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Abstract. We study the computational complexity of reciprocal sen-
tences with quanti�ed antecedents. We observe a computational di-
chotomy between di�erent interpretations of reciprocity, and shed some
light on the status of the so-called Strong Meaning Hypothesis.
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1 Introduction

The English reciprocal expressions each other and one another are common el-
ements of everyday English. Therefore, it is not surprising that they are exten-
sively studied in the formal semantics of natural language (see e.g. [1]). There are
two main approaches to reciprocals in the literature. The long trend of analyz-
ing reciprocals as anaphoric noun phrases with the addition of plural semantics
culminates in [2]. A di�erent trend � recently represented in [3] � is to analyze
reciprocals as polyadic quanti�ers.

In this paper we study the computational complexity of reciprocal sentences
with quanti�ed antecedents. We put ourselves in the second tradition and treat
reciprocal sentences as examples of a natural language semantic construction
that can be analyzed in terms of so-called polyadic lifts of simple generalized
quanti�ers. We propose new relevant lifts and focus on their computational
complexity. From this perspective we also investigate the cognitive status of
the so-called Strong Meaning Hypothesis proposed in [4].

1.1 Basic Examples

We start by recalling examples of reciprocal sentences, versions of which can be
found in English corpora (see [4]). Let us �rst consider the sentences (1)�(3).
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(1) At least 4 parliament members refer to each other indirectly.
(2) Most Boston pitchers sat alongside each other.
(3) Some Pirates were staring at each other in surprise.

The possible interpretations of reciprocity exhibit a wide range of variations. For
example, sentence (1) implies that there is a subset of parliament members of
cardinality at least 4 such that each parliament member in that subset refers to
some statement of each of the other parliament members in that subset. However,
the reciprocals in the sentences (2) and (3) have di�erent meanings. Sentence (2)
entails that each pitcher from the set containing most of the pitchers is directly
or indirectly in the relation of sitting alongside with each of the other pitchers
from that set. Sentence (3) says that there was a group of pirates such that every
pirate belonging to the group stared at some other pirate from the group. Typical
models satisfying (1)�(3) are illustrated at Figure 1. Following [4] we will call
the illustrated reciprocal meanings strong, intermediate, and weak, respectively.

Fig. 1. On the left, a model satisfying sentence (1). This is so-called strong reciprocity.
Each element is related to each of the other elements. In the middle, a model satisfying
sentence (2) in a context with at most 9 pitchers. This is intermediate reciprocity. Each
element in the witness set of the quanti�er Most is related to each other element in
that set by a chain of relations. On the right, a model satisfying sentence (3), so-called
weak reciprocity. For each element there exists a di�erent related element.

In general according to [4] there are 2 parameters characterizing variations
of reciprocity. The �rst one relates to how the scope relation R should cover
the domain A (in our case restricted by a quanti�er in antecedent). We have 3
possibilities:

FUL Each pair of elements from A participates in R directly.
LIN Each pair of elements from A participates in R directly or indirectly.
TOT Each element in A participates in the relation R with at least one other

element.

The second parameter determines whether the relation R between individuals in
A is the extension of the reciprocal's scope (R), or is obtained from the extension
by ignoring the direction in which the scope relation holds (R∨ = R ∪R−1).

By combining these 2 parameters we got 6 possible meanings for reciprocals.
We encountered already 3 of them: strong reciprocity (FUL(R)), intermediate
reciprocity (LIN(R)), and weak reciprocity (TOT(R)). There are 3 new logical
possibilities: strong alternative reciprocity (FUL(R∨)), intermediate alternative
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reciprocity (LIN(R∨)), and weak alternative reciprocity (TOT(R∨)). Among al-
ternative reciprocal interpretations two are linguistically attested: intermediate
alternative reciprocity exhibited by sentence (4) and weak alternative reciprocity
occurring in sentence (5)(See Figure 2).

(4) Most stones are arranged on top of each other.

(5) All planks were stacked atop of each other.

Fig. 2. On the left a model, satisfying sentence (4), so-called intermediate alternative

reciprocity. Ignoring the direction of arrows, every element in the witness set of the
quanti�er Most is connected directly or indirectly. On the right a model satisfying
sentence (5), so-called weak alternative reciprocity. Each element participates with some
other element in the relation as the �rst or as the second argument, but not necessarily
in both roles.

