
From IF to BI
A Tale of Dependence and Separation

Samson Abramsky
Oxford University Computing Laboratory

Jouko Väänänen
ILLC Amsterdam

Abstract. We take a fresh look at the logics of informational dependence and
independence of Hintikka and Sandu and Väänänen, and their compositional se-
mantics due to Hodges. We show how Hodges’ semantics can be seen as a special
case of a general construction, which provides a context for a useful completeness
theorem with respect to a wider class of models. We shed some new light on each
aspect of the logic. We show that the natural propositional logic carried by the
semantics is the logic of Bunched Implications due to Pym and O’Hearn, which
combines intuitionistic and multiplicative connectives. This introduces several new
connectives not previously considered in logics of informational dependence, but
which we show play a very natural rôle, most notably intuitionistic implication. As
regards the quantifiers, we show that their interpretation in the Hodges semantics is
forced, in that they are the image under the general construction of the usual Tarski
semantics; this implies that they are adjoints to substitution, and hence uniquely
determined. As for the dependence predicate, we show that this is definable from a
simpler predicate, of constancy or dependence on nothing. This makes essential use
of the intuitionistic implication. The Armstrong axioms for functional dependence
are then recovered as a standard set of axioms for intuitionistic implication. We
also prove a full abstraction result in the style of Hodges, in which the intuitionistic
implication plays a very natural rôle.

1. Introduction

Our aim in this paper is to take a fresh look at the logics of infor-
mational dependence and independence [11, 12, 33], and their compo-
sitional semantics due to Wilfrid Hodges [13, 14]. We shall focus on
Dependence Logic, introduced by the second author [33].

The main objective of Hodges’ work was to provide a composi-
tional model-theoretic semantics for the IF-logic of Hintikka and Sandu
[11, 12], which matched their “game-theoretical semantics”. This was
achieved by lifting the standard Tarski semantics of first-order formulas,
given in terms of satisfaction in a structure with respect to an assign-
ment to the free variables, to satisfaction by sets of assignments.

We seek a deeper understanding of Hodges’ construction:

c© 2008 Kluwer Academic Publishers. Printed in the Netherlands.

KluSynth08.tex; 14/05/2008; 20:03; p.1

2

− First and foremost, what is going on? Where does the Hodges
construction come from? Is it canonical in any way? Why does it
work? What structures are really at play here?

− Because of the equivalence of Dependence Logic (or variants such
as IF-logic) under this semantics to (a significant fragment of)
second-order logic, there is no hope for a completeness theorem.
But we may get a useful completeness theorem with respect to a
wider class of models. Understanding the general algebraic context
for the semantics points the way to such a completeness notion.

− We can also look for representation theorems, with some in-
finitary ingredients.

The results of our investigation are quite surprising conceptually (at
least to us). The main points can be summarized as follows.

− We find a general context for Hodges’ construction. We shall not
treat it in full generality here, as the general account is best stated
in the language of categorical logic [16, 22], and we wish to avoid
undue technicalities. However, we will indicate the possibilities for
a general algebraic semantics, as the basis for a useful completeness
theorem.

− We find that the natural propositional logic associated with the
Hodges construction is the logic of Bunched Implication of
Pym and O’Hearn [21, 24], which combines intuitionistic and mul-
tiplicative linear connectives. Although this is a highly non-classical
logic, it reduces to the bivalent semantics for sentences.

− This not only yields a more natural view of the strangely asymmet-
ric notions of conjunction and disjunction in the Hodges semantics
(one is intuitionistic, while “disjunction” is actually multiplicative
conjunction!), it also brings into prominence some connectives
not previously considered in the setting of IF-logic or Dependence
logic, in particular intuitionistic implication. This enables a
novel analysis of the Dependence predicate of [33], as a Horn clause
with respect to a more primitive predicate of single-valuedness.
The well-known Armstrong axioms for functional dependence [1]
then fall out as a standard axiomatization of intuitionistic (but
not classical!) implication.

− Intuitionistic implication also plays a natural rôle in our version of
a full abstraction theorem in the sense of Hodges.

KluSynth08.tex; 14/05/2008; 20:03; p.2

3

− The construction is shown to lift the interpretation of the standard
quantifiers in a canonical way, so that quantifiers are uniquely
determined as the adjoints to substitution [16], just as in the
standard Tarski semantics of first-order logic. This is also extended
to characterizations of the dependence-friendly quantifiers of [33]
as adjoints.

The plan of the remainder of the paper is as follows. In the next section
we provide background on branching quantifiers, IF-logic, dependence
logic, and Hodges’ semantics. Then in section 3 we show how the
Hodges semantics is an instance of a general algebraic construction, in
which the connectives of BI-logic arise naturally. In section 4, we show
that the interpretation of the quantifiers in the Hodges construction is
the canonical lift of the standard interpretation of the quantifiers as
adjoints, and hence is uniquely determined. We also use the intuition-
istic implication to show how the dependence-friendly quantifiers can
be interpreted as certain adjoints. In section 5, we show how the intu-
itionistic implication arises naturally in the proof of a full abstraction
theorem. In section 6, we show how the dependence predicate can be
analyzed in terms of a more primitive predicate of single-valuedness,
using the intuitionistic implication. This turns the “Armstrong axioms”
into standard theorems of intuitionistic implicational logic. The final
section outlines some further directions.

2. Dependence, Independence and Information Flow

We begin with a standard example: the formal definition of continuity
for a function f : R −→ R on the real numbers.

∀x. ∀ε. ∃δ. ∀x′. |x− x′| < δ ⇒ |f(x)− f(x′)| < ε .

This definition is often explained in current calculus courses in terms
of an “epsilon-delta game”.1 The Adversary proposes a number, ε, as a
measure of how close we must stay to the value of f(x); we must then
respond with a number, δ, such that, whenever the input is within the
interval (x−δ, x+δ), the output does indeed pass the ε-test of closeness
to f(x). Clearly, the choice of δ will depend on that of ε; the nesting of
the quantifiers expresses this dependency.

This is the definition of global continuity of f , expressed in terms
of local continuity at every point x. This means that the choice of δ
will depend, not only on ε, but on x also. Now consider the definition
of uniform continuity:

∀ε. ∃δ. ∀x.∀x′. |x− x′| < δ ⇒ |f(x)− f(x′)| < ε .

KluSynth08.tex; 14/05/2008; 20:03; p.3

4

Here δ still depends on ε, but must be chosen independently of x.
This variation in dependency is tracked syntactically by the different
order of the quantifiers. Indeed, it seems that it was only after the
distinction between pointwise and uniform notions of continuity, and,
especially, convergence, had been clarified in 19th-century analysis, that
the ground was prepared for the introduction of predicate calculus.

More generally, dependence or independence of bounds on various
parameters is an important issue in many results on estimates in num-
ber theory and analysis. Hodges quotes a nice example from one of
Lang’s books [15] in [13].

