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Abstract

We propose axiomatizations of monadic second-order logic (MSO), monadic tran-
sitive closure logic (FO(TC1)) and monadic least fixpoint logic (FO(LFP1)) on finite
node-labeled sibling-ordered trees. We show by a uniform argument, that our ax-
iomatizations are complete, i.e., in each of our logics, every formula which is valid
on the class of finite trees is provable using our axioms. We are interested in this
class of structures because it allows to represent basic structures of computer sci-
ence such as XML documents, linguistic parse trees and treebanks. The logics we
consider are rich enough to express interesting properties such as reachability. On
arbitrary structures, they are well known to be not recursively axiomatizable.

We develop a uniform method for obtaining complete axiomatizations of fragments of
MSO on trees. In particular, we obtain a complete axiomatization for MSO, FO(TC1),
and FO(LFP1) on finite node labeled sibling-ordered trees. We take inspiration from Kees
Doets, who proposed in [4] a complete axiomatization of first-order logic (FO) on the class
of node-labeled finite trees without sibling-order. A similar result was shown in [1] and
[19] for FO on node-labeled finite trees with sibling order. We use the signature of [19]
and extend the set of axioms proposed there.

Finite trees are basic and ubiquitous structures which are of interest at least to math-
ematicians, computer scientists (tree-structured documents) and linguists (parse trees).
The logics we study are known to be very well-behaved on this particular class of struc-
tures and to have an interestingly high expressive power. In particular, they all allow to
express reachability, but at the same time, they have the advantage of being decidable on
trees.

As XML documents are tree-structured data, our results are particularly relevant to
XML query languages. Query languages are logical languages used to make queries into
database and information systems. In [20] and [8], MSO and FO(TC1) have been proposed
as a yardstick of expressivity on trees for these languages. It is known that FO(LFP1) has
the same expressive power as MSO on trees, but the translations between the two are
non-trivial, and hence it is not clear whether an axiomatization for one language can be
obtained from an axiomatization for the other language in any straightforward way.

∗We are grateful to Jouko Väänänen for helpful comments on an earlier draft. The authors are
supported by a GLoRiClass fellowship of the European Commission (Research Training Fellowship MEST-
CT-2005-020841) and by the Netherlands Organization for Scientific Research (NWO) grant 639.021.508,
respectively.
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In applications to computational linguistics, finite trees are used to represent the
grammatical structure of natural language sentences. In the context of model theoretic
syntax, Rogers advocates in [18] the use of MSO in order to characterize derivation trees
of context free grammars. Kepser also argues in [12] that MSO should be used in order to
query treebanks. A treebank is a text corpus in which each sentence has been annotated
with its syntactic structure (represented as a tree structure). In [13] and [21] Kepser
and Tiede propose to consider various transitive closure logics, among which FO(TC1),
arguing that they constitute very natural formalisms from the logical point of view,
allowing concise and intuitive phrasing of parse tree properties.

The remainder of the paper is organized as follows: in Section 1 we present the concept
of finite tree and the logics we are interested in together with their standard interpretation.
Section 2 merely states our three axiomatizations. In Section 3, we introduce non standard
semantics called Henkin semantics, for which our axiomatizations are easily seen to be
complete. Section 4 introduces operations on Henkin structures: substructure formation
and a general operation of Henkin structures combination. We obtain Feferman-Vaught
theorems for this operation by means of Ehrenfeucht-Fräıssé games. In Section 5, we prove
real completeness (that is, on the restricted class of finite trees). For that purpose, we
consider substructures of trees that we call forests and use the general operation discussed
in Section 4 to combine a set of forests into one new forest. Our Feferman-Vaught theorems
apply to such constructions and we use them in our main proof of completeness, showing
that no formula of our language can distinguish Henkin models of our axioms from real
finite trees. We also point out that every standard model of our axioms actually is a finite
tree.

We provide additional proofs in Appendix. Appendix A contains proofs of Henkin
completeness theorems for our logics. Appendix B contains the proof a relativization
lemma that we use in Section 4 and Section 5.2 in order to show that whenever a property
is definable in a substructure of some given structure, then it is also definable in this
structure. Appendix C contains the definitions and adequacy proofs of three Ehrenfeucht-
Fräıssé games that we use in Appendix D to prove our Feferman-Vaught theorems.

1 Preliminaries

1.1 Finite Trees

A tree is a partially ordered set such that the set of predecessors of any element (or node)
is well-ordered (a set is well-ordered if all its non-empty subsets have a least element) and
there is a unique smallest element called the root. We are interested in finite node-labeled
sibling-ordered trees : finite trees in which the children of each node are linearly ordered.
Also, the nodes can be labeled by unary predicates. We will call these structures finite
trees for short.

Definition 1 (Finite tree). Assume a fixed finite set of unary predicate symbols
{P1, . . . , Pn}. By a finite tree, we mean a finite structure M = (M,<,≺, P1, . . . , Pn),
where (M,<) is a tree (with < the descendant relation) and ≺ linearly orders the chil-
dren of each node.
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1.2 Three Extensions of First-Order Logic

In this section, we introduce three extensions of FO: MSO, FO(TC1) and FO(LFP1). In
the remaining of the paper (unless explicitly stated otherwise), we will always be working
with a fixed purely relational vocabulary σ (i.e. with no individual constant or function
symbols) and hence, with σ-structures. We assume as usual that we have a countably
infinite set of first-order variables. In the case of MSO and FO(LFP1), we also assume that
we have a countably infinite set of set variables. The semantics defined in this section we
will refer to as standard semantics and the associated structures, as standard structures.

We first introduce monadic second order logic, MSO, which is the extension of first-
order logic in which we can quantify over the subsets of the domain.

Definition 2 (Syntax and semantics of MSO). Let At be a first-order atomic formula,
x a first-order variable and X a set variable, we define the set of MSO formulas in the
following way:

φ := At | Xx | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ¬φ | ∃x φ | ∃X φ

We use ∀Xφ (resp. ∀xφ) as shorthand for ¬∃X¬φ (resp. ¬∃x¬φ). We define the
quantifier depth of a MSO formula as the maximal number of first-order and second-order
nested quantifiers. We interpret MSO formulas in first-order structures. Like for FO
formulas, the truth of MSO formulas in M is defined modulo a valuation g of variables as
objects. But here, we also have set variables, to which g assigns subsets of the domain.
We let g[a/x] be the assignment which differs from g only in assigning a to x (similarly
for g[A/X]). The truth of atomic formulas is defined by the usual FO clauses plus the
following:

M, g |= Xx iff g(x) ∈ g(X) for X a set variable

The truth of compound formulas is defined by induction, with the same clauses as in
FO and an additional one:

M, g |= ∃Xφ iff there is A ⊆M such that M, g[A/X] |= φ

The second logic we are interested in is monadic transitive closure logic, FO(TC1),
which extends FO by closing it under the transitive closure of binary definable relations.

Definition 3 (Syntax and semantics of FO(TC1)). Let u, v, x, y be first-order variables,
φ(x, y) a FO(TC1) formula (which, besides x and y, possibly contains other free variables),
we define the set of FO(TC1) formulas in the following way:

φ := At | Xx | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ¬φ | ∃x φ | [TCxyφ(x, y)](u, v)

We use ∀xφ as shorthand for ¬∃x¬φ. We define the quantifier depth of a FO(TC1)
formula as the maximal number of nested first-order quantifiers and TC operators. We
interpret FO(TC1) formulas in first-order structures. The notion of assignation and the
truth of atomic formulas is defined as in FO. The truth of compound formulas is defined
by induction, with the same clauses as in FO and an additional one:

M, g |= [TCxyφ](u, v)
iff

for all A ⊆M , if g(u) ∈ A
and for all a, b ∈M , a ∈ A and M, g[a/x, b/y] |= φ(x, y) implies b ∈ A,

then g(v) ∈ A.
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Proposition 1. On standard structures, the following semantical clause for the TC op-
erator is equivalent to the one given above:

M, g |= [TCxyφ(x, y)](u, v)
iff

there exist a1 . . . an ∈M with g(u) = a1 and g(v) = an

and M, g |= φ(ai, ai+1) for all 0 < i < n

Proof. Indeed, suppose there is a finite sequence of points a1 . . . an such that g(u) = a1,
g(v) = an, and for each i < n, M, g[x/ai; y/ai+1] |= φ. Then for any subset A containing
a1 and which is closed under φ, we can show by induction on the length of the sequence
a1 . . . an that an belongs to A. Now, on the other hand, suppose that there is no finite
sequence like described above. To show that there is a subset A of the required form, we
simply take A to be the set of all points that “can be reached from u by a finite sequence”.
By assumption, v does not belong to this set and the set is closed under φ.

Intuitively this means that for a formula of the form [TCxyφ](u, v) to hold on a standard
structure, there must be a finite “φ path” between the points that are named by the
variables u and v.

Finally we will also be interested in monadic least fixpoint logic (FO(LFP1)), which
extends FO with set variables and an explicit monadic least fixpoint operator. Consider a
FO(LFP1) formula φ(X, x) and a structure M together with a valuation g. This formula
induces an operator Fφ taking a set A ⊆ dom(M) to the set {a : M, g[a/X,A/X] |= φ}.
FO(LFP1) is concerned with least fixpoints of such operators. If φ is positive in X (a
formula is positive in X whenever X only occurs in the scope of an even number of
negations), the operator Fφ is monotone (i.e. X ⊆ Y implies Fφ(X) ⊆ Fφ(Y )). Monotone
operators always have a least fixpoint LFP (F ) =

⋂
{X|F (X) ⊂ X} (defined as the

intersection of all their prefixpoints).

Definition 4 (Syntax and semantics of FO(LFP1)). Let X be a set variable, x, y FO
variables, ψ, ξ FO(LFP1) formulas and φ(x,X) a FO(LFP1) formula positive in X (besides
x and X, φ(x,X) possibly contains other free variables), we define the set of FO(LFP1)
formulas in the following way:

ψ := At | Xy | ψ ∧ ξ | ψ ∨ ξ | ψ → ξ | ¬ψ | ∃x ψ | [LFPx,Xφ(x,X)]y

We use ∀xψ as shorthand for ¬∃x¬ψ. We define the quantifier depth of a FO(LFP1) for-
mula as the maximal number of nested first-order quantifiers and LFP operators. Again,
we can interpret FO(LFP1) formulas in first-order structures. The notion of assignation
and the truth of atomic formulas are defined similarly as in the MSO case. The truth
of compound formulas is defined by induction, with the same clauses as in FO and an
additional one:

M, g |= [LFPx,Xφ]y
iff

for all A ⊆ dom(M), if for all a ∈ dom(M), M, g[a/x,A/X] |= φ(x,X) implies a ∈ A,
then g(y) ∈ A.

Remark 1. In practice we will use an equivalent (less intuitive but often more convenient)
rephrasing:

M, g |= [LFPx,Xφ]y
iff

for all A ⊆ dom(M), if g(y) /∈ A,
then there exists a ∈ dom(M) such that a /∈ A and M, g[a/x,A/X] |= φ(x,X).
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1.3 Expressive Power

There is a recursive procedure, transforming any FO(LFP1) formula φ into a MSO formula
φ′ such that M, g |= φ iff M, g |= φ′. The interesting clause is ([LFPx,Xφ(x,X)]y)′ =
∀X(∀x(φ(x,X)′ → Xx) → Xy). (The other ones are all of the same type, e.g. (φ∧ψ)∗ =
(φ∗ ∧ ψ∗).) This procedure can easily be seen adequate by considering the semantical
clause for the LFP operator.

Now there is also a recursive procedure transforming any FO(TC1) formula φ into
a FO(LFP1) formula φ′′ such that M, g |= φ iff M, g |= φ′′. The interesting clause is
([TCxyφ](u, v))′′ = [LFPXyy = u∨∃x((Xx∧φ(x, y)′′))]v. Let us give an argument for this
claim. By Proposition 1 it is enough to show that [LFPXyy = u∨∃x(Xx∧φ(x, y)′′)]v holds
if and only if there is a finite φ′′ path from u to v. For the right to left direction, suppose
there is such a path a1 . . . an with g(u) = a1 and g(v) = an. Then, for any subset A of the
domain, we can show by induction on i that if for all ai (1 ≤ i ≤ n), ai = u ∨ ∃x((Ax ∧
φ(x, ai)

′′) implies ai ∈ A, then v ∈ A, i.e., [LFPXyy = u ∨ ∃x((Xx ∧ φ(x, y)′′))]v holds.
Now for the left to right direction, suppose there is no such φ′′ path. Consider the set A of
all points that can be reached from u by a finite φ′′ path. By assumption, ¬Av and it holds
that ∀y((y = u ∨ ∃x(Ax ∧ φ(x, y)′′)) → Ay), i.e., ¬[LFPXyy = u ∨ ∃x(Xx ∧ φ(x, y)′′)]v.

It is known that on arbitrary structures FO(TC1) < FO(LFP1) < MSO (see [5]) and on
trees FO(TC1) <trees FO(LFP1) =trees MSO (see [20] and [17]). It is also known that the
(not FO definable) class of finite trees is already definable in FO(TC1) (see for instance
[13]), which is the weakest of the logics studied here. We provide additional detail in
Section 5.3.

2 The Axiomatizations

As many arguments in this paper equally hold for MSO, FO(TC1) and FO(LFP1), we
let Λ ∈ {MSO,FO(TC1),FO(LFP1)} and use Λ as a symbol for any one of them. The
axiomatization of Λ on finite trees consists of three parts: the axioms of first-order logic,
the specific axioms of Λ, and the specific axioms on finite trees.

To axiomatize FO, we adopt the infinite set of logical axioms and the two rules of
inference given in Figure 1 (like in [6], except from the fact that we use a generalization
rule). To axiomatize MSO, the axioms and rule of Figure 2 are added to the axiomatization
of FO. We call the resulting system `MSO. COMP. stands for “comprehension” by analogy
with the comprehension axiom of set theory. MSO1 plays a similar role as FO2, MSO2
as FO3 and MSO3 as FO4. To axiomatize FO(TC1), the axiom and rule of Figure 3 are
added to the axiomatization of FO. We call the resulting system `FO(TC1). To axiomatize
FO(LFP1), the axiom and rule of Figure 4 are added to the axiomatization of FO. We call
the resulting system `FO(LFP1). We are interested in axiomatizing Λ on the class of finite
trees. For that purpose we restrict the class of considered structures by adding to `Λ the
axioms given in Figure 5. We call the resulting system `tree

Λ . Note that the induction
scheme in Figure 5 allows to reason by induction on properties definable in Λ only. Also,
for technical convenience, we adopt the following convention:

Definition 5. Let Γ be a set of Λ-formulas and φ a Λ-formula. By Γ `Λ φ we will always
mean that there are ψ1, . . . , ψn ∈ Γ such that `Λ (ψ1 ∧ . . . ∧ ψn) → φ.

Now the main result of this paper is that on standard structures, the Λ theory of finite
trees is completely axiomatized by `tree

Λ . In the remaining sections we will progressively
build a proof of it.
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FO1. Tautologies of sentential calculus
FO2. ` ∀xφ→ φx

t , where t is substitutable for x in φ
FO3. ` ∀x(φ→ ψ) → (∀xφ→ ∀xψ)
FO4. ` φ→ ∀xφ, where x does not occur free in φ
FO5. ` x = x
FO6. ` x = y → (φ→ ψ), where φ is atomic and ψ is obtained

from φ by replacing x in zero or more (but not necessarily
all) places by y.

