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Abstract

In this paper we study the structure of the set SAT of
all satisfiable propositional logical formulas. In par-
ticular we raise the question whether the distribution
of SAT within the set A of all propositional formulas
exhibits fractal behavior. This answer is of course
relative to a metric on A. We show that for one such
metric there is strong evidence that the distribution
does indeed behave wildly. Next we look at an alter-
native metric.
Keywords: theory of computation, boolean satisfiability

1 Introduction

Physics is full of (differential) equations whose so-
lutions are either not expressible in terms of known
analytical functions or give directly rise to uncon-
trollable dynamical behavior. Poincaré took an in-
teresting turn at tackling these problems. Rather
than being interested in the full solution or trajectory
of such impenetrable dynamical systems, he consid-
ered qualitative and topological properties of them
instead (e.g. those properties that do not change un-
der smooth changes of coordinates).

We would like to make an analogy to computabil-
ity. The set SAT of all satisfiable sets of clauses in
propositional logic is well defined and actually ele-
mentary decidable. However, we know that it is likely
– depending on if P = NP – to be very hard to decide
whether or not some set of clauses S belongs to SAT.
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Maybe, in analogy with Poincaré’s aforementioned
approach to physics, we can single out some qualita-
tive properties of SAT and UNSAT. If we can isolate
topologically well-behaved fragments of the set of all
sets of clauses, this might, for instance, give rise to a
probabilistic approach to deal with SAT membership.

2 Structuring the set of sets of
clauses

Let A denote the set of all sets of clauses. At times
when no confusion can arise, we shall call a set of
clauses also a formula. We shall define a notion of
distance on A. To this end, let us introduce a relation
One(ϕ,ψ) that defines when two formulas ϕ and ψ
have distance 1 from each other. We define One(ϕ,ψ)
in two steps: first by defining a relation One∗(ϕ,ψ),
and then deriving One(ϕ,ψ) as its symmetric closure.

Definition 2.1. Let ϕ = {S1, . . . Sn} (n ≥ 0) and
ψ = {S′1, . . . S′m} (m ≥ 0) be some given formulas in
A. We define the relation One∗(ϕ,ψ) to hold if one
of the following applies.

1. If m = n and Si = S′i for all but one fixed j such
that (Sj \{l})∪{¬l} = S′j for some literal l ∈ Sj.

2. If m = n and Si = S′i for all but one fixed j such
that Sj = S′j ∪ {l} for some literal l ∈ Sj.

3. If ϕ = ψ ∪ {{l}} for some unit clause {l} ∈ ϕ.

Definition 2.2. We define the relation One(ϕ,ψ) to
be the symmetric closure of One∗(ϕ,ψ).

Once we have defined the one-step distance, we can
extend this to all sets of clauses in the following way.
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Definition 2.3. For given formulas ϕ and ψ, we de-
fine the distance between them d(ϕ,ψ) to be the length
minus one of the shortest sequence

〈ϕ = χ0, χ1, . . . , χm−1 = ψ〉

such that for each consecutive χi, χi+1, we have
One(χi, χi+1). We refer to consecutive members of
a sequence with this property as being “single steps.”

It is important to observe that d is indeed a total
function on A×A.

Lemma 2.4. d : A×A → N is a total function.

Proof. Given any fixed ϕ,ψ ∈ A it suffices to show
that at least one path of single steps exists between
ϕ = {S1, . . . , Sn} and ψ = {S′1, . . . , Sm}. Consider
the sequence that is built by removing each literal
appearing in an Si in ϕ one by one until ϕ has been
transformed into the set containing only the empty
clause. Then build up each S′j in ψ step by step in
the analogous manner.

Lemma 2.5. d : A×A → N is a metric function.

Proof. It is clear that (i) d(ϕ,ψ) ≥ 0, (ii) d(ϕ,ψ) = 0
iff ϕ = ψ, and (iii) d(ϕ,ψ) = d(ψ,ϕ). The triangle
inequality, d(ϕ, λ) ≤ d(ϕ,ψ) + d(ψ, λ) also holds for
all ϕ,ψ, λ ∈ A as a path from ϕ to ψ and a path from
ψ to λ can be composed to obtain a path from ϕ to
λ.