Intuitively, there is an evident relation between these notions and
that of information flow. Dependence indicates a form of information
flow; independence is the absence of information flow.

2.1. Beyond first-order logic

It turns out that mere rearrangement of the order of quantifiers in
first-order formulas is not sufficient to capture the full range of possi-
bilities for informational dependence and independence. This was first
realized almost 50 years ago, with Henkin’s introduction of branch-
ing quantifiers [8]. The simplest case is the eponymous Henkin
quantifier:  ∀x ∃y

∀u ∃v

A(x, y, u, v).

The intention is that y must be chosen depending on x, but indepen-
dently of the choice of u; while v must be chosen depending on u, but
independently of the choice of x. The meaning of this formula can be
explicated by introducing Skolem functions f and g: an equivalent
formula will be

∃f.∃g.∀x. ∀u.A(x, f(x), u, g(u)).

Here the constraints on dependencies are tracked by the dependence
of the Skolem functions on certain variables, but not on others. Note
that the Skolemized sentence is second-order; in fact, it belongs to
the Σ1

1 fragment of second-order logic.2 This second-order rendition of
the meaning of the Henkin quantifier cannot be avoided, in the sense
that the Henkin quantifier strictly increases the expressive power of
first-order logic, and in fact the extension of first-order logic with the
Henkin quantifier is equivalent in expressive power to the Σ1

1 fragment
[8].

2.1.0.1. Examples

KluSynth08.tex; 14/05/2008; 20:03; p.4

5

1. Consider ∀x ∃y
∀u ∃v

 (A(x)→ B(y)) ∧ (B(u)→ A(v)) ∧ [(x = v) ↔ (y = u)].

This expresses that A and B are equinumerous sets.

2. Now consider

∃v.

 ∀x1 ∃y1

∀x2 ∃y2

 (A(x1)→ A(y1)) ∧ [(x2 = y1) → (y2 = x1)]

∧ A(v) ∧ (A(x1)→ (y1 6= v)) .

This expresses that A is an infinite set.

These examples show that the Henkin quantifier is not expressible
in first-order logic.

2.2. Further developments

The next major development was the introduction of IF-logic (“inde-
pendence-friendly logic”) by Hintikka and Sandu [11]. The intention of
IF-logic is to highlight informational dependence and independence. It
provides a linear syntax for expressing branching quantification (and
more), e.g. the Henkin quantifier can be written in linear notation as:

∀x.∃y.∀u. (∃v/x). A(x, y, u, v)

The “slashed quantifier” (∃v/x) has the intended reading “there exists
a v not depending on x”. Note the strange syntactic form of this
quantifier, with its “outward-reaching” scope for x.

2.2.0.2. Dependence Logic A simplified approach was introduced by
the second author, and developed extensively in the recent monograph
[33]. The main novelty in the formulation of the logic is to use an atomic
dependence predicate3 D(x1, . . . , xn, x) which holds if x depends
on x1, . . . , xn, and only on these variables. We can then define
“dependence-friendly quantifiers” as standard quantifiers guarded with
the dependence predicate:

(∃x \ x1, . . . , xn). φ ≡ ∃x.(D(x1, . . . , xn, x) ∧ φ) .

This yields essentially the same expressive power as IF-logic.

KluSynth08.tex; 14/05/2008; 20:03; p.5

6

2.3. Compositionality: Hodges’ Semantics

But, what does it all mean? Hintikka claimed that a compositional
semantics for IF logic could not be given [9]. Instead he gave a
“Game-Theoretical Semantics”, essentially reduction to Skolem form
as above.

Wilfrid Hodges showed that it could [13, 14].4

Before giving Hodges’ construction, it will be useful firstly to recall
Tarski’s solution to the problem of how to define the truth of a sentence
in a first-order structureM = (A, . . .) with underlying set A.5 In order
to do this, he had to deal with the more general case of open formulas.
The idea was to define

M, s |=X φ

where X is a finite set of variables including those occurring free in φ,
and s is an assignment of elements of A to X.6 Typical clauses include:

M, s |=X φ ∧ ψ ≡ M, s |=X φ and M, s |=X ψ

M, s |=X ¬φ ≡ M, s 6|=X φ

M, s |=X ∀v. φ ≡ ∀a ∈ A.M, s[v 7→ a] |=X∪{v} φ

M, s |=X ∃v. φ ≡ ∃a ∈ A.M, s[v 7→ a] |=X∪{v} φ

Here s[v 7→ a] is the assignment defined on X ∪ {v} as follows: s[v 7→
a](v) = a, and s[v 7→ a](w) = s(w) for w 6= v.

The is the very prototype of a compositional semantic definition. Via
Dana Scott, this idea led to the now-standard use of environments
in denotational semantics [28]. Environments are nowadays ubiquitous
in all forms of semantics in computer science [34, 19].

2.3.0.3. Teams Hodges’ key idea was to see that one must lift the
semantics of formulas from single assignments to sets of assignments.
Notions of dependence of one variable on others are only meaningful
among a set of assignments. Hodges called these sets “trumps”; we
follow [33] in calling them teams.

We consider the semantics of Dependence logic [33]. Formulas are
built up from atomic formulas and their negations and the dependence
predicates, by conjunction, disjunction, and universal and existential
quantification. The set of all individual variables is denoted V. A team
on X ⊆ V is a set of Tarski assignments on X. We define the following
operations on teams:

− If T is a team on X and v ∈ V, then T [v 7→ A] is the team on
X ∪ {v} defined by:

KluSynth08.tex; 14/05/2008; 20:03; p.6

7

T [v 7→ A] = {t[v 7→ a] | t ∈ T ∧ a ∈ A}.

− If T is a team on X, v ∈ V, and f : T −→ A, then T [v 7→ f] is the
team on X ∪ {v} defined by:

T [v 7→ f] = {t[v 7→ f(t)] | t ∈ T}.

2.3.0.4. The Satisfaction Relation We define a satisfaction relation

M, T |=X φ

where the free variables of φ are contained in X, and T is a team on
X. (In practice, we elide M).

Firstly, for literals L we have:

T |=X L ≡ ∀t ∈ T. t |=X L

where t |=X L is the standard Tarskian definition of satisfaction of
an atomic formula or its negation in a structure with respect to an
assignment.

2.3.0.5. Connectives and Quantifiers The clauses for connectives and
quantifiers are as follows:

T |=X φ ∧ ψ ≡ T |=X φ and T |=X ψ

T |=X φ ∨ ψ ≡ ∃U, V. ([U |=X φ and V |=X ψ] ∧ [T = U ∪ V])

T |=X ∀v. φ ≡ T [v 7→ A] |=X∪{v} φ

T |=X ∃v. φ ≡ ∃f : T −→ A. T [v 7→ f] |=X∪{v} φ.