Noticed also that under certain properties of the relation some of the pos-
sible de�nitions become equivalent. For example, if the relation in question is
symmetric, then obviously alternative versions reduce to their �normal� counter-
parts.

1.2 Strong Meaning Hypothesis

In an attempt to explain variations in the literal meaning of the reciprocal ex-
pressions the so-called Strong Meaning Hypothesis (SMH) was proposed in [4].
According to this principle, the reading associated with the reciprocal in a given
sentence is the strongest available reading which is consistent with relevant in-
formation supplied by the context. In [3] a considerably simpler system in which
reciprocal meanings are derived directly from semantic restrictions using SMH
was suggested. Our results show that the various meanings assigned to recipro-
cals with quanti�ed antecedents di�er drastically in their computational com-
plexity. This fact can be treated as suggesting some improvements for the shifts
between possible meanings of reciprocal sentences which are predicted by SMH.
We elaborate on this possibility in the last section of the paper before we reach
the conclusions.
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2 Reciprocal Expressions as Quanti�ers

2.1 Generalized Quanti�ers

As this paper analyzes reciprocity in the framework of the theory of generalized
quanti�ers, we start by recalling the de�nition of a generalized quanti�er (see
[5], [6]).

A generalized quanti�er Q of type (n1, . . . , nk) is a class of structures of the
form M = (M,R1, . . . , Rk), where M is the universe and Ri is a subset of Mni .
Additionally, Q is closed under isomorphism. Syntactically a quanti�er Q of type
(n1, . . . , nk) binds m = n1 + . . . + nk �rst-order variables, and k formulae. If for
all i: ni ≤ 1, then we say that quanti�er is monadic, otherwise we call it polyadic.

In other words, Q is a functional relation associating with each model M
a relation between relations on M . Hence, if we �x a model M we have the
following equivalence:

(M,R1
M , . . . , Rk

M ) ∈ Q ⇐⇒ QM (R1, . . . , Rk),where Ri
M ⊆ Mni .

As an example consider the quanti�er Most of type (1, 1). It corresponds to
the following class of �nite models:

Most = {(M,AM , BM ) : card(AM ∩BM ) > card(AM −BM )}.

In a given model M the statement MostM (A,B) says that card(AM ∩ BM ) >
card(AM −BM ).

Generalized quanti�ers were succesfully introduced to linguistics in [7].

2.2 Reciprocals as Polyadic Quanti�ers

Monadic generalized quanti�ers provide the most straightforward way to de�ne
the semantics of noun phrases in natural language (see [8]). Sentences with re-
ciprocal expressions transform such monadic quanti�ers into polyadic ones. We
will analyze reciprocal expressions in that spirit by de�ning appropriate lifts on
monadic quanti�ers. These lifts are de�nable in existential second-order logic.
For the sake of simplicity we will restrict ourselves to reciprocal sentences with
right monotone increasing quanti�ers in antecedents. We say that a quanti�er
Q is monotone increasing in its right argument, if QM (A,B) and B ⊆ B′ ⊆ M ,
then QM (A,B′). Below de�ned lifts can be extended to cover also sentences with
decreasing and non-monotone quanti�ers, for example by following the strategy
of bounded composition in [4] or using determiner �tting operator proposed in
[9].

In order to de�ne the meaning of the strong reciprocity we make use of
the well-know operation on quanti�ers called Ramsey�cation. Let Q be a right
monotone increasing quanti�er of type (1, 1), we de�ne:

RamS(Q)(A,R) ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈ X(x 6= y ⇒ R(x, y))].
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The result of such a lift is called a Ramsey quanti�er. In the same way we can
also easily account for the alternative strong reciprocity:

RamS
∨(Q)(A,R) ⇐⇒ ∃X ⊆ A[Q(A,X)∧∀x, y ∈ X(x 6= y ⇒ (R(x, y)∨R(y, x)))].

RamS is de�ned analogously for unary quanti�ers as for type (1, 1), just
replace condition Q(A,X) by Q(X) in the de�nition.

