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Abstract

Consider any logical system, what is its natural repertoire of logical op-
erations? This question has been raised in particular for first-order logic and
its extensions with generalized quantifiers, and various characterizations in
terms of semantic invariance have been proposed. In this paper, our main
concern is with modal and dynamic logics. Drawing on previous work on
invariance for first-order operations, we find an abstract connection between
the kind of logical operations a system uses and the kind of invariance con-
ditions the system respects. This analysis yields (a) a characterization of
invariance and safety under bisimulation as natural conditions for logical op-
erations in modal and dynamic logics, and (b) some new transfer results be-
tween first-order logic and modal logic.
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In a model-theoretic perspective, logics differ by the power they make
available to describe structures. The limits to this expressive power are given
by ‘similarity’ relations over structures: similar structures cannot be distin-
guished in the relevant language. The notion of bisimulation for modal logic
(ML) is a case in point: bisimilar Kripke models have the same modal the-
ory, though getting a converse involves some complications. But also other
well-known types of result characterize logics in terms of similarity relations:
Lindström’s Theorem says that first-order logic (FOL) is the logic one gets
from invariance for potential isomorphisms when adding compactness, van
Benthem’s characterization theorem says that ML is the logic one gets from
bisimulations inside the complete logic FOL, and so on.

But one might wish to go the other way around. Consider a logic with
predicate atoms that has at least existential quantification and boolean com-
bination, what is its natural notion of similarity between structures? ‘Be-
ing potentially isomorphic’ is one answer, but is there more to it than some
mathematical facts linking logics like FOL or the infinitary logic L∞,ω with
potential isomorphisms? In Section 1, we summarize an earlier character-
ization of potential isomorphism as the ‘coarsest’ similarity relation whose
invariants are closed under existential quantification. Section 2 provides a
new abstract version of this result, and a characterization of bisimulation
follows naturally: bisimulations are the natural match for a logic based on
modal existential quantification. Section 3 analyzes the connection between
these results for potential isomorphisms and bisimulations by transforming
first-order structures into Kripke models and back. In Section 4, we extend
the analysis to dynamic logic, and present a new characterization result for
operations on accessibility relations. We prove that safety under bisimulation
for operations added on top of a logic based on invariance under bisimulation
provides a sufficient and necessary condition for preservation of invariance
under bisimulation.

In all, these results are a sort of ‘abstract model theory’ characterizing
structural invariance relations in more general terms, instead of taking them
for granted. We see this as shedding some new light on the logical constants
of first-order and modal logic, and the relations between these two perspec-
tives.

1 Invariance and first-order operations

1.1 Invariance for logical notions
Following Frege’s well-known insight, quantifiers can be viewed as second
order predicates. For example, let us have a look at the satisfaction clause for
existential quantification (for a modelM, a formula φ and an assignment σ):

M � ∃x φ(x) σ
iff
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there is an a ∈ |M| s.t.M � φ(x) σ[x := a]
iff

||φ(x)||M,σ = {a ∈M/M � φ(x) σ[x := a]} is not empty

where σ[x := a] is the assignment one gets from σ by resetting the value
of x to a. Reading off from the satisfaction clause, there is a natural in-
terpretation Q∃ to give to ∃, namely the class of structures which represent
formula interpretations ||φ||M,σ which are semantically fine as far as exis-
tential quantification goes. So we set Q∃ = {〈M,P 〉 / P ⊆M and P 6= ∅}.
This licenses the following phrasing of the satisfaction clause for existential
quantification:

M � ∃x φ(x) σ
iff

〈M, ||φ(x)||M,σ〉 ∈ Q∃

∃ is a unary monadic quantifier, so that Q∃ is a class of sets equipped with
a predicate extension. The idea can be generalized to quantifiers of arbitrary
syntactic type. Let us consider a class1 Q of relational structures of the form
〈M,R〉. Q can be taken to be the interpretation of a (generalized) relational
quantifier Q endowed with the following satisfaction clause:

M � Qxy φ(x, y) σ
iff

〈M, ||φ(x, y)||M,σ〉 ∈ Q

Propositional connectives fit in the picture if we let booleans be part of the
structures. Now, the following question arises: what are the natural classes of
structures Q to be used as the interpretation of logical constants (first-order
quantifiers or propositional connectives)? Under different names, invariance
under isomorphism has been widely accepted as a necessary condition. Since
Q is now any class of structures of the same similarity type that is meant to
interpret a logical constant, it should satisfy:

IfM andM′ are isomorphic, thenM∈ Q iffM′ ∈ Q.

This means that two structures which are isomorphic are ‘logically similar’
and that no logical notion should be able to distinguish them. However, other
notions of similarity between structures could be considered as candidates.
Some recent proposals argue that various kinds of homomorphisms would
be a better fit.2 In what follows, we consider invariance under an arbitrary
‘similarity relation’ S, being just an equivalence relation over structures re-
specting their types.

1In general, the structures interpreting a quantifier will not form a set, so we are implicitly work-
ing in a background theory of classes in order to describe our structures.

2See [6], [5] for invariance under homomorphism and [9] for a general assessment of the invari-
ance approach to logical constants.
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Definition 1. Let S be a similarity relation and Q a class of structures. We
say that Q is S-invariant iff, wheneverM SM′, thenM∈ Q iffM′ ∈ Q.

The restriction to equivalence relations S is harmless, since by our defini-
tion, a relation and the smallest equivalence relation containing it have the
same invariants. We define the ordering ≤ on similarity relations as reverse
inclusion3, that is S ≤ S′ iff S′ ⊆ S.

1.2 Existential quantification and potential isomorphisms
Now assume that we want a ‘first-order like’ logic, endowed with existential
quantification. Which invariance relation S should we pick? Given the meta-
logical results mentioned in the introduction, potential isomorphisms are a
natural choice. We shall turn this intuition into a precise characterization.
But first, we recall the following fundamental notion:4

Definition 2. A potential isomorphism I between two structures M and

M′ (notation: M
I
≈ M′) is a non empty set of (possibly partial) functions

from |M| to |M′| such that:
– every function f ∈ I is a partial isomorphism, that is, an isomorphism
betweenM restricted to the domain of f andM′ restricted to its range,
– for all functions f ∈ I and objects a ∈ |M| (resp. a′ ∈ |M′|), there is a
function g ∈ I with f ⊆ g and a ∈ dom(g) (resp. a′ ∈ rng(g)).
We use the notation Isop for the similarity relation of ‘being potentially iso-
morphic’. Let us furthermore introduce two relevant properties of similarity
relations:

Definition 3. A similarity relation S preserves atoms iff
whenever 〈M,R1, ..., Rn, a1, ..., am〉 S 〈M ′, R′1, ..., R′n, a′1, ..., a′m〉, then
– aj1 = aj2 iff a′j1 = a′j2 , for all objects aj1 , aj2 among a1, ..., am and a′j1 ,
a′j2 among a′1, ..., a

′
m,

– 〈aj1 , ..., ajk〉 ∈ Ri iff 〈a′j1 , ..., a
′
jk
〉 ∈ R′i, for all k-tuples 〈aj1 , ..., ajk〉 of

objects among a1, ..., am and 〈a′j1 , ..., a
′
jk
〉 among {a′1, ..., a′m}, where k is

the arity of Ri and R′i.