2.3.0.6. Semantics of the dependence predicate Given a set of vari-
ables X and W ⊆ X, we define the following notions:

− An equivalence relation on assignments on X:

s 'W t ≡ ∀w ∈W. s(w) = t(w).

− A function f : AX −→ A depends only on W , written f :
AX −→W A, if for some g : AW −→ A, f = g ◦ pXW , where
pXW : AX −→ AW is the evident projection. Note that if such a g
exists, it is unique.

KluSynth08.tex; 14/05/2008; 20:03; p.7

8

Now we can define:

T |=X D(W, v) ≡ ∀s, t ∈ T. s 'W t ⇒ s(v) = t(v)

Note that this expresses functional dependence, exactly as in database
theory [1].
An equivalent definition can be given in terms of the dependency con-
dition on functions:

T |=X D(W, v) ≡ ∃f : T −→W A.∀t ∈ T. t(v) = f(t).

Strictly speaking, this is the “positive part” of the definition as given
in [33] following Hodges. There is also a negative part, which defines
satisfaction for φ as for the positive definition, but with respect to the
De Morgan dual φd of φ:

(φ ∨ ψ)d = φd ∧ ψd, (∃v. φ)d = ∀v. φd, etc.

This allows for a “game-theoretic negation”, which formally “inter-
changes the rôles of the players”. It is simpler, and from our perspective
loses nothing, to treat this negation as a defined operation, and work
exclusively with formulas in negation normal form as above.
The theory of dependence logic: metalogical properties, connections
with second-order logic, complexity and definability issues, et cetera,
is extensively developed in [33]. However, as explained in the Intro-
duction, many basic questions remain. We shall now show how the
Hodges semantics can be seen in a new light, as arising from a general
construction.

3. The Hodges construction revisited

An important clue to the general nature of the construction is con-
tained in the observation by Hodges [13] (and then in [33]) that the
sets of teams denoted by formulas of IF-logic or Dependence logic are
downwards closed: that is, if T ∈ JφK and S ⊆ T , then S ∈ JφK.
This is immediately suggestive of well-known constructions on ordered
structures.

3.1. A general construction

We recall a couple of definitions. A commutative ordered monoid
is a structure (M,+, 0,6), where (M,6) is a partially ordered set,
and (M,+, 0) is a commutative monoid (a set with an associative and
commutative operation + with unit 0), such that + is monotone:

x 6 x′ ∧ y 6 y′ ⇒ x+ y 6 x′ + y′ .

KluSynth08.tex; 14/05/2008; 20:03; p.8

9

A commutative quantale is a commutative ordered monoid where
the partial order is a complete lattice, and + distributes over all suprema:
m+

∨
i∈I mi =

∨
i∈I(m+mi).

Let (M,+, 0,6) be a commutative ordered monoid. Then L(M), the
set of lower (or downwards-closed) sets of M , ordered by inclusion, is
the free commutative quantale generated by M [20].7

A downwards closed subset of a partially ordered set P is a set S
such that:

x 6 y ∈ S ⇒ x ∈ S .
Thus this notion generalizes the downwards closure condition on sets
of teams, where we think of P(AX), the set of all teams on a set of
variables X, as the commutative ordered monoid (P(AX),∪,∅,⊆).
The following notation will be useful. Given X ⊆ P , where P is a
partially ordered set, we define

↓(X) = {x ∈ P | ∃y ∈ X.x 6 y} ,

the downwards closure of X. A set S is downwards closed if and
only if S = ↓(S).

As a commutative quantale, L(M) is a model of intuitionistic linear
logic (phase semantics [35, 27, 6]).8 In particular, we have

A⊗B = ↓{m+ n | m ∈ A ∧ n ∈ B}

A(B = {m | ∀n. n ∈ A⇒ m+ n ∈ B}

We note that when the definition of ⊗, the multiplicative conjunc-
tion, is specialized to our concrete setting, it yields the definition of
disjunction in the Hodges semantics!

The multiplicative implication (has not been considered previ-
ously in the setting of IF-logic and Dependence logic. However, it is
perfectly well defined, and is in fact uniquely specified as the adjoint
of the linear conjunction:

A⊗B 6 C ⇐⇒ A 6 B(C .

Note that linear implication automatically preserves downwards clo-
sure.

3.2. What is the propositional logic of dependence?

In fact, L(M) carries a great deal of structure. Not only is it a com-
mutative quantale (and hence carries an interpretation of linear logic),
but it is also a complete Heyting algebra, and hence carries an
interpretation of intuitionistic logic.

KluSynth08.tex; 14/05/2008; 20:03; p.9

10

We have the clauses

m |= A ∧B ≡ m |= A and m |= B

m |= A ∨B ≡ m |= A or m |= B

m |= A→ B ≡ ∀n 6 m. if n |= A then n |= B

The situation where we have both intuitionistic logic and multiplicative
linear logic coexisting is the setting for BI logic, the “logic of Bunched
Implications” of David Pym and Peter O’Hearn [21, 24], which forms
the basis for Separation logic (Reynolds and O’Hearn) [26], an in-
creasingly influential logic for verification. The construction L(M) is
exactly the way a “forcing semantics” for BI-logic is converted into an
algebraic semantics as a “BI-algebra”, i.e. a structure which is both a
commutative quantale and a complete Heyting algebra [25]. L(M) is
in fact the free construction of a complete BI-algebra over an ordered
commutative monoid.

This provides one reason for proposing BI-logic as the right answer to
the question posed at the beginning of this subsection. The compelling
further evidence for this claim will come from the natural rôle played by
the novel connectives we are introducing into the logic of dependence.
This rôle will become apparent in the subsequent developments in this
paper.

3.3. BID-logic and its team semantics

We shall spell out the extended logical language we are led to consider,
and its concrete team semantics, extending the Hodges-style semantics
already given in section 2.

We call the extended language BID, for want of a better name.
Formulas are built from atomic formulas and their negations, and de-
pendence formulas, by the standard first-order quantifiers, and the
following propositional connectives: the intuitionistic (or “additive”)
connectives ∧, ∨, →, and the multiplicative connectives ⊗ and (.

3.3.0.7. Team Semantics for BI Logic The team semantics for BID-
logic is as follows:

T |= A ∧B ≡ T |= A and T |= B

T |= A ∨B ≡ T |= A or T |= B

T |= A→ B ≡ ∀U ⊆ T. if U |= A then U |= B

T |= A⊗B ≡ ∃U, V. T = U ∪ V ∧ U |= A ∧ V |= B

T |= A(B ≡ ∀U. [U |= A⇒ T ∪ U |= B]

KluSynth08.tex; 14/05/2008; 20:03; p.10

11

The clauses for atomic formulas and their negations and for the depen-
dence formulas and quantifiers are as given in section 2.

As already noted, the semantics of ∧ and ⊗ coincide with those
given for conjunction and disjunction in section 2. The connectives
∨ and →, intuitionistic or additive disjunction and implication, and
the multiplicative implication (, are new as compared to IF-logic or
Dependence logic.