Modus Ponens if ` φ and ` φ→ ψ, then ` ψ
FO Generalization if ` φ, then ` ∀xφ

Figure 1: Axioms and rules of FO

COMP. ` ∃X∀x(Xx↔ φ), where X does not occur free in φ
MSO1. ` ∀Xφ→ φ[X/T ], where T (which is either a set variable

or a monadic predicate) is substitutable in φ for X.
MSO2. ` ∀X(φ→ ψ) → (∀Xφ→ ∀Xψ)
MSO3. ` φ→ ∀Xφ, where X does not occur free in φ
MSO Generalization if ` φ, then ` ∀Xφ

Figure 2: Axiom and inference rule of MSO

FO(TC1) axiom ` [TCxyφ](u, v) → ((ψ(u) ∧ ∀x∀y(ψ(x) ∧ φ(x, y) → ψ(y))) → ψ(v))
where ψ is any FO(TC1) formula

FO(TC1) Generalization if ` ξ → ((P (u) ∧ ∀x∀y(P (x) ∧ φ(x, y) → P (y))) → P (v)),
and P does not occur in ξ,
then ` ξ → [TCxyφ](u, v)

Figure 3: Axiom and inference rule of FO(TC1)

FO(LFP1) axiom ` [LFPx,Xφ]y → (∀x(φ(x, ψ) → ψ(x)) → ψ(y))
where ψ is any FO(LFP1) formula and φ(x, ψ) is the result
of the replacement in φ(x,X) of each occurrence of X by ψ
(renaming variables when needed)

FO(LFP1) Generalization if ` ξ → (∀x(φ(x, P ) → P (x)) → P (y)),
and P positive in φ does not occur in ξ,
then ` ξ → [LFPX,xφ](y)

Figure 4: Axiom and inference rule of FO(LFP1)
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T1. ∀xyz(x < y ∧ y < z → x < z) < is transitive
T2. ¬∃x(x < x) < is irreflexive
T3. ∀xy(x < y → ∃z(x <imm z ∧ z ≤ y)) immediate children
T4. ∃x∀y¬(y < x) there is a root
T5. ∀xyz(x < z ∧ y < z → x ≤ y ∨ y ≤ x) linearly ordered ancestors

T6. ∀xyz(x ≺ y ∧ y ≺ z → x ≺ z) ≺ is transitive
T7. ¬∃x(x ≺ x) ≺ is irreflexive
T8. ∀xy(x ≺ y → ∃z(x ≺imm z ∧ z � y)) immediately next sibling
T9. ∀x∃y(y � x ∧ ¬∃z(z ≺ y)) there is a least sibling
T10. ∀xy((x ≺ y ∨ y ≺ x) ↔ (∃z(z <imm x ∧ z <imm y) ∧ x 6= y))

≺ linearly orders siblings

T11. ∀xy(x = y ∨ x < y ∨ y < x ∨ ∃x′y′(x′ < x ∧ y′ < y ∧ (x′ ≺ y′ ∨ y′ ≺ x′)))
connectedness

Ind. ∀x(∀y((x < y ∨ x ≺ y) → φ(y)) → φ(x)) → ∀xφ(x)

where
φ(x) ranges over Λ-formulas in one free variable x

and
x <imm y is shorthand for x < y ∧ ¬∃z(z < y ∧ x < z),
x ≺imm y is shorthand for x ≺ y ∧ ¬∃z(x ≺ z ∧ z ≺ y)

Figure 5: Specific axioms on finite trees

3 Henkin Completeness

As it is well known, MSO, FO(TC1) and FO(LFP1) are highly undecidable on arbitrary
standard structures (by arbitrary, we mean any sort of structure: infinite trees, arbitrary
graphs, partial orders. . . ) and hence not recursively enumerable. So in order to show that
our axiomatizations `tree

Λ are complete on finite trees, we resort to a special trick, already
used by Kees Doets in his PhD thesis [4]. We proceed in two steps. First, we show three
Henkin completeness theorems, based on non standard (so called Henkin) semantics for
MSO, FO(TC1) and FO(LFP1) (on the general topic of Henkin semantics, see [10], the
original paper by Henkin and also [16]). Each semantics respectively extends the class of
standard structures with non standard (Henkin) MSO, FO(TC1) and FO(LFP1)-structures.
By the Henkin completeness theorems, our axiomatic systems `tree

Λ naturally turn out to
be complete on the wider class of their Henkin-models. But by compactness, some of
these models are infinite. As a second step, we show in Section 5 that no Λ-sentence can
distinguish between standard and non-standard Λ-Henkin-models among models of our
axioms. This entails that our axioms are complete on the class of (standard) finite trees,
i.e., each Λ-sentence valid on this class is provable using `tree

Λ . Now let us point out that
Kees Doets was interested in the completeness of first-order logic on finite trees. Thus,
he was relying on the FO completeness theorem and if he was working with non-standard
models of the FO theory of finite trees, he was not concerned with non standard Henkin-
structures in our sense. Hence, what makes the originality of the method developed in this
paper is its use of Henkin semantics. So let us begin with the concept of Henkin-structure.
Such structures are particular cases among structures called frames and it is convenient
to define frames before defining Henkin-structures.

Definition 6 (Frames). Let σ be a purely relational vocabulary. A σ-frame M consists
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of a non-empty universe dom(M), an interpretation in dom(M) of the predicates in σ and
a set of admissible subsets AM ⊆ ℘(dom(M)).

Whenever AM = ℘(dom(M)), M can be identified to a standard structure. Assign-
ments g into M are defined as in standard semantics, except that if X is a set variable,
then we require that g(X) ∈ AM.

Definition 7 (Interpretation of Λ-formulas in frames). Λ-formulas are interpreted in
frames as in standard structures, except for the three following clauses. The set quantifier
clause of MSO becomes:

M, g |= ∃Xφ iff there is A ∈ AMΓ
such that M, g[A/X] |= φ

The TC clause of FO(TC1) becomes:

M, g |= [TCxyφ](u, v)
iff

for all A ∈ AM, if g(u) ∈ A
and for all a, b ∈ dom(M), a ∈ A and M, g[x/a, b/y] |= φ imply b ∈ A,

then g(v) ∈ A.

And finally the LFP clause of FO(LFP1) becomes:

M, g |= [LFPx,Xφ]y
iff

for all A ∈ AM, if for all a ∈ dom(M), M, g[a/x,A/X] |= φ(x,X) implies a ∈ A,
then g(y) ∈ A.

Definition 8 (Λ-Henkin-Structures). A Λ-Henkin-structure is a frame M that is closed
under Λ-definability, i.e., for each Λ-formula ϕ and assignment g into M:

{a ∈M |M, g[a/x] |= ϕ} ∈ AM

Remark 2. Note that any finite Λ-Henkin-structure is a standard structure, as every
subset of the domain is parametrically definable in a finite structure. Hence, non standard
Henkin structures are always infinite.

Theorem 1. Λ is completely axiomatized on Λ-Henkin-structures by `Λ, i.e., for every
set of Λ-formulas Γ and Λ-formula φ, φ is true in all Λ-Henkin-structures of Γ if and
only if Γ `Λ φ.

Proof. The proofs are given in Appendix A (Theorems 5, 6, 7).

Compactness follows directly from Definition 5 and Theorem 1, i.e., a possibly infinite
set of Λ-sentences has a model if and only if every finite subset of it has a model. It also
follows directly from Theorem 1 that `tree

Λ is complete on the class of its Λ-Henkin-models.
Nevertheless, by compactness the axioms of `tree

Λ are also satisfied on infinite trees. We
overcome this problem by defining a slightly larger class of Henkin structures, which we
will call definably well-founded Λ-quasi-trees.1

Definition 9. A Λ-quasi-tree is any Λ-Henkin structure (T,<,≺, P1, . . . , Pn,AT ) (where
AT is the set of admissible subsets of T ) satisfying the axioms and rules of `Λ and the
axioms T1–T11 of Figure 5. A Λ-quasi-tree is definably well founded if, in addition, it
satisfies all instances of the induction scheme Ind of Figure 5.

Corollary 1. A Λ-Henkin-structure satisfies the axioms of `tree
Λ if and only if it is a

definably well-founded Λ-quasi-tree.

1For a nice picture of a non definably well-founded quasi-tree see [1].
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4 Operations on Henkin-Structures

Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. As noted in Remark 2, every finite Λ-Henkin struc-
ture is also a standard structure. Hence, when working in finite model theory, it is enough
to rely on the usual FO constructions to define operations on structures. On the other
hand, even though our main completeness result concerns finite trees, inside the proof we
need to consider infinite (Λ-Henkin) structures and operations on them. In this context,
methods for forming new structures out of existing ones have to be redefined carefully.
We first propose a notion of substructure of a Λ-Henkin-structure generated by one of its
parametrically definable admissible subsets:

Definition 10 (Λ-substructure). Let M = (dom(M), P red,AM) be a Λ-Henkin-structure
(where Pred is the interpretation of the predicates). We call MFO = (dom(M), P red)
the FO-structure underlying M. Given a parametrically definable set A ∈ AM, the Λ-
substructure of M generated by A is the structure M � A = (〈A〉MFO

,AM�A), where
〈A〉MFO

is the FO-substructure of MFO generated by A (note that A forms the domain
of 〈A〉MFO

, as the vocabulary is purely relational) and AM�A = {X ∩ A|X ∈ AM}.

Proposition 2. Take M and A as previously and consider the structure (M � A)′ =
(〈A〉MFO

,A(M�A)′), where A(M�A)′ = {X ∈ AM|X ⊆ A}. Whenever M is a MSO-Henkin
structure or a FO(LFP1)-Henkin structure, M � A and (M � A)′ are one and the same
structure.

Proof. Indeed, take B ∈ AM�A. So there exists B′ ∈ AM such that B = B′ ∩ A. We
want to show that also B′ ∩ A ∈ A(M�A)′ i.e. B′ ∩ A ⊆ A (which obviously holds) and
B′ ∩ A ∈ AM. The second condition holds because both B′ and A are definable in M,
so their intersection also is (B′ ∩ A = {x | M |= Ax ∧ B′x}). Conversely, consider
B ∈ A(M�A)′ , so B ∈ AM (because B = B ∩ A) and B ⊆ A.

Now, in order to show that Λ-substructures are Henkin-structures, we introduce a
notion of relativization and a corresponding relativization lemma. This lemma establishes
that for any Λ-Henkin-structure M and Λ-substructure M � A of M (with A a set
parametrically definable in M), if a set is parametrically definable in M � A then it
is also parametrically definable in M. This result will be useful again in Section 5.2.

Definition 11 (Relativization mapping). Given two Λ-formulas φ, ψ having no vari-
ables in common and given a FO variable x, we define REL(φ, ψ, x) by induction on the
complexity of φ and call it the relativization of φ to ψ:

• If φ is an atom, REL(φ, ψ, x) = φ,

• If φ :≈ φ1∧φ2, REL(φ, ψ, x) = REL(φ1, ψ, x)∧REL(φ2, ψ, x) (similar for ∨,→,¬),

• If φ :≈ ∃yχ, REL(φ, ψ, x) = ∃y(ψ[y/x]∧REL(χ, ψ, x)) (where ψ[y/x] is the formula
obtained by replacing in ψ every occurrence of x by y),

• If φ :≈ ∃Y χ, REL(φ, ψ, x) = ∃Y ((Y x→ ψ) ∧REL(χ, ψ, x)),

• If φ :≈ [TCyzχ](u, v), REL(φ, ψ, x) = [TCyzREL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x]](u, v),

• If φ :≈ [LFPXyχ]z, REL(φ, ψ, x) :≈ [LFPXyχ ∧ ψ[y/x]]z.
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Lemma 1 (Relativization lemma). Let M be a Λ-Henkin-structure, g a valuation on M,
φ, ψ Λ-formulas and A = {x | M, g |= ψ}. If g(y) ∈ A for every variable y occurring
free in φ and g(Y ) ∈ M � A for every set variable Y occurring free in φ, then M, g |=
REL(φ, ψ, x) ⇔ M � A, g |= φ.

Proof. Given in Appendix B (Lemma 13).

Lemma 2. M � A is a Λ-Henkin-structure.

Proof. Take B parametrically definable in M � A, i.e., there is a Λ-formula φ(y) and
an assignment g such that B = {a ∈ dom(M � A) | M � A, g[a/y] |= φ(y)}. Now
we know that A is also parametrically definable in M, i.e., there is a Λ-formula ψ(x)
and an assignment g′ such that A = {a ∈ dom(M) | M, g′[a/x] |= ψ(x)}. Assume
w.l.o.g. that φ and ψ have no variables in common, we define an assignment g∗ by letting
g∗(z) = g′(z) for every variable z occurring in ψ and g∗(z) = g(z) otherwise. The situation
with set variables is symmetric. Now by Lemma 1, B = {a ∈ dom(M) | M, g∗[a/x] |=
REL(φ, ψ, x)} and hence B ∈ AM�A.

There is in model theory a whole range of methods to form new structures out of
existing ones. A standard reference on the matter is [7], written in a very general alge-
braic setting. Familiar constructions like disjoint unions of FO-structures are redefined
as particular cases of a new notion of generalized product of FO-structures and abstract
properties of such products are studied. In particular, an important theorem now called
the Feferman-Vaught theorem for FO is proven. We are particularly interested in one of its
corollaries, which establishes that generalized products of FO-structures preserve elemen-
tary equivalence. This is related to our work in that we show an analogue of this result for
a particular case of generalized product of Λ-Henkin-structures that we call fusion, this
notion being itself a generalization of a notion of disjoint unions of Λ-Henkin-structures
that we also define.

Definition 12 (Disjoint union of Λ-Henkin-structures). Let σ be a purely relational
vocabulary and σ∗ = σ∪{Q1, . . . , Qk}, with {Q1, . . . , Qk} a set of new monadic predicates.
For any Λ-Henkin-structures M1, . . . ,Mk in vocabulary σ with disjoint domains, define
their disjoint union

⊎
1≤i≤k Mi (or, direct sum) to be the σ∗-frame that has as its domain

the union of the domains of the structures Mi and likewise for the relations, except for
the predicates Qi, whose interpretations are respectively defined as the domain of the
structures Mi (we will use Qi to index the elements of Mi). The set of admissible subsets
AU

1≤i≤k Mi
is the closure under finite union of the union of the sets of admissible subsets

of the Mi. That is:

• dom(
⊎

1≤i≤k Mi) =
⋃

1≤i≤k dom(Mi)

• P
U

1≤i≤k Mi =
⋃

1≤i≤k P
Mi (with P ∈ σ) and Q

U
1≤i≤k Mi

i = dom(Mi)

• A ∈ AU
1≤i≤k Mi

iff A =
⋃

1≤i≤k Ai for some Ai ∈ AMi

It is shown in Appendix D that disjoint unions of Λ-Henkin-structures are also Λ-
Henkin-structures (Corollaries 7, 11, 15).

Definition 13 (f -fusion of Λ-Henkin-structures). Let σ be a purely relational vocabulary
and σ∗ = σ ∪ {Q1, . . . , Qk}, with {Q1, . . . , Qk} a set of new monadic predicates. Let f
be a function mapping each n-ary predicate P ∈ σ to a quantifier-free formula over σ∗
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in variables x1, . . . , xn. For any Λ-Henkin-structures M1, . . . ,Mk in vocabulary σ with
disjoint domains, define their f -fusion to be the σ-frame

⊕f
1≤i≤k Mi that has the same

domain and set of admissible subsets as
⊎

1≤i≤k Mi. For any P ∈ σ, the interpretation of

P in
⊕f

1≤i≤k Mi is the set of n-tuples satisfying f(P (x1 . . . xn)) in
⊎

1≤i≤k Mi.

An easy example of f -fusion on standard structures2 is the ordered sum of two linear
orders (M1, <1), (M2, <2), where all the elements of M1 are before the elements of M2. In
this case, σ consists of a single binary relation <, the elements of M1 are indexed with
Q1, those of M2 with Q2 and f maps < to x < y ∨ (Q1x ∧Q2y).

We show preservation results involving f -fusions of Λ-Henkin-structures. Hence
we deal with analogues of elementary equivalence for these logics and we refer to Λ-
equivalence.

Definition 14. Given two Λ-Henkin-structures M and N, we write M ≡Λ N and say that
M and N are Λ-equivalent if they satisfy the same Λ-sentences. Also, for any natural
number n, we write M ≡n

Λ N and say that M and N are n-Λ-equivalent if M and N

satisfy the same Λ-sentences of quantifier depth at most n. In particular, M ≡Λ N holds
iff, for all n, M ≡n

Λ N holds.

Now we are ready to introduce our “Feferman-Vaught theorems”. Comparable work
had already been done by Makowski in [15] for extensions of FO, but a crucial difference
is that he only considered standard structures, whereas we need to deal with Λ-Henkin-
structures. Our proofs make use of Ehrenfeucht-Fräıssé games (defined in Appendix C:
Definitions 24, 25, 26) for each of the logics Λ. The MSO game, that we show to be
adequate, is rather straightforward and has already been used by other authors (see for
instance [14]). The FO(LFP1) game is borrowed from Uwe Bosse [2]. It also applies to
Henkin structures, as careful inspection of its adequacy proof shows. The FO(TC1) game
has already been mentioned in passing by Grädel in [9] as an alternative to the game
he used and we show that it is adequate. It looks also similar to a system of partial
isomorphisms given in [3]. However it is important to note that this game is different
from the FO(TC1) game which is actually used in [9]. The two games are equivalent when
played on standard structures, but not when played on FO(TC1)-Henkin structures. This
is so because the game used in [3] relies on the alternative semantics for the TC operator
given in Proposition 1, so that only finite sets of points can be chosen by players ; whereas
the game we use involves choices of not necessarily finite admissible subsets. These are
not equivalent approaches. Indeed, on FO(TC1)-Henkin structures a simple compactness
argument shows that the semantical clause of Proposition 1 (defined in terms of existence
of a finite path) is not adequate.

Using these games we show that f -fusions of Λ-Henkin-structures preserve Λ-
equivalence.

Theorem 2. Let Mi Ni with 1 ≤ i ≤ k be Λ-Henkin-structures. For any f such as
described in definition 13, whenever Mi ≡n

Λ Ni for all 1 ≤ i ≤ k, then also
⊕f

1≤i≤k Mi ≡n
Λ⊕f

1≤i≤k Ni.