Thus, we obtain a topology on A, 〈A,O〉, gener-
ated by the collection of open n-balls O∗ defined as
follows:

O∗ =
⋃

ϕ∈A
{

⋃
n∈N

{{ψ ∈ A | d(ϕ,ψ) < n}}}.

Definition 2.6. We call a Cauchy sequence c =
〈ϕ0, ϕ1, . . .〉 trivial iff

∃n ∈ N ∀m ∈ N (m ≥ n⇒ ϕm = ϕm+1).

Lemma 2.7. The only Cauchy sequences over 〈A,O〉
are trivial.

We immediately obtain the following corollary.

Corollary 2.8. 〈A,O〉 is a complete and separable
metric space. Equivalently, 〈A,O〉 is a Polish space.

Proof. Completeness follows from the fact that the
triviality of a Cauchy sequence implies its limit is
contained in the space. Separability follows simply
by the fact that A is countable.

Though Corollary 2.8 seems to imply that our
space is quite nice topologically, it is rather not. In
particular, we now observe that the topology gener-
ated by d is in fact discrete.

Theorem 2.9. 〈A,O〉 is equivalent to the discrete
topology on A. That is, O = 2A.

Proof. The proof is easy, by showing that every sin-
gleton pointset is open.

Nevertheless, d still endows A with some rather
interesting and seemingly chaotic structure. We now
turn to analysing the qualitative interaction between
UNSAT and SAT under 〈A,O〉.

2.1 Unsatisfiable formulas

The simplest unsatisfiable formula is ⊥, the set con-
taining only the empty clause. It is easy to observe
that all formulas distance one from ⊥ are satisfi-
able. In this sense, we can see ⊥ as a little island
within a surrounding sea of satisfiable formulas. Let
us make this intuitive notion precise and then address
the question as to whether or not more islands exist.

Definition 2.10. Let P be a property on A and let
x ∈ A with P (x). With ~xP we denote the set of all
points that can be reached from x using only distance
one steps to other points with property P . This set is
inductively defined as follows:

1. P (x) ⇒ x ∈ ~xP ,

2. y ∈ ~xP ∧ One(y, z) ∧ P (z) ⇒ z ∈ ~xP .

We say that x and y are connected if y ∈ ~xP . A
set B is called connected whenever all of its points
are.
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Definition 2.11. Let P be a property on A. We say
that P contains an island if there is some x and y
with P (x), P (y), such that x /∈ ~yP .

Lemma 2.12. UNSATcontains an island.

Proof. Consider ⊥, the set with just the empty
clause.

Lemma 2.13. For any two x, y ∈ UNSAT \ ⊥ we
have x ∈ ~yP .

Proof. We can define a sequence of unsatisfiable for-
mulas that bring us from x to y by taking only single
steps as follows. Start with x, first add {p} to x,
where {p} is some unit clause appearing in neither
x nor y. Next, add {¬p} to x. Finally remove one
by one the rest of x until {p} and {¬p} are all that
remain. As at all times, both {p} and {¬p} are con-
tained in the set of clauses, each intermediate formula
in the sequence is unsatisfiable. Finally, build up y
step by step. The last two steps will be to throw away
the spurious {¬p} and {p} to end with y.

Corollary 2.14. UNSAT consists of two islands.

Theorem 2.15. SAT is connected.

Proof. Consider x, y ∈ SAT. We shall define again
a path in SAT from x to y consisting of only single
steps. As x is satisfiable, we can find a satisfying
assignment α. So, for each clause, there is at least one
literal satisfied by α. In each clause in x, select one
such satisfied literal. Now, from each clause throw
away all non-selected literals by taking only single
steps. At this stage, we have a set of unit clauses.
Now, select one such unit clause, {p}, and reduce
the remaining formula to contain only {p} by taking
single steps.