3.4. The semantics of sentences

It is worth spelling out the semantics of sentences explicitly. By defini-
tion, sentences have no free variables, and there is only one assignment
on the empty set of variables, which we can think of as the empty tuple
〈〉. In the Tarski semantics, there are only two possibilities for the set of
satisfying assignments of a sentence, ∅ and {〈〉}, which we can identify
with false and true respectively. When we pass to the team semantics
for BID-logic, there are three possibilities for down-closed set of teams
to be assigned to sentences: ∅, {∅}, or {∅, {〈〉}}. Thus the semantics
of sentences is trivalent in general.

In his papers, Hodges works only with non-empty teams, and has
bivalent semantics for sentences. However, there is no real conflict be-
tween his semantics and ours. Let BID− be BID-logic without the linear
implication. Note that BID− properly contains Dependence logic, which
is expressively equivalent to IF-logic [33].

Proposition 1 Every formula in BID−-logic is satisfied by the empty
team; hence in particular every sentence of BID−-logic has either {∅}
or {∅, {〈〉}} as its set of satisfying teams, and the semantics of sen-
tences in BID−-logic is bivalent.
Proof A straightforward induction on formulas of BID−-logic. �

On the other hand, linear implication clearly violates this property.
Note that the empty team satisfies A (B if and only if A ⊆ B. We
obtain as an immediate corollary:

Proposition 2 Linear implication is not definable in BID−-logic, and
a fortiori is not definable in Dependence logic or IF-logic.

3.5. The general Hodges construction

We shall briefly sketch, for the reader conversant with categorical logic,
the general form of the construction.

The standard Tarski semantics of first-order logic is a special case
of Lawvere’s notion of hyperdoctrine [16]. We refer to [22] for a lucid

KluSynth08.tex; 14/05/2008; 20:03; p.11

12

expository account. Construing L as a functor in the appropriate fash-
ion, we can give a general form of the Hodges construction as a functor
from classical hyperdoctrines to BI-hyperdoctrines [2]. Given a classical
hyperdoctrine P : Cop −→ Pos, we define a BI-hyperdoctrine H(P) on
the same base category by composition with the functor L:

H(P) = L ◦P : Cop −→ Pos .

Note that Pos is an order-enriched category, and L is an order-enriched
functor, so it preserves adjoints, and hence in particular preserves the
interpretations of the quantifiers. This observation is spelled out in
more detail in Proposition 4.

This exactly generalizes the concrete Hodges construction, which is
obtained by applying H to the standard Tarski hyperdoctrine.

A full account will be given elsewhere.

4. Quantifiers are adjoints in the Hodges construction

We recall the team semantics for the quantifiers.

T |=X ∀v. φ ≡ T [v 7→ A] |=X∪{v} φ

T |=X ∃v. φ ≡ ∃f : T −→ A. T [v 7→ f] |=X∪{v} φ.

We may wonder what underlying principles dictate these definitions.
To answer this question, we firstly recall the fundamental insight

due to Lawvere [16] that quantifiers are adjoints to substitution.9

4.1. Quantifiers as adjoints

Consider a function f : X → Y . This induces a function

f−1 : P(Y) −→ P(X) :: T 7→ {x ∈ X | f(x) ∈ T}.

This function f−1 has both a left adjoint ∃(f) : P(X) −→ P(Y), and
a right adjoint ∀(f) : P(X) −→ P(Y). These adjoints are uniquely
specified by the following conditions. For all S ⊆ X, T ⊆ Y :

∃(f)(S) ⊆ T ⇐⇒ S ⊆ f−1(T), f−1(T) ⊆ S ⇐⇒ T ⊆ ∀(f)(S).

The unique functions satisfying these conditions can be defined explic-
itly as follows:

∃(f)(S) := {y ∈ Y | ∃x ∈ X. f(x) = y ∧ x ∈ S} ,

∀(f)(S) := {y ∈ Y | ∀x ∈ X. f(x) = y ⇒ x ∈ S} .

KluSynth08.tex; 14/05/2008; 20:03; p.12

13

Given a formula φ with free variables in {v1, . . . , vn+1}, it will receive its
Tarskian denotation JφK in P(An+1) as the set of satisfying assignments:

JφK = {s ∈ An+1 | s |=X φ} .

We have a projection function

π : An+1 −→ An :: (a1, . . . , an+1) 7→ (a1, . . . , an) .

Note that this projection is the Tarskian denotation of the tuple of
terms (v1, . . . , vn). We can characterize the standard quantifiers as
adjoints to this projection:

J∀vn+1. φK = ∀(π)(JφK), J∃vn+1. φK = ∃(π)(JφK) .

If we unpack the adjunction conditions for the universal quantifier, they
yield the following bidirectional inference rule:

Γ `X φ

Γ `X ∀vn+1. φ
X = {v1, . . . , vn} .

Here the set X keeps track of the free variables in the assumptions Γ.
Note that the usual “eigenvariable condition” is automatically taken
care of in this way.

Since adjoints are uniquely determined, this characterization com-
pletely captures the meaning of the quantifiers.

4.2. Quantifiers in the Hodges semantics

We shall now verify that the definitions of the quantifiers in the Hodges
semantics are exactly the images under L of their standard in-
terpretations in the Tarski semantics, and hence in particular that
they are adjoints to substitution. Thus these definitions are forced.

It will be convenient to work with the semantic view of quanti-
fiers, as operators on subsets. Consider formulas with free variables in
{v1, . . . , vn+1}. The Tarski semantics over a structure M = (A, . . .)
assigns such formulas values in P(An+1). We can regard the quantifiers
∃vn+1, ∀vn+1 as functions

∃(π),∀(π) : P(An+1) −→ P(An)

∃(π)(S) = {s ∈ An | ∃a ∈ A. s[vn+1 7→ a] ∈ S}

∀(π)(S) = {s ∈ An | ∀a ∈ A. s[vn+1 7→ a] ∈ S}

For any m, we define H(Am) = L(P(Am)). Thus H(Am) is the set of
downwards closed sets of teams on the variables {v1, . . . , vm}. This pro-
vides the corresponding “space” of semantic values for formulas in the

KluSynth08.tex; 14/05/2008; 20:03; p.13

14

Hodges semantics. The interpretation of quantifiers in that semantics
is given by the following set operators:

∃H , ∀H : H(An+1) −→ H(An)

∃H(U) = {T ∈ P(An) | ∃f : T → A. T [vn+1 7→ f] ∈ U}

∀H(U) = {T ∈ P(An) | T [vn+1 7→ A] ∈ U}

We extend the definition of L to act on functions10 h : P(Y) −→ P(X):

L(h) : H(Y) −→ H(X) :: U 7→ ↓{h(T) | T ∈ U} .

