the assumption.]

Case 3. If ℓ0(vi) = L, then for all w with 〈vi, w〉 ∈ EG, we have ℓ1(w) = W.
Moreover, both vi and all of its successors have received that label at the
beginning of the algorithm (code lines 3 and 4).

[Obvious from Proposition 14 and code lines 15 and 17.]

Case 4. If ℓ1(vi) = W, then there is some w with 〈vi, w〉 ∈ EG such that
ℓ0(w) = L and both vi and w have been labelled at the beginning of the
algorithm (code lines 3 and 4).

[This is dual to Case 3.]

Case 5. If ℓ1(vi) = D, then there is no w with 〈vi, w〉 ∈ EG and ℓ0(w) = L.
Also, there is some w with 〈vi, w〉 ∈ EG and ℓ0(w) = D, and for all such w,
ind0(w) < ind1(vi).

[This is dual to Case 2, except that terminal nodes cannot be
1-labelled D.]
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Case 6. If ℓ1(vi) = L, then for all w with 〈vi, w〉 ∈ EG, we have ℓ0(w) = W

and ind0(w) < ind1(vi).

[This is dual to Case 1.]

With our six cases in mind, we can now define strategies for player e ∈ 2
as follows:

The strategy σe plays from v into some successor w such that

ℓ1−e(w) = inv(ℓe(v)),

and –whenever possible– such that

ind1−e(w) < inde(v).

We shall show that σ0 and σ1 are witnesses for value ℓ0(v) in A(G, v) and
value ℓ1(v) in A(G, v), respectively. This will finish the proof of Theorem
17.

Case A: ℓ0(v) = W.

Let W be a maximal walk through 〈G, v〉 where player 0 follows σ0 (i.e.,
W (2n + 2) = σ0(W (2n + 1))). By Cases 1 and 6, we have ℓ0(W (2n)) = W

and ℓ1(W (2n + 1)) = L. If W is finite (say, of length n + 1), then W (n) is
terminal, so ℓ(W (n)) = D/L, hence n is odd and player 0 has won the game
with run W .

If W is infinite, then define

ik := indpar(k)(W (k)). (†)

By definition of σ0 and by Cases 1 and 6, this is a strictly decreasing se-
quence of natural numbers which is absurd.

Case B: ℓ1(v) = W.

Let W be a maximal walk through 〈G, v〉 where player 1 follows σ1. By
Cases 3 and 4, we have ℓ0(W (2n)) = L and ℓ1(W (2n+1)) = W. This implies
that none of the vertices in W can be terminal, and thus W is infinite and
player 1 wins the game with run W .

Case C: ℓ0(v) = D.

Let W be a maximal walk through 〈G, v〉 where player 0 follows σ0. By
Cases 2 and 5, the following three subcases cover all possibilities:

Subcase C1. There is some n such that ℓ0(W (2n)) = W. By Case A,
player 0 wins.
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Subcase C2. For all k, ℓpar(k)(W (k)) = D and W is finite (say, of length
n + 1). Then W (n) is a terminal node, and since ℓpar(n)(W (n)) = D, we
have that n is even, so the game is a draw.

Subcase C3. For all k, ℓpar(k)(W (k)) = D and W is infinite. Now by
Cases 2 and 5 and the definition of σ0, the sequence ik as defined in (†) is a
strictly descending sequence of natural numbers, yielding a contradiction.

Similarly (using Case B instead of Case A), we can show that σ1 is a nonlos-
ing strategy for player 1. Together, σ0 and σ1 witness that val(A(G, v)) = D.

Case D: ℓ0(v) = L.

By Case 3, this means that player 0 is forced into a position w with
ℓ1(w) = W. Now apply Case B.

Case E: ℓ1(v) = D.

This is dual to Case B.

Case F: ℓ1(v) = L.

By Case 6., this means that player 1 is forced into a position w with
ℓ0(w) = W. Now apply Case A. q.e.d.