Definition 4. A similarity relation commutes with object expansions iff
if M S M′, then for all a ∈ |M|, there is an a′ ∈ |M′| such that
M, a SM′, a′.
whereM, a isM expanded with the extra distinguished object a.

Note that no vice versa condition is needed in this definition since S is
assumed to be symmetric. Potential isomorphisms can be uniquely defined
in terms of atom preservation and object commutation:

3The motivation for taking a reverse inclusion S ≤ S′ is to get a Galois connection between
similarity relations and classes of invariants. See [3] for more.

4‘Potential isomorphisms’ are also called ‘partial isomorphisms’ in the literature; but we prefer
to reserve the term ‘partial isomorphism’ for single isomorphisms between substructures.
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Fact 5. Isop is the smallest similarity relation which preserves atoms and
commutes with objects expansions.

Proof. Clearly, Isop preserves atoms and commutes with object expansions.
Next, take an S that preserves atoms and commutes with object expansions.
We want Isop ≤ S. Let M, M′ be two structures with M S M′. We
need to show that M Isop M′. By the definition of Isop, this amounts
to finding a non-empty set I of partial isomorphisms between M and M′
satisfying the back and forth properties. We set I = {f : |M| →
|M′|/M, a1, ..., an SM′, f(a1), ..., f(an)}.

By hypothesis, M S M′, so I is non-empty, as it contains the empty
function. Commutation with object expansions then yields the back and forth
property. Let f be a function in I , it comes from two S-similar structuresM
and M′ whose distinguished objects provide the arguments and values for
f . Let a be an object in |M| which is not already a distinguished one. By
commutation with object expansion, we can find an a′ ∈ |M′| such thatM, a
andM′, a′ are again S-similar. Because of that, there is a function in I which
extends f by sending a to a′. We can do the same starting from an a′ ∈ |M′|.
Finally, since S preserves atoms, the f in I are partial isomorphisms.

We would like to connect Fact 5 with a property of first-order languages.
Let Inv(S) be the class of classes of structures which are S-invariant, what
is the property of Inv(S) corresponding to commutation with object expan-
sion? What does commutation with object expansions, which makes sense
at the level of structures and similarity relations, amount to in terms of the
associated logics, that is at the level of classes of structures and invariants ?

Definition 6. Let Q be a class of structures of the form M, a. The object
projection of Q, ∃(Q), is defined byM ∈ ∃(Q) iff there is a b ∈ |M| such
thatM, b ∈ Q.

Given a similarity relation S, we shall say that object projection preserves S-
invariance iff, whenever Q ∈ Inv(S), ∃(Q) ∈ Inv(S) as well. Preservation
of S-invariance under ∃(−) says that existential quantification can be applied
to invariant operations while staying inside the class of invariant operations.
In other words, it says that existential quantification is available in the logic.
In particular, ifQ∃ ∈ Inv(S) and classes of structures definable from logical
constants interpreted by classes of structures in Inv(S) are again in Inv(S),
then ∃(−) preserves invariance.5 This is equivalent to commutation with
object expansion:

Theorem 7. S commutes with object expansions iff object projection pre-
serves S-invariance.

5For example, if Q is a class of structures of the form 〈M,R, a〉, Q applies to a formula and a
term, binding two variables in the formula. ∃(Q) is defined by ∃zQxyRxy, z. It is easy to check
that 〈M,R〉 ∈ ∃(Q) iff 〈M,R〉 � ∃zQxy Rxy, z.
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Proof. For the original direct proof, see [3], Theorem 3.10 and Fact 3.14. A
more general new proof will be provided in the next section.

Putting together Fact 5 and Theorem 7, we get:

Corollary 8. Isop is the smallest similarity relation S such that S preserves
atoms and object projection preserves S-invariance.

Imagine that we want to build a first-order language and that we want
to base the interpretation of its logical constants on some appropriate notion
of invariance. The Corollary says that if we want our language to admit of
first-order existential quantification and to deal with atomic formulas in the
standard way, Isop is the smallest similarity relation we can pick. So, in that
sense, potential isomorphisms provide us with the most economic notion of
similarity between structures making existential quantification available in
the resulting logic.

What happens if we want second-order existential quantification as well?
Then we shift from potential isomorphisms to isomorphisms. Here is the
theorem which tells us this, where Iso is the similarity relation corresponding
to ‘being isomorphic’ and ‘set projection’ is the same as object projection
with subsets of the domain or relations over the domain replacing objects in
the domain:6

Theorem 9. Iso is the smallest similarity relation S such that S preserves
atoms, and object and set projections preserve S-invariance.

2 Invariance, commutation, and the modal case

2.1 Invariance and commutation: a general lemma
Theorem 7 rests upon a duality between two ‘inverse’ operations, (a) ex-
panding a structure with an object, and (b) projecting a class of structures.
We shall show that this idea of having two inverse operations in tandem, the
second defined at a higher level, is all that is needed for commutation and
preservation of invariance to be equivalent. One reason for going abstract
here is that a characterization result for modal logic and bisimulation will
follow automatically.

LetE be a relation over a classA of objects7, with an associated ‘inverse’
function E−1 : ℘(A) → ℘(A) on the powerclass of A, defined for any

6The Theorem is due to the first author; it has been presented in the dissertation by the second
author [2] with preservation of invariance under object projection and under set projection being
called respectively closure under level 1 projection projection and closure under level 2 projection.
Though Theorem 9 is quite analogous to Corollary 8, the proof does not rest on a commutation result
like Theorem 7.

7We use ‘class’ rather than ‘set’ here because of the intended application to first-order structures,
which constitute a proper class. The relation E echoes that of ‘being an expansion with one object’
over first-order structures which was at the heart of the previous section.
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subclass X of A by E−1(X) = {a ∈ A / ∃b ∈ X with aEb}. We shall
be interested in the behavior of E and E−1 with respect to an equivalence
relation S over A:

Definition 10. S commutes with E iff, for all a, a′, b ∈ A, if aSb and aEa′,
then there is a b′ such that a′Sb′ and bEb′.8

Following the notion of invariance introduced in the previous section, a sub-
class X of A is S-invariant if aSb implies a ∈ X iff b ∈ X . We introduce
preservation of invariance for E−1:

Definition 11. E−1 preserves S-invariance iff for any subclass X of A, if X
is S-invariant, then E−1(X) is S-invariant.