In the case that h = f−1, where f : X −→ Y , we write L(h) = H(f).

Proposition 3 The Hodges quantifiers are the image under L of the
Tarski quantifiers:

∃H = L(∃(π)), ∀H = L(∀(π)) .
Proof Firstly, we show that L(∃(π))(U) ⊆ ∃H(U) for all U ∈ H(An+1).
Suppose that T ∈ U. Let T ′ = ∃(π)(T). This means that

∀t ∈ T ′.∃a ∈ A. t[vn+1 7→ a] ∈ T .

Using the axiom of choice, there exists a function f : T ′ −→ A such
that

T ′[vn+1 7→ f] ⊆ T ∈ U .

Since U is downwards closed, this implies that T ′ ∈ ∃H(U), as required.
The converse follows immediately from the fact that ∃(π)(T [vn+1 7→

f]) = T .
Next we show that L(∀(π))(U) ⊆ ∀H(U). Since (∀(π)(T))[vn+1 7→

A] ⊆ T , if T ∈ U, then ∀(π)(T) ∈ ∀H(U) by downwards closure. The
converse follows similarly from T ⊆ ∀(π)(T [vn+1 7→ A]). �

Proposition 4 The Hodges quantifiers are adjoints to substitution:

1. ∃H is left adjoint to H(π):

∃H(U) ⊆ V ⇐⇒ U ⊆ H(π)(V) .

2. ∀H is right adjoint to H(π):

H(π)(V) ⊆ U ⇐⇒ V ⊆ ∀H(U) .

KluSynth08.tex; 14/05/2008; 20:03; p.14

15

Proof It is straightforward to verify the adjunction conditions di-
rectly. We give a more conceptual argument. There is a natural point-
wise ordering on monotone functions between partially ordered sets,
h, k : P −→ Q:

h 6 k ≡ ∀x ∈ P. h(x) 6 k(x) .

L is an order-enriched functor with respect to this ordering. Func-
toriality means that

L(h ◦ g) = L(h) ◦ L(g), L(idM) = idL(M) ,

while order-enrichment means that

h 6 k ⇒ L(h) 6 L(k) .

These properties imply that L automatically preserves adjointness.
That is, if we are given monotone maps

f : P −→ Q, g : Q −→ P

such that idP 6 g ◦ f and f ◦ g 6 idQ, i.e. so that f is left adjoint to g,
then

idL(P) = L(idP) 6 L(g ◦ f) = L(g) ◦ L(f) ,

and similarly L(f)◦L(g) 6 idL(Q), so L(f) is left adjoint to L(g) (and of
course L(g) is right adjoint to L(f)). Combining this with Proposition 3
yields the required result. �

4.3. The dependence-friendly quantifiers

We shall also give characterizations of the dependence-guarded quan-
tifiers as certain adjoints: this will be our first use of the intuitionistic
implication.

We recall the definition of the dependence-friendly existential quan-
tifier:

(∃x \ x1, . . . , xn). φ ≡ ∃x.(D(x1, . . . , xn, x) ∧ φ) .

There has not been a comparably natural notion of dependence-friendly
universal quantification. According to our analysis, this is because the
appropriate connective needed to express the right notion, namely in-
tuitionistic implication, has not been available. Using it, we can define
such a quantifier:

(∀x \ x1, . . . , xn). φ ≡ ∀x.(D(x1, . . . , xn, x) → φ) .

KluSynth08.tex; 14/05/2008; 20:03; p.15

16

As evidence for the naturalness of these quantifiers, we shall express
them both as adjoints.

Firstly, we recall that intuitionistic conjunction and implication are
related by another fundamental adjointness [16]:

U ∩ V ⊆W ⇐⇒ U ⊆ V→W . (1)

This can be expressed as a bidirectional inference rule:

φ ∧ ψ ` θ
φ ` ψ → θ .

Next, we extend our semantic notation to the dependence-friendly
quantifiers. Given W ⊆ {v1, . . . , vn}, we define DW ∈ H(An+1):

DW = {T | ∀s, t ∈ T. s 'W t ⇒ s(vn+1) = t(vn+1)} .

Now we can define the semantic operators corresponding to the dependence-
friendly quantifiers:

∃W ,∀W : H(An+1) −→ H(An)

∃W (U) = ∃H(DW ∩ U)

∀W (U) = ∀H(DW → U)

Proposition 5 The dependence-friendly existential ∃W is left adjoint
to the following operation:

V 7→ (DW → H(π)(V)) .

The dependence-friendly universal ∀W is right adjoint to the following
operation:

V 7→ (DW ∩H(π)(V)) .
Proof A direct verification is straightforward, but it suffices to ob-
serve that adjoints compose, and then to use Proposition 4 and the
adjointness (1). �

Of course, the analysis we have given in this sub-section applies to
any guarded quantifiers; the dependence predicates play no special rôle
here. The point is to show how the intuitionistic connectives round out
the logic in a natural fashion. We shall apply them to a finer analysis
of dependence itself in section 6.

KluSynth08.tex; 14/05/2008; 20:03; p.16

17

5. Full Abstraction

We shall now prove a full abstraction result in the sense of Hodges
[13].11 The point of this is to show that, even if we take sentences and
their truth-values as primary, the information contained in the seman-
tics of formulas in general is not redundant, since whenever two for-
mulas receive different denotations, they make different contributions
overall to the truth-values assigned to sentences.

The fact that such a result holds for BID−-logic is notable, in that
the logic is highly non-classical, while the semantics of sentences is bi-
valent. For BID-logic, the set of possible truth values for open formulas
is huge even in finite models [3], while the semantics of sentences is
trivalent.

While our argument follows that of Hodges [13], we find a natural
rôle for the intuitionistic implication, and can give a very simple proof,
while Hodges’ argument goes through the correspondence with the
game-theoretical semantics.

To formalize full abstraction, we introduce the notion of a senten-
tial context with respect to a set of variables X. This is a formula
with an occurrence of a “hole” [·] such that inserting a formula with
free variables in X into the hole yields a sentence. Now consider two
formulas φ and ψ of BID-logic, with free variables in X. We say that the
formulas are semantically equivalent if they have the same denota-
tions, i.e. the same sets of satisfying teams, in all interpretations with
respect to all structures. We say that φ and ψ are observationally
equivalent if for all sentential contexts C[·] for X, C[φ] and C[ψ] are
assigned the same truth values in all interpretations. The fact that
semantic equivalence implies observational equivalence follows imme-
diately from the compositional form of the semantics. The converse is
full abstraction.12

Proposition 6 The team semantics is fully abstract for any sublan-
guage of BID-logic containing universal quantification and intuitionistic
implication.
Proof Suppose that JφK\JψK in some interpretation contains a team
T . Extend the language with a relation symbol R, and the interpreta-
tion by assigning ↓(T) to R. Then use the context

C[·] ≡ ∀v1, . . . ,∀vn. (R(v1, . . . , vn)→ [·]). ,

where the free variables in φ and ψ are contained in {v1, . . . , vn}. Then
C[φ] is true (satisfied by the empty tuple), since for every team T ′

satisfying R(v1, . . . , vn), T ′ ⊆ T , and hence by assumption and down-
wards closure, T ′ satisfies φ. This means that all teams over {v1, . . . , vn}

KluSynth08.tex; 14/05/2008; 20:03; p.17

18

satisfy the implication R(v1, . . . , vn) → φ, and hence 〈〉 satisfies C[φ].
On the other hand, C[ψ] is not satisfied by the empty tuple, since T
satisfies R(v1, . . . , vn), while T does not satisfy ψ by assumption. �

Note that the use of the intuitionistic implication in relativizing to
those teams satisfying the precondition R(v1, . . . , vn) is exactly what is
needed.