Proof. The proofs are given in the second Appendix (Theorem 12 and Corollaries 8 and
12).

As shown in Appendix D (Theorem 5 and Corollaries 9, 13) analogues of these theo-
rems for disjoint union follow as well.

2It is simpler to give an example on standard structures, because then, we do not have to say anything
about admissible sets.
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Proposition 3. For any Λ-Henkin-structures Mi with 1 ≤ i ≤ k,
⊕f

1≤i≤k Mi is also a
Henkin structure.

Proof. The proofs are given in Appendix D (Corollaries 6, 10 and 14).

5 Completeness on Finite Trees

5.1 Forests and Operations on Forests

In Section 5.2, we will prove that no Λ-sentence can distinguish Λ-Henkin-models of `tree
Λ

from standard models of `tree
Λ . More precisely, we will show that for each n, any definably

well-founded Λ-quasi-tree is n-Λ-equivalent to a finite tree. In order to give an inductive
proof, it will be more convenient to consider a stronger version of this result concerning
a class of finite and infinite Henkin structures that we call quasi-forests. In this section,
we give the definition of quasi-forest and we show how they can be combined into bigger
quasi-forests using the notion of fusion from Section 4. Whenever quasi forests are finite,
we simply call them finite forests. As a simple example, consider a finite tree and remove
the root node, then it is no longer a finite tree. Instead it is a finite sequence of trees,
whose roots stand in a linear (sibling) order.3 It does not have a unique root, but it does
have a unique left-most root. For technical reasons it will be convenient in the definition
of quasi forests to add an extra monadic predicate R labelling the roots.

Definition 15 (Λ-quasi-forest). Let T = (dom(T ), <,≺, P1, . . . , . . . Pn,AT ) be a Λ-quasi-
tree. Given a node a in T , consider the Λ-substructure of T generated by the set
{x | ∃z(a � z ∧ z ≤ x)}, which is the set formed by a together with all its siblings
to the right and their descendants. The Λ-quasi-forest Ta is obtained by labeling each
root in this substructure with R (Rx⇔def ¬∃y y < x). Whenever T is a tree, we simply
call Ta a forest.

We will show in our main proof of completeness that for each n and for each node a
in a Λ-Henkin definably well-founded quasi-tree, the Λ-quasi-forest Ta is n-Λ-equivalent
to a finite forest. Our proof will use a notion of composition of Λ-quasi-forests which is a
special case of fusion. Given a single node forest F1 and two Λ-quasi-forests F2 and F3,
we construct a new Λ-quasi-forest

⊕COMP (F1, F2, F3) by letting the only element in F1

be the left-most root, the roots of F2 become the children of this node and the roots of F3

become its siblings to the right. We then derive a corollary of Theorem 2 for compositions
of Λ-quasi-forests and use it in Section 5.2.

Definition 16. Let σ = {<,≺, R, P1, . . . , Pn}, be a relational vocabulary with only
monadic predicates except < and ≺. Given three additional monadic predicates
Q1, Q2, Q3, we define a mapping COMP from σ to quantifier-free formulas over σ ∪
{Q1, Q2, Q3} by letting

• COMP (x < y) = x < y ∨ (Q1(x) ∧Q2(y))

• COMP (x ≺ y) = x ≺ y ∨ (Q1(x) ∧Q3(y) ∧R(y))

• COMP (R(x)) = (Q3(x) ∧R(x)) ∨Q1(x))

Corollary 2. Let F1 be a single node forest and F2, F3 Λ-quasi forests. If F2 ≡n
Λ F

′
2 and

F3 ≡n
Λ F

′
3 then

⊕COMP (F1, F2, F3) ≡n
Λ

⊕COMP (F1, F
′
2, F

′
3).

3Note that, as far as roots are concerned, two nodes can be siblings without sharing any parent. This
would not happen in a quasi tree.
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5.2 Main Proof of Completeness

Lemma 3. For all n ∈ N, every definably well-founded Λ-quasi-tree of finite signature
is n-Λ-equivalent to a finite tree. In particular, a Λ-sentence is valid on definably well-
founded Λ-quasi-trees iff it is valid on finite trees.

Proof. Let T be a Λ-quasi-tree, w.l.o.g. assume that a monadic predicate R labels its
root. During this proof, it will be convenient to work with Λ-quasi-forests. Note that
finite Λ-quasi-forests are simply finite forests and finite Λ-quasi-trees are simply finite
trees. Let Xn be the set of all nodes a of T for which it holds that Ta is n-Λ-equivalent
to a finite forest. We first show that ”belonging to Xn” is a property definable in T
(Claim 1). Then, we use the induction scheme to show that every node of a definably
well-founded Λ-quasi-tree (and in particular, the root) has this property (Claim 2).

Claim 1: Xn is invariant for n + 1-Λ-equivalence (i.e., (T, a) ≡Λ
n+1 (T, b) implies that

a ∈ Xn iff b ∈ Xn), and hence is defined by a Λ-formula of quantifier depth n+ 1.

Proof of claim. Suppose that (T, a) ≡Λ
n+1 (T, b). We will show that Ta ≡Λ

n Tb, and
hence, by the definition of Xn, a ∈ Xn iff b ∈ Xn. By the definition of Λ-quasi-forests,
dom(Ta) = {x | ∃z(a � z∧z ≤ x)}. Let φ be any Λ-sentence of quantifier depth n. We can
assume w.l.o.g. that φ does not contain the variables z and x (otherwise we can rename
in φ these two variables). By lemma 1, (T, a) |= REL(φ,∃z(a � z ∧ z ≤ x), x) iff Ta |= φ.
Notice that REL(φ,∃z(a � z∧z ≤ x), x) expresses precisely that φ holds in (T, a) within
the subforest Ta. Moreover, the quantifier depth of REL(φ,∃z(a � z ∧ z ≤ x) is at most
n + 1. It follows that (T, a) |= REL(φ,∃z(a � z ∧ z ≤ x), x) iff (T, b) |= REL(φ,∃z(b �
z ∧ z ≤ x), x), and hence Ta |= φ iff Tb |= φ.

For the second part of the claim, note that, up to logical equivalence, there are only
finitely many Λ-formulas of any given quantifier depth, as the vocabulary is finite. a

Claim 2: If all descendants and siblings to the right of a belong to Xn, then a itself
belongs to Xn.

Proof of claim. Let us consider the case where a has both a descendant and a following
sibling (all other cases are simpler). Then, by axioms T3, T5, T8, T9 and T10, a has
a first child b, and an immediate next sibling c. Moreover, we know that both b and
c are in Xn. In other words, Tb and Tc are n-Λ-equivalent to finite forests T ′b and T ′c.
Now, we construct a finite Λ-quasi-forest T ′a by taking a COMP -fusion of T ′b, T

′
c and

of the Λ-substructure of T generated by {a}, which unique element becomes a common
parent of all roots of T ′b and a left sibling of all roots of T ′c. So we get T ′a =

⊕COMP (T �
{a}, T ′b, T ′c)). It is not hard to see that T ′a is again a finite forest. Moreover, by the fusion
lemma,

⊕COMP (T � {a}, Tb, Tc)) ≡Λ
n T ′a. Now to show that

⊕COMP (T � {a}, Tb, Tc))
is isomorphic to Ta (which entails Ta ≡Λ

n T ′a i.e. Ta is n-Λ-equivalent to a finite forest),
it is enough to show ATa = ALCOMP (T �{a},Tb,Tc)

. It holds that ALCOMP (T �{a},Tb,Tc)
⊆ ATa

because we can define in Ta each such union of sets by means of a disjunction. Now to
show ATa ⊆ ALCOMP (T �{a},Tb,Tc)

, take A ∈ ATa , so A = A1∪A2∪A3 with A1 ∈ AT �{a}, A2 ∈
ATb

, A3 ∈ ATc . The domain of each of these three structures is definable in Ta, let say φ1

defines dom(T � {a}), φ2 defines dom(Tb) and φ3 defines dom(Tc). So each Ai component
is definable in Ta (just take the conjunction φi(x)∧Ax). But then Ai was already definable
in

⊕COMP (T � {a}, Tb, Tc) (by construction of this structure). a
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It follows from these two claims, by the induction scheme for definable properties,
that Xn contains all nodes of the Λ-quasi-tree, including the root, and hence T is n-Λ-
equivalent to a finite tree. For the second statement of the lemma, it suffices to note that
every Λ-sentence has a finite vocabulary and a finite quantifier depth.

Theorem 3. Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. The Λ-theory of finite trees is com-
pletely axiomatized by `tree

Λ .

Proof. Theorem 3 follows directly from Lemma 3 and Corollary 1.

5.3 The set of `tree
Λ consequences defines the class of finite trees

Proposition 4 shows together with Theorem 3 that on standard structures, the set of
`tree

Λ consequences actually defines the class of finite trees. That is, `tree
Λ has no infinite

standard model at all.

Proposition 4. Let Λ ∈ {FO(TC1),FO(LFP1),MSO}. On standard structures, there is a
Λ-formula which defines the class of finite trees.

Sketch of the proof. It is enough to show it for Λ = FO(TC1). It follows by Section 1.3
that it also holds for MSO and FO(LFP1).

We merely give a sketch of the proof. For additional details we refer the reader to
[13]. It can be shown that on standard structures, the finite conjunction of the axioms
T1–T11 in Figure 5 “almost” defines the class of finite trees, i.e. any finite structure
satisfying this conjunction is a finite tree. Now we will explain how to construct an other
sentence, which together with this one, actually defines on arbitrary standard structures
the class of finite trees. Let L be a shorthand for the formula labelling the leaves in
the tree (Lx ⇔def ¬∃yx < y) and R a shorthand for the formula labelling the root
(Rx ⇔def ¬∃yy < x). Consider the depth-first left-to-right ordering of nodes in a tree
and the FO(TC1) formula φ(x, y) saying “the node that comes after x in this ordering is
y”:

φ(x, y) :≈ (¬Lx ∧ x <imm y ∧ ¬∃zz ≺ y) ∨ (Lx ∧ x ≺imm y) ∨ (Lx ∧ ¬∃zx ≺ z ∧ ∃z(z <
x ∧ z ≺imm y ∧ ¬∃ww < x ∧ z < w ∧ ∃uw ≺imm u))

There is also a FO(TC1) formula which says that “x is the very last node in this ordering”.
φ(x, y) can be combined with this formula into an FO(TC1) formula χ expressing that the
tree is finite by saying that (we rely here for the interpretation of χ on the alternative
semantics for the TC operator given in Proposition 1) “there is a finite sequence of nodes
x1 . . . xn such that x1 is the root, xi+1 the node that comes after xi in the above ordering,
for all i, and xn is the very last node of the tree in the above ordering”.

χ :≈ ∃u∃z(Rz ∧ [TCxyφ](z, u) ∧ ¬∃u′(u 6= u′ ∧ [TCxyφ](u, u′)))

Theorem 4. The set of `tree
Λ consequences defines the class of finite trees.

Proof. By Proposition 4 we can express in Λ by means of some formula χ that a structure
is a finite tree. So χ is necessarily a consequence of `tree

Λ (as it is a Λ-formula valid on the
class of finite trees).
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6 Conclusions

In this paper, taking inspiration from Kees Doets [4] we developed a uniform method for
obtaining complete axiomatizations of fragments of MSO on finite trees. For that purpose,
we had to adapt classical tools and notions from finite model theory to the specificities
of Henkin semantics. The presence of admissible subsets called for some refinements in
model theoretic constructions such as formation of substructure or disjoint union. Also,
we noticed that not every Ehrenfeucht-Fräıssé game that has been used for FO(TC1) was
suitable to use on Henkin-structures. We focused on a game which doesn’t seem to have
been used previously in the literature. We also elaborated analogues of the FO Feferman-
Vaught theorem for MSO, FO(TC1) and FO(LFP1). We considered fusions of structures, a
particular case of the Feferman-Vaught notion of generalized product and obtained results
which might be interesting to generalize and use in other contexts.

We applied our method to MSO, FO(TC1) and FO(LFP1), but it would be worth also
examining other fragments of MSO, such as monadic deterministic transitive closure logic
(FO(DTC1)) or monadic alternating transitive closure logic (FO(ATC1)), see also [3].

Finally, an important feature of our main completeness argument is the way we used
the inductive scheme of Figure 5. Hence, extending our approach to another class of finite
structures would involve finding a comparable scheme. We also know that we should focus
on a logic which is decidable on this class, as on finite structures recursive enumerability is
equivalent to decidability. This suggests that other natural candidates would be fragments
of MSO on classes of finite structures with bounded treewidth.
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A Henkin Completeness Proofs

Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. In this appendix we show that `Λ is complete on
the class of Λ-Henkin-structures. We are not yet concerned with `tree

Λ and we do not
consider the specific axioms on trees listed in Figure 5.

Up to now we have been working with purely relational vocabularies. Here we will be
using individual constants in the standard way, but only for the sake of readability (we
could dispense with them and use FO variables instead). Also, whenever this is clear from
the context, we will use ` as shorthand for `Λ.
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A.1 The MSO-Henkin Completeness Proof

This proof is an adaptation to the case of MSO of the proof of completeness for FO given
in [6] and of the proof of completeness for the theory of types given in [16].

Lemma 4 (FO generalization lemma). If Γ ` φ and x does not occur free in Γ, then
Γ ` ∀xφ.

Proof. (by Enderton) Consider a fixed set Γ and a variable x not free in Γ. We show
by induction that for any theorem φ of Γ, we have Γ ` ∀xφ. For this it suffices (by the
induction principle) to show that the set

{φ : Γ ` ∀xφ}

includes Γ ∪AxMSO (where AxMSO is the set of logical axioms given in Figures 1 and 2)
and is closed under modus ponens. Notice that x can occur free in φ.

Case 1. φ is a logical axiom. Then ∀xφ is also a logical axiom. And so Γ ` ∀xφ.

Case 2. φ ∈ Γ. Then x does not occur free in φ. Hence

φ→ ∀xφ

is an instance of FO4. Consequently, Γ ` ∀xφ, as from φ (which is in Γ) and φ → ∀xφ
(which is an instance of FO4) we can infer by modus ponens that ∀xφ.

Case 3. φ is obtained by modus ponens from ψ and ψ → φ. Then by inductive hypothesis
we have Γ ` ∀xψ and Γ ` ∀x(ψ → φ). This is just the situation in which axiom group
FO3 is useful. We have Γ ` ∀xφ. The proof goes as follows. From ψ → φ we obtain by
generalization ∀xψ → φ, which together with ∀x(ψ → φ) → (∀xψ → ∀xφ) (which is an
instance of FO3) gives by modus ponens ∀xψ → ∀xφ. Now by generalization from ψ we
obtain ∀xψ and by modus ponens, ∀xφ.

So by induction Γ ` ∀xφ for every theorem φ of Γ.

Lemma 5 (MSO generalization theorem). If Γ ` φ and X does not occur free in Γ, then
Γ ` ∀Xφ.

Proof. The proof is similar as in the FO case, except that MSO generalization is used
instead of FO generalization and MSO2 and MSO3 are used instead of, respectively,
FO3 and FO4.

Definition 17. We say that a set of MSO formulas ∆ contains MSO-Henkin witnesses if
and only if for every formula φ, if ¬∀xφ ∈ ∆ (respectively ¬∀Xφ ∈ ∆), then ¬φ[x/t] ∈ ∆
for some term t (respectively ¬φ[X/T ] ∈ ∆ with T either a monadic predicate or a set
variable).

Lemma 6. (MSO Lindenbaum lemma) Let σ∗ = σ ∪ {cn | n ∈ N} ∪ {Pn | n ∈ N},
with ci /∈ σ and Pi /∈ σ. If Γ ⊆ FORM(σ) is consistent, then there exists a maximally
consistent set Γ∗ such that Γ ⊆ Γ∗ and Γ∗ contains MSO-Henkin witnesses.

Proof. Let Γ be a `MSO consistent set of well formed formulas in a countable vocabulary.
We expand the language by adding countably many new constants and countably many
new monadic predicates. Then Γ remains consistent as a set of well formed formulas in
the new language. For all the sets constituted of one formula in the new language, one
FO variable and one MSO variable, we adopt the following fixed exhaustive enumeration:
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< φ1, x1, X1 >,< φ2, x2, X2 >,< φ3, x3, X3 >,< φ4, x4, X4 >, . . .

(possible since the language is countable), where the φi are formulas, the xi are FO
variables and the Xi, MSO variables.

• Let θ2n−1 be ¬∀xnφn → ¬φn[xn/cl], where cl is the first of the new constants neither
occurring in φn nor in θk with k < 2n− 1

• Let θ2n be ¬∀Xnφn → ¬φn[Xn/Pl], where Pl is the first of the new monadic predi-
cates neither occurring in φn nor in θk with k < 2n

Call Θ the set of all the θi.

