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Information Transfer across Chu Spaces

Chu spaces are a new model for information structure (cf. J. Barwise & J. Seligman,

"Information Flow", Cambridge UP, 1997) and for mathematical structure in general

(cf. Vaughan Pratt's ongoing work at the homepage http://boole.stanford.edu/live).

Their properties are usually developed as a form of category theory. In this note, we

show how they may also be viewed as models for a two-sorted first-order language,

and we determine the exact flow of information across the natural Chu transforms.

Our analysis is akin to that of process graphs via bisimulation and modal formulas.

1   Chu Spaces

A two-valued Chu Space is any structure (A, X, R) with two domains A, X and a binary
relation R inside AxX. Examples: A = objects, X = sets, R = Î, or A = models, X =

formulas, R = |= , or A = 'tokens', X = 'types', R = 'classification by'. Such spaces are

naturally viewed as models for a two-sorted first-order language with variables  a  over (as

we shall say) 'objects' and variables  x  over 'types'. Of course, one can also use other

languages extending first-order logic here, such as infinitary or second-order ones.

General Chu Spaces have a k-valued relation R (which makes them 'fuzzy' rather than

crisp 2-valued classification structures), but in practice two-sorted examples predominate.

2   Chu Transforms
A Chu transform between two Chu spaces  M = (A, X, Î), N = (B, Y, Î)  (we shall use

the same notation 'Î' for convenience across Chu spaces) is a pair of functions  f: A®B,

g: Y®X  (note the inversion in direction!) satisfying the following condition:
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for all aÎA, yÎY:  f(a)Îy  Û  aÎg(y)
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There are motivations galore for this 'contravariant ' equivalence, for instance, in the

logical theory of relative interpretation (as emphasized by Barwise & Seligman).

3   Preservation and Flow Formulas

What information is preserved in switching between Chu spaces connected by such a

transform? We can view this as a standard question in model theory, asking for a

preservation theorem. The following syntactic notion is obvious from some reflection on

what we have, and do not have, in the above diagram:

a flow formula is any first-order formula produced
by the schema     aÎx | Â aÎx | & | Ú | $a | "x

Flow formulas f (a1, .., ak, x1, .., xm) can define many useful notions on Chu spaces:

in general, relations between  k  objects and m types. Here are some examples:

"x (Â a1Îx Ú a2Îx) £ 'object inclusion'

"x (Â a1Îx Ú Â a2Îx) Ð� 'object incompatibility'

$a ( aÎx1 & aÎx2 ) o 'type overlap'

Let us call a first-order formula  f  Chu-preserved if we have (with bold-face symbols

indicating 'fitting' finite tuples of objects and types):

M, a, g(y) |= f   only if  N, f(a), y |= f

whenever  (f, g)  is a Chu transform between M and N.

Of course, this notion also makes sense for non-first-order formulas  f.

Proposition All flow formulas are Chu preserved.

Proof This is a straightforward induction on the above definition, starting from the above
characteristic Chu equivalence  f(a)Îy  Û  aÎg(y)   for literals.                  ð

Application Chu transforms are monotone with respect to object inclusion, as the latter

relation was defined by a flow formula.

Comment We have described preservation in the 'f-direction' only. But in the

opposite 'g-direction', we have the following syntactic description of preserved formulas
(pushing negations inward for the equivalent implication "N |= Â f  Þ  M |= Â f"):
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aÎx | Â aÎx | & | Ú | "a | $x

This outcome is precisely what one would predict by the obvious duality of Chu Spaces,

where interchanging of the roles of  A  and  X  makes no difference.

4   Application: Rigid Chu Spaces

The  preceding analysis systematizes several separate observations about Chu transforms.