Now, for arbitrary S and E, commutation and preservation of invariance are
equivalent – as may be shown by a little exercise in basic set theory:

Theorem 12. S commutes with E iff E−1 preserves S-invariance.

Proof. Only if. Assume that (1) S commutes with E, (2) X is S-invariant,
(3) aSb and (4) a ∈ E−1(X). We want b ∈ E−1(X). By (4) and the
definition of E−1, there is an a′ with aEa′ and a′ ∈ X . Hence by (3), we
can apply (1) to get a b′ such that a′Sb′ and bEb′. By (2) and a′ ∈ X , b′ ∈ X
as well. But bEb′, therefore b ∈ E−1(X) as required.

If. Assume that (1) E−1 preserves S-invariance and that for some a, b
and a′, (2) aSb, (3) aEa′. We want a b′ with a′Sb′ and bEb′. So, consider
[a′]S , the S-equivalence class of a′. By definition, it is S-invariant. Hence
by (1), E−1([a′]S) is S-invariant. By the definition of E−1 and (3), a ∈
E−1([a′]S). By S-invariance of E−1([a′]S) and (2), b ∈ E−1([a′]S). Hence
by the definition of E−1, there has to be a object b′ with bEb′ and b′ ∈ [a′]S ,
that is a′Sb′.

Now take as our class A the class of all first-order structures. Let E be
the relation of ‘expanding with one object’, i.e. M E M′ iffM′ = M, a
for some object a ∈ |M|. Commutation with object expansion in the sense
of Definition 4 is then commutation with E. And the ‘inverse’ E−1 of E is
nothing but object projection ∃(−). We get Theorem 7, which says that S
commutes with object expansion iff object projection preserves S-invariance,
as an instance of Theorem 12, which says that S commutes with E iff E−1

preserves S-invariance.

2.2 A modal application: diamonds and bisimulations
Moving on to our specific area of interest in this paper, Andréka, van Ben-
them and Németi have claimed that bisimulations are to modal logic what

8Note the formal similarity between this notion of relational linkage and that of a modal bisimu-
lation, to be considered later.
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potential isomorphisms are to predicate logic [1]. There are quite a number
of meta-logical theorems and transfer results to back up such a claim. Is
it then possible to characterize bisimulations as the good match for modal
logic, just like we characterized potential isomorphisms as the good match
for predicate logic, or plain isomorphisms as the good match for second-order
logic? We provide a positive answer in this paragraph, by a direct application
of Theorem 12.

Modal logic gets interpreted in Kripke models, that is, in the mono-modal
case, structures 〈W,R,P1, ..., Pn〉 with W a set of ‘worlds’, R ⊆ W ×W
the accessibility relation, and the Pi ⊆ W interpretations for atoms. Modal
formulas are evaluated at worlds in Kripke models, so their interpretation in a
model is the set of worlds at which they are true. In line with our earlier gen-
eral view, then, modal logical constants get interpreted by classes of pointed
structures. As an example, ♦ is the unary constant which is interpreted by the
class Q♦ of structures 〈W,R,P,w〉 with {w′ ∈ W / wRw′ and w′ ∈ P} 6=
∅. In terms of truth clauses, our earlier analysis of quantifiers then comes to
look as follows:

M, w � ♦φ
iff

∃w′ wRw′ andM, w′ � φ
iff

〈W,R, ||φ||M, w〉 ∈ Q♦

where ||φ||M = {v ∈ |M| /M, v � φ}.
Modal similarity relations, such as bisimulations, link two worlds in two

models: they are equivalence relations between pointed Kripke structures.
As before, a class Q of pointed Kripke structures is invariant under a simi-
larity relation S on such structures iffM, w S M′, w′ impliesM, w ∈ Q
iffM′, w′ ∈ Q. Given a modal similarity relation S, we shall note InvM (S)
the class of classes of pointed structures which are S-invariant. Note that
our previous ordering on similarity relations, as well as the property of atom
preservation, apply straightforwardly to the particular case of modal similar-
ity relations.

The two essential properties of bisimulations are commutation with
‘guarded object expansion’ (moves along the accessibility relation) and
preservation of atoms. By commutation with guarded object expansion, we
mean the following:

Definition 13. A similarity relation S commutes with guarded object expan-
sion iff
ifM, w SM′, w′, then for all v ∈ |M| with wRv, there is a v′ ∈ |M′| such
thatM, v SM′, v′ and w′R′v′.

Commutation with guarded object expansion is to bisimulation what com-
mutation with object expansion is to potential isomorphism. This makes for
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the following modal version of Fact 5 (we write BiS for the relation ‘be-
ing bisimilar’, which holds between any two pointed structures which have a
bisimulation between them):

Fact 14. BiS is the smallest modal similarity relation which preserves atoms
and commutes with guarded object expansion.

Proof. First it is clear thatBiS preserves atoms (worlds which are related by
a simulation belong to the same unary predicate extensions) and commutes
with guarded object expansion (by the back and forth properties of modal
bisimulation).

Now let S be a similarity relation over pointed Kripke models which
preserves atoms and commutes with guarded object expansion. We want
BiS ≤ S. AssumeM, w SM′, w′. We show thatM, w BiSM′, w′. S
‘is’ the bisimulation we need: we define a relation Z over W ×W ′ by uZu′

iff M, u S M′, u′. Z contains 〈w,w′〉 by hypothesis. It preserves atoms
because S does and it satisfies the back and forth condition in the definition of
bisimulations precisely because S commutes with guarded object expansion.

Guarded object expansion can be viewed as a relation E over the class
of pointed structures, defined byM, w EM′, w′ iffM = M′ and wRw′.
Its associated inverse E−1 on classes of pointed structures is guarded ob-
ject projection, defined by E−1(Q) = {M, w /M, w′ ∈ Q for some w′ ∈
|M| with wRw′}. As before with object projection and first-order existential
quantification, guarded object projection is the result of applying existential
modal quantification. To see this, assume that Q♦ is in InvM (S) and that
classes of pointed structures which are definable from modal constants inter-
preted by classes of pointed structures in InvM (S) are again in InvM (S). It
follows that E−1 preserves S-invariance.9

Thus, as an instance of Theorem 12, we get the equivalence between a)
the core property of bisimulations, namely commutation with moves along
the accessibility relation, and b) the invariants of S being closed under appli-
cations of ♦:

Theorem 15. S commutes with guarded object expansion iff guarded object
projection preserves S-invariance.