Claim 1. Γ ∪Θ is consistent

If not, then because deductions are finite, for some m ≥ 0, Γ ∪ {θ1, . . . , θm, θm+1} is
inconsistent. Take the least such m, then by the (derivable) rule of reductio ad absurdum,
Γ ∪ {θ1, . . . , θm} ` ¬θm+1. Now there are two cases:

(1) θm+1 is of the form ¬∀xφ → ¬φ[x/c] i.e. either Γ ∪ {θ1, . . . , θm} ` ¬∀xφ and
Γ∪{θ1, . . . , θm} ` φ[x/c]. Since c does not appear in any formula on the left, by the
FO generalization theorem, Γ∪{θ1, . . . , θm} ` ∀xφ, which contradicts the minimality
of m (or the consistency of Γ if m = 0)

(2) θm+1 is of the form ¬∀X2nφ2n → ¬φ[X/P2n]

The reasoning is similar (we use the MSO generalization theorem instead of the FO
one).

We now extend in the standard way the consistent set Γ∪Θ to a maximal consistent set
Γ∗ which is maximal in the sense that for any well formed formula φ either φ ∈ Γ∗ or
φ /∈ Γ∗.

Definition 18. Let Γ∗ ⊆ FORM(σ) be maximally consistent and contain Henkin wit-
nesses. We define an equivalence relation on the set of FO terms, by letting t1 ≡Γ∗ t2 iff
t1 = t2 ∈ Γ∗. We denote the equivalence class of a term t by |t|.

Proposition 5. ≡Γ∗ is an equivalence relation.

Proof. By FO5 and FO6.

We will now show that if Γ∗ is maximally consistent and contains Henkin witnesses,
then Γ∗ has a MSO-Henkin model MΓ∗ .

Definition 19. We define MΓ∗ (together with a valuation gΓ∗) out of Γ∗.

• M = {|t| : t is a FO term }

• AMΓ∗ = {AT : T is a set variable or a monadic predicate} where AT = {|t| : Tt ∈ Γ∗}

• (|t1|, . . . , |tn|) ∈ PM
Γ∗ iff Pt1 . . . tn ∈ Γ∗

• cMΓ∗ = |c|

• gΓ∗(x) = |x|

• gΓ∗(X) = AX

18



We still need to show that AMΓ∗ is closed under MSO definability. We will be able to
do that after having shown the following truth lemma.

Lemma 7. (Truth lemma) For any MSO formula φ, MΓ∗ , gΓ∗ |= φ iff φ ∈ Γ∗.

Proof. By induction on φ. The base case (for atomic formulas) follows from the definition
of MΓ∗ together with the maximality of Γ∗. Now consider the inductive step:

• Boolean connectives: standard (no difference with usual FO Henkin completeness
proofs).

• FO quantifier: we want to show that

MΓ∗ , gΓ∗ |= ∀xφ iff ∀xφ ∈ Γ∗

We first show MΓ∗ , gΓ∗ |= ∀xφ entails ∀xφ ∈ Γ∗.

MΓ∗ , gΓ∗ |= ∀xφ entails that for all FO term t, MΓ∗ , gΓ∗ [x/|t|] |= φ, which en-
tails MΓ∗ , gΓ∗ |= φ[x/t]. By induction hypothesis, for all t, φ[x/t] ∈ Γ∗. Now
suppose ¬∀xφ ∈ Γ∗, then by construction of Γ∗ there exists a variable xm such
that ¬φ[x/xm] ∈ Γ∗, but this contradicts what we get by induction hypothesis, so
¬∀xφ /∈ Γ∗ and by maximal consistency of Γ∗, ∀xφ ∈ Γ∗.

Now we show ∀xφ ∈ Γ∗ entails MΓ∗ , gΓ∗ |= ∀xφ. We take the contraposition:
MΓ∗ , gΓ∗ 6|= ∀xφ entails ∀xφ /∈ Γ∗. Suppose MΓ∗ , gΓ∗ 6|= ∀xφ, so MΓ∗ , gΓ∗ |= ¬∀xφ
i.e. MΓ∗ , gΓ∗ |= ∃x¬φ. So MΓ∗ , gΓ∗ [x/|t|] |= ¬φ for some FO term t, which entails
MΓ∗ , gΓ∗ |= ¬φ[x/t]. By induction hypothesis ¬φ[x/t] ∈ Γ∗, by FO2, ∃x¬φ ∈ Γ∗ by
FO2, by maximal consistency of Γ∗, ¬∀xφ ∈ Γ∗.

• Set quantifier: we want to show that

MΓ∗ , gΓ∗ |= ∀Xφ iff ∀Xφ ∈ Γ∗

We first show MΓ∗ , gΓ∗ |= ∀Xφ entails ∀Xφ ∈ Γ∗.

MΓ∗ , gΓ∗ |= ∀Xφ entails that for all MSO term T , MΓ∗ , gΓ∗ [X/AT ] |= φ and so
MΓ∗ , gΓ∗ |= φ[X/T ] (because for any set variable X, gΓ∗(X) = AX and for any
monadic predicate P , PMΓ∗ = AP .) By induction hypothesis, for all T , φ[X/T ] ∈ Γ∗.
Now suppose ¬∀Xφ ∈ Γ∗, then by construction of Γ∗ there exists a variable Xm such
that ¬φ[X/Xm] ∈ Γ∗, but this contradicts what we get by induction hypothesis, so
¬∀Xφ /∈ Γ∗ and by maximal consistency of Γ∗, ∀Xφ ∈ Γ∗.

Now we show ∀Xφ ∈ Γ∗ entails MΓ∗ , gΓ∗ |= ∀Xφ. We take the contraposition
MΓ∗ , gΓ∗ 6|= ∀Xφ entails ∀Xφ /∈ Γ∗. Suppose MΓ∗ , gΓ∗ 6|= ∀Xφ, so MΓ∗ , gΓ∗ |=
¬∀Xφ i.e. MΓ∗ , gΓ∗ |= ∃X¬φ. So MΓ∗ , gΓ∗ [X/AT ] |= ¬φ for some MSO term T ,
which entails MΓ∗ , gΓ∗ |= ¬φ[X/T ]. By induction hypothesis ¬φ[X/T ] ∈ Γ∗, by
MSO1, ∃X¬φ ∈ Γ∗, by maximal consistency of Γ∗, ¬∀Xφ 6∈ Γ∗ i.e. ∀Xφ /∈ Γ∗.

Proposition 6. MΓ∗ is a MSO-Henkin structure.
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Proof. Essentially here we will use the fact that MΓ∗ is a model of all the COMP in-
stances. We want to see that all sets which are parametrically definable using our MSO-
language are in the set of admissible subsets of MΓ∗ . Let φ be a MSO formula, x a variable
and x1, . . . , xn, Xn+1, . . . , Xm the sequence, ordered by occurrence, of all the free variables
of φ, apart from x.

Take any set variable X not free in φ. By hypothesis, M is a model of the sentence

∀x1 . . . ∀xn∀Xn+1 . . . ∀Xm[∃X∀x(Xx↔ φ)]

Therefore for all objects a1, . . . , an and admissible subsets An+1, . . . , Am

(M, a1, . . . , an, An+1, . . . , Am) is a model of ∃X∀x(Xx↔ φ)

So there is an A ∈ AM such that for all a ∈ A

a ∈ A iff M, g[x/a, x1/a1, . . . , xn/an, Xn+1/An+1, . . . , Xm/Am] |= φ

This A ∈ AM is precisely the relation parametrically defined by the formula φ and the
variables mentioned above.4

Theorem 5. Every `MSO consistent set Γ of MSO sentences is satisfiable in a MSO-
Henkin structure.

Proof. First turn Γ into a maximal consistent set Γ∗ in a possibly richer language σ∗ with
Henkin witnesses. Then build a structure MΓ∗ out of this Γ∗. Then the structure MΓ∗

satisfies Γ∗ and hence also the (subset) Γ.

A.2 The FO(TC1)-Henkin Completeness Proof

The following proof is a variation of the proofs in [6] and [16]. The originality of the
FO(TC1) case essentially lies in the notion of FO(TC1)-Henkin witness of Definition 20.
In order to use this notion in the proof of Lemma 9, we also need the following lemma:

Lemma 8. Let Γ be a consistent set of FO(TC1) formulas and θ a FO(TC1) formula of
the form ∀x(φ ↔ Px) with P a fresh monadic predicate (i.e. not appearing in Γ). Then
Γ ∪ {θ} is also consistent.

Proof. Suppose Γ ∪ {∀x(φ ↔ Px)} is inconsistent, so there is some proof of ⊥ from
formulas in Γ ∪ {∀x(φ ↔ Px)}. We first rename all bound variables in the proof with
variables which had no occurrence in the proof or in ∀x(φ ↔ Px) (this is possible since
proofs are finite objects and we have a countable stock of variables). Also, whenever in
the proof the FO(TC1) generalization rule is applied on some unary predicate P , we make
sure that this P is different from the unary predicate that we want to substitute by φ and
which does not appear in the proof; this is always possible because we have a countable
set of unary predicates. Now, we replace in the proof all occurrences of Px by φ (as we
renamed bound variables, there is no accidental binding of variables by wrong quantifiers).
Then, every occurrence of ∀x(φ↔ Px) in the proof becomes an occurrence of ∀x(φ↔ φ)
i.e. we have obtained a proof of ⊥ from Γ ∪ {∀x(φ ↔ φ)} i.e. from Γ (∀x(φ ↔ φ)
is an axiom, as it can be obtained by FO generalization from a tautology of sentential
calculus). It entails that Γ is already inconsistent, which contradicts the consistency of Γ.
Now it remains to show that the replacement procedure of all occurrences of Px by φ, is
correct, that is, we still have a proof of ⊥ after it. Every time the replacement occurs in
an axiom (or its generalization, which is still an axiom as we defined it), then the result

4It follows that without the COMP axiom, we get an axiomatization of MSO on arbitrary frames.
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is still an instance of the given axiom schema (even for FO(TC1) generalizations, because
we took care that P is never used in the proof for a FO(TC1) generalization). Also, as
replacement is applied uniformly in the proof, every application of modus ponens stays
correct: consider ψ → ξ and ψ. Obviously the result ψ∗ of the substitution will allow to
derive the result ξ∗ of the substitution from ψ∗ → ξ∗ and ψ∗. Also ⊥∗ is simply ⊥, so the
procedure gives us a proof of ⊥.

Definition 20. We say that a set of FO(TC1) formulas ∆ contains FO(TC1)-Henkin
witnesses if and only if the two following conditions hold. First, for every formula φ, if
¬∀xφ ∈ ∆, then ¬φ[x/t] ∈ ∆ for some term t and if ¬[TCxyφ](u, v) ∈ ∆, then Pu ∧
∀x∀y((Px ∧ φ(x, y)) → Py) ∧ ¬Pv ∈ ∆ for some monadic predicate P . Second, if φ ∈ ∆
and x is a free variable of φ, then ∀x(Px↔ φ(x)) ∈ ∆ for some monadic predicates P .

Lemma 9. (FO(TC1) Lindenbaum lemma) Let σ∗ = σ ∪ {cn | n ∈ N with cn a new
individual constant, }∪{Pn | n ∈ N with Pn a new monadic predicate}. If Γ ⊆ FORM(σ)
is consistent, then there exists a maximally consistent set Γ∗ of σ∗ formulas such that
Γ ⊆ Γ∗ and Γ∗ contains FO(TC1)-Henkin witnesses.

Proof. Let Γ be a `FO(TC1) consistent set of well formed formulas in a countable vocab-
ulary σ. We expand the language into σ∗ by adding countably many new constants and
countably many new monadic predicates. Then Γ remains `FO(TC1) consistent as a set of
well formed formulas in the new language. For all the pairs constituted by one formula
and one variable of σ∗ and all the pairs constituted by one formula and two terms of σ∗,
we adopt the following fixed exhaustive enumeration:

< φ1, x1 >,< φ2, u2, v2 >,< φ3, x3 >,< φ4, u4, v4 >, . . .

(possible since the language is countable), where the φi are formulas, the xi are variables
and the ui, vi are terms.

• Let θ3n−2 be ¬∀x2n−1φ2n−1 → ¬φ2n−1[x2n−1/cl], where cl is the first of the new
constants neither occurring in φ2n−1 nor in θk with k < 3n− 2

• Let θ3n−1 be ∀x2n−1(φ2n−1 ↔ Plx2n−1), where Pl is the first of the new monadic
predicates neither occurring in φ2n−1 nor in θk with k ≤ 3n− 1.

• Let θ3n be ¬[TCxyφ2n](u2n, v2n) → (Plu2n∧∀x∀y((Plx∧φ2n(x, y)) → Ply)∧¬Plv2n),
where Pl is the first of the new monadic predicates neither occurring in φ2n nor in
θk with k ≤ 3n

Call Θ the set of all the θi.

Claim 2. Γ ∪Θ is consistent

If not, then because deductions are finite, for some m ≥ 0, Γ ∪ {θ1, . . . , θm, θm+1}
is inconsistent. Take the least such m, then by the reductio ad absurdum rule, Γ ∪
{θ1, . . . , θm} ` ¬θm+1. Now there are three cases:

(1) θm+1 is of the form ¬∀xφ→ ¬φ[x/c]

(see the MSO case for how to handle this case)

(2) θm+1 is of the form ¬[TCxyφ](u, v) → ((Pu ∧ ∀x∀y((Px ∧ φ(x, y)) → Pv) ∧ ¬Pv).
In such a case both Γ ∪ {θ1 . . . θm} ` ¬[TCxyφ](u, v) and Γ ∪ {θ1 . . . θm} ` (Pu ∧
∀x∀y((Px ∧ φ(x, y)) → Pv) → Pv hold. Since P does not appear in any formula
on the left, by FO(TC1) generalization, Γ ∪ {θ1 . . . θm} ` [TCxxyφ](u, v), which
contradicts the minimality of m (or the consistency of Γ if m = 0).
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(3) θm+1 is of the form ∀x(φ↔ Px)

(by Lemma 8, this is not possible)

We then turn Γ ∪Θ into a maximal consistent set Γ∗ in the standard way.

We now define MΓ∗ and gΓ∗ as we did for MSO.

Lemma 10. (Truth lemma) For any FO(TC1) formula φ, MΓ∗ , gΓ∗ |= φ iff φ ∈ Γ∗.

Proof. By induction on φ.
The base case follows from the definition of MΓ∗ together with the maximality of Γ∗.

Now consider the inductive step:

• Boolean connectives and FO quantifier: as in MSO

• TC operator: we want to show that

MΓ∗ , gΓ∗ |= [TCxyφ(x, y)](u, v) iff [TCxyφ(x, y)](u, v) ∈ Γ

– We first show that MΓ∗ , gΓ∗ |= [TCxyφ(x, y)](u, v) implies [TCxyφ(x, y)](u, v) ∈
Γ∗. So suppose MΓ∗ , gΓ∗ |= [TCxyφ(x, y)](u, v) i.e. for all monadic pred-
icates Pi ∈ σ∗, if gΓ∗(u) ∈ APi

and for all |tk|, |tl| ∈ M , |tk| ∈ APi

and MΓ∗ , gΓ∗ [x/|tk|, x/|tl|] |= φ implies |tl| ∈ APi
, then gΓ∗(v) ∈ APi

i.e.
MΓ∗ , gΓ∗ |= Piu ∧ (((Pitk ∧ φ(tk, tl)) → Pitl) → Piv) for all Pi, tk, tl and
by induction hypothesis Piu ∧ (((Pitk ∧ φ(tk, tl)) → Pitl) → Piv) ∈ Γ∗.
And so by the same argument as the one used in the FO quantifier step
of the present induction, Piu ∧ ∀x∀y(((Pix ∧ φ(x, y)) → Piy) → Piv) ∈
Γ∗. Now suppose [TCxyφ(x, y)](u, v) /∈ Γ∗ i.e. ¬[TCxyφ(x, y)](u, v) ∈ Γ∗.
Then as Γ∗ contains Henkin witnesses, there is a predicate Pm such that
Pmu ∧ ∀x∀y((Pmx ∧ φ(x, y)) → Pmy) ∧ ¬Pmv ∈ Γ∗. But that contradicts the
maximal consistency of Γ∗. Then ¬[TCxyφ(x, y)](u, v) 6∈ Γ∗ and by maximal
consistency of Γ∗, [TCxyφ(x, y)](u, v) ∈ Γ∗.