Take the following 'rigid Chu space' constructed by Pratt. Objects A = {1, 2, 3, 4}, types
X = {x, y, z, u}, classification  Î  as in the following diagram:

x: {1} y: {2}

z: {1, 3} u: {1, 2, 4}

Plotkin and Pratt have shown that the only Chu transform sending  (A, X, Î) to itself

must be the identity. We can explain this by observing that each object  aÎA is uniquely

definable by a flow formula, and therefore, it must 'land on itself' by our Proposition. Let
the relations  £, Ð�   be as in Section 3 above. Here are the definitions:

(a)  $a1a2 ( a1£1
�
 & a2£1

�
 & a1Ð� a2)   is unique for object  1

�

(b)  "x ( 1
�
Îx Ú 2

�
Îx)  is unique for object  2

�

(one uses the flow definition for object  1
�
 here:

$a ( DEF1� (a) & "x ( aÎx Ú 2
�

Îx)).)

(c) "x (( 1
�
Îx &  2

�
Îx) ® Â 3

�
Îx)   is unique for object  3

�

(d) 4
�

£1
�

 & 4
�

£1
�
  is unique for object  4

�

5   Flow Preservation Implies Chu Tranform on Finite Models

Now let us convert the result, showing that the above is 'best possible'. Up to logical

equivalence, only flow formulas are preserved under Chu transforms. We will formulate

this as a preservation theorem in Section 6. But before proving this, we give a warm-up

result inspired by an analogy with bisimulation and modal logic. (Some further aspects to

this modal analogy that can be usefully exploited have been pointed out by Martin Otto.)

The proof that follows here contains some key ideas for the later one.

Proposition For finite Chu spaces M, N, the following assertions are equivalent:

(i) there exists a Chu transform from M to N

(ii) every flow sentence true in M is also true in N
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Proof (i) Þ (ii) is a special case of our earlier Proposition. (ii) Þ (i) works as follows.

Enumerate A as {a1, ..., ak} and Y as {y1, ..., ym}. We do one case of a stepwise

construction for the desired function  f . (The remaining case, as well as the construction

of the contravariant companion function  g , are similar.) The idea is that, progressively,
f  should assign some object  f(a)ÎB  to  aÎA  which satisfies the same flow properties

(where the latter may involve parameters for objects which have already been matched).

Suppose that no bÎB satisfies all flow properties that hold for  a1 in M. That is, for some

flow formula  gb , we have that

M, a1 |= gb but not  N, b |= gb

Altogether,  M  then satisfies the flow formula (here we use $ | & Ð closure)

$a  & bÎB  gb

But by condition (ii), the latter formula should hold in  N. But, each bÎB is disqualified

as a witness for this, since it lacks 'its' conjunct  gb .Therefore, by reductio ad absurdum,

a 'good choice'  b1  must  exist after all, and we can set

f(a1) = b1

This argument can be repeated to produce the successive values for  f  on all of A.

Moreover, it can also be used in the opposite direction to find values for the function g,

again maintaining the 'invariant' that flow formulas be preserved going from M to N.

E.g., when searching for a matching type  x  for  y1, one assumes that each  xi  fails for
this purpose with a 'defect'  dy , and then uses a flow formula of the form

"x Ú yÎY  dy

(with a dual use of  " | Ú Ð closure) to obtain a contradiction, going from M to N.         ð

6   A First-Order Preservation Theorem

Instead of a standard preservation theorem, we formulate a slight strengthening in terms of

'generalized interpolation' (cf. Barwise & van Benthem 1998). Let us say that

f  implies  y  along Chu transforms  if always

M, a, g(y) |= f   only if     N, f(a), y |= y
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Then we have the following result:

Theorem      For all first-order formulas f,y, the following statements are equivalent:

(i) f  implies  y  along Chu transforms

(ii) there exists a flow formula  a  such that   f |= a |= y

Proof    (ii) Þ (i) is again essentially the earlier Proposition. As for (i) Þ (ii), assume that

f  implies  y  along Chu transforms. First, define

FF(f)  =def  { a  a flow formula |  f |= a }

It suffices to prove that

Claim      FF(f)  |= y

The required flow interpolant then exists by Compactness. So consider any countable
model  N  = (B, Y, Î)  for FF(f). (This case suffices by the L�wenheim-Skolem

theorem.) Let  Th Â FF (N)  be the set of all  N-true negations of flow sentences. By a

routine argument, using the closure of flow formulas under disjunctions, we have that