4.1 True linear time

The ‘linear-time’ variant of this algorithm derives from the observation that
only the number of labelled successors of a given vertex matters to the
algorithm, and not (directly) their identities. Thus if we can by bookkeeping
accurately track this number without storing and modifying sets, we avoid
the additional cost of the inner loop.5

We define the auxiliary bookkeeping variable Succ[G,j,e,a]. This will
store the number of successors of vj labelled with a for player e. The
complete algorithm is given in Procedures MAIN and Label, figure 4. The
proof of linear time shows that the same operations are performed as in the
original algorithm, but for the replacement of an inner loop by a constant-
time lookup.

The additional data access required by this algorithm means that we can-
not ensure that the data structure is notionally consistent at every timestep
of the algorithm. For instance, during the loop at line 28, the values stored
in Succ[G,k,e,oldLbl] will be incorrect for some k.

5A related approach was used in [Gij+76] to efficiently solve Edward de Bono’s “L-
Game”; here instead of tracking the number of non-lost successor positions the authors
keep a ‘safe’ move from each non-lost position and update it efficiently if the ‘safe’ position
becomes lost. The present authors are grateful to Peter van Emde Boas for bringing this
report to their attention.
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Procedure:MAIN(G:graph)

initialise loop:

for i ← 1 to Nvert[G] do
4 Ell[G,i,0] ← L;

5 Ell[G,i,1] ← W;

foreach j ∈ InBound[G,i] do
7 Succ[G,j,0,L] ← Succ[G,j,0,L] + 1;

8 Succ[G,j,1,W] ← Succ[G,j,1,W] + 1;

9 main loop:

for i ← 1 to Nvert[G] do
Label(G,i,0);

Label(G,i,1);

Procedure:Label(G:graph;i:integer;e:binary)

14 oldLbl ← Ell[G,j,e];

15 if Succ[G,j,1-e,L] > 0 then
newLbl ← W;

else if Succ[G,j,1-e,D] > 0 then
newLbl ← D;

else if Succ[G,j,1-e,W] > 0 then
newLbl ← L;

else if e == 0 then
newLbl ← D;

else
newLbl ← L;

update loop:

26 if newLbl 6= oldLbl then
27 Ell[G,j,e] ← newLbl;

28 foreach k ∈ Inbound[G,j] do
29 Succ[G,k,e,oldLbl] ← Succ[G,k,e,oldLbl] - 1;

30 Succ[G,k,e,newLbl] ← Succ[G,k,e,newLbl] + 1;
31 recursive call loop:

foreach k ∈ Inbound[G,j] do
33 Label[G,k,1-e];

Figure 4. The algorithm NMBIG-Lin for non-monotonic backward induction
labelling in linear time.

Definition 18. We define the checkpoints of the algorithm as all calls to
Label, and number them t ∈ N in computation order. The labelling function
ℓt
e(vi) is the value of Ell[G,i,e] at checkpoint t, rather than computation

step t.
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Lemma 19. At each checkpoint t ∈ N,

Succ[G,j,e,a] =
∣∣{k ∈ Outbound[G,j] ; Ell[G,k,e] == a}

∣∣.

Proof. This value is initialised in lines 7 and 8, and is by inspection correct
when the main loop is entered at line 9. The value is also altered at lines 29
and 30, and here lines 14 and 27 ensure that the alterations reflect the
changes being made to Ell[G,j,e], by the time the recursive call at line 33
is reached. q.e.d.

Proposition 20. For each i ≤ N , the sequence 〈ℓt(vi) ; t ∈ N〉 is ≤∗-
decreasing in L2. In other words, the sequence 〈ℓt

0(vi) ; t ∈ N〉 is ≤-
decreasing and the sequence 〈ℓt

1(vi) ; t ∈ N〉 is ≤-decreasing.

Proof. Let t + 1 be the least number such that

ℓt(vi) <∗ ℓt+1(vi) (∗)

for some i. The value of the bilabelling can be changed at code lines 4 and
5 of MAIN, and line 27 of Label. As in the original algorithm, the first two
of these are simply initialisation to the top value of the lattice and need not
concern us.