In an analogous way we de�ne other lifts to express intermediate, and weak
reciprocity and their alternative versions. For intermediate reciprocity we have
the following:

RamI(Q)(A,R) ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈ X

(x 6= y ⇒ ∃ sequence z1, . . . , z` ∈ X such that

z1 = x ∧R(z1, z2) ∧ . . . ∧R(z`−1, z`) ∧ z` = y)].

The alternative version is de�ned naturally. In other words these conditions
guarantee that X is connected with respect to R or R∨. Anyway, graph connect-
edness is not elementary expressible, we need a universal monadic second-order
formula. Hence from the de�nability point of view RamI (RamI

∨) seems more
complicated than RamS (RamS

∨). However, as we will see in the next chapter of
this paper it is not always the case when a computational complexity perspective
is taken into account.

For weak reciprocity we take the following lifts and its alternative version:

RamW(Q)(A,R) ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x ∈ X∃y ∈ X(x 6= y ∧R(x, y))].

All these lifts produce polyadic quanti�ers of type (1, 2). We will call the val-
ues of these lifts (alternative) strong, (alternative) intermediate and (alternative)
weak reciprocity, respectively.

The linguistic application of these lifts is straightforward. For example, for-
mulae (6)�(10) give the readings to sentences (1)�(5).

(6) RamS(At least 4)(MP, Refer-indirectly).
(7) RamI(Most)(Pitcher, Sit-next-to).
(8) RamW(Some)(Pirate, Staring-at).
(9) RamI

∨(Most)(Stones, Arranged-on-top-of).
(10) RamW

∨(All)(Planks, Stack-atop-of).

2.3 The Computational Complexity of Quanti�ers

By the complexity of a quanti�er Q we mean the computational complexity
(see e.g. [10]) of the corresponding class of �nite models. For example, consider
a quanti�er Q of type (1, 2). In that case Q is a class of �nite models of the
following form M = (M,AM , RM ). We are now given a model M of that form
and a quanti�er Q. We can assume that the universe M consists of natural
numbers: M = {1, . . . ,m}, AM is a subset of M and RM is a binary relation
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over M . Our computational problem is to decide whether M ∈ Q. Equivalently,
does M |= Q(A,R)?

Generalized quanti�ers in �nite models � from the point of view of com-
putational complexity � were considered for the �rst time in [11], where the
following terminology was introduced. We say that a quanti�er Q is NP-hard if
the corresponding class of �nite models is NP-hard. Q is mighty (NP-complete)
if the corresponding class belongs to NP and is NP-hard.

It was observed in [12] that some natural language quanti�ers when assuming
their branching interpretation are mighty. More results of this type can be found
in [13]. Essentially all of the proofs of NP�completeness for branching quanti-
�ers are based on a kind of Ramsey property which is expressible by means of
branching. The main application of branching quanti�ers in linguistics is within
the study of sentences like:

(11) Some relative of each villager and some relative of each townsman hate each
other.

(12) Most villagers and most townsmen hate each other.

However, all these NP-complete natural language constructions are ambiguous.
Their reading varies between easy and di�cult interpretations. Moreover, such
sentences can hardly be found in natural language corpora (see [13]). One of the
goals of this paper is to present mighty natural language quanti�ers which not
only occur frequently in everyday English but are also one of the sources of its
complexity.

3 Complexity of the Ramsey�cation

We will restrict ourselves to �nite models. We identify models of the form M =
(M,AM , RM ), where AM ⊆ M and RM ⊆ M2, with colored graphs. Remember
that we are considering only monotone increasing quanti�ers. Hence, in graph-
theoretical terms we can say that M |= RamS(Q)(A,R) if and only if there is a
complete subgraph in AM with respect to RM of a size bounded below by the
quanti�er Q. RM is the extension of a reciprocal relation R. If R is symmetric
then we are obviously dealing with undirected graphs. In such cases RamS and
RamS

∨ are equivalent. Otherwise, if the reciprocal relation R is not symmetric,
our models become directed graphs. In the following two subsections we will
restrict ourselves to undirected graphs and prove that some strong reciprocal
quanti�ed sentences are then NP-complete. As undirected graphs are special case
of directed graphs then general problems for them also have to be NP-complete.