6. Analyzing Dependence

We now turn to the dependence predicate itself. Since it encapsulates
the “jump” from first-order to second-order semantics, we cannot be
too hopeful about taming it axiomatically13. But it turns out that we
can give a finer analysis in BID-logic.

Consider the following “trivial” case of dependence:

C(v) ≡ D(∅, v) .

This expresses that v depends on nothing at all, and hence has a fixed
value — functional dependency for the constant function. Semantically,
this is the following simple special case of the semantics of dependence:

T |=X C(v) ≡ ∀t1, t2 ∈ T. t1(v) = t2(v) .

Using the intuitionistic implication, we can define the general depen-
dence predicate from this special case:

D(W, v) :=
∧
w∈W

C(w) → C(v)

Proposition 7 The definition of D from C is semantically equivalent
to the definition given previously:

T |=X D(W, v) ≡ ∀s, t ∈ T. s 'W t ⇒ s(v) = t(v).)
Proof This is just an exercise in unwinding the definitions. Note
that the intuitionistic implication lets us range over all subsets of the
team which are in a single equivalence class under 'W , and require
that v is constant on those subsets. �

6.1. Armstrong Axioms

The current stock of plausible axioms for the dependence predicates is
limited to the Armstrong axioms from database theory [1]. These
are a standard complete set of axioms for functional dependence. They
can be given as follows.

KluSynth08.tex; 14/05/2008; 20:03; p.18

19

(1) Always D(x, x).

(2) If D(x, y, z), then D(y, x, z).

(3) If D(x, x, y), then D(x, y).

(4) If D(x, z), then D(x, y, z).

(5) If D(x, y) and D(y, z), then D(x, z).

However, in the light of our analysis, the Armstrong axioms simply fall
out as standard properties of implication and conjunction. In fact, they
correspond to the well-known axioms I, C, W, K, B respectively [4]
— which form a complete axiomatization of intuitionistic (but not
classical!) implication.14 For example, (2) corresponds to

(p→ q → r)→ (q → p→ r) .

where we set p = C(x), q = C(y), r = C(z).
Thus we have reduced the understanding of the dependence predi-

cate to understanding of the, prima facie simpler, constancy predicate
C.

7. Further Directions

In this final section, we shall sketch a number of further directions.
Detailed accounts are under development, and will appear elsewhere.

7.1. Completeness

Predicate BI-logic is a well developed formalism, with a proof theory
which is sound and complete relative to an algebraic semantics [24].
Since BID-logic is a special case, we have a sound ambient inference
system. Of course this is not complete for the intended semantics for
BID-logic — and cannot be. We may hope to obtain completeness
for some smaller class of models, possibly on the lines of the Henkin
completeness theorem for higher-order logic [7].

7.2. Diagrams

Now fix a particular interpretation in a structure M with universe A.
Consider the following construction. We introduce constants for each

KluSynth08.tex; 14/05/2008; 20:03; p.19

20

a ∈ A, the usual first order diagram (all true atomic sentences), and
the following infinitary axiom:

∀v.
⊗
a∈A

(v = a) .

We can define the predicate C (and hence dependence D) by the
following infinitary formula:

C(v) :=
∨
a∈A

(v = a) .

Note how the two different connectives (one additive, the other multi-
plicative) feature naturally.

This gives a logical (albeit infinitary) characterization of depen-
dence.

7.3. Representation

We can also consider representation theory for the structures H(X) =
L(P(X)). We seek lattice-theoretic properties of these structures which
suffice to characterize them.

Firstly, we note that the down-closures of single teams are exactly
the complete join-primes of the lattice:

a 6
∨
i

bi ⇒ ∃i. a 6 bi.

Moreover, these join-primes order generate, i.e. every element is the
join of the join-primes below it. All of this structure is in terms of the
intuitionistic disjunction.

Next, we note that ⊗ is closed and idempotent on the join-primes,
endowing them with the structure of a semilattice. This is very different
to the semilattice structure given by intuitionistic disjunction: e.g.

↓(T1) ∨ ↓(T2) = ↓({T1, T2}) 6= ↓(T1 ∪ T2) = ↓(T1)⊗ ↓(T2) .

The double singletons are exactly the complete atoms in this semi-
lattice, which is complete atomic in the usual sense.

Syntactically, assuming names for elements, we can describe these
atomic join-primes in the lattice of propositions over variables v1, . . . , vn
as

(v1 = a1) ∧ · · · ∧ (vn = an).

These are of course the tuples. (Downclosures of) arbitrary teams are
then described by expressions

⊗
iAi, where Ai ranges over such atoms.

KluSynth08.tex; 14/05/2008; 20:03; p.20

21

Arbitrary elements are joins (intuitionistic disjunctions) of such ele-
ments. So there is a normal form for general elements:∨

i

⊗
ij

Aij .

Moreover, from the lattice-theoretic properties it is easily shown that
the ordering between such normal forms agrees with the set inclusion
ordering.

7.4. Expressiveness

One of the defining characteristics of Dependence Logic as well as IF-
logic is that they can be expressed in Existential Second Order Logic,
Σ1

1, and conversely, every Σ1
1 definable property of structures can be

expressed with a sentence of Dependence Logic. Both are true even
on finite structures. To see what this connection with Σ1

1 means let
us adopt the notation that if T is a team on a set X of variables,
then rel(T) is the corresponding relation. Hodges [14] associates with
every formula φ of IF-logic (equivalently, of Dependence Logic) with
free variables in the set X = {x1, ..., xn} an Existential Second Order
sentence τφ(R), with R an n-ary predicate symbol, such that in any
model M and for any team T on X the following holds:

M, T |=X φ ⇐⇒ (M, rel(T)) |= τφ(R). (2)

Conversely, if Φ is any Existential Second Order sentence, then there
is a sentence φ of Dependence Logic such that the following holds for
all models M:

M |= Φ ⇐⇒ M, {〈〉} |= φ.