As y is also satisfiable, there is some assignment β
satisfying it. It is clear that we can build up y from
the single unit clause {p} in a way similar to (but
reverse of) the manner in which we came from x to
{p}. If β |= ¬p we might first need to flip the polarity
in our unit clause {p} if p occurs at all in some clause
in y. This is admissible as flipping the polarity of
a literal is indeed a single step (see case (1) of the
definition of One∗).

Note that the formula >, that is the empty set, is
also connected to any other satisfiable formula.

Note that the distances between x and y using
paths within SAT or UNSAT are linear in the sum
of the number of literals appearing in x and y.

2.2 Metric relations between SAT and
UNSAT

In the previous subsection we focused solely upon the
topological structure of SAT and UNSAT. Let us now
make some quantitative observations.

Lemma 2.16. ∀x∈SAT∃ y∈UNSAT d(x, y) ≤ 2.

Proof. In two steps we adjoin two new unit clauses
with complementary literals.

So, in this sense the satisfiable formulas are thin
within the unsatisfiable ones. The next lemma says
that, in a certain sense, the set UNSAT is not thin in
SAT.

Lemma 2.17. ∀n∈N ∃x∈UNSAT∀ y∈SAT d(x, y) ≥
2n.

Proof. Consider the set consisting of n distinct pairs
of complementary unit clauses.

The combination of 2.16 and 2.17 suggests some
wild topological structure on SAT, especially around
the area where there are about as many satisfiable as
non-satisfiable formulas, see [2] [1].

Question 2.18. Is there a way to capture this wild
structure?

3 Towards a more general
space of propositions

3.1 Probabilistic propositions

As we wish to employ analytical techniques to inves-
tigate SAT, we seek an isometric embedding of A into
a continuous Polish space. We first define P.
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Definition 3.1. Let L be the set of propositional lit-
erals. Let P∗ = L × [0, 1]. If x = 〈l, r〉 ∈ P∗ we call
x a “probabilistic literal.” We define P to be the set
of all sets of clauses ϕ built from probabilistic literals
with the property that for all l ∈ L,

{r | ∃Si ∈ ϕ (〈l, r〉 ∈ Si)}

is a singleton.

We call members of P “probabilistic propositions.”
Thus, each l ∈ L exists in P∗ continuum many times,
once for each r ∈ [0, 1], and P is the set of all sets of
clauses built from literals in P∗ with the restriction
that no classical propositional literal appears in the
same probabilistic proposition with more than one
real valuation attached to it. If x = 〈l, r〉 ∈ P∗, we
let π0(x) = l and π1(x) = r.

On the way to defining our metric ∂ : P ×P → R,
we fix a bijection from between L and N.

Definition 3.2. Let γ : L → N be some bijection.

We now recall a space familiar to functional ana-
lysts, the countable direct sum of Euclidean space.

Definition 3.3. We first define its domain E∞ and
then derive its topology from the standard metric.

E∞ = ⊕n∈N R.

Now, members of E∞ are simply infinite dimensional
vectors with only finitely many nonzero real compo-
nents. The standard metric d∞ : E∞ × E∞ → R is
the straight-forward generalization of the Pythagorean
Theorem one would expect. That is, given x, y ∈ E∞

d∞(x, y) = 2

√∑
n∈N

(x[n]− y[n])2.

Observe that since any two x, y ∈ E∞ agree for all but
finitely many components, d∞(x, y) always converges.
It is readily observed to be a metric.

As the members of E∞ are simply infinite dimen-
sional vectors with only finitely many nonzero real
components, this space provides a wonderful frame-
work for embedding our probabilistic propositions.

This is because probabilistic propositions, while they
may be of any arbitrary finite size, are themselves
only each built from finitely many probabilistic liter-
als. The next step towards constructing our metric
will be to define the notion of a literal valuation vector
for each ϕ ∈ P.