Now putting together Fact 14 and Theorem 15, we get:

Corollary 16. BiS is the smallest similarity relation S such that S pre-
serves propositional atoms, while guarded object projection preserves S-
invariance.

9For example, let Q be a class of structures of the form 〈M,R,P, a〉 which is the interpretation
of a unary modal constantQ. It is easy to defineE−1(Q) from ♦ andQ. Check that 〈M,R,P,w〉 ∈
E−1(Q) iff 〈M,R,P,w〉 � ♦Q p where P is the interpretation of p.
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As before with potential isomorphisms and first-order logic, this tells us
that bisimulations are the right match for modal logic. For a logic to be a
modal logic, it seems clear that it should deal with atoms in the standard
way and have ♦ as a logical symbol (so that application of ♦ preserves in-
variance). BiS is the least demanding notion of similarity between pointed
models which fits the bill.

3 Back and forth between back and forths
Our aim in this section is to provide a better understanding of the relation-
ships between our two characterization results for FOL and ML (Corollaries
8 and 16).

3.1 Generalized assignment models
We follow the idea of ‘Modal Foundations for Predicate Logic’ (cf. [8]),
and adopt a modal reading for first-order semantics. The starting point is the
observation that key clauses of Tarskian semantics for first-order logic like:

M � ∃x φ(x) σ
iff

for some a ∈ |M|,M � φ(x) σ[x := a]

have a modal flavor which is revealed by the following rewriting:

M, σ � ∃x φ(x)
iff

for some τ , σRxτ andM, τ � φ(x)

with assignments σ, τ viewed as abstract states and Rx as a relation
over these which corresponds to updating the value of x. Thus, any
classical model M induces a (poly-modal) assignment model M∗ =
〈S, {Rx}x∈V AR, I〉 with S a set of states,10 Rx a binary relation for each
variable x, and I a valuation function which gives a truth value to each atomic
formula Px in each state σ, so thatM∗, σ � Px iff σ(x) ∈ PM. Then there
is a natural translation (−)∗ of FOL formulas into ML formulas such that
M � φ σ iffM∗, σ � φ∗. (−)∗ is defined by induction and the clause for ∃
turns it into a diamond. One can check that:

M � ∃x φ(x) σ
iff

M∗, σ � ♦x(φ(x))∗

10In general, S will be the set of all assignments onM, but the point of ‘modal foundations’ is that
one can just as well use only some subset of the set of all assignments. This both models interesting
phenomena of ‘dependence’ between variables, and leads to well-behaved decidable versions of first-
order logic.

10



This idea extends to generalized quantifiers as well. Without loss of gener-
ality, recall the satisfaction clause for a binary quantifier Q interpreted by an
operation Q:

M � Qxy φ(x, y) σ
iff

〈M, ||φ(x, y)||M,σ〉 ∈ Q

Once the bound variables x, y are fixed, the action of Q on M consists in
manipulating subsets of the set of all M -assignments VM . Looking at these
as abstract states connected by update relations, we have a class of pointed
assignment models Q∗xy:

{〈VM , Rxy, P, σ〉 / 〈M, {〈τ(x), τ(y)〉 / σRxyτ and τ ∈ P}〉 ∈
Q}

where Rxy updates the values of both x and y in one shot. Now, Q∗xy is a
class of pointed Kripke structures just like those in section 2, so it interprets
a generalized modal quantifier Q∗xy , the modal translation of Qxy, and one
can check that we still have what we had for ∃x and ♦x, namely:

M � Qxy φ(x, y) σ
iff

M∗, σ � Q∗xy(φ(x, y))∗

Here, as before,M∗, σ � Q∗xy(φ(x, y))∗ iff 〈M,Rxy, ||(φ(x, y))∗||M, σ〉 ∈
Q∗xy .

Let us be more precise about the ∗-models. Fix a countable set of vari-
ables V AR = {x1, ..., xn, ...}. Any modelM induces an associated assign-
ment modelM∗:
– The domain V of M∗ is the set of finite partial functions from V AR to
|M|.
– Each finite11 set of variables X ⊂ V AR induces an accessibility relation
RX with σRXτ iff τ extends σ at most on values for variables in X and
differs from σ at most on variables in X . Thus, RX corresponds to updat-
ing registers for some variables in X and creating new registers for other
variables in X .
– For each n-ary relationR on the structureM, and each n-tuple of variables
xi1 ,...,xin , a new predicate extension Ri1,...,in on V is defined by setting
σ ∈ Ri1,...,in iff
〈σ(xi1), ..., σ(xin)〉 ∈ R.

Now, a first-order formula φ can be evaluated with respect to any partial
assignment σ defined on the free variables in φ. If, when testing for the

11Indexing accessibility relations with sets of variables instead of one variable at a time is neces-
sary to handle polyadic quantifiers, which have an independent meaning in this setting.
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satisfaction of φ w.r.t. σ, a quantifier Q occurs and binds a variable x not in
the domain of σ, one considers partial assignments extending σ by giving a
value to x. This is what is captured by our definition of RX on assignment
models, which corresponds either to register updating (the partial assignment
was already defined for the bound variable) or register opening (the partial
assignment was not defined for the bound variable). Our ∗-translation of
first-order structures into Kripke structures is compatible with the outlined
matching ∗-translation of a first-order language with generalized quantifiers
into a modal language with generalized modal quantifiers.

3.2 From potential isomorphisms to bisimulations
M∗-models are very special structures: their domain consists of all partial
assignments and the accessibility relations RX make all actions of updating
and creating registers available. As in [8], one can explore what happens to
generalized modal quantifiers when models can have ‘assignment gaps’. We
leave this for future research, and focus on similarity relations for the above
fullM∗ models.

Exactly like quantifiers, similarity relations on classical models can be
exported to assignment models. Thus, to each similarity relation S, we define
its associated similarity relation S∗ byM∗, σ S∗M′∗, σ′ iff σ and σ′ have
the same domain andM,

−−−→
σ(xi) SM′,

−−−→
σ′(xi) for the xis in their domain.

Theorem 17. Iso∗p = BiS

Proof. We need to proveM∗, σ -M′∗, σ′ iffM,
−−−→
σ(xi) ≈M′,

−−−→
σ′(xi).

From left to right. To match objects in the initial models, we have to look
at the bisimulation and match objects according to their indexing by the vari-

ables. So assume M∗, σ
Z

- M′∗, σ′. We set I = {f / ∃ρ ∈ |M∗|, ρ′ ∈
|M′∗| s.t. ρZρ′ and f = {〈ρ(x), ρ′(x)〉 / x ∈ Dom(ρ)

⋂
Dom(ρ′)}}.