– We now show that [TCxyφ(x, y)](u, v) ∈ Γ∗ implies MΓ∗ , gΓ∗ |=
[TCxyφ(x, y)](u, v). We consider the contraposition MΓ∗ , gΓ∗ 6|=
[TCxyφ(x, y)](u, v) implies [TCxyφ(x, y)](u, v) 6∈ Γ∗. So suppose
MΓ∗ , gΓ∗ 6|= [TCxyφ(x, y)](u, v) i.e. MΓ∗ , gΓ∗ |= ¬[TCxyφ(x, y)](u, v) i.e.
there exists APi

∈ AMΓ∗ such that, g(u) ∈ APi
and for all |tk|, |tl| ∈ M ,

|tk| ∈ APi
and MΓ∗ , gΓ∗ [x/|tk|, x/|tl|] |= φ implies |tl| ∈ APi

and ¬gΓ∗(v) ∈ APi

and by induction hypothesis Piu ∧ (((Pitk ∧ φ(tk, tl)) → Pitl) ∧ ¬Piv ∈ Γ∗.
And so by the same argument as the one used in the FO quantifier step of
the present induction, Piu ∧ ∀x∀y(((Pix ∧ φ(x, y)) → Piy) ∧ ¬Piv ∈ Γ∗. Now
suppose [TCxyφ(x, y)](u, v) ∈ Γ∗. Then by the TC axiom, for every monadic
predicate Pm, (Pmu ∧ ∀x∀y((Pmx ∧ φ(x, y)) → Pmy)) → Pmv ∈ Γ∗. But that
contradicts the maximal consistency of Γ∗. Then [TCxyφ(x, y)](u, v) 6∈ Γ∗ and
by maximal consistency of Γ∗, ¬[TCxyφ(x, y)](u, v) ∈ Γ∗.

Proposition 7. MΓ∗ is a FO(TC1)-Henkin structure.

Proof. By construction of Γ∗ this is immediate (we introduced a monadic predicate for
each parametrically definable subset).
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Theorem 6. Every consistent set Γ of FO(TC1) formulas is satisfiable in a FO(TC1)-
Henkin structure.

Proof. First turn Γ into a σ∗ maximal consistent set Γ∗ with FO(TC1)-Henkin witnesses in
a possibly richer signature σ∗ (with extra individual constants and monadic predicates).
Then build a σ∗ structure MΓ∗ out of this Γ∗. Then the structure MΓ∗ satisfies Γ∗ and
hence also the (subset) Γ.

A.3 The FO(LFP1)-Henkin Completeness Proof

This proof parallels the FO(TC1) one. It is a similar variation of the proofs in [6] and
[16] and the notion of FO(LFP1)-Henkin witness in Definition 21 parallels the notion of
Henkin witness in Definition 20.

Definition 21. We say that a set of FO(LFP1) formulas ∆ contains FO(LFP1) Henkin
witnesses if and only if the two following conditions hold. First, for every formula φ, if
¬∀xφ ∈ ∆, then ¬φ[x/t] ∈ ∆ for some term t and if ¬[LFPxXφ]y ∈ ∆, then ¬Py ∧
¬∃x(¬Px ∧ φ(P, x)) ∈ ∆ for some new monadic predicate P . Second, if φ ∈ ∆ and x is
a free variable of φ, then ∀x(Px↔ φ(x)) ∈ ∆ for some monadic predicates P .

Lemma 11. (FO(LFP1) Lindenbaum lemma) Let σ∗ = σ ∪ {cn | ∈ N} ∪ {Pn | n ∈ N}
with ci, Pi /∈ σ. If Γ ⊆ FORM(σ) is consistent, then there exists a maximally consistent
set Γ∗ of σ∗ formulas such that Γ ⊆ Γ∗ and Γ∗ contains FO(LFP1)-Henkin witnesses.

Proof. Let Γ be a consistent set of well formed FO(LFP1) formulas in a countable vocab-
ulary. We expand the language by adding countably many new constants and countably
many new monadic predicates. Then Γ remains consistent as a set of well formed formulas
in the new language. For every pair constituted by one formula and one FO variable of
σ∗, we adopt the following fix exhaustive enumeration:

< φ1, x1 >,< φ2, x2 >,< φ3, x3 >,< φ4, x4 >, . . .

(possible since the language is countable), where the φi are formulas and the xi are FO
variables.

• Let θ3n−2 be ¬∀xnφn → ¬φ[xn/cl], where cl is the first of the new constants neither
occurring in φn nor in θk with k < 3n− 2.

• Let θ3n−1 be ¬[LFPxXφn]xn → (¬Plxn∧¬∃x(¬Plx∧φ(Pl, x))), where Pl is the first
of the new monadic predicates neither occurring in φn nor in θk with k < 3n− 1.

• Let θ3n be ∀xn(φn ↔ Plxn), where Pl is the first of the new monadic predicates
neither occurring in φn nor in θk with k < 3n.

Call Θ the set of all the θi.

Claim 3. Γ ∪Θ is consistent

If not, then because deductions are finite, for some m ≥ 0, Γ ∪ {θ1, . . . , θm, θm+1}
is inconsistent. Take the least such m, then by the reductio ad absurdum rule, Γ ∪
{θ1, . . . , θm} ` ¬θm+1. Now there are three cases:

(1) θm+1 is of the form ¬∀xφ→ φ[x/c]

(see the MSO case for how to handle this case)
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(2) θm+1 is of the form ¬[LFPxXφ]y → (¬Py ∧ ¬∃x(¬Px ∧ φ(P, x))).

In such a case both Γ ∪ {θ1 . . . θm} ` ¬[LFPxXφ]y and Γ ∪ {θ1 . . . θm} ` ¬Py ∧
¬∃x(¬Px ∧ φ(P, x)) hold. Since P does not appear in any formula on the left,
by FO(LFP1) generalization, Γ ∪ {θ1 . . . θm} ` [LFPxXφ]y, which contradicts the
leastness of m (or the consistency of Γ if m = 0)

(3) θm+1 is of the form ∀x(φ↔ Px)

(see the FO(TC1) case for how to handle this case, just consider the FO(LFP1)
generalization rule instead of the FO(TC1) one in Lemma 8)

We then turn Γ ∪Θ into a maximal consistent set Γ∗ in the standard way.

We now define MΓ∗ and gΓ∗ as we did for MSO.

Lemma 12. (Truth lemma) For any FO(LFP1) formula φ, MΓ∗ , gΓ∗ |= φ iff φ ∈ Γ∗.

Proof. By induction on φ.
The base case follows from the definition of MΓ∗ together with the maximality of Γ∗.

Now consider the inductive step:

• Boolean connectives and FO quantifier: as in MSO

• LFP operator: we want to show that

MΓ∗ , gΓ∗ |= [LFPxXφ]y iff [LFPxXφ]y ∈ Γ

– We first show that

MΓ∗ , gΓ∗ |= [LFPxXφ]y implies [LFPxXφ]y ∈ Γ∗.

So suppose MΓ∗ , gΓ∗ |= [LFPxXφ]y i.e. for all monadic predicates Pi ∈ σ∗,
if gΓ∗(y) /∈ APi

then there exists |tk| ∈ M , such that |tk| /∈ APi
and

MΓ∗ , gΓ∗ [x/|tk|, X/APi
] |= φ i.e. for all Pi such that ¬Piy there exists

tk such that MΓ∗ , gΓ∗ |= (¬Pitk ∧ φ(tk, Pi)) and by induction hypothesis
¬Pitk ∧ φ(tk, Pi) ∈ Γ∗. And so by the same argument as the one used in the
FO quantifier step of the present induction, ¬Piy → ∃x(¬Pix ∧ φ(x, Pi)) ∈
Γ∗. Now suppose [LFPxXφ]y /∈ Γ∗ i.e. ¬[LFPxXφ]y ∈ Γ∗. Then as Γ∗

contains FO(LFP1) Henkin witnesses, there is a predicate Pm such that
¬Pmy ∧ ¬∃x(¬Pmx ∧ φ(Pm, x) ∈ Γ∗. But that contradicts the maximal con-
sistency of Γ∗. Then ¬[LFPxXφ]y 6∈ Γ∗ and by maximal consistency of Γ∗,
[LFPxXφ]y ∈ Γ∗.

– We now show that [LFPxXφ]y ∈ Γ∗ implies MΓ∗ , gΓ∗ |= [LFPxXφ]y. We
consider the contraposition

MΓ∗ , gΓ∗ 6|= implies [LFPxXφ]y 6∈ Γ∗.

So suppose MΓ∗ , gΓ∗ 6|= [LFPxXφ]y i.e. MΓ∗ , gΓ∗ |= ¬[LFPxXφ]y i.e. there
exists APi

∈ AMΓ∗ such that, g(y) /∈ APi
and for all |tk| ∈ M , |tk| ∈ APi

or MΓ∗ , gΓ∗ [x/|tk|, X/Pi] |= ¬φ and by induction hypothesis for all for all tk,
¬Piy∧(Pitk∨¬φ(Pi, tk)) ∈ Γ∗. And so by the same argument as the one used in
the FO quantifier step of the present induction, ¬Piy∧∀x(Pix∨¬φ(Pi, x)) ∈ Γ∗

i.e. (by maximal consistency) ¬Piy∧¬∃x(¬Pix∧φ(Pi, x)) ∈ Γ∗. Now suppose
[LFPxXφ]y ∈ Γ∗. Then by the LFP axiom, for every monadic predicate Pm,
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¬Pmy → ∃x(¬Pm(x) ∧ φ(x, Pm)) ∈ Γ∗. But that contradicts the maximal
consistency of Γ∗. Then [LFPxXφ]y 6∈ Γ∗ and by maximal consistency of Γ∗,
¬[LFPxXφ]y ∈ Γ∗.

Proposition 8. MΓ∗ is a FO(LFP1)-Henkin structure.

Proof. By construction of Γ∗ this is immediate (we introduced a monadic predicate for
each parametrically definable subset).

Theorem 7. Every consistent set Γ of FO(LFP1) formulas is satisfiable in MΓ∗.

Proof. First turn Γ into a FO(LFP1) maximal consistent set Γ∗ with FO(LFP1)-Henkin
witnesses in a possibly richer signature (with extra individual constants and monadic
predicates) σ∗. Then build a structure MΓ∗ out of this Γ∗. Then the structure MΓ∗

satisfies Γ∗ and hence also the (subset) Γ.

B Relativization Lemma

Lemma 13 (Relativization lemma). Let M be a Λ-Henkin-structure, g a valuation on
M, φ, ψ Λ-formulas and A = {x | M, g |= ψ}. If g(y) ∈ A for every variable y occurring
free in φ and g(Y ) ∈ M � A for every set variable Y occurring free in φ, then M, g |=
REL(φ, ψ, x) ⇔ M � A, g |= φ.

Proof. By induction on the complexity of φ. Let g be an assignment satisfying the required
conditions. Base case: φ is an atom and REL(φ, ψ, x) = φ. So M, g |= φ⇔ M � A, g |= φ
(by hypothesis, g is a suitable assignment for both models). Inductive hypothesis: the
property holds for every φ of complexity at most n. Now consider φ of complexity n+ 1.

• φ :≈ φ1∧φ2 and REL(φ1∧φ2, ψ, x) :≈ REL(φ1, ψ, x)∧REL(φ2, ψ, x). By induction
hypothesis, the property holds for φ1 and for φ2. By the semantics of ∧, it also holds
for φ1 ∧ φ2. (Similar for ∨,→,¬.)

• φ :≈ ∃yχ and REL(∃yχ) :≈ ∃y(ψ[y/x] ∧ REL(χ, ψ, x)). By inductive hypothesis,
for any node a ∈ A, M, g[a/y] |= REL(χ, ψ, x) ⇔ M � A, g[a/y] |= χ. Hence, by
the semantics of ∃ and by definition of A, M, g |= ∃y(ψ[y/x] ∧ REL(χ, ψ, x)) ⇔
M � A, g |= ∃yχ.

• φ :≈ ∃Y χ and REL(∃Y χ, ψ, x) = ∃Y ((Y x → ψ) ∧ REL(χ, ψ, x)). As every ad-
missible subset of M � A is also admissible in M (by Proposition 2) it follows
by inductive hypothesis that for any B ∈ M � A, M, g[B/Y ] |= REL(χ, ψ, x) ⇔
M � A, g[B/Y ] |= χ. Hence, by the semantics of ∃ and by definition of A,
M, g |= ∃Y ((Y x→ ψ) ∧REL(χ, ψ, x)) ⇔ M � A, g |= ∃yχ.

• φ :≈ [TCyzχ](u, v) and REL([TCyzχ](u, v), ψ, x) = [TCyzREL(χ, ψ, x) ∧ ψ[y/x] ∧
ψ[z/x]](u, v). By definition of TC, the following are equivalent:

1. M � A, g |= [TCyzχ](u, v),

2. for all B ∈ AM�A, if g(u) ∈ B and for all a, b ∈ A, a ∈ B and M �
A, g[a/y, b/z] |= χ implies b ∈ B, then g(v) ∈ B.
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By inductive hypothesis, for all a, b ∈ A, M, g[a/y, b/z] |= REL(χ, ψ, x) ⇔ M �
A, g[a/y, b/z] |= χ. Hence 2.⇔ 3.:

3. for all B ∈ AM�A, if g(u) ∈ B and for all a, b ∈ A, a ∈ B and M, g[a/y, b/z] |=
REL(χ, ψ, x) implies b ∈ B, then g(v) ∈ B,

By definition of A, 3.⇔ 4.:

4. for all B ∈ AM�A, if g(u) ∈ B and for all a, b ∈ dom(M), a ∈ B and
M, g[a/y, b/z] |= REL(χ, ψ, x)∧ψ[y/x]∧ψ[z/x] implies b ∈ B, then g(v) ∈ B,

We claim that 4.⇔ 5.:

5. for all C ∈ AM, if g(u) ∈ C and for all a, b ∈ dom(M), a ∈ C and
M, g[a/y, b/z] |= REL(χ, ψ, x)∧ψ[y/x]∧ψ[z/x] implies b ∈ C, then g(v) ∈ C,

which, by the semantics of TC, is equivalent to:

6. M, g |= [TCyzREL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x]](u, v).

It is clear that 5. ⇒ 4.. For the 4. ⇒ 5. direction, assume 4.. Take any set
C ∈ AM such that g(u) ∈ C and for all a, b ∈ dom(M), a ∈ C and M, g[a/y, b/z] |=
REL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x] implies b ∈ C. Let B = A ∩ C. By Definition
10, B ∈ AM�A. Now by our assumptions on g and by definition of A, g[a/y, b/z]
only assigns points in A. So as B = A ∩ C, g(u) ∈ B and for all a, b ∈ dom(M),
a ∈ B and M, g[a/y, b/z] |= REL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x] implies b ∈ B. So by
4., g(v) ∈ B. As B ⊆ C, it follows that g(v) ∈ C.

• φ :≈ [LFPXyχ]z and REL([LFPXyχ]z, ψ, x) :≈ [LFPXyχ ∧ ψ[y/x]]z. By definition
of LFP , the following are equivalent:

1. M � A, g |= [LFPXyχ]z,

2. for all B ∈ AM�A, if for all a ∈ A, M � A, g[a/y,B/X] |= χ implies a ∈ B, then
g(z) ∈ B.

By inductive hypothesis, for all a ∈ A, B ∈ M � A, M, g[a/y,B/X] |=
REL(χ, ψ, x) ⇔ M � A, g[a/y,B/X] |= χ. Hence 2. is equivalent to 3.:

3. for all B ∈ AM�A, if for all a ∈ A, M, g[a/y,B/X] |= REL(χ, ψ, x) implies
a ∈ B, then g(z) ∈ B,

By definition of A, 3.⇔ 4.:

4. for all B ∈ AM�A, if for all a ∈ dom(M), M, g[a/y,B/X] |= REL(χ, ψ, x) ∧
ψ[y/x] implies a ∈ B, then g(z) ∈ B,

We claim that 4.⇔ 5.:

5. for all C ∈ AM, if for all a ∈ dom(M), M, g[a/y, C/X] |= REL(χ, ψ, x)∧ψ[y/x]
implies a ∈ C, then g(z) ∈ C,

which, by the semantics of LFP , is equivalent to:

6. M, g |= [LFPXyREL(χ, ψ, x) ∧ ψ[y/x]]z.
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It is clear that 5.⇒ 4.. For the 4.⇒ 5. direction, assume 4.. Take any set C ∈ AM

such that for all a ∈ dom(M), M, g[a/y, C/X] |= REL(χ, ψ, x) ∧ ψ[y/x] implies
a ∈ C. Let B = A ∩ C. By Definition 10, B ∈ AM�A. Consider a ∈ dom(M)
such that M, g[a/y,B/X] |= REL(χ, ψ, x) ∧ ψ[y/x]. As REL(χ, ψ, x) is positive
in X and X doesn’t occur in ψ, M, g[a/y, C/X] |= REL(χ, ψ, x) ∧ ψ[y/x]. Also
by hypothesis a ∈ C. Now as M, g[a/y] |= ψ[y/x], by definition of A, a ∈ A. So
a ∈ A ∩ C, i.e, a ∈ B and since we proved it for arbitrary a ∈ dom(M), by 4.,
g(z) ∈ B. As B ⊆ C, it follows that g(z) ∈ C.