Virtually all model theoretic properties of Dependence Logic follow
from this relationship with Σ1

1, for example, the Compactness Theorem,
the downward and upward Löwenheim-Skolem Theorems, the Interpo-
lation Theorem, and the fact that every sentence φ in Dependence Logic
for which there exists a “negation” ψ such that for all M

M |= φ ⇐⇒ M 6|= ψ,

is actually first order definable15. Also the interesting fact that the
class of properties of finite structures expressible in Dependence Logic
is exactly NP follows from this. Because of these connections it is quite
interesting to ask whether the extensions BID− and BID can likewise
be embedded in Σ1

1, the existential fragment of Second Order Logic.
Now the question arises which semantics one should use. To be able

to compare results with Dependence Logic and IF-logic, we use the full
semantics familiar from [13] and [33].

KluSynth08.tex; 14/05/2008; 20:03; p.21

22

Proposition 8 There is no translation of BID−, and hence none of
BID, into existential second order Σ1

1. The same is true on finite mod-
els, assuming NP 6=co-NP.

Proof Let φ(x1) be a formula of Dependence Logic in the empty
vocabulary such that for any team T : M, T |= φ(x1) if and only if A
is infinite16. Let ⊥ denote a sentence in the empty vocabulary, only
satisfied by the empty team, e.g. ∀x.x = x ∧ ¬x = x. Suppose there
were an Existential Second Order sentence τ(R) such that a modelM
and a team T on {x1} satisfy φ(x1) → ⊥ if and only if (M, rel(T))
satisfies τ(R). IfM is any finite model and T = {s}, where s(x1) ∈M ,
thenM, T |= φ(x1)→ ⊥, whence (M, {s(x1)}) |= τ(R)∧∃x1R(x1). By
the Compactness Theorem of Existential Second Order Logic, τ(R) ∧
∃x1R(x1) has an infinite model (M′, rel(T ′)). ThusM′ and the team T ′

satisfy φ(x1)→ ⊥. Moreover, T ′ 6= ∅. By the definition of the semantics
of→, since T ′ satisfies φ(x1) inM′, T ′ must satisfy ⊥, a contradiction.

Let us then consider finite models. It is easy to write down a formula
φ(x1) of Dependence Logic in the vocabulary of graphs such that for
any team T 6= ∅:M, T |= φ(x1) if and only ifM is 3-colorable. Let ⊥ be
as above. IfM is any graph that is not 3-colorable and T = {s}, where
s(x1) ∈ M , then M, T |= φ(x1) → ⊥. On the other hand, suppose M
is 3-colorable, but M and some team {s} satisfy φ(x1) → ⊥. By the
definition of the semantics of →, since {s} satisfies φ(x1) in M, {s}
must satisfy ⊥, a contradiction. Thus a graphM and a team {s} satisfy
φ(x1)→ ⊥ if and only ifM is not 3-colorable. Suppose now there were
an Existential Second Order sentence τ(R) such that a graph M and
a team T satisfy φ(x1) → ⊥ if and only if (M, rel(T)) satisfies τ(R).
Then we could check if a graphM is not 3-colorable by checking if τ(R)
is satisfied byM and and a team {s}, where s can be any assignment.
The latter is NP, so we get NP=co-NP. �

The same argument can be used to show that (leads outside of
Σ1

1: Suppose φ(x1) is as above and there is an Existential Second Order
sentence τ(R) such that a modelM and a team T satisfy ⊥∧ .φ(x1)(
⊥ if and only if (M, rel(T)) satisfies τ(R). If M is any finite model
and T = ∅, then M, T |= ⊥ ∧ .φ (⊥, whence (M, ∅) |= τ(R). By
the Compactness Theorem of Existential Second Order Logic, τ(R)
has an infinite model (M′, rel(T ′)). Thus M′ and the team T ′ satisfy
⊥ ∧ .φ(⊥. In particular, T ′ = ∅ and ∅ satisfies φ(⊥. Since in this
model any {s} satisfies φ, by the definition of the semantics of (, {s}
satisfies ⊥, a contradiction.

The proof actually shows that BID− fails to satisfy the Compactness
Theorem. A similar argument shows that BID− fails to satisfy the
Downward Löwenheim Skolem Theorem.

KluSynth08.tex; 14/05/2008; 20:03; p.22

23

Proposition 9 There is a translation of BID into Full Second Order
Logic.
Proof We follow [14] (see also [33]) and present only the additions
needed over and above Dependence Logic and IF-logic:

τφ(ψ(R) = ∀S(τφ(S)→ ∀U(∀~x(U(~x)↔ (S(~x) ∨R(~x)))→ τψ(U)))
τφ→ψ(R) = ∀S(∀~x(S(~x)→ R(~x))→ (τφ(S)→ τψ(S)))

�

In conclusion we may say that BID− and BID seem to have a more
robust and uniform algebraic structure than Dependence Logic and
IF-logic. We anticipate that this is reflected also in an effective proof
theory, still to be developed. On the other hand the price of this seems
to be that “nice” model theoretic properties are lost at least in the
full semantics. Perhaps there are some underlying, hitherto unidenti-
fied, reasons why logics developed for dependence cannot have at the
same time “nice” model theory and effective proof theory. After all, we
know from Lindström’s Theorem ([17]) that there are intrinsic blocks
in having model theoretically defined extensions of first order logic with
both nice proof theory and nice model theory. The difference here is
that we have a trivalent logic, something different from the approach
of Lindström. So it is too early to say whether there are general rea-
sons why BID does not satisfy Compactness and other model theoretic
properties familiar from Dependence Logic, or whether we have just
not hit the right concepts for such yet.

Notes

1 See e.g. online resources such as
http://library.wolfram.com/infocenter/MathSource/4734/.

2 This can be described as the fragment comprising formulas ∃f1 . . .∃fn. φ, where
the fi are function variables, and φ is a first-order formula over a signature extended
by these function variables.

3 In [33] the notation =(x1, . . . , xn, x) for D(x1, . . . , xn, x) is used.
4 Hintikka has apparently not conceded the point [10], although there is no argu-

ment as to the mathematical content of Hodges’ results. As far as we are concerned,
Hodges’ semantics meets all the criteria for a compositional semantics, and is more-
over fully abstract. Our concern here is to understand it better, as an interesting
construction in its own right.

5 The classic reference is [29], but in fact the modern model-theoretic defini-
tion first appeared in [30], as pointed out in Wilfrid Hodges’ article on “Tarski’s
Truth Definitions” in the Stanford Encyclopedia of Philosophy, available online at
http://plato.stanford.edu/entries/tarski-truth/, which gives an informative
overview.

KluSynth08.tex; 14/05/2008; 20:03; p.23

24

6 Explictly, an assignment is simply a function s : X → A. We write AX for
the set of all such assignments. Older tradition was to define satisfaction relative
to assignments to all variables, which were typically arrayed in infinite sequences.
More recently, it has been understood, under the influence of categorical logic, that
to reveal the salient structure one should give the definition relative to a finite
environment that grows as quantifiers are stripped off in the recursive definition.