Th Â FF (N)  È {f} is finitely satisfiable

Therefore, there is a (countable) model  M = (A, X, Î)  for  Th Â FF (N)  È {f},  so that

the following implication holds for all flow formulas  g :

M |= g  Þ  N |= g

Without loss of generality, we can even assume that (M, N) is a recursively saturated

model pair with the same transfer property. But then we can mimick the earlier argument

for finite models, this time, using the recursive saturation. Enumerate A as {a1, a2, ...}

and Y as {y1, y2, ...}. In the general case, suppose that some finite part of the pair  (f, g)

has already been constructed. Moreover, assume that all flow formulas whose free

variables are set to objects  a  in the domain of  f  and types  g(y)  in the range of g in M,

and to the corresponding items  f(a), y  in N, satisfy the following implication:

M, a, g(y) |= g   only if     N, f(a), y |= g           #
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Then we can extend this situation both ways. Here is the case for objects in M (that for

types in N is similar). Let  a*  be the first object in A without an f-value. Consider the
recursive(!) set of all formulas of the following shape, where  g  runs over flow formulas

as in the preceding implication Ð except that there is one free object variable a on the right:

gM  (a, g(y), a*) ®   gN (f(a), y, a) 

This set is finitely satisfiable in the model pair (M, N), because for any finite number of
flow properties  gi  of  a*  in M, we can form the flow statement (by $ | & Ð closure)

$a  &i  gi (a, g(y), a)

which is also true in N (by the earlier transfer implication #). So, we can find a value for

a  in B  satisfying all these finitely many implications. But then, because of recursive

saturation (our set is recursive, with only finitely many parameters from the domain),
there is even some bÎB satisfying this whole set of flow implications simultaneously, and

we can choose this object to be the desired f-value for the object  a* . The argument in the
opposite direction, producing a suitable g-value in M for the first virgin type yÎY, is

analogous, but now using the  " | Ú  Ð closure of flow formulas.

Then, finally, we have  M |= f ,  N is a Chu transform of M, and so  M |= y  :          ð

Remark   Sol Feferman (Stanford Logic Seminar, June 1998) has given an alternative

proof for this preservation result using his interpolation theorem for many-sorted first-

order logic. At its present state, this argument only covers Chu transforms with injective

object maps. But it can presumably be modified to deal with the full case. Martin Otto has

subsequently generalized this analysis using a translation with subset-bounded quantifiers

("An Interpolation Theorem", department of computer science, RWTh. Aachen), to deal

with full Chu transfer, as well as other more refined aplications of interpolation.

7   Applications, Variations and Extensions

The preceding result tells us precisely how much (or perhaps, what little) information is

passed between Chu spaces that are related by their 'natural equivalence', at least for their

first-order language. Here are two standard mathematical examples of this transfer, using

flow syntax to analyse intuitive notions of topological or category-theoretic property.
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(1) Continuous maps between topological spaces. In this case, structures  (A, X)  consist

of the points  A  of the space, plus the open sets  X , and their relation is membership.

Any continuous point-map  f  from a space  (A, X)  to  (B, Y)  induces a Chu transform,

as its inverse is a map from  Y  to  X  (inverse images of open sets are open) standing in
the right relationship:  f(a) Îy  iff  a Îf-1(y) . It is often said that 'continuous maps

preserve important topological structure'. Our analysis gives this a syntactic sense. E.g.,

continuous maps preserve boundary points, and this may be seen by the flow formula

 "y (aÎy  ® $b(bÎy & bÎx)) (" a  is a boundary point of  x ")

By contrast, the topological property of being T2 is not flow-definable, and indeed not

preserved under continuous maps. Other properties require flow syntax with infinitary

conjunctions or disjunctions, discussed later. E.g., surjective continuous maps preserve

compactness of topological spaces, which can be formulated in infinitary flow form.

(2) Adjunctions in category theory. Again, these are connections between categories, that

are said to transfer 'natural categorial properties'. Consider the special case of pre-orders

M, N  with a left-adjoint functor pair between them:  Fa£b  iff  a£Gb . The relevant Chu

spaces have just one set, doubling for A  and  X Ð while the relation is the pre-order  £ .