3.1 Simple Observations

Counting Quanti�ers To decide whether in some model M sentence
RamS(At least k)(A,R) is true we have to solve the CLIQUE problem for M
and k. A brute force algorithm to �nd a clique in a graph is to examine each
subgraph with at least k vertices and check if it forms a clique. This means that
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for every �xed k the computational complexity of RamS(At least k) is in PTIME.
For instance, RamS(At least 5) is computable in a polynomial time. Moreover,
notice that the strong reciprocal sentence RamS(∃≥k)(A,R) is equivalent to the
following �rst-order formula:

∃x1 . . .∃xk

[ ∧
1≤i<j≤k

xi 6= xj ∧
∧

1≤i≤k

A(xi) ∧
∧

1≤i≤k
1≤j≤k

R(xi, xj)
]
.

However, when we consider natural language semantics from a procedural
point of view it is natural to assume that people rather have one quanti�er
concept At least k, for every natural number k, than the in�nite set of concepts
At least 1, At least 2, . . . . It seems reasonable to suppose that we learn one mental
algorithm to understand each of the counting quanti�ers At least k, At most k,
and Exactly k, no matter which natural number k actually is. Mathematically
we can account for this idea by introducing counting quanti�ers. The counting
quanti�er C≥A says that the number of elements satisfying some property in a
model M is greater or equal to the cardinality of set A ⊆ M . In other words,
the idea here is that determiners like At least k express a relation between num-
ber of elements satisfying certain property and cardinality of some prototypical
set A. For instance, determiner At least k corresponds to the quanti�er C≥A

such that card(A) = k. Therefore, determiners At least 1, At least 2, At least 3,
. . . are interpreted by one counting quanti�er C≥A � just set A has to be chosen
di�erently in every case. 1

The quanti�er RamS(C≥A) expresses the general schema for reciprocal sen-
tences with counting quanti�ers in antecedents. Such general pattern de�nes
NP-complete problems

Proposition 1 The quanti�er RamS(C≥A) is mighty.

Proportional Quanti�ers We can give one more general example of strong
reciprocal sentences which are NP-complete. Let us consider the following sen-
tences:

(13) Most members of the parliament refer to each other indirectly.
(14) At least one third of the members of the parliament refer to each other

indirectly.
(15) At least q × 100% of the members of the parliament refer to each other

indirectly.

We will call these sentences the strong reciprocal sentences with proportional
quanti�ers. Their general form is given by the sentence schema (15), where q
can be interpreted as any rational number between 0 and 1. These sentences say

1 Alternatively we can introduce two-sorted variants of �nite structures, augmented
by a in�nite number sort. Then we can de�ne counting quanti�ers in a way that the
numeric constants in a quanti�er refer to the number domain (see e.g. [14], [15]).
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that there is a clique, Cl ⊆ A, where A is the set of all parliament members,
such that card(Cl) ≥ q × card(A).

For any rational number q between 0 and 1 we say that a set A ⊆ U is q-big

if and only if card(A)
card(U) ≥ q. In this sense q determines a proportional quanti�er Rq

of type (1, 1) such that M |= Rq(A,B) i� card(AM )
card(BM )

≥ q. The strong reciprocal

lift of this quanti�er, RamS(Rq), is of type (1, 2) and might be used to express
meanings of sentences like (13)�(15). We will call the quanti�ers of the form
RamS(Rq) proportional Ramsey quanti�ers. In [16] the following was observed:

Proposition 2 If q is a rational number between 0 and 1, then the quanti�ers
RamS(Rq) is mighty.

3.2 General Dichotomy

Our examples show that the strong interpretation of some reciprocal sentences is
NP-complete. In this section we will describe a class of unary monadic quanti�ers
for which the strong reciprocal interpretation is PTIME computable.

Following [17] we will identify monotone simple unary quanti�ers with
number-theoretic functions, f : ω → ω, such that for all n ∈ ω, f(n) ≤ n + 1.
In that setting the quanti�er Qf (corresponding to f) says of a set A that it
has at least f(n) elements, where n is the cardinality of the universe. Therefore,
given f : ω → ω, we de�ne:

(Qf )M (A) ⇐⇒ card(A) ≥ f(card(M)).

Our crucial notion goes back to the paper [18]. We say that a function f
(quanti�er Qf ) is bounded if

∃m∀n(f(n) < m ∨ n−m < f(n)).