Since σ Z σ′, I contains at least the empty function (thanks to the worst
case scenario in which there is no variable at which both σ and σ′ are de-
fined). The functions in I are partial isomorphisms, because Z itself respects
atoms.

Now for the back and forth condition: let f ∈ I and a ∈ |M| be an object
which is not in the domain of f . We know there are two assignments τ and τ ′

with τZτ ′ that gave us f . Starting from τ , we open a register for a variable
x which was not in the domain of τ and give it the value a. This is a move
along Rx to an assignment ρ which extends τ on x. Since τZτ ′, the same
move can be made along R′x, and we get an assignment ρ′ which extends
τ ′ on x. From ρ, ρ′ and the fact that ρZρ′, we get a function g in I which
extends f on a by g(a) = ρ′(x). Therefore I is a potential isomorphism
between M and M′ – and, by construction, these two structures extended
with objects that are indexed by the same variable according to σ and σ′ are
again potentially isomorphic.
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From right to left. To match states in the assignment models, we have
to look at the partial isomorphisms, and match assignments according to the

partial isomorphisms and the indexing by the variables. Assume thatM
I
≈

M′. We define our intended bisimulation Z over |M∗| × |M′∗| by σZσ′ iff
Dom(σ) = Dom(σ′) and there is an f ∈ I s.t. σ′ = f ◦ σ. Since the f in I
are partial isomorphisms, Z-related states verify exactly the same atoms.

Now for the Zig-Zag condition. Assume that σZσ′. By the definition of
Z, this means that there is an f ∈ I such that σ′ = f ◦ σ. We check the Zig-
Zag condition forRx. So assume that σRxρ for some ρ. Suppose that x is not
a fresh variable, being already in the domain of σ and σ′. We look at ρ(x),
say this is a. By the closure condition on I , there is a function g ∈ I such
that f ⊆ g and a is in the domain of g. Now consider ρ′ = σ′[x := g(a)]. It
is clear that σ′Rxρ′. Since f ⊆ g, ρ = σ[x := a] and ρ′ = σ′[x := g(a)],
σ′ = f ◦ σ is sufficient to guarantee that ρ′ = g ◦ ρ. Hence ρZρ′, as desired.
If x is a fresh variable, things are similar with register opening (extending
assignments) replacing register updating.

The left to right direction of the proof would not go through as it stands if we
were to take total assignments as states. From right to left, if the relationsRx
only correspond to updating (and not to register opening), a bisimulation be-
tween the ∗-models does not guarantee a potential isomorphism between the
first-order structures. We leave possible generalizations to a future occasion.

Theorem 17 confirms that bisimulations are a modal version of potential
isomorphisms. Moreover, one can check that invariance is preserved by shift-
ing to assignment models. So ‘genuine’ first-order operations, that is classes
of structures invariant under potential isomorphisms, induce ‘genuine’ modal
operations: classes of pointed assignment models invariant under bisimula-
tion.

3.3 From bisimulations to potential isomorphisms
We can also go in the other direction and ‘upgrade’ bisimulations to potential
isomorphisms by considering suitably richly structured Kripke models. We
adapt a result from [1] that modal equivalence can be upgraded to full first-
order elementary equivalence on trees with multiplied nodes. They leave a
theorem for bisimulations and potential isomorphisms as an unproved claim.
We prove it directly, for trees with suitably multiplied nodes.12

In what follows, we will work with the multiplied unraveled versionM+

of a Kripke model M as in [1]. First, the standard transformation of tree
unraveling is performed on M. We get a model whose worlds are finite

12Proving the theorem about elementary equivalence involves keeping track of distances between
nodes to be matched along partial isomorphisms. With potential isomorphism, in contrast with finite
Ehrenfreucht-Fraı̈ssé games, this is not necessary and the proof is simpler.
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sequences of the form w0, ..., wn with w0 = w and each wi+1 is an R-
successor of wi (0 ≤ i < n), whose accessibility relation is ‘immediate
succession’. Worlds in the new model bisimulate with worlds in the original
model via their last element. In addition, infinite ‘multiplication’ is applied
to each node except the root, as follows, maintaining a bisimulation at each
stage. First, copy each successor of w at level 1 infinitely many times and
attach these disjoint copies to w. Identifying copies with originals is an ob-
vious bisimulation. Next consider successors at level 2 on all branches of the
previous stage and perform the same copying process at all level-1 worlds.
Again, there is an obvious bisimulation. The intended modelM+, w is the
result of iterating this process through all finite levels.

Theorem 18. Two pointed Kripke models M, w and M′, w′ are bisimilar
iff their multiplied unraveled versionsM+, w andM′+, w′ are potentially
isomorphic.

Proof. It is clear that if M+, w and M′+, w′ are potentially isomorphic,
the original modelsM, w andM′, w′ are bisimilar. For, the unconstrained
exploration which corresponds to a potential isomorphism is more than we
need for the constrained exploration which corresponds to a bisimulation.

In the other direction, assume thatM, w andM′, w′ are bisimilar. Then
there is a bisimulation Z between their unraveled multiplied versions. We
need to show that there is a potential isomorphism as well.

Let us say that a partial isomorphism f from M+ to M′+ follows Z
iff f relates worlds which are related by Z and the domain and range of f
are closed under subsequences: if 〈w0, ..., wj〉 ∈ Dom(f), 〈w0, ..., wi〉 ∈
Dom(f) for 0 ≤ i ≤ j (and similarly for the range). We show that the set of
finite partial isomorphisms following Z is a potential isomorphism between
M+, w andM′+, w′.