We will analyze the syntax of this in Section 12 below, but note for now that the typical

examples of category-theoretic transfer in this setting are finite (co-)limit constructions.

And indeed, a basic construction like  " a  is the supremum of  b, c ", which is typically

preserved under left-adjunctions, has the following flow definition:

b£a  &  c£a & "x ((b£x & c£x) ® a£x)

Next, we consider some variations and extensions.

(3) The result goes through for special classes of Chu spaces, provided that these have

first-order definitions. This holds in particular for bi-extensional Chu spaces, satisfying

"a"b (a=b « "x(aÎx « bÎx))

"x"y (x=y « "a(aÎx « aÎy))

In practice, this means that for bi-extensional Chu spaces, one can use two further atoms

in flow formulas, without affecting preservation:

Â x=y, a=b
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(2) But also, the above proof itself can easily be modified to yield further preservations.

For instance, if we know that the  f-map in a Chu transform is surjective, then we can add
universal object quantifiers  "a  in the construction of flow formulas, and likewise,

existential type quantifiers  $x  if  g  is surjective.

(3) Finally, a first-order perspective also suggests other equivalences for Chu spaces,

such as elementary equivalence, potential isomorphism, or pebble game variants thereof.

In particular, such notions need no longer be based on function pairs. Even Chu transfer

itself might be formulated using many-valued relations of some sort. For a concrete

illustration, consider again topology. Besides continuous maps, there are the stronger

homeomorphisms, preserving more structure. But there are also weaker relations of

topological bisimulation (M. Aiello & J. van Benthem, "Visual Structure as Modality",

ILLC, Amsterdam, 1999) that match points and sets in a much looser fashion, and yet

transfer significant statements. From the perspective of information flow, there is no need

for one unique model equivalence: the more structure preservation one can get, the better!

8   Infinitary Versions: Information Sequents

The preservation proposition of Section 3 still holds for arbitrary infinitary conjunctions

and disjunctions in flow formulas. This explains the observations found in Barwise &

Seligman 1996 on transfer (and non-transfer) of 'local logics' along 'infomorphisms'.

In their terminology, let  U, V  be sets of types in M . We define true sequents:

U |-M V if "a: aÎ ÇU ®  aÎ ÈV

This infinitary  definition is not an flow formula (as their maps f need not be surjective,

universal object quantifiers are not allowed), and it is not preserved by Chu transforms.

The implication will only hold in N on the image of f, the so-called 'normal tokens' in N.

Thus, logically true sequents do not transfer in the  f-direction. But they do transfer in the
opposite g-direction, as the negation  $a: aÎ ÇU & Â aÎ ÈV  is equivalent to an

infinitary flow formula. (Barwise & Seligman do not consider further flow properties.)

This application increases the interest of an infinitary version of our preservation result.

We conjecture that this is the case. But so far, we have only checked that the techniques of

Barwise & van Benthem 1996 go through. These apply to model relations that can be cast

in the form of pebble games. Applied to Chu transforms, this means the following.

Instead of total maps, we now have a non-empty family of finite partial maps  (f, g)
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between M, N, which satisfy the basic Chu equivalence for atoms, such that two back-

and-forth properties hold, one extending each f-domain with an object from M, and one

extending each g-domain with a type from N. Let us call these potential Chu transforms.

Theorem     The above preservation theorem extends to formulas  f, y  in the infinitary 

language L¥w, when we require preservation along potential Chu transforms.

9   Richer Chu Spaces:  General Frames in Modal Logic
In modal logic, the natural Chu spaces are general frames  (W, P

�
, Î)  with  W a set of

worlds, P
�

 a family of sets of worlds (the 'admissible propositions') and Î membership.