C Ehrenfeucht-Fräıssé Games on Henkin-Structures

Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. In this appendix, we survey Ehrenfeucht-Fräıssé
games for FO, MSO, FO(TC1), and FO(LFP1) which are suitable to use on Henkin struc-
tures. We also provide adequacy proofs for the MSO game and for the FO(TC1) game.

Let us first introduce basic notions connected to these games. One, rather trivial, suf-
ficient condition for Λ equivalence is the existence of an isomorphism. Clearly isomorphic
structures satisfy the same Λ-formulas. A more interesting sufficient condition for ele-
mentary equivalence is that of Duplicator having a winning strategy in all Λ Ehrenfeucht-
Fräıssé games of finite length. To define this, we first need this notion:

Definition 22 (Finite partial isomorphism). A finite partial isomorphism between struc-
tures M and N is a finite relation {(a1, b1), . . . , (an, bn)} between the domains of M and N

such that for all atomic formulas φ(x1, . . . , xn), M |= φ [a1, . . . , an] iff N |= φ [b1, . . . , bn].
Since equality statements are atomic formulas, every finite partial isomorphism is (the
graph of) a injective partial function.

We will also need the following lemma:

Lemma 14 (Finiteness lemma). Fix any set x1, . . . , xk, Xk+1, . . . , Xm. In a finite rela-
tional vocabulary, up to logical equivalence, with these free variables, there are only finitely
many Λ-formulas of quantifier depth ≤ n.

Proof. This can be shown by induction on k. In a finite relational vocabulary, with finitely
many free variables, there are only finitely many atomic formulas. Now, any Λ-formula
of quantifier depth k+1 is equivalent to a Boolean combination of atoms and formulas of
quantifier depth k prefixed by a quantifier. Applying a quantifier to equivalent formulas
preserves equivalence and the Boolean closure of a finite set of formulas remains finite,
up to logical equivalence.

Now, as we are concerned with extensions of FO, every Λ game will be defined as an
extension of the classical FO game, that we recall here:

Definition 23 (FO Ehrenfeucht-Fräıssé game). The FO Ehrenfeucht-Fräıssé game of
length n on structures M and N (notation: EF n

FO(M,N)) is as follows. There are two
players, Spoiler and Duplicator. The game has n rounds, each of which consists of a move
of Spoiler followed by a move of Duplicator. Spoiler’s moves consist of picking an element
from one of the two structures, and Duplicator’s responses consist of picking an element
in the other structure. In this way, Spoiler and Duplicator build up a finite binary relation
between the domains of the two structures: initially, the relation is empty; each round, it
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is extended with another pair. The winning conditions are as follows: if at some point of
the game the constructed binary relation is not a finite partial isomorphism, then Spoiler
wins immediately. If after each round the relation is a finite partial isomorphism, then
the game is won by Duplicator.

Theorem 8 (Adequacy (Ehrenfeucht-Fräıssé)). Assume a finite relational first-order lan-
guage. Duplicator has a winning strategy in the game EF n

FO(M,N) iff M ≡n
FO N. In

particular, Duplicator has a winning strategy in all EF-games of finite length between M

and N if and only if M ≡FO N.

Proof. The proof for the first order case is classic. We refer the reader to the proof given
by Flum and Ebbinghaus in [5].

For technical convenience in the course of inductive proofs, we extend the notion of
FO parameter by considering set parameters, i.e., instead of interpreting a set variable as
a name of the set A, we can add a new monadic predicate A to the signature. The new
predicates and the sets they name are called set parameters. (This is similar to the FO
notion which can be found in [11].) We will work with parametrized structures, i.e., the
assignment is possibly non empty at the beginning of the game, which can begin with
some “handicap” for Duplicator, which is some preliminary set of already “distinguished
objects and sets” (for distinguished objects, think, for instance, about the situation where
we would allow individual constants in the language).

C.1 Ehrenfeucht-Fräıssé Game for MSO

We define a necessary and sufficient condition for MSO equivalence by extending
Ehrenfeucht-Fräıssé games from FO to MSO. This game has already been defined in the
literature, see for instance [14]. For the sake of the induction, we will work with expanded
structures (i.e. structures considered together with partial valuations).

Definition 24 (MSO Ehrenfeucht-Fräıssé game). Consider M together with Ā ∈ Ar
M,

ā ∈ dom(M)s, N together with B̄ ∈ Ar
N, b̄ ∈ dom(N)s and r ≥ 0, s ≥ 0, n ≥ 0.

The MSO Ehrenfeucht-Fräıssé game EF n
MSO((M, Ā, ā), (N, B̄, b̄)) of length n on expanded

structures (M, Ā, ā) and (N, B̄, b̄) is defined as for the first-order case, except that each
time she chooses a structure, Spoiler can choose either an element or an admissible sub-
set of its domain. For a given Ar+1 ∈ AM chosen by Spoiler, (M, Ā, ā) is expanded
to (M, Ā, Ar+1, ā). Duplicator then responds by choosing Br+1 ∈ AN and (N, B̄, b̄) is
expanded to (N, B̄, Br+1, b̄). The game goes on with the so expanded structures. The
winning conditions are as follows: if at some point of the game ā 7→ b̄ is not a finite
partial isomorphism from (M, Ā, Ar+1) to (N, B̄, Br+1), then Spoiler wins immediately.
If after each round the relation is a finite partial isomorphism, then the game is won by
Duplicator.

Theorem 9 (Adequacy). Assume a finite relational MSO language. Given M and N,
Ā ∈ Ar

M, B̄ ∈ Ar
N, ā ∈ dom(M)s, b̄ ∈ dom(N)s and r ≥ 0, s ≥ 0, n ≥ 0, Duplicator has

a winning strategy in the game EF n
MSO((M, Ā, ā), (N, B̄, b̄)) iff (M, Ā, ā) and (N, B̄, b̄)

satisfy the same MSO formulas of quantifier depth n. In particular, Duplicator has a
winning strategy in all EFMSO-games of finite length between (M, Ā, ā) and (N, B̄, b̄) if
and only if (M, Ā, ā) and (N, B̄, b̄) satisfy the same MSO formulas.
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Proof. ⇒ From the existence of a winning strategy for Duplicator in
EF n

MSO((M, Ā, ā), (N, B̄, b̄)) to the fact that (M, Ā, ā) and (N, B̄, b̄) satisfy
the same MSO formulas of quantifier depth n.

By induction on n.

Base step: With 0 round the initial match between the distinguished objects must
have been a partial isomorphism for Duplicator to win. Thus (M, Ā, ā) and (N, B̄, b̄)
agree on all atomic formulas and on their Boolean combinations (which are precisely
the formulas of quantifiers depth 0).

Inductive step: The inductive hypothesis says that, for any two expanded MSO
structures, if Duplicator can win their comparison game over n rounds, then they
agree on all MSO formulas up to quantifier depth n. Now assume that for some
(M, Ā, ā), (N, B̄, b̄) Duplicator has a winning strategy for the game over n+1 rounds.
Consider any MSO formula φ of quantifier depth n + 1. Any such sentence should
be equivalent to a Boolean combination of atoms and formulas of the form ∃xi χ(xi)
and ∃Xi ψ(Xi), with χ(xi), ψ(Xi) of quantifier depth at most n. Thus it suffices
to show that (M, Ā, ā), (N, B̄, b̄) agree on the latter forms. They do so on atoms,
as Duplicator can certainly win over 0 rounds. So let suppose (M, Ā, ā) |= ∃Xi

ψ(Xi) (the case (M, Ā, ā) |= ∃xi χ(xi) is symmetric). Then for some Ai ∈ AM,
(M, Ā, Ai, ā) |= ψ(Xi). Now, Duplicator’s given winning strategy has a response for
whatever Spoiler might do in the n+ 1 round game. In particular, let Spoiler select
Ai in AM. Then Duplicator has a response Bi in AN such that her remaining strategy
still gives her a win in the n-round game played on (M, Ā, Ai, ā) and (N, B̄, Bi, b̄).
By the inductive hypothesis, these expanded structures agree on all formulas up to
quantifier depth n and hence also on ψ(Xi). Therefore (N, B̄, Bi, b̄) |= ψ(Xi) and
hence (N, B̄, b̄) |= ∃Xi ψ(Xi).

⇐ From the fact that (M, Ā, ā) and (N, B̄, b̄) satisfy the same MSO formulas of quanti-
fier depth n to the existence of a winning strategy for Duplicator in EF n

MSO(M,N).

Base step: Doing nothing is a strategy for Duplicator.

Inductive step: The inductive hypothesis says that, for any two expanded MSO
structures, if they agree on all MSO formulas up to quantifier depth n, then Dupli-
cator has a winning strategy in the n-round corresponding game. Now, assume that
some structures (M, Ā, ā), (N, B̄, b̄) agree on all MSO formulas of quantifier depth
n+1. We can infer that Duplicator has a winning strategy in the n+1-round game.
The first move in her strategy is as follows. Let Spoiler choose Ai ∈ AM (the case
where she rather chooses ai in dom(M) is symmetric). Now, Duplicator looks at
the set of MSO formulas of quantifier depth n+ 1 that hold of Ai in (M, Ā, ā). By
the finiteness lemma, this set is finite modulo logical equivalence, and hence, one
existential formula ∃Xi ψ(Xi) true in the structure summarizes all this information.
As (M, Ā, ā), (N, B̄, b̄) agree on all MSO formulas of quantifier depth n + 1, and
∃Xi ψ(Xi) is such a sentence, it also holds in (N, B̄, b̄). So, Duplicator can choose
a witness Bi. Then, the so expanded structures (M, Ā, Ai, ā), (N, B̄, Bi, b̄) agree
on all MSO sentences up to quantifier depth n, and by the inductive hypothesis,
Duplicator has a winning strategy in the remaining n-round game between them.
Her initial response plus the latter gives her over-all strategy over n+ 1 rounds.

Note that this proof holds for MSO with any semantics (e.g. standard, Henkin...).
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We are interested in “choice of an element” versus “quantification”, but neither the exact
domain of quantification does never play any role in our reasoning.

Corollary 3. For structures M, N and n ≥ 0, Duplicator has a winning strategy in
EF n

MSO(M,N) if and only if M ≡n
MSO N. In particular, Duplicator has a winning strategy

in all EFMSO-games of finite length between M and N if and only if M ≡MSO N.

C.2 Ehrenfeucht-Fräıssé Game for FO(TC1)

The game that we will be introducing in this section had been already mentioned in
passing by Grädel in [9] as an alternative to the game he used. We will show that it is
adequate on Henkin-structures.

Definition 25 (FO(TC1) Ehrenfeucht-Fräıssé game). In EF n
FO(TC1)

((M, ā), (N, b̄)) there

are two types of moves, ∃ (or point) moves and FO(TC1) moves. Each point move extends
an assignment {ā 7→ b̄} with elements ak ∈ dom(M), bk ∈ dom(N). Each FO(TC1) move
extends an assignment {ā 7→ b̄} with elements ak, ak+1 ∈ dom(M), bk, bk+1 ∈ dom(N).
After each move, Spoiler chooses the kind of move to be played. We assume that the
assignment {ā 7→ b̄} has to be extended. The ∃ move is defined as in the FO case. The
FO(TC1) move is as follows:

Spoiler considers two pebbles (ai, bi) and (aj, bj) on the board and depending on the
structure that he chooses to consider, he plays:

• either A ∈ AM with ai ∈ A and aj /∈ A. Duplicator then answers with B ∈ AN such
that bi ∈ B and bj /∈ B. Spoiler now picks bk ∈ B, bk+1 /∈ B and Duplicator answers
with ak ∈ A, ak+1 /∈ A.

• either B ∈ AN with bi ∈ B and bj /∈ B. Duplicator then answers with A ∈ AM

such that ai ∈ A and aj /∈ A. Spoiler now picks ak ∈ A, ak+1 /∈ A and Duplicator
answers with bk ∈ B, bk+1 /∈ B.

In each FO(TC1) move, the assignment is extended with ak 7→ bk, ak+1 7→ bk+1. After n
moves, Duplicator has won if the constructed assignment ā 7→ b̄ is a partial isomorphism
(i.e. the game continues with the two new pebbles in each structure, but the sets A and
B are forgotten).

Theorem 10 (Adequacy). Assume a finite relational FO(TC1) language. Given M and
N, ā ∈ M s, b̄ ∈ N s and r ≥ 0, s ≥ 0, n ≥ 0, Spoiler has a winning strategy in
the game EF n

FO(TC1)
((M, ā), (N, b̄)) iff there is a FO(TC1) formula of quantifier depth n

distinguishing (M, ā) and (N, b̄).

Proof.

⇒ From the existence of a winning strategy for Spoiler in EF n
FO(TC1)

((M, ā), (N, b̄)) to

the existence of a FO(TC1) formula of quantifier depth n distinguishing (M, ā) and
(N, b̄).

By induction on n.

Base step: With 0 round the initial match between distinguished objects must have
failed to be a partial isomorphism for Spoiler to win. This implies that (M, ā) and
(N, b̄) disagree on some atomic formula.
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Inductive step: The inductive hypothesis says that for any two structures, if Spoiler
can win their comparison game over n rounds, then the structures disagree on
some FO(TC1) formula of quantifier depth n. Now assume that for some structures
(M, ā), (N, b̄), Spoiler has a winning strategy for the game over n + 1 rounds. Let
us reason on Spoiler’s first move in the game. It can either be a FO(TC1) or an ∃
move.

If it is an ∃ move, then it means that Spoiler picks an element a in one of the two
structures, so that no matter what element b Duplicator picks in the other, Spoiler
has an n-round winning strategy. But then we can use the induction hypothesis, and
find for each such b a formula φb(x) that distinguishes (M, ā, a) from (N, b̄, b). In
fact we can assume that in each case the respective formula is true of (M, ā, a) and
false of (N, b̄, b) (by negating the formula if needed). Now take the big conjunction
φ(x) of all these formulas (which is equivalent to a finite formula according to the
finiteness lemma) and prefix it with an existential quantifier. Then the resulting
formula is true in (M, ā) but false in (N, b̄). It is true in (M, ā) if we pick a for the
existentially quantified variable. And no matter which element we pick in (N, b̄), it
will always falsify one of the conjuncts in the formula, by construction. So, the new
formula is false in (N, b̄). I.e., ∃xφ(x) of quantifier depth n+ 1 distinguishes (M, ā)
and (N, b̄).

If Spoiler’s first move is a FO(TC1) move, then it means that Spoiler picks a subset
in one structure, let say A ∈ AM (with ai ∈ A and aj 6∈ A), so that no matter
which B ∈ AN (with bi ∈ B and bj 6∈ B) Duplicator picks in the other structure,
Spoiler can pick bk ∈ B, bk+1 6∈ B such that no matter which ak ∈ A, ak+1 6∈
A Duplicator picks, Spoiler has an n-round winning strategy. For each B that
might be chosen by Duplicator, Spoiler’s given strategy gives a fixed couple bk, bk+1.
For each response ak, ak+1 of Duplicator, we thus obtain by inductive hypothesis
a discriminating formula φB,ak,ak+1

(x, y) that we can assume to be true in (N, b̄)
for bk, bk+1 and false in (M, ā) for ak, ak+1. Now for each B, let us take the big
conjunction ΦB(x, y) of all these formulas (which is finite, by the finiteness lemma).
We can then construct the big disjunction Φ(x, y) (again finite, by the same lemma)
of all the formulas ΦB(x, y).

Considering the first round in the game together with the inductive hypothesis,
note that it holds in (M, ā) that ∃X(ai ∈ X ∧ aj 6∈ X ∧ ∀xy((x ∈ X ∧ y 6∈ X) →
¬Φ(x, y))). Indeed, by induction hypothesis, any couple ak ∈ A, ak+1 6∈ A that
Duplicator might choose in dom(M) will always falsify at least one of the conjuncts
of each ΦB(x, y). Finally, the formula Φ(x, y) being constructed as the disjunction
of all the formulas ΦB(x, y), any such couple ak, ak+1 will also falsify Φ(x, y). Now
∃X(ai ∈ X ∧ aj 6∈ X ∧ ∀xy((x ∈ X ∧ y 6∈ X) → ¬Φ(x, y))) is equivalent5 to
∃X(ai ∈ X ∧ aj 6∈ X ∧ ¬∃xy(x ∈ X ∧ Φ(x, y) ∧ y 6∈ X)), which means that
(M, ā) 6|= [TCxyΦ(x, y)](ai, aj).

On the other hand for the same reasons, note that it holds in (N, b̄) that ∀X((bi ∈
X ∧ bj 6∈ X) → ∃xy(x ∈ X ∧ y 6∈ X ∧ Φ(x, y))). Indeed, by induction hypothesis,
for each B that Duplicator might choose in AN Spoiler will always be able to find a
couple bk ∈ B, bk+1 6∈ B satisfying all the conjuncts of the corresponding formulas
ΦB(x, y). Finally, the formula Φ(x, y) being constructed as the disjunction of all the
formulas ΦB(x, y), such a couple ak, ak+1 will also satisfy Φ(x, y). Now ∀X((bi ∈

5As ¬(p → q) ≡ p ∧ ¬q.
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X ∧ bj 6∈ X) → ∃xy(x ∈ X ∧ y 6∈ X ∧ Φ(x, y))) is equivalent6 to ∀X(bi 6∈ X ∨ bj ∈
X∨∃xy(x ∈ X∧y 6∈ X∧Φ(x, y))), which means that (N, b̄) |= [TCxyΦ(x, y)](bi, bj).