First, it is non-empty since 〈w,w′〉 is trivially a partial isomorphism fol-
lowing Z. Then consider any finite partial isomorphism f following Z and
a new object a. We need to find a finite partial isomorphism g which ex-
tends f , follows Z, and has a in its domain. Now there is a unique path
from the root to a, and on this path, a lowest node b to be in the domain
of f . To get the image of a, one goes down from the image of b by fol-
lowing along Z the path from b to a, taking new nodes on |M′+| to match
the new nodes on |M+|. More precisely, let f be a finite partial isomor-
phism following Z and a = 〈w0, ..., wn〉 with w0 = w a world in |M+|
which is not in the domain of f . Since f is closed under subsequence, there
is an i ∈ {0, ..., n} s.t. for all j ≤ i, 〈w0, ..., wj〉 ∈ Dom(f), and for
all k > i, 〈w0, ..., wk〉 6∈ Dom(f). Let 〈w′0, ..., w′i〉 = f(〈w0, ..., wi〉).
Since 〈w0, ..., wi〉Z〈w′0, ..., w′i〉 and 〈w0, ..., wi〉R+〈w0, ..., wi+1〉, there is a
w′i+1 s.t. 〈w′0, ..., w′i〉R′+〈w′0, ..., w′i+1〉 and 〈w0, ..., wi+1〉Z〈w′0, ..., w′i+1〉.
Moreover, since M′+ is a tree whose nodes have been copied infinitely
many times, we can choose w′i+1 so that it was not already in the range
of f . Repeating this, we get a sequence w′i+1, ..., w

′
n matching the sequence
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wi+1, ..., wn. We define g = f ∪{〈〈w0, ..., wk〉, 〈w′0, ..., w′k〉〉 / i+1 ≤ k ≤
n}. It is crucial here that none of the added elements were already in the
domain or in the range of f , so that g is a one-one function.

To clinch matters, we show that g is a finite partial isomorphism follow-
ing Z:
– Since g extends f on a finite number of arguments and f is finite, g is finite.
– The domain and range of g are closed under subsequences, by the construc-
tion and because those of f were. Also, g relates worlds which are related by
Z, by construction and because f did. Hence g respects unary predicates.
– g respects the accessibility relations as well. For, take b and c in the domain
of g. We want bR+c iff g(b)R

′+g(c). We reason by cases, depending on
whether the worlds are new. If b and c were already in the domain of f , there
is nothing to show. If they are both new, so are g(b) and g(c) by construction,
and hence the equivalence follows from the definition of g and the models
being unraveled trees. Now assume (1) only one of them, say b, was in the
domain of f . It follows that (2) g(b) was in the range of f , but g(c) was
not. The idea is that bR+c iff b is the last node on the path from the root
to a which is in the domain of f and c is its successor on the path, and
similarly for g(b) and g(c) with respect to R

′+ and the range of f . More
precisely, by (1), bR+c iff b = 〈w0, ..., wi〉 and c = 〈w0, ..., wi+1〉. By (2),
g(b)R

′+g(c) iff g(b) = 〈w′0, ..., w′i〉 and g(c) = 〈w′0, ..., w′i+1〉. Hence bR+c

iff g(b)R
′+g(c).

So M+, w and M′+, w′ are ‘potentially’ isomorphic. In fact, they
are almost isomorphic except for the difference that the two initial mod-
els may have successor sets of different infinite cardinalities. Potential
isomorphisms are blind to differences in size for infinite sets, but to get
isomorphic models, we could strengthen the copying procedure, for ex-
ample by making not ℵ0 copies of each node but κ-copies, where κ =
max(card(|M|), card(|M′|)). But even as we have stated things, our con-
clusion is that modal bisimulations naturally induce basic first-order invari-
ance relations.

4 Dynamic logic and safety
Our final task is to extend our characterization of invariance for modal logic
to dynamic logics which have explicit operations on accessibility relations.
This makes sense from the perspective of FOL, where formulas can define
both sets of objects and relations between objects (depending on how many
free variables they have): the logic handles all these semantic types in a uni-
form way. By contrast, in ML proper, formulas only define sets of worlds,
while accessibility relations cannot be manipulated. For the latter purpose,
propositional dynamic logic (PDL) introduces a new type of expression, viz.
‘programs’ which define relations. How do our invariance conditions apply
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to the new program operations so as to make expressions of different types
combine nicely? We shall first see how Theorem 12 works for dynamic op-
erations and then connect this with the standard notion of ‘safety for bisim-
ulation’. In the last paragraph, we draw a tentative parallel with first-order
logic.

4.1 Invariance and commutation
In Section 2, classes of pointed structures were used to interpret modal opera-
tors. What is the interpretation of dynamic operators, such as relational com-
position ; or Boolean choice ∪ in PDL? Their role is to make new relations
available, on the basis of the accessibility relations and predicate extensions
which are already there in the Kripke structures. So a dynamic operation O
will associate to every set W a function OW taking as arguments relations
and predicate extensions over W and yielding a new relation over W as its
value. To such an operation O will correspond a dynamic operator O with
the following semantic clause for an arbitrary modelM:

||O−→χ ||M = O|M|(||−→χ ||M)

with −→χ a sequence of programs and formulas matching the syntactic type of
O (and the type of the function O|M|), and ||−→χ ||M the sequence of relations
and predicate extensions overM which interpret the programs and formulas
−→χ . For instance, Boolean choice ∪ gets interpreted by the dynamic operation
O∪ which yields for each W a function O∪,W : ℘(W 2), ℘(W 2) → ℘(W 2)
defined for R1, R2 ⊆W 2 by O∪,W (R1, R2) = R1

⋃
R2.

In the well-known syntax of dynamic logic, a program π and formula φ
combine into a new formula 〈π〉φ, with 〈π〉 interpreted as a standard ♦ for the
accessibility relation defined by π. When such operators are added to a modal
language, it is natural to require that the new formulas retain the old semantic
invariance. Indeed, PDL formulas are still invariant under bisimulations, and
hence the increase in expressive power stays within the ‘natural limits’ of
ML.

Thus, on classes of pointed structures which are invariant for bisimula-
tion, dynamic operators should preserve that invariance when used to define
new classes of structures. What dynamic operators O have this property?
One answer is again provided by Theorem 12. In Section 2.2, we took E
and E−1 to be “moving along the accessibility relation” and “applying ♦”,
respectively. Now interpretE as “moving along the relation defined byO−”.
E−1 will then be “applying 〈O−〉”. More precisely, let −→χ be a sequence of
programs and formulas matching the type of O13 and φ a formula. We use
the notationM + ||−→χ ||M, w for the expansion of M, w with the relations

13As before, the syntactic type of O− is arbitrary: O− applies to a certain number of formulas
and programs and yields a new program. Of course, then, the semantic type of O has to match the
syntactic type of O−.
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and sets which are the interpretations on M of the formulas and programs
−→χ . Define E byM + ||−→χ ||M, w E M + ||−→χ ||M, v iff wOM(||−→χ ||M)v.
Then E−1(||φ||) = ||〈O−→χ 〉φ||, sinceM+ ||−→χ ||M, w ∈ E−1(||φ||) iff there
is a v ∈ |M| with wO|M|(||−→χ ||M)v and M + ||−→χ ||M, v ∈ ||φ||M iff
M, w ∈ ||〈O−→χ 〉φ||.