Otherwise f and the corresponding Qf are unbounded. Typical bounded func-
tions are: f(n) = 1 (corresponding to ∃) and f(n) = n (corresponding to ∀). The
�rst one is bounded from above by 2 as for every n we have f(n) = 1 < 2. The
second one is bounded below by 1, for every n, n− 1 < n. Unbounded functions
are for example: dn

2 e, d
√

ne, dlog ne, where dpe is the ceiling function of p. We
illustrate the situation in the Figure 3.

In what follows we will show that the PTIME computable bounded quanti-
�ers of type (1) are closed on the strong reciprocal lift.

Proposition 3 If a monotone increasing quanti�er Qf is PTIME computable
and bounded, then the reciprocal quanti�er RamS(Qf ) is PTIME computable.

Proof. Assume that f is PTIME computable and bounded. Then there ex-
ists a number m such that for every n the following disjunction holds
(f(n) < m or n−m < f(n)).

Let us �x a graph model G = (V,E), where card(V ) = n.
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n

f(n)

f(n) = d
√

ne

f(n) = n

f(n) = 1

Fig. 3. The functions f(n) = 1 and f(n) = n are bounded. The function d
√

ne is
unbounded.

Assume that f(n) < m. First observe that if there exists a clique of size
greater than f(n) then there has to be also a clique of size exactly f(n). Thus
to decide whether G ∈ Rf it is enough to check if there is a clique of size f(n) in
G. We know that f(n) < m. Hence we only need to examine all subgraphs up
to m− 1 vertices. For each of them we can check in a polynomial time whether
it forms a clique. Moreover, the number of all subgraphs of size ≤ m− 1 in the
graph G is (

n

m− 1

)
< nm−1.

Therefore, the whole procedure is bounded by a polynomial of �xed degree.

Let us consider the second case. Notice that as the PTIME class is closed
under taking complements it su�ces to show a polynomial-time procedure
for detecting that there is no clique of size f(n). If n − m < f(n), then
n− f(n) + 1 ≤ m. Therefore, the procedure which goes through all subgraphs
up to size n − f(n) + 1 is bounded by nm and hence can be also computed in
polynomial time. It is enough to justify that such procedure does the job. To
see it observe the following: if there is no clique of size up to n− f(n) + 1, then
there is no clique bigger or equal to f(n). This fact follows simply by consider-
ing two cases. First, if f(n) ≥ n− f(n) + 1, then there cannot be clique of size
≥ f(n) without clique of size n − f(n) + 1. Otherwise, if f(n) < n − f(n) + 1
then checking all subgraphs up to n− f(n)+1-elements we will also examine all
subgraphs of size f(n).

Therefore, in every case when f is bounded and computable in a polynomial
time we simply run two above algorithms for every possible case. This model-
checking procedure for Rf simply tests clique property on all subgraphs up to m
elements, where m is �xed and independent from the size of a universe. Therefore,
it is bounded by a polynomial.
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It does not matter whether we consider undirected or directed graphs as
in both cases checking whether a given subgraph is complete can be done in
polynomial time. It also does not make any di�erence whether we are interested
in being complete subgraph with respect to R or R∨, so the result holds also for
RamS

∨(Qf ).
Moreover, notice that the relativization Qrel

f of Qf is the right monotone

type (1, 1) quanti�er: (Qrel
f )M (A,B) ⇐⇒ card(A ∩ B) ≥ f(card(A)). Thus,

the restriction is not essential and the result may be easily translated for type
(1, 1) quanti�ers.

Notice that the property of boundness plays also a crucial role in the de�n-
ability theory of polyadic lifts. In [18] it has been shown that the Ramsey�cation
of Q is de�nable in FO(Q) if and only if Q is bounded. They also obtained similar
results for branching and resumption (see [18]).

4 Complexity of the Intermediate and Weak Lifts

Analogously to the case of strong reciprocity we can also express the meanings
of intermediate and weak reciprocal lifts in graph-theoretical terms. We say that
M |= RamI(Q)(A,R) if and only if there is a connected subgraph in AM of a size
bounded from below by the quanti�er Q. M |= RamW(Q)(A,R) if and only if
there is a subgraph in AM of a proper size without isolated vertices. All with
respect to the relation RM , either symmetric or asymmetric.