Here the natural equivalence is as in the following 'contravariant' picture (cf. Blackburn,
de Rijke & Venema 1998, van Benthem 1985), where  f(w) Î) q  iff  w Î g(q) :

P
�

W

M
Q

�

V

N

f

g

But here there is an additional requirement:  f  must be a  p-morphism from M to N. I.e.,

it is a homomorphism for the accessibility relation RM , and it satisfies the zigzag clause

if  f(w) RN v, then there exists some  uÎW  such that  w RM u & f(u) =v

Moreover, the map  g  is just the set-theoretic inverse  f-1  on Q
�

 (landing inside P
�

!), which

is a homomorphism with respect to the natural 'modal algebra' structure on  Q
�

, P
�

. (This

'parasitic' nature of g is also known from Chu spaces in general.) Modal logicians have

proved preservation theorems in this setting. But of course, more is preserved now, as the

'quality' of  f, g is higher than in the above. In particular, flow formulas will now also

allow the usual modal constructions, or more precisely:

atoms Rab | bounded universal object quantifiers  "b (Rab ®

Combining this with the earlier syntax of flow formulas, we see that we get propositional

literals p, Âp, conjunction, disjunction, existential and universal modalities, plus arbitrary

existential object quantifiers and universal propositional quantifiers. This includes all

standard modal formulas, with a slight first-order and 'second-order' extra. This is surely
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an instance of a more general result, telling us how to 'load' our general Chu preservation

with extra information from maps  f, g that preserve special structure.

10   Constructions on Chu Spaces

The theory of Chu spaces gives a prominent place to (categorial) model constructions. One
example is the dual  operation taking  (A, X, Î) to  (X, A, '). Another is the product

MxN used extensively in Barwise & Seligman 1996:

new object AxB  (Cartesian product)

new types X + Y  (disjoint union)
new epsilon (a, b) Î X1  iff  aÎX,  (a, b) Î Y2  iff  bÎY

Here the picture of natural connections is as follows:

�
�� �

� �

�����
�
	��

��	�


���
� � ���

� �

Here, preservation results might characterize formulas  f  such that, if both  M |= f and N

|= f, then  MxN |= f. (In particular, this holds for first-order Horn sentences.) But one

does not want 'preservation' here so much as combination of information, or viewed in

the other direction, decomposition. If we have a tight constructive definition of some

operation on Chu spaces, then we can use it to reduce first-order evaluation.

Example 'Every Type is Inhabited'

Here is a simple semantic calculation from the given definitions:

MxN |=  "x $a aÎx iff

"xÎX $aÎA $bÎB : (a, b)Îx  & "yÎY $aÎA $bÎB : (a, b)Îy iff

"xÎX $aÎA aÎx  & "yÎY $bÎB : bÎy  iff

M |= "x $a aÎx  &  N |= "x $a aÎx
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So in this particular (Horn-definable!) case, the property does reduce to its presence in the

components. In general, however, we don't expect this. Nevertheless, the example
suggests an effective component reduction for arbitrary first-order statements  fMxN :

(a) introduce a supply of marked variables with superscripts for A, B, X, Y
(b) replace object quantifiers  $a  by  $aA$bB , and replace corresponding 

atoms  aÎx in the formula by disjunctions    aAÎx Ú bBÎx

(c) replace type quantifiers  $x  by disjunctions  $xX...  Ú  $xY...

(d) replace (using the added markings) all 'heterogeneous' atoms
aAÎxY  or  bBÎxX  by false

The result is a first-order formula which may be separated into an equivalent Boolean

compound of separate fist-order assertions about M and N.

Sol Feferman has pointed out a more general background here. Chu dual and product
satisfies the following preservation property (with 'º' for elementary equivalence):

if  M º M' and N º N', then  MxN º M'xN'

Most operations in abstract process algebra have this feature (Hollenberg 1998). On the

other hand, product spaces in the usual mathematical sense, whose objects are functions,

do not (cf. the references given in Section 4). One obvious conjecture is that Chu tensor

product as defined by Pratt in his model for linear logic, lacks this preservation property.

Preservation of elementary equivalence is a consequence of the above effective reduction.

But having an effective decomposition seems stronger. So we want to know about both.

11   Co-limits and Generalized Evaluation

Dual and product were just two examples. The natural general construction is an inverse

limit of families of Chu spaces which may have Chu transfoms running between them:

M-i

f

M-j

M-k
g

k
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'Objects' in the inverse limit  M
�

  are tuples  a  having the right 'coherence': e.g.,

f ((a)i) = (a)j, etcetera.