Let us say that BiS commutes with O iff it commutes with the relations
one gets for all values of O.14 We say that O preserves invariance under BiS
iff applying the interpretation of 〈O−→χ 〉 preserves invariance for all possible
interpretations of the −→χ .15 In this setting, Theorem 12 tells us that com-
mutation with O is precisely what guarantees that adding O does not break
bisimulation invariance:

Theorem 19. BiS commutes with O iff O preserves invariance under BiS.

This result provides the key induction step in a proof that extending a modal
logic by dynamic operators whose interpretations commute with bisimula-
tion yields a dynamic logic whose formulas are again invariant under bisim-
ulation. This would also work with BiS any kind of similarity relation for
pointed Kripke structures.

4.2 Commutation and safety for bisimulation
The standard ‘invariance condition’ on PDL operations looks a bit different,
however, and its is known as ‘safety under bisimulation’.16

Definition 20. A dynamic operation O is safe for bisimulation iff

wheneverM, w
Z

-M′, w′, and wO(M)v for some v ∈ |M|, then there is a
v′ ∈ |M′| such that vZv′ and w′O(M′)v′ – as well as vice versa.

We will now show that commutation and safety are equivalent.17 In what
follows, it will be useful to work with ‘quasi-transitive’ bisimulations where
wZw′, vZw′ and vZv′ implies wZv′. More precisely, let W and W ′ be

14Thus, for any sequence of programs and formulas−→χ , ifM+ ||−→χ ||M, w andM′+ ||−→χ ||M′ , w′
are bisimilar, wO|M|(||−→χ ||M)v implies that there is a v′ ∈ |M′| such that M + ||−→χ ||M, v and
M′ + ||−→χ ||M′ , v′ are bisimilar and w′O|M′|(||−→χ ||M′)v′.

15Let−→χ be a sequence of programs and formulas andQ a bisimulation invariant class of structures
of the formM+ ||−→χ ||M, w. We want the interpretation of 〈O−→χ 〉 to be bisimulation invariant. This
is exactly requiring bisimulation invariance for the class of structuresM + ||−→χ ||M, v having a w
with vO|M|(||−→χ ||M)w andM+ ||−→χ ||M, w ∈ Q.

16See the ’Safety Theorem’ of [8] characterizing the first-order safe operations as those operations
which are definable in PDL without Kleene star.

17There are two differences in the discussion to follow. Commutation is not only about bisimi-
larity between the arguments for O (the

−→
K in the preceding footnote), but also about bisimilarity

between arguments for O plus arbitrary extra-structure (M +
−→
K ). On the other hand, safety is not

only about mere bisimilarity but about particular bisimulations Z. Our results show that these two
‘strengthenings’ are in fact equivalent. See [7] for more on the model-theoretic relationships between
safety and invariance.
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two sets and Z a relation on W ×W ′. We say that v ∈ W and v′ ∈ W ′

are Z-connected if there is a sequence of objects v0, ..., vn with v0 = v,
vn = v′ such that for each i < n, viZvi+1 or vi+1Zvi. As a special case,
every object is Z-connected to itself. A bisimulation Z between two Kripke
structuresM, w andM′, w is quasi-transitive iff, if v ∈ |M| and v′ ∈ |M′|
are Z-connected, then vZv′. The following lemma shows that there is no
loss of generality as far as safety is concerned:

Lemma 21. An operation O is safe for arbitrary bisimulations iff it is safe
for quasi-transitive bisimulations.

Proof. The direction from left to right is trivial, so we take on the converse.
First, note that if Z is a bisimulation, then there is a smallest quasi-

transitive relation ZCl extending Z (here two worlds, one in each model,
are called ZCl-related iff they are Z-connected).

Let O be a dynamic operation which is safe for quasi-transitive bisim-
ulation, M and M′ two models, Z a bisimulation between them; with
w, v ∈ |M| and w′ ∈ |M′| three worlds such that wZw′ and wO(M)v. We
need to find a v′ ∈ |M′| such that vZv′ and w′O(M′)v′. Note that working
directly with ZCl would not do. By safety for quasi-transitive bisimulation,
there is a v′ ∈ |M′| such that v′ is Z-connected to v and w′O(M′)v′. But
this v′ is not necesarily Z-related to v, if Z is not quasi-transitive. To cir-
cumvent this difficulty, we shall define some model expansions in order to
go ‘step by step’ from v ∈ |M| to a v′ ∈ |M′| with vZv′ while preserving
the property of being O-related to the root. We cannot but take a roundabout
way here: there are pairs of models and relations over them which are safe
for quasi-transitive bisimulations, but not for arbitrary bisimulations between
these models.

First, we defineM + v∗ asM extended by a world v∗ which is a copy
of v: for all predicates P , v∗ ∈ PM+v∗ iff v ∈ PM, for all relations R,
wRM+v∗v

∗ iff wRMv, for all relations R and for all worlds u ∈ |M|,
v∗RM+v∗u iff vRMu. We can assume that it is the case thatwO(M+v∗)v∗.
To see this, consider the identity onM extended by 〈v, v∗〉. This is a quasi-
transitive bisimulation between M and M + v∗. We know that wO(M)v
and our bisimulation relates v inM to only two worlds inM + v∗, namely
v itself and v∗. So by safety of O for quasi-transitive bisimulation, w has
to be related by O(M + v∗) to at least one of these two worlds. But if
w was related by O(M + v∗) to only one of v and v∗, we would get a
counter-example to safety of O for quasi-transitive bisimulation by consider-
ing the identity bisimulation betweenM+v∗ and itself, with v and v∗ being
swapped. Therefore, w is related by O(M+ v∗) to both v and v∗.

Then we build a model M′ + v∗ by adding a copy of v to the second
model as well. To define this, we use the bisimulation Z we have: the copy
is a world like the worlds to which v is Z-similar. Thus, let Z(v) be the set
of worlds inM′ to which v is Z-related. We start fromM′ and add a world
v∗ such that for all predicates P , v∗ ∈ PM′+v∗ iff v ∈ PM, for all relations
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R, w′RM′+v∗v∗ iff wRMv (where w′ is the world bisimilar to w we intro-
duced at the beginning), and for all relations R, for all worlds u′ ∈ |M′|,
v∗RM′+v∗u

′ iff there is a t′ ∈ Z(v) with t′RM′u′. We can use Z to build
a quasi-transitive bisimulation Z∗ betweenM+ v∗ andM′ + v∗. Consider
first Z

⋃
{〈v∗, v∗〉}. Because Z was a bisimulation and by the definition of

our expansions, it is a bisimulation again. Now (Z
⋃
{〈v∗, v∗〉})Cl is again a

bisimulation and it is quasi-transitive. Moreover, it is clear that v∗ inM+v∗

is related only to v∗ inM′+v∗, so by safety for quasi-transitive bisimulation,
w′O(M′ + v∗)v∗.