We prove that the class of PTIME quanti�ers is closed under the (alternative)
intermediate lift and the (alternative) weak lift.

Proposition 4 If a monotone increasing quanti�er Q is a PTIME computable
quanti�er, then the quanti�ers RamI(Q) and RamI

∨(Q) are PTIME computable.

Proof. We consider only the case of the quanti�er RamI(Q), the proof for the
alternative case is analogous. Let G = (V,A, E) be a directed colored graph-
model. To check whether G ∈ RamI(Q) compute all connected components of
the subgraph determined by A. For example, you can use a breadth-�rst search
algorithm that begins at some node and explores all the connected neighbor-
ing vertices. Then for each of those nearest nodes, it explores their unexplored
connected neighbor vertices, and so on, until it �nds the full connected sub-
graph. Next, it chooses a node which does not belong to this subgraph and starts
searching for the connected subgraph containing it. Since in the worst case this
breadth-�rst search has to go through all paths to all possible vertices, the time
complexity of the breadth-�rst search on the whole G is O(card(V ) + card(E)).
Moreover, the number of the components in A is bounded by card(A). Having all
connected components it is enough to check whether there is a component C of
a proper size, i.e. does Q(A,C) hold for some connected component C. This can
be checked in a polynomial time as Q is PTIME computable quanti�er. Hence,
RamI(Q) is in PTIME.

The next proposition follows immediately.
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Proposition 5 If a monotone increasing quanti�er Q is a PTIME computable
quanti�er, then the quanti�ers RamW(Q) and RamW

∨(Q) are PTIME com-
putable.

These results show that the intermediate and the weak reciprocal lifts do
not increase the complexity of quanti�er sentences in such a drastic way as may
happen in the case of strong reciprocal lifts. In other words, in many contexts in-
termediate and weak interpretations are relatively easy as opposed to the strong
reciprocal reading.

5 A Complexity Perspective on SMH

The Strong Meaning Hypothesis proposed in [4] to predict the proper reading
of sentences containing reciprocal expressions. According to SMH the reciprocal
expression is interpreted as having logically the strongest truth conditions that
are consistent with a given context. Therefore, if it is only consistent with speci-
�ed facts, then a statement containing each other will be interpreted as a strong
reciprocal sentence. Otherwise, an interpretation will shift toward the logically
weaker intermediate or weak readings, depending on a context.

SMH is quite an e�ective pragmatic principle. We will discuss the shifts SMH
predicts from the computational complexity point of view referring to the results
provided in the previous sections.

Let us �rst think about the meaning of a sentence in the intensional way
� identifying the meaning of an expression with an algorithm recognizing its
denotation in a �nite model2. Such algorithms can be described by investigating
how language users evaluate the truth-value of sentences in various situations.
On the cognitive level it means that subjects have to be equipped with mental
devices to deal with meanings of expressions. Moreover, it is cognitively plau-
sible to assume that we have one mental device to deal with most instances of
the same semantic construction. For example, we believe that there is one men-
tal algorithm to deal with the counting quanti�er, At least k, in most possible
contexts, no matter what natural number k is. Thus, in the case of logical ex-
pressions, like quanti�ers, the analogy between meanings and algorithms seems
uncontroversial.

However, notice that some sentences, being intractable, are too hard for iden-
tifying their truth-value directly by investigating a model. The experience in
writing programs suggests that we can claim a sentence to be di�cult when
it cannot be computed in a polynomial time. Despite the fact that some sen-

2 This approach � going back to [19] � exists in the linguistic literature in the
di�erent levels of transparency (see e.g.[20]).
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tences are sometimes3 too hard for comprehension, we can �nd their inferential
relations with relatively easier sentences.

According to SMH any reciprocal sentence, if it is possible, should be inter-
preted as a strong reciprocal sentence. We have shown that the strong inter-
pretation of sentences with quanti�ed antecedents is sometimes intractable but
intermediate and weak reading are always easy to comprehend. In other words,
it is reasonable to suspect that in some linguistic situations the strong recip-
rocal interpretation is cognitively much more di�cult than the intermediate or
the weak interpretation. This prediction makes sense under the assumption that
P 6= NP and that human mind is bounded by computational restrictions. We
omit a discussion here and only recall that computational restrictions for cog-
nitive abilities are widely treated in the literature. For example, in philosophy
[21], study of reasoning [22], cognitive science [23], linguistics [24], and formal
semantics [25]. In [26] the so-called P-Cognition Thesis was explicitly formulated:
P-Cognition Thesis Human cognitive (linguistic) capacities are constrained by
polynomial-time computability.