The new value at line 27 is the result of the if-cascade from line 15. We
can show that a situation as in (∗) can only occur at time t + 1 if it has
already occurred at some s ≤ t, thus that no such least time exists. The
proof is by cases.

Suppose ℓt
1(vi) = D and ℓt+1

1 (vi) = W. Since Ell[G,i,1] is initialised to
W, there must be some s ≤ t least such that ℓs

1(vi) 6= D and ℓs+1
1 (vi) = D

(that is, between s and s + 1, vi gets labelled by line 27). By the if-
cascade from line 15, at checkpoint s we have Succ[G,i,0,L] = 0, but
at t Succ[G,i,0,L] > 0. By Lemma 19 this means that for some j ∈
OutBound[G,i], ℓs

0(vj) ∈ {W,D} < ℓt
0(vj) = L. But then s < t and

ℓs(vj) <∗ ℓt(vj), contradicting choice of t + 1 least.
The cases for ℓt

1(vi) = L and ℓt+1
1 (vi) ∈ {W,D} are similar. Here the

if-cascade guarantees for some s ≤ t and j ∈ OutBound[G,i] that ℓs
0(vj) =

W < ℓt
0(vj) ∈ {L,D}. Again this gives us s < t such that ℓs

0(vj) <∗ ℓt
0(vj),

contradicting choice of t + 1 least.
The three cases for player 0 are symmetrical. First, suppose ℓt

0(vi) = D

and ℓt+1
0 (vi) = L. Initialisation of Ell[G,i,0] to L means that there is

least s ≤ t such that ℓs
0(vi) 6= D and ℓs+1

0 (vi) = D. This means the labelling
at s + 1 was produced by line 27. By the if-cascade, at s no successor
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of vi is 1-labelled with L, and for some j ∈ OutBound[G,i], ℓs
1(vj) = D.

But at checkpoint t the if-cascade guarantees that ℓt
1(vj) = W, and thus

ℓs(vj) <∗ ℓt(vj), contradicting choice of t + 1 least.
For the next two cases, suppose ℓt

0(vi) = W and ℓt
0(vi) ∈ {D, L}. Ini-

tialisation and the if-cascade give us s ≤ t and j ∈ OutBound[G,i] such
that ℓs

1(vj) = L, and ℓt
1(vj) ∈ {D,W}. But then s < t and ℓs(vj) <∗ ℓt(vj),

contradicting choice of t + 1 least. q.e.d.

Proposition 21. The procedure Label is called at most 2 · |VG|+ 4 · |EG|
times.

Proof. The main loop at line 9 calls Label twice for every vertex. Lines 26
and 31 associate with each recursive call an edge and a relabelling. By
Proposition 20 each edge can be used for no more than four relabellings.

q.e.d.

Theorem 22. The running time of NMBIG-Lin is O(|VG| + |EG|). If G is
connected, this is O(|EG|).

Proof. Apart from the calls to Label, MAIN walks every vertex and every
edge in G. We can associate each pass through the loop at line 28 with a
recursive call to Label. Apart from these recursive calls, Label is constant-
time. Since Label is called O(|EG|) times, the total running time is O(|VG|+
|EG|). q.e.d.

Theorem 23. If run on the graph G, the algorithm NMBIG-Lin computes
the A-sound bilabelling on G.

Proof. It is sufficient to show that this algorithm performs the same la-
bellings (in the same order) as NMBIG.

First, note that the loop from line 9 only directly relabels vertices with
no successors. Such vertices are labelled D/L, as in NMBIG, by the if-cascade.
This means that calls to Label from MAIN have exactly the same effect as
in NMBIG.

Next, given Lemma 19 it is easy to see that the if-cascade assigns to
newLbl the same value that line 15 of the NMBIG algorithm assigns to aux.
This ensures that the same recursive calls are made as in NMBIG, and since
the update loop of line 28 finishes before the recursive labelling loop starts,
the results of these calls will also be the same. q.e.d.
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[Maz02] René Mazala, Infinite Games, in: [GräThoWil02, p. 23–42]
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