Let u be a name for the parameters ai, bi and v for bi, bj. [TCxyΦ(x, y)](u, v) of
quantifier depth n+ 1 distinguishes (N, ā) and (M, b̄).

⇐ From the existence of a FO(TC1) formula of quantifier depth n distinguish-
ing (M, ā) and (N, b̄) to the existence of a winning strategy for Spoiler in
EF n

FO+TC((M, ā), (N, b̄)).

Base step: Doing nothing is a strategy for Spoiler.

Inductive step: The inductive hypothesis says that, for any two structures, if they
disagree on some FO(TC1) formula of quantifier depth n, then Duplicator has a win-
ning strategy in the n-round game. Now, assume that some expanded structures
(M, ā), (N, b̄) disagree on some FO(TC1) formula χ of quantifier depth n + 1. Any
such formula must be equivalent to a Boolean combination of formulas of the form
∃xψ(x) and [TCxyφ(x, y)](u, v) with ψ, φ of quantifier depth at most n. If χ dis-
tinguishes the two structures, then there is at least one component of this Boolean
combination which suffices distinguishing them.

Let us first suppose that it is of the form ∃xψ(x) and such that (M, ā) |= ∃xψ(x)
whereas (N, b̄) 6|= ∃xψ(x). Then it means that there exists an object a ∈ dom(M)
such that (M, ā) |= ψ(a) whereas for every object b ∈ dom(N), (N, b̄) 6|= ψ(b). But
then we can use our induction hypothesis and find for each such b a winning strategy
for Spoiler in EF n

FO(TC1)
((M, ā, a), (N, b̄, b)). We can infer that Spoiler has a winning

strategy in EF n+1
FO(TC1)

((M, ā), (N, b̄)). His first move consists in picking the object

a in M and for each response b in N of Duplicator, the remaining of his winning
strategy is the same as in EF n

FO(TC1)
((M, ā, a), (N, b̄, b)).

Let us now suppose that [TCxyφ(x, y)](u, v) of quantifier depth n + 1 distin-
guishes the two structures such that (M, ā) |= [TCxyφ(x, y)](u, v) i.e. it holds
in (M, ā) that ∀X((ai ∈ X ∧ aj 6∈ X) → ∃xy(x ∈ X ∧ y 6∈ X ∧ φ(x, y))),
whereas (N, b̄) 6|= [TCxyφ(x, y)](u, v) i.e. it holds in (N, b̄) that ∃X(bi ∈ X ∧ bj 6∈
X ∧ ¬∃xy(x ∈ X ∧ φ(x, y) ∧ y 6∈ X)). We want to show that Spoiler has a win-
ning strategy in EF n+1

FO(TC1)
((M, ā), (N, b̄)). Let us describe her first move. She first

chooses (N, b̄) and B ∈ AN such that bi ∈ B∧bj 6∈ B∧¬∃xy(x ∈ B∧φ(x, y)∧y 6∈ B).
By definition of TC, such a set exists. Duplicator has to respond by picking a set
A in AM. Spoiler then picks ak ∈ A and ak+1 6∈ A such that (M, ā) |= φ(ak, ak+1).
This is possible because by definition of TC, for any possible choice A of Duplicator
we have ∃xy(x ∈ A∧y 6∈ A∧φ(x, y)). But that means that Duplicator is now stuck
and has to pick bk ∈ B and bk+1 6∈ B such that (N, b̄) 6|= φ(bk, bk+1). Consequently,
we have (N, b̄, bk, bk+1) 6|= φ(x, y), whereas (M, ā, ak, ak+1) |= φ(x, y). As φ(x, y)
is of quantifier depth n, by induction hypothesis, Spoiler has a winning strategy
in EF n

FO(TC1)
((M, ā, ak, ak+1), (N, b̄, bk, bk+1)). The remaining of Spoiler’s winning

strategy in EF n+1
FO(TC1)

((M, ā), (N, b̄)) (i.e. after her first move, that we already ac-

counted for) is consequently as in EF n
FO(TC1)

((M, ā, ak, ak+1), (N, b̄, bk, bk+1)).

6As p → q ≡ ¬p ∨ q.
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Corollary 4. For structures M, N and n ≥ 0, Duplicator has a winning strategy in
EF n

FO(TC1)
(M,N) if and only if M ≡n

FO(TC1)
N. In particular, Duplicator has a winning

strategy in all EFFO(TC1)-games of finite length between M and N if and only if M ≡FO(TC1)

N.

C.3 Ehrenfeucht-Fräıssé Game for FO(LFP1)

There are two classical equivalent syntactic ways to define the syntax of FO(LFP1): the one
we used in Section 1.2 and an other one, dispensing with restrictions to positive formulas,
but allowing negations only in front of atomic formulas and introducing a greatest fixpoint
operator as the dual of the least fixpoint operator (also ∀ cannot be defined using ∃ and
has to be introduced separately, similarly for the Boolean connectives). This second way
to define FO(LFP1) turns out to be more convenient to define an adequate Ehrenfeucht-
Fräıssé game. The game is suitable to use on Henkin structures because the semantics
on which it relies is merely a syntactical variant of the one given in Section 3. Now the
FO(LFP1) formulas [LFPx,Xφ(x,X)]y and [GFPx,Xφ(x,X)]y, stating that a point belongs
to the least fixpoint, or respectively, to the greatest fixpoint induced by the formula φ
satisfy the following equations:

[LFPx,Xφ(x,X)]y ↔ ∀X(¬Xy → ∃x(¬Xx ∧ φ(x,X)))
[GFPx,Xφ(x,X)]y ↔ ∃X(Xy ∧ ∀x(Xx→ φ(x,X)))

This is the key idea behind an Ehrenfeucht-Fräıssé game defined by Uwe Bosse in [2]
for least fixpoint logic LFP (i.e. where fixpoints are not only considered for monadic
operators, but for any n-ary operator). FO(LFP1) being simply the monadic fragment of
LFP, the game for LFP can be adapted to FO(LFP1) in a straightforward way:

Definition 26 (FO(LFP1) Ehrenfeucht-Fräıssé game). Let n ≥ 0, r ≥ 0, s ≥ 0. In the
game EF n

FO(LFP1)
((M, Ā, ā), (N, B̄, b̄)), there are two types of moves, point and fixpoint

moves. Each move extends an assignment ā 7→ b̄, Ā 7→ B̄ with elements as ∈ dom(M), bs ∈
dom(N), and possibly (in the case of fixpoint moves) with sets Ar ∈ AM, Br ∈ AN. After
each move, Spoiler chooses the kind of move to be played. We assume that the assignment
ā 7→ b̄, Ā 7→ B̄ has to be extended. Now the following moves are possible:

• ∃ move: Spoiler chooses as+1 ∈ dom(M) and Duplicator bs+1 ∈ dom(N).

• ∀ move: Spoiler chooses bs+1 ∈ dom(N) and Duplicator as+1 ∈ dom(M).

In each point move, the assignment is extended by as+1 7→ bs+1.

• LFP move: Spoiler chooses Br+1 ∈ AN \ {dom(N)} with some pebble bi 6∈ Br+1

and Duplicator responds with Ar+1 ∈ AM \ {dom(M)}.
Now Spoiler chooses in M a new element as+1 6∈ Ar+1 and Duplicator answers in N
with bs+1 6∈ Br+1.

• GFP move: Spoiler chooses Ar+1 ∈ AM \ {dom(M)} with some pebble ai ∈ Ar+1

and Duplicator responds with Br+1 ∈ AN \ {dom(N)} such that Br+1 6= ∅.
Now Spoiler chooses in dom(N) a new element bs+1 ∈ Br+1 and Duplicator answers
in dom(M) with as+1 ∈ Ar+1.
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In each fixpoint move the assignment is extended by Ar+1 7→ Br+1, as+1 7→ bs+1.
After n moves, Duplicator has won if the constructed element assignment ā 7→ b̄ is a

partial isomorphism and for the subset assignment Ā 7→ B̄, for any 1 ≤ j ≤ r, i ≤ s:

ai ∈ Aj implies bi ∈ Bj

We call an assignment with these properties a posimorphism.

Theorem 11 (Adequacy). Assume a finite relational FO(LFP1) language. Given M and
N, Ā ∈ Ar

M, B̄ ∈ Br
N, ā ∈ dom(M)s, b̄ ∈ dom(N)s and r ≥ 0, r ≥ 0, n ≥ 0, Duplicator has

a winning strategy in the game EF n
FO(LFP1)

((M, Ā, ā), (N, B̄, b̄)) iff (M, Ā, ā) and (N, B̄, b̄)

satisfy the same FO(LFP1) formula of quantifier depth n.

Proof. We refer the reader to Uwe Bosse [2].

D Fusion Lemmas on Henkin-Structures

Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. In this Appendix, we show our analogues of
Feferman-Vaught theorem for fusions of Λ-Henkin-structures. We refer to them as Λ-
fusion lemmas in the main part of the paper, even though they will be formally stated as
theorems or corollaries below. What we show is, more precisely, that fusion of Λ-Henkin-
structures preserve Λ-equivalence.

In order to give inductive proofs for MSO and FO(LFP1), it will be more convenient to
consider parametrized Λ-Henkin-structures where the set of set parameters is closed under
union, this notion being defined below. This is safe because whenever two parametrized
structures (M, Ā, ā) and (N, B̄, b̄) are n-Λ-equivalent, it follows trivially that M and N

considered together with a subset of this set of parameters are also n-Λ-equivalent.

Definition 27. Let A1, . . . , Ak be a finite sequence of set parameters. We define
(A1, . . . , Ak)

∪ as the finite sequence of set parameters obtained by closing the set
{A1, . . . , Ak} under union in such a way that (A1, . . . , Ak)

∪ = {
⋃

i∈I Ai|I ⊆ {1, . . . , k}}.
(We additionally assume that this set is ordered in a fixed canonical way, depending on
the index sets I.)

D.1 Fusion Lemma for MSO

Theorem 12. Whenever (Mi, Āi, āi) ≡n
MSO (Ni, B̄i, b̄i) for all 1 ≤ i ≤ k (with āi a

sequence of first-order parameters of the form ai1 , . . . , aim with m ∈ N and Āi a sequence
of set parameters of the form Ai1 , . . . , Aim′ with m′ ∈ N, similarly for the b̄i and B̄i), then

also
⊕f

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk ≡n

MSO

⊕f
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k.

Proof. We define a winning strategy for Duplicator in the game
EF n

MSO((
⊕f

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk), (

⊕f
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k))

out of her winning strategies in the games EF n
MSO((Mi, Āi, āi), (Ni, B̄i, b̄i)) by induction

on n.
Base step: n = 0, doing nothing is a strategy for Duplicator. We need to show that

(
⊕f

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk) and (

⊕f
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k) agree on
all atomic formulas. Now in the fusion structures, each atomic formula is defined by f
in terms of a σ∗-quantifier free formula that is evaluated in the corresponding disjoint
union structure. So it is enough to show that the disjoint union structures agree on all
atomic σ∗-formulas and on their Boolean combinations. The initial match between the
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distinguished objects in (Mi, Āi, āi) and (Ni, B̄i, b̄i) is a partial isomorphism for every
1 ≤ i ≤ k, so it is also one for

⊎
1≤i≤k Mi, ā1, . . . , āk and

⊎
1≤i≤k Ni, b̄1, . . . , b̄k i.e. the

two disjoint union structures extended with FO parameters agree on all σ∗-atomic formu-
las. We still need to show that it is also one for

⊎
1≤i≤k Mi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk and⊎
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k i.e. the two disjoint union structures extended with FO
parameters and the closure under union of set parameters agree on all σ∗-atomic formulas.
It is enough to point that for any parameter aij , for any I ⊆ {i1, . . . , im′ , . . . , k1, km′} by
construction of

⋃
i∈I Ai in (Ā1, . . . , Āk)

∪, the following are equivalent:

•
⊎

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk |=

⋃
i∈I Aiaij ,

•
⊎

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, Ail , ā1, . . . , āk |= Ailaij for some il in I.

Similarly for any parameter bij , by construction of
⋃

i∈I Bi in (B̄1, . . . , B̄k)
∪, the following

are equivalent:

•
⊎

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k |=

⋃
i∈I Bibij ,

•
⊎

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, Bil , b̄1, . . . , b̄k |= Bilbij for some il in I.

But by Duplicator’s winning strategy in the small structure games, we know that the
following are equivalent:

•
⊎

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, Ail , ā1, . . . , āk |= Ailaij for some il in I.

•
⊎

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, Bil , b̄1, . . . , b̄k |= Bilbij for some il in I.

So the following are also equivalent:

•
⊎

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk |=

⋃
i∈I Aiaij ,

•
⊎

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k |=

⋃
i∈I Bibij ,

So the two extended disjoint union structures agree on all σ∗-atomic formulas. Now relying
on the semantics of Boolean connectives, it can be shown by induction on the complexity
of quantifier free sentences that they also agree on all Boolean combinations of atomic
σ∗-sentences.

Inductive step: the inductive hypothesis says that whenever Duplicator has a win-
ning strategy in EF n

MSO((Mi, Āi, āi), (Ni, B̄i, b̄i)) for all 1 ≤ i ≤ k, he also has one
in EF n

MSO((
⊕f

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk), (

⊕f
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k)).
We want to show that this also holds when the length of the games is n + 1.
Suppose Duplicator has a winning strategy in EF n+1

MSO((Mi, Āi, āi), (Ni, B̄i, b̄i)) for
all 1 ≤ i ≤ k. We describe Duplicator’s answer to Spoiler’s first move in
EF n+1

MSO((
⊕f

1≤i≤k Mi, Ā1, . . . , Āk, ā1, . . . , āk), (
⊕f

1≤i≤k Ni, B̄1, . . . , B̄k, b̄1, . . . , b̄k)). It then
follows by induction hypothesis, that he has a winning strategy in the remaining n-length
game.

• Spoiler’s first move is a point move. Suppose Spoiler picks a in
⊕f

1≤i≤k Mi.
Then a ∈ dom(Mi) for some 1 ≤ i ≤ k. So Duplicator uses his win-
ning strategy in EF n+1

MSO((Mi, Āi, āi), (Ni, B̄i, b̄i)) to pick b ∈ dom(Ni), so
that he still has a winning strategy in EF n

MSO((Mi, Āi, āi, a), (Ni, B̄i, b̄i, b)).
By induction hypothesis he also has one in the remaining n-length game
EF n

MSO((
⊕f

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk, a), (

⊕f
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k, b)).
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• Spoiler’s first move is a set move. Suppose Spoiler chooses a set A in the
set of admissible subsets of

⊕f
1≤i≤k Mi. Then A is necessarily of the form

A1 ∪ . . . ∪ Ak, with Ai an admissible subset of Mi. We now define locally his
response B = B1 ∪ . . . ∪Bk, using his winning strategies in the small structures, so
that he still has a winning strategy in EF n

MSO((Mi, Āi, Ai, āi), (Ni, B̄i, Bi, b̄i)) for all
1 ≤ i ≤ k. By induction hypothesis, he also has one in the remaining n length game
EF n

MSO((
⊕f

1≤i≤k Mi, (Ā1, A1, . . . , Āk, Ak)
∪, ā1, . . . , āk), (

⊕f
1≤i≤k Ni, (B̄1, B1, . . . , B̄k, Bk)

∪, b̄1, . . . , b̄k)).

(Note that this is enough, because A ∈ (Ā1, A1, . . . , Āk, Ak)
∪.)

Now an analogue of this result for disjoint unions can easily be derived as a corollary
of Theorem 12. For the convenience of the reader, we provide here the detailed argument:

Corollary 5. Whenever (Mi, Āi, āi) ≡n
MSO (Ni, B̄i, b̄i) for all 1 ≤ i ≤ k (with āi a

sequence of first-order parameters of the form ai1 , . . . , aim with m ∈ N and Āi a sequence
of set parameters of the form Ai1 , . . . , Aim′ with m′ ∈ N, similarly for the b̄i and B̄i), then
also

⊎
1≤i≤k Mi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk ≡n
MSO

⊎
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k.

Proof. Let (Mi, Āi, āi) ≡n
MSO (Ni, B̄i, b̄i) for all 1 ≤ i ≤ k (with āi a sequence of first-order

parameters of the form ai1 , . . . , aim with m ∈ N and Āi a sequence of set parameters of
the form Ai1 , . . . , Aim′ with m′ ∈ N, similarly for the b̄i and B̄i).