Definition 3.4. Given ϕ ∈ P, we define the literal
valuation vector for ϕ to be the (countably) infinite
dimensional vector σ(ϕ) with the following property:

σ(ϕ)[n] = r if ∃Si ∈ ϕ s.t. ∃〈l, r〉 ∈ Si (γ(l) = n),

σ(ϕ)[n] = 0 otherwise.

This vector is well-defined, since by definition if a
probabilistic proposition ϕ ∈ P contains both 〈l, r〉
and 〈l, r′〉 in any of its clauses, then r = r′. It is
easy to construct two different probabilistic proposi-
tions that nevertheless yield the same literal valuation
vector. Our metric accommodates this fact by com-
bining geometric aspects of the literal valuation vector
together with topological aspects of the metric d.

We may now define our metric ∂ : P × P → R.

Definition 3.5. Let ϕ,ψ ∈ P. We define the ∂-
distance between ϕ and ψ, ∂(ϕ,ψ), as follows:

∂(ϕ,ψ) = d∞(σ(ϕ), σ(ψ)) + d(πA(ϕ), πA(ψ)).

where πA : P → A is the “forgetful projection map”
that takes a probabilistic proposition to its classical
counterpart (by ignoring the literal valuations).

Theorem 3.6. ∂ : P × P → R is a metric on P.

Proof. We verify each metric axiom in turn: (i)-(iii)
are immediate. (iv) Given ϕ,ψ, λ ∈ P, we have
∂(ϕ, λ) = d∞(σ(ϕ), σ(λ)) + d(πA(ϕ), πA(λ))

≤ (d∞(σ(ϕ), σ(ψ)) + d∞(σ(ψ), σ(λ)))
+ (d(πA(ϕ), πA(ψ)) + d(πA(ψ), πA(λ)))

≤ (d∞(σ(ϕ), σ(ψ)) + d(πA(ϕ), πA(ψ)))
+ (d∞(σ(ψ), σ(λ)) + d(πA(ψ), πA(λ)))

≤ ∂(ϕ,ψ) + ∂(ψ, λ).

Theorem 3.7. There is an isometry Π : A → P.

Proof. Let Π map each ϕ ∈ A to the equivalent for-
mula over P in which each literal occurring in ϕ is
assigned the valuation 0.
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Theorem 3.8. 〈P, ∂〉 is complete.

Proof. Consider any ∂ Cauchy sequence c =
〈x0, x1, . . .〉. If c is trivial, its limit must be
in P. Consider c nontrivial. As ∂(xi, xi+1) =
d∞(σ(xi), σ(xi+1)) + d(πA(xi), πA(xi+1)), it follows,
as d takes values only in N, that an index n ∈ N must
exist s.t. ∀m ∈ N (m ≥ n → πA(xm) = πA(xm+1)).
That is, the Cauchy sequence c′ = 〈xn, xn+1, . . .〉
must converge solely w.r.t. the metric d∞ upon the
corresponding literal valuation vectors in the space
E∞, and moreover we see that the underlying classi-
cal proposition (e.g. that given by πA(xi) for each
element of c′) must after index n remain constant. It
then follows that the number of nonzero entries in the
literal valuation vectors for each element of c′ must
remain constant, and thus the limit w.r.t. d∞ of the
sequence of literal valuation vectors lies in E∞. But
then since for all ~v ∈ E∞ there exists some ϕ ∈ P s.t.
σ(ϕ) = ~v, we have

lim c = lim c′ = lim 〈xn, xn+1, . . .〉 = ψ

s.t. ∀i ∈ N (πA(ψ) = πA(xi)) ∧ σ(ψ) = lim σ(xn).
But, such a ψ exists uniquely in P. Thus, every ∂
Cauchy sequence in P converges to a limit in P.

Theorem 3.9. 〈P, ∂〉 is separable.

Proof. Consider the space of forumlas generated by
the collection of probabilistic literals whose literal
valuation vectors contain only rational values.

Thus, our space 〈P, ∂〉 is an uncountable continu-
ous Polish space that admits an isometric embedding
of our natural discrete metric space. We present this
space as an avenue for future investigations.
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