7 More precisely, it is the left adjoint to the evident forgetful functor.
8 It is also an instance of Urquhart’s semilattice semantics for relevance logic [31].

Mitchell and Simmons observe in [20] that in the case (such as ours) where the
monoid is a boolean algebra, L(M) is actually a model of classical linear logic.
This does not seem apposite to our purposes here.

9 See [5] for an introduction to adjunctions on posets.
10 More precisely, homomorphisms of the appropriate kind. The reader familiar

with category theory will see that we are really specifying the functorial action of L
in a particular case.

11 As Hodges notes, he himself takes the term, and the concept, from Computer
Science [18, 23].

12 While this notion is perfectly consistent with usage in Computer Science, one
very important tensioning ingredient in the programming language context is miss-
ing, namely correspondence with an independently defined operational semantics
[18, 23].

13 See [32] for details on this.
14 Under the (Curry part of the) Curry-Howard correspondence, they correspond

to a well-known functionally complete set of combinators [4].
15 See e.g. [33] for details.
16 The free variable x1 plays no role in this.

References

1. Armstrong, W. W.: 1974, ‘Dependency structures of data base relationships’.
In: Information Processing 74. Proc. IFIP Congress. pp. 580–583.

2. B. Biering, L. Birkedal, N. T.-S.: 2007, ‘BI-hyperdoctrines, higher-order sepa-
ration logic, and abstraction’. ACM Transactions on Programming Languages
and Systems 29(5).

3. Cameron, P. and W. Hodges: 2001, ‘Some combinatorics of imperfect informa-
tion’. J. Symbolic Logic 66(2), 673–684.

4. Curry, H. B. and R. Feys: 1958, Combinatory Logic Volume 1, Studies in Logic
and the Foundations of Mathematics. North Holland.

5. Davey, B. A. and H. A. Priestley: 2002, Introduction to Lattices and Order.
Cambridge University Press, second edition.

6. Girard, J.-Y.: 1987, ‘Linear Logic’. Theoretical Computer Science.
7. Henkin, L.: 1950, ‘Completeness in the Theory of Types’. J. Symbolic Logic

15, 81–91.
8. Henkin, L.: 1961, ‘Some remarks on infinitely long formulas’. In: Infinitistic

Methods. Proc. Symposium on Foundations of Mathematics. pp. 167–183.
9. Hintikka, J.: 1998, The Principles of Mathematics Revisited. Cambridge

University Press.
10. Hintikka, J.: 2002, ‘Hyperclassical logic (a.k.a. IF logic) and its implications

for logical theory’. Bulletin of Symbolic Logic 8(3), 404–423.

KluSynth08.tex; 14/05/2008; 20:03; p.24

25

11. Hintikka, J. and G. Sandu: 1989, ‘Informational independence as a semantical
phenomenon’. In: J. E. F. et al. (ed.): Logic, Methodology and Philosophy of
Science VIII. pp. 571–589.

12. Hintikka, J. and G. Sandu: 1996, ‘Game-theoretical Semantics’. In: J. van
Benthem and A. ter Meulen (eds.): Handbook of Logic and Language. Elsevier.

13. Hodges, W.: 1997a, ‘Compositional Semantics for a Language of Imperfect
Information’. Logic Journal of the IGPL 5(4), 539–563.

14. Hodges, W.: 1997b, ‘Some strange quantifiers’. In: G. R. J. Mycielski and A.
Salomaa (eds.): Structures in Logic and Computer Science, Vol. 1261 of Lecture
Notes in Computer Science. Springer, pp. 51–65.

15. Lang, S.: 1964, Algebraic numbers. Addison-Wesley.
16. Lawvere, F. W.: 1969, ‘Adjointness in foundations’. Dialectica 23, 281–296.
17. Lindström, P.: 1969, ‘On extensions of elementary logic’. Theoria 35, 1–11.
18. Milner, R.: 1977, ‘Fully Abstract Models of Typed Lambda-Calculi’. Theoret-

ical Computer Science 4, 1–22.
19. Mitchell, J. C.: 1996, Foundations for Programming Languages. MIT Press.
20. Mitchell, W. P. R. and H. Simmons: 2001, ‘Monoid Based Semantics for Linear

Formulas’. J. Symbolic Logic 66(4), 1597–1619.
21. O’Hearn, P. W. and D. J. Pym: 1999, ‘The Logic of Bunched Implications’.

Bulletin of Symbolic Logic 5(2), 215–244.
22. Pitts, A.: 2000, ‘Categorical logic’. In: S. Abramsky, D. Gabbay, and T.

Maibaum (eds.): Handbook of Logic in Computer Science, Vol. 5. Oxford
University Press, pp. 39–128.

23. Plotkin, G. D.: 1977, ‘LCF considered as a Programming Language’. Theoret-
ical Computer Science 5, 223–255.

24. Pym, D. J.: 2002, The Semantics and Proof Theory of the Logic of Bunched
Implications, Vol. 26 of Applied Logic Series. Kluwer.

25. Pym, D. J., P. W. O’Hearn, and H. Yang: 2004, ‘Possible worlds and resources:
the semantics of BI’. Theoretical Computer Science 315, 257–305.

26. Reynolds, J.: 2002, ‘Separation logic: a logic for shared mutable data struc-
tures’. In: Proc. LiCS 2002.

27. Rosenthal, K. I.: 1990, Quantales and Their Applications, No. 234 in Pitman
Research Notes in Mathematics. Longman Scientific and Technical.

28. Scott, D. S.: 1969, ‘Outline of a Mathematical Theory of Computation’.
Technical Monograph PRG-2, Oxford University Computing Laboratory.

29. Tarski, A.: 1936, ‘Der Wahrheitsbegriff in den formalisierten Sprachen’. Studia
Philosophica 1, 261–405.

30. Tarski, A. and R. Vaught: 1956, ‘Arithmetical extensions of relational systems’.
Compositio Mathematica pp. 81–102.

31. Urquhart, A.: 1972, ‘Semantics for Relevant Logics’. J. Symbolic Logic 37(1),
159–169.

32. Väänänen, J.: 2001, ‘Second-order logic and foundations of mathematics’. Bull.
Symbolic Logic 7(4), 504–520.

33. Väänänen, J.: 2007, Dependence Logic, Vol. 70 of London Mathematical Society
Student Texts. Cambridge University Press.

34. Winskel, G.: 1993, The Formal Semantics of Programming Languages. MIT
Press.

35. Yetter, D. N.: 1990, ‘Quantales and (Noncommutative) Linear Logic’. J.
Symbolic Logic 55(1), 41–64.

KluSynth08.tex; 14/05/2008; 20:03; p.25

KluSynth08.tex; 14/05/2008; 20:03; p.26