What happens if subject is supposed to deal with a sentence too hard for
a direct comprehension. One possibility is that the subject will try to establish
the truth-value of a sentence indirectly, by shifting to an accessible inferential
meaning. That will be � depending on the context � the intermediate or the
weak interpretation � both being implied by the strong interpretation.

Summing up, our descriptive complexity perspective on reciprocity shows
that it might be not always possible to interpret a reciprocal sentence in the
strong way as SMH suggests. If a sentence in question would be intractable un-
der the strong reciprocal interpretation then people will turn to tractable read-
ings, like intermediate and weak. Our observations give a cognitively reasonable
argument for some shifts to occur, even though they are not predicted by SMH.
For example, SMH assumes that the following sentence should be interpreted as
the strong reciprocal statement.

(16) Most parliament members refer to each other indirectly.

However, we know that this sentence is NP-complete. Therefore, if the set of
parliament members is big enough then the statement is intractable under the
strong interpretation. It gives a perfect reason to switch for a weaker interpre-
tations.

6 Conclusion

By investigating reciprocal expressions in the computational paradigm we found
the di�erences in the complexity between various interpretations of reciprocal

3 That the general problem is hard does not show that all instances normally encoun-
tered are hard. It is the matter of empirical studies to provide us with data about
computational complexity in�uence on our everyday linguistic experience. However,
we believe that it is reasonable to expect that this happens at least in some situa-
tions.
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sentences with quanti�ed antecedents. In particular, we proved that for PTIME
computable quanti�ers the intermediate and the weak reciprocal interpretations
are PTIME computable. Moreover, if we additionally assume that a quanti�er is
bounded then also the strong reciprocal interpretation stays in PTIME. There-
fore, the semantic distinctions from [4] seem also solid from a computational
perspective. Moreover, identifying meanings with algorithms those results allow
us to argue in favor of Strong Meaning Hypothesis.

Many questions arise which are to be answered in future work. Here we will
mention only a few of them:

(1) Among the reciprocal sentences we found NP-complete constructions. For
example, we have shown that the strong reciprocal interpretations of pro-
portional quanti�ers are NP-complete. On the other side, we also proved that
the strong reciprocal interpretations of bounded quanti�ers are in PTIME.
We would like to know where is the precise border between those quanti�ers
for which Ramsey�cation is in PTIME and those for which it is NP-complete.
Is it the case that for every function f from some class we have a duality the-
orem, i.e., RamS(Qf ) is either PTIME computable or NP-complete? Can we
prove under some complexity assumptions that PTIME Ramsey quanti�ers
are exactly bounded Ramsey quanti�ers?

(2) There is a vast literature on the de�nability of polyadic lifts of generalized
quanti�ers (see e.g. [18]). We introduced some new linguistically relevant
lifts, the weak and the intermediate reciprocal lifts. The next step is to study
their de�nability. For example, we would like to know how the de�nability
questions for RamS(Qf ), RamI(Qf ), and RamW(Qf ) depend on the properties
of f? Another interesting point is to link our operators with other polyadic
lifts, like branching.

(3) What about di�erent complexity measures? For example, how one can repeat
our story invoking parametrized or average-case complexity?

(4) Is it well enough justi�ed to identify meanings with algorithms? Broader
philosophical discussion on applications of complexity theory to natural lan-
guage semantics seems inevitable.

(5) Finally, we need to investigate the interplay between cognitive di�culty and
computational complexity in more detail. Do the di�erences in the compu-
tational complexity really play an important role in the natural language
processing as some neuroimaging data suggests (see [27], [28])? For exam-
ple, we could empirically compare the di�erences in shifts from the strong
interpretation of reciprocal sentences with bounded and proportional quanti-
�ers in antecedents. Our approach predicts that subjects will shift to easier
interpretations more frequently in the case of sentences with proportional
quanti�ers.
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