This setting makes it much harder to do a 'logical decomposition' as above. It rather

suggests that we generalize our perspective once more. One could think of evaluation of
formulas in  M

�
  as a generalized semantics, where we have a family of models available

instead of just one. We then sometimes shift (a bit like in some recent semantics for modal

predicate logic) from looking for an object in one model to some image in another. This

theme of 'long-distance evaluation' is elaborated in Section 8 of J. van Benthem,

"Dynamic Odds and Ends", ILLC, Amsterdam, in the study of 'information links', and

also, as a strategy for 'decomplexifying' higher-order logic, in Section 10.3.

12   Appendix: Categorial Excursion

The Chu analysis of this paper may be viewed as a standard model-theoretic account of

one form of category-theoretic adjunction. Can we carry this style of thinking further?

First, we need to see a category as a logical model. Disregarding the issue of sets versus

classes, we have again two-sorted models, with objects and morphisms (or 'arrows').

Here is one useful relational similarity type, suppressing Ð as a first stab Ð the usual

uniqueness conditions of standard category theory (this is more like 'Arrow Logic'):

D ax object  x  is the source of arrow  a

R ax object  x  is the target of arrow  a

I a a  is an identity arrow

C a, bc arrow  a  is a composition of  b, c  (in that order)

Categories impose first-order conditions definable in this language, such as associativity.

And e.g., commutativity of a diagram with arrows  a, b, c, d  would be expressed by
stating that some suitable arrow runs through the middle:  $e: C e, ab & C e, cd:

o

o o

o

ca

b d

e
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Now, category theory has many notions of structure-preserving transformation: plain,

faithful or full functors, functor pairs that form an isomorphism, adjunctions. These will

in general preserve different categorial properties expressed in our language. Consider left

or right adjoint functor pairs. The simple case of pre-orders is pictured as follows:

Gy

x

M

y

Fx

N

F

G

where  Fx£y  iff  x£Gy. As was pointed out in Section 7, there is a complete syntactic

description of the first-order formulas that are preserved according to the schema:

M, x, G(y) |= f   only if  N , F(x), y |= f

We must make a distinction between two kinds of variables: a, ..., y, ... as noted before,

even though they are running over the same domain. Then we may allow all forms

(Â)a£y  |  &  |  Ú  |  $a  |  "y

Moreover, we may freely use atoms  a£b  as well, since these are definable in pre-orders
via the flow formula  "y (b£y ® a£y), and the same applies to literals  Ây£z , since these

are definable by the flow formula  $a (a£y & Âa£z) . As is easily shown, the relation

"supremum" is definable in this form, and so are all finite co-limit constructions.

But what about arbitrary adjunctions? Here one requires that the adjoint functors should

also provide natural bijections between the arrow sets from  x to Gy and from  Fx to y.

One can get a glimpse by analyzing specific preservation arguments in this setting, e.g. for

co-limits. I do not know yet what to do in general, but here are some observations.

Assume that  F, G  are also maps on arrows, not just on objects. Moreover, assume that

the arrow isomorphism validates the following strong homomorphism properties:

(a) if  a: x ® y ,  then  Fa: Fx ® Fy ,

if  b: Fx ® y , then  Gb: x ® Gy

plus all similar morphism/object fit principles

(b) if  C Gd, ab ,   then  C d, Fa Fb
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These properties help us preserve all formulas constructed as follows. (Again a split in the

variables is needed, now for both objects:  x versus y , and morphisms:  a versus b .)

atoms  Dax,   Rax,   Ray,   Ca, a1a2,   C b, a1a2

literals ÂDbx,   ÂRby
operations &  |  Ú  |  $x  |  $a  |  "y  |  "b

where safe transitions now have the form

M , a, x, G(b), G(y) |= f   only if  N , F(a), F(x), b, y |= f

The best way of understanding how this preservation works is by drawing a picture for

the case of categorial sums, which generalizes the earlier example of the supremum.