Finally, we compare M′ and M′ + v∗. Consider the identity on M′
extended by relating all worlds inZ(v) to all worlds inZ(v)

⋃
{v∗}. Because

of the properties we gave to v∗, this is a bisimulation betweenM′ andM′+
v∗. And it is quasi-transitive by definition. Therefore, by safety of O for
quasi-transitive bisimulation again, w′O(M′ + v∗)v∗ implies that there is
a u′ ∈ |M′| which is related by that bisimulation to v∗ and which is such
that w′O(M′)u′. Such a u′ is in Z(v). So we have a u′ with vZu′ and
w′O(M′)u′, as required.

We are now ready to prove that safety for bisimulation and commutation
coincide:

Theorem 22. BiS commutes with O iff O is safe for bisimulation.

Proof. From right to left. Consider any two bisimilar pointed structuresM+
−→
K,w and M′ +

−→
K ′, w′, where

−→
K and

−→
K are some sets and relations over

|M| and |M′| (respectively) which expand two given structuresM andM′.
Assume that (a) wO|M|(

−→
K)v for some v ∈ |M| . We need to find an object

v′ ∈ |M′| such that w′O|M′|(
−→
K ′)v′, with the structures M +

−→
K, v and

M′ +
−→
K ′, v′ still being bisimilar. Bisimilarity is preserved when some parts

of structures are left out, so there is a bisimulation Z between 〈|M|,
−→
K,w〉

and 〈|M′|,
−→
K ′, w′〉. By safety for bisimulation and (a), there is a v′ ∈ |M′|

such that w′O|M′|(
−→
K ′)v′ and vZv′. So Z itself is a bisimulation between

M+
−→
K, v andM′ +

−→
K ′, v′.

From left to right. Our difficulty here is that, if two structures have ‘some’
bisimulation, commutation with moves along O again gives us the existence
of some bisimulation. But safety wants the same one. Our solution is a trick:
we define a new predicate in terms of reachability using the given bisimu-
lation. Since that predicate will be preserved by the new bisimulation, the
‘commutation world’ given by the new bisimulation must be a commutation
world for the earlier one as well.

So let O be a dynamic operation commuting with BiS. Consider two
models M and M′ with Z a bisimulation between them, and three worlds
w, v ∈ |M| and w′ ∈ |M′| with wZw′ and wO(M)v. By Lemma 21,
we can take Z to be quasi-transitive. We need to find a v′ ∈ |M′| such
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that vZv′ and w′O(M′)v′. We define a predicate PM on M which holds
exactly at the points which are Z-connected to v. Similarly we define another
predicate PM′ onM′ by PM′ = {u′ ∈ |M′| / u′ is Z connected to v}. Z
is still a bisimulation betweenM + PM andM′ + PM′ . By commutation
with O, there is a v′ ∈ |M′| and a bisimulation Z+ betweenM + PM and
M′ + PM′ such that w′O(M′)v′ and vZ+v′. Since Z+ is a bisimulation, it
respects atomic predicates. Hence v ∈ PM implies v′ ∈ PM′ : that is, v′ is
Z-connected to v. But Z is quasi-transitive. So vZv′, as required.

Putting Theorems 19 and 22 together, we get that a abstract dynamic oper-
ation preserves bisimulation invariance iff it is safe for bisimulation. This
shows that safety, too, is a correct match for bisimulation invariance. Van
Benthem 1996 only showed its sufficiency, our new results also showthe ne-
cessity of this condition. 18

4.3 Beyond safety: definability theorems
Safety essentially says that the values of dynamic operations get ’a free ride’

on bisimulations: ifM
Z

-M′, thenM+O(M)
Z

-M′+O(M′). This idea
makes sense in other settings too. In the case of first-order logic, let T be a
first-order theory in a language L+P . We say that P is free for isomorphism
under T iff, for all modelsM,M′ of T , an L-isomorphism fromM− P to
M′ − P is also an L + P -isomorphism fromM toM′ (whereM− P is
just the reduct ofM to L). Beth’s well-known Definability Theorem can be
viewed as a result about such ‘free’ predicates:19

Theorem 23. In first-order logic, P is free for isomorphisms under T iff T
explicitly defines P .

Proof. The right to left direction is immediate: expansion with definable
predicates does not break an isomorphism. From left to right, consider the
special case of two models of T ,M andM′, such thatM− P =M′ − P .
The identity is an L-isomorphism between them. Therefore, since P is free,
the identity is an L + P -isomorphism between M and M′, hence PM =
PM′ . That is to say, T implicitly defines P , and therefore, by Beth theorem,
it explicitly defines P as well.

This raises many further questions. Can we connect modal safety and
explicit first-order definability via Beth’s Theorem? What connections exist
between being free for some notion of similarity and being definable from its
invariants?

18It may be of interest to compare our proof with that for the Safety Theorem in detail.
19For a standard statement and proof of Beth Theorem, including fully explicit definitions for

‘implicit definability’ and ‘explicit definability’, see e.g. [4] p. 265sqq.
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5 Further prospects
This paper proposes pursuing a sort of ‘reverse’ meta-logic. Instead of char-
acterizing a logical language in terms of general semantic properties, includ-
ing invariance, we start with basic logical operations (first-order quantifica-
tion, modal or dynamic operators) and identify semantic properties of invari-
ance which match these operations best. Our main tool in doing so is the
general equivalence between commutation and invariance in Theorem 12.
This suggests a line of research into the duality between the ‘semantic’ level
of structures and notions of similarity, and the ‘syntactic’ level of operations
and notions of invariance for those operations. In particular, in future work,
we intend to look at fixed-point logics extending ML or FOL to get a closer
correspondence between definable operations and invariant ones.

In the same spirit, we think it worth investigating generalized Lindström
theorems where the structural invariance relation is no longer given before-
hand as is usually done, but considered as a parameter to be freely chosen,
just as the set of sentences and the truth relation of the abstract logic.

As for first-order logic versus modal logic, our results in Sections 1 and
2 highlight some new parallels beyond the many that are already known.
Even so, one would like to see a still more general ’transfer theory’ between
first-order languages with potential isomorphisms and modal languages with
bisimulations, probably based on generalized assignment models. Are there
still more general uniform translations between the two realms which have
eluded us so far?

Finally, we see the great generality of our approach as a benefit also when
it comes to more concrete systems beyond modal and first-order logic. One
follow-up project, continuing the interest in dynamic logic in this paper, will
be the study of the space of natural logical operations on games, both se-
quential and parallel, and the structural similarity relations appropriate to
that much broader area.
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