Now consider the following expansions M′
i and N′

i of the σ structures Mi and Ni to
σ∗ = σ∪{Q1, . . . , Qk}: the interpretation of Qj is empty in M′

i (respectively N′
i) whenever

i 6= j and it is the domain of M′
i (respectively N′

i) whenever i = j.
Clearly (M′

i, Āi, āi) ≡n
MSO (N′

i, B̄i, b̄i) for all 1 ≤ i ≤ k.
Now consider a mapping f such that for every n-ary predicate P ∈ σ∗, f(P ) =

Px1 . . . xn. By Theorem 12 we have that
⊕f

1≤i≤k M′
i, (Ā1, . . . , Āk)

∪, ā1, . . . , āk ≡n
MSO⊕f

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k.

Corollary 5 follows because
⊕f

1≤i≤k M′
i, (Ā1, . . . , Āk)

∪, ā1, . . . , āk and⊕f
1≤i≤k Ni, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k are isomorphic to
⊎

1≤i≤k Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk

and
⊎

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k respectively.

An other important corollary of Theorem 12 is the fact that fusions of MSO-Henkin
structures are also MSO-Henkin structures. Let us the stress the importance of this fact,
which is needed for the correcteness of our main completeness argument.

Corollary 6. ALf
1≤i≤k Mi

is closed under MSO parametric definability and so
⊕f

1≤i≤k Mi

is a MSO-Henkin structure.

Proof. First note that the following are equivalent:

• A is MSO parametrically definable in M,

• there is a finite sequence of parameters ā, Ā such that A is defined by a MSO formula
φ of quantifier depth n using ā, Ā,

• for any two points a and a′ in dom(M), if they are MSO n-indistinguishable using
ā, Ā, then a ∈ A iff a′ ∈ A.
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Now suppose there is A ⊆ dom(
⊕f

1≤i≤k Mi) MSO parametrically definable in
⊕f

1≤i≤k Mi

using ā′, Ā′, but A /∈ ALf
1≤i≤k Mi

. So it means that for some 1 ≤ i ≤ k, Ai =

A ∩ dom(Mi) is not MSO parametrically definable in Mi i.e. there are two MSO para-
metrically indistinguishable points a ∈ A, a′ /∈ A. So for all n, for all sequence of
parameters ā, Ā in Mi, (Mi, ā, Ā, a) ≡n

FO(TC1)
(Mi, ā, Ā, a

′) and by the fusion lemma,7⊕f
1≤i≤k Mi, ā, Ā, ā′, Ā′, a ≡n

FO(TC1)

⊕f
1≤i≤k Mi, ā, Ā, ā′, Ā′, a

′. But this entails that A is

not MSO parametrically definable using ā′, Ā′ in
⊕f

1≤i≤k Mi.

Corollary 7. AU
1≤i≤k Mi

is closed under MSO parametric definability and so
⊎

1≤i≤k Mi

is a MSO-Henkin structure.

Proof. Analoguous to the proof of Corollary 6 (because ALf
1≤i≤k Mi

= AU
1≤i≤k Mi

).

D.2 Fusion Lemma for FO(TC1)

As TC moves can only be played when there are already two pebbles on the board, it
is more convenient to show first a version of our FO(TC1) fusion lemma in which each
small structure comes with at least two parameters. This allows us to define Duplicator’s
answer to a TC move played in a big structure, by means of his winning strategies in the
corresponding small structures. We then derive as a corollary the fusion lemma for non
parametrized structures.

Theorem 13. Whenever (Mi, āi) ≡n
FO(TC1)

(Ni, b̄i) for all 1 ≤ i ≤ k (with āi a sequence

of distinct parameters of the form ai1 , . . . , aim with m ∈ N and m ≥ 2, similarly for the
b̄i), then also

⊕f
1≤i≤k Mi, ā1, . . . , āk ≡n

FO(TC1)

⊕f
1≤i≤k Ni, b̄1, . . . , b̄k. As a special case, in

the case of single point structures (structures which domain contains only one point), we
allow the parameters to be non distinct objects.

Proof. We define a winning strategy for Duplicator in the game
EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk), (

⊕f
1≤i≤k Ni, b̄1, . . . , b̄k)) out of her winning strategies

in the games EF n
FO(TC1)

((Mi, āi), (Ni, b̄i)) by induction on n.

Base step: n = 0, doing nothing is a strategy for Duplicator. We need to show that
the

⊕f
1≤i≤k Mi, ā1, . . . , āk and

⊕f
1≤i≤k Ni, b̄1, . . . , b̄k agree on all atomic formulas. Now

in the fusion structures, each atomic formula is defined by f in terms of a σ∗-quantifier
free formula that is evaluated in the corresponding disjoint union structure. So it is
enough to show that the disjoint union structures agree on all atomic σ∗-formulas and
on their Boolean combinations. The initial match between the distinguished objects in
(Mi, āi) and (Ni, b̄i) is a partial isomorphism for every 1 ≤ i ≤ k, so it is also one for⊎

1≤i≤k Mi, ā1, . . . , āk and
⊎

1≤i≤k Ni, b̄1, . . . , b̄k i.e. the two disjoint union structures agree
on all σ∗-atomic formulas. Now relying on the semantics of Boolean connectives, it can
be shown by induction on the complexity of quantifier free sentences that they also agree
on all Boolean combinations of atomic σ∗-sentences.

Inductive step: the inductive hypothesis says that whenever Duplicator has a
winning strategy in EF n

FO(TC1)
((Mi, āi), (Ni, b̄i)) for some (Mi, āi), (Ni, b̄i) satisfying

the required conditions on parameters and 1 ≤ i ≤ k, he also has one in
EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk), (

⊕f
1≤i≤k Ni, b̄1, . . . , b̄k)).

7There is no need to consider the case where ā′, Ā′ is empty, because if a set is parametrically definable
using no parameter, it is also definable using parameters.
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We want to show that this also holds when the length of the game is n +
1. Suppose Duplicator has a winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) for

all 1 ≤ i ≤ k. We describe Duplicator’s answer to Spoiler’s first move in
EF n+1

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk), (

⊕f
1≤i≤k Ni, b̄1, . . . , b̄k)). It then follows by induction

hypothesis, that he has a winning strategy in the remaining n-length game.

• Spoiler’s first move is an ∃ move. Suppose Spoiler chooses a point
a ∈ dom(

⊕f
1≤i≤k Mi), then a ∈ dom(Mi) for some 1 ≤ i ≤ k.

So Duplicator can use his winning strategy in EF n
FO(TC1)

((Mi, āi), (Ni, b̄i))

and pick a corresponding point b in the other structure. Now he
still has a winning strategy in EF n

FO(TC1)
((Mi, āi, a), (Ni, b̄i, b)). So by in-

duction hypothesis he also has one in the remaining n length game
EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk, a), (

⊕f
1≤i≤k Ni, b̄1, . . . , b̄k, b)).

• Spoiler’s first move is a TC move. Suppose Spoiler chooses a set A in the set of
admissible subsets of

⊕f
1≤i≤k Mi. Then A is necessarily of the form A1∪. . .∪Ak, with

Ai an admissible subset (possibly empty) of Mi. Her response B = B1 ∪ . . . ∪ Bk

can now be defined locally for each Bi using her winning strategies in the small
structures. So let Spoiler choose A = A1 ∪ . . .∪Ak. Keeping in mind that each non
single point small structure comes with at least two distinct parameters, there are
four cases:

a) in dom(Mi), there is a distinguished object inside, but also outside Ai, so
Duplicator considers Ai together with these two parameters and constructs Bi

by using his winning strategy in EF n+1
FO(TC1)

((Mi, āi), (Ni, b̄i)).

b) in dom(Mi), there are only distinguished objects inside Ai
8, so Duplicator

considers any one of these distinguished objects, let say aj and looks at Ai\{aj}
together with some parameter inside Ai, so that he can use his winning strategy
in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) to construct an answer that we call B′

i. Now

Bi = B′
i ∪ {bj};

c) in dom(Mi), there are only distinguished objects outside Ai,
9 so Duplicator

similarly considers some distinguished object aj and looks at Ai∪{aj} together
with some other parameter outside Ai, so that he can use his winning strategy
in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) to construct an answer that we call B′

i. Now

Bi = B′
i\{bj};

d) Mi is a single point structure, then Bi = ∅ if Ai = ∅ and Bi = dom(Mi) if
Ai = dom(Ni).

Once B = B1 ∪ . . . ∪ Bk has been constructed, Spoiler picks two points b ∈ B and
b′ /∈ B. There are two cases:

1. b and b′ belong to the domain of one and the same small structure Ni ; now
dom(Mi) is as previously described in a), b), c) (but not d), because two distinct
points cannot belong to one and the same single point structure) and in each
case Duplicator does the following:

8Note that as a special case we may have Ai = dom(Mi).
9Note that as a special case we may have Ai = ∅.
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a) Duplicator answers with a, a′ according to his winning strat-
egy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)), so that he still has a win-

ning strategy in EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′)). By induc-

tion hypothesis he also has one in the remaining n length game
EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk, a, a

′), (
⊕f

1≤i≤k Ni, b̄1, . . . , b̄k, b, b
′));

b) suppose first that b′ 6= bj, so Duplicator considers Ai\{aj} together with aj

and with some other parameter inside this set and uses his winning strategy
in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) to pick corresponding a, a′ in Mi, so that

he still has a winning strategy in EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′)).

By induction hypothesis he also has one in the remaining n length game
EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk, a, a

′), (
⊕f

1≤i≤k Ni, b̄1, . . . , b̄k, b, b
′))

; otherwise b = bj, then a = aj because the parameter aj

already matches b i.e. Duplicator has a winning strategy in
EF n+1

FO(TC1)
((Mi, āi, a), (Ni, b̄i, b)), so Duplicator uses his winning strategy

in EF n+1
FO(TC1)

((Mi, āi, a), (Ni, b̄i, b)) to pick a′, answering as if it was

a point move (i.e a′ has to be n-equivalent to b′), so that he still
has a winning strategy in EF n

FO(TC1)
((Mi, āi, a, a

′), (Ni, b̄i, b, b
′)). By

induction hypothesis he also has one in the remaining n length game
EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk, a, a

′), (
⊕f

1≤i≤k Ni, b̄1, . . . , b̄k, b, b
′)).

Now there is some additional condition a′ /∈ Ai that Duplicator shall also
maintain in order to respect the rules of the game. But there has to
be an n-equivalent point to b′ which is outside Ai. Indeed, instead of b,
Spoiler could have picked any other point b∗ ∈ Bi together with b′ /∈ Bi

and Duplicator’s winning strategy would have provided a correct answer
a∗ ∈ Ai, a

′ /∈ Ai, which means that Duplicator would have found some a′

point which is at least n-equivalent to b′ and outside Ai (because if Du-
plicator has a winning strategy in EF n

FO(TC1)
((Mi, āi, a

∗, a′), (Ni, b̄i, b
∗, b′))

then he also has one in EF n
FO(TC1)

((Mi, āi, a
′), (Ni, b̄i, b

′)) and hence in

EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′))).

c) suppose first that b 6= bj, so Duplicator considers Ai ∪ {aj} to-
gether with aj and with some other parameter outside this set and
uses his winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)), so that he

still has a winning strategy in EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′)).

By induction hypothesis he also has one in the remaining n length
game EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk, a, a

′), (
⊕f

1≤i≤k Ni, b̄1, . . . , b̄k, b, b
′))

; otherwise b′ = bj, then a′ = aj because the parameter aj

already matches b′ i.e. Duplicator has a winning strategy in
EF n+1

FO(TC1)
((Mi, āi, a

′), (Ni, b̄i, b
′)), so we can show by a similar argument

as the one used in the above item, that he can use his winning strat-
egy in EF n+1

FO(TC1)
((Mi, āi, a

′), (Ni, b̄i, b
′)) to pick a ∈ Ai, so that he still

has a winning strategy in EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′)). By in-

duction hypothesis he also has one in the remaining n length game
EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk, a, a

′), (
⊕f

1≤i≤k Ni, b̄1, . . . , b̄k, b, b
′)).

2. otherwise b ∈ dom(Ni, b̄i) and b′ ∈ dom(Nj, b̄j) with i 6= j; we can again
use a similar argument to show that Duplicator can use his winning strat-
egy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) and EF n+1

FO(TC1)
((Mj, āj), (Nj, b̄j)) to pick
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a, a′ in the right side of the structure (i.e. inside or outside Ai), so
that he still has a winning strategy in EF n

FO(TC1)
((Mi, āi, a), (Ni, b̄i, b)) and

EF n
FO(TC1)

((Mj, āj, a
′), (Nj, b̄j, b

′)) (in the special case where for instance, Mj

is a single point structure, Duplicator picks the only available point in the other
structure). By induction hypothesis he also has one in the remaining n length
game EF n

FO(TC1)
((

⊕f
1≤i≤k Mi, ā1, . . . , āk, a, a

′), (
⊕f

1≤i≤k Ni, b̄1, . . . , b̄k, b, b
′)).

We now show a corollary of the preceding lemma, in which the small structure do not
come with any distinguished objects:

Corollary 8. Whenever Mi ≡n
FO(TC1)

Ni for all 1 ≤ i ≤ k, then also
⊕f

1≤i≤k Mi ≡n
FO(TC1)⊕f

1≤i≤k Ni.

Proof. We know that Spoiler’s first two moves in EF n+1
FO(TC1)

(
⊕f

1≤i≤k Mi,
⊕f

1≤i≤k Ni)

must be quantifier moves, because the TC move can only be played once there are
two pebbles on the board. Let us look at the first move. Suppose Spoiler plays a
point a ∈ dom(

⊕f
1≤i≤k Mi). So a ∈ dom(Mi) for some 1 ≤ i ≤ k. By Duplica-

tor’s winning strategy in EF n
FO(TC1)

(Mi,Ni), he has an answer b ∈ dom(Ni) such that

(Mi, a) ≡n
FO(TC1)

(Ni, b). Let us rename a with ai1 and b with bi1 . Similarly, for ev-

ery j 6= i such that 1 ≤ j ≤ k, fix some random point aj1 coming from the domain
of Mj, Spoiler could have played this point and so Duplicator would have had an ad-
equate answer bj1 such that (Mj, aj1) ≡n

FO(TC1)
(Nj, bj1). Now for the second round

in the game, some point a′ = al2 or b′ = bl2 coming from the domain of respectively
Ml or Nl will be played by Spoiler and Duplicator will be able to answer so that
(Ml, al1 , al2) ≡n−2

FO(TC1)
(Nl, bl1 , bl2). Similarly, for each Mj such that j 6= l, we can find

points such that (Mj, aj1 , aj2) ≡n−2
FO(TC1)

(Ni, bj1 , bj2). Now as for all 1 ≤ i ≤ k, Duplicator

has a winning strategy in EF n−2
FO(TC1)

((Mi, ai1 , ai2), (Ni, bi1 , bi2)), by the previous lemma, he

has one in EF n−2
FO(TC1)

(
⊕f

1≤i≤k Mi, a11 , a12 , . . . , ak1 , ak2), (
⊕f

1≤i≤k Ni, b11 , b12 , . . . , bk1 , bk2)),

so he also has one in EF n−2
FO(TC1)

(
⊕f

1≤i≤k Mi, a, a
′), (

⊕f
1≤i≤k Ni, b, b

′)).

Corollary 9. Whenever Mi ≡n
FO(TC1)

Ni for all 1 ≤ i ≤ k, then also
⊎

1≤i≤k Mi ≡n
FO(TC1)⊎

1≤i≤k Ni.

Proof. Analoguous to the proof of Corollary 5.

Corollary 10. ALf
1≤i≤k Mi

is closed under FO(TC1) parametric definability and so⊕f
1≤i≤k Mi is a FO(TC1)-Henkin structure.

Proof. Analoguous to the proof of Corollary 6.

Corollary 11. AU
1≤i≤k Mi

is closed under FO(TC1) parametric definability and so⊎
1≤i≤k Mi is a FO(TC1)-Henkin structure.

Proof. Analoguous to the proof of Corollary 7.
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D.3 Fusion Lemma for FO(LFP1)

The situation parallels the FO(TC1) case. As LFP moves can only be played when
there is already one pebble on the board, it is more convenient to show first a version
of our FO(LFP1) fusion lemma in which each small structure comes with at least one FO
parameter. This allows us to define Duplicator’s answer to a LFP move played in the big
structure, by means of his winning strategies in the small structures. We then derive as
a corollary the fusion lemma for non parametrized structures.

Theorem 14. Whenever (Mi, Āi, āi) ≡n
FO(LFP1)

(Ni, B̄i, b̄i) for all 1 ≤ i ≤ k

(with āi a non empty sequence of parameters of the form ai1 , . . . , aim with m ≥
0, similarly for the b̄i), then also

⊕f
1≤i≤k Mi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk ≡n
FO(LFP1)⊕f

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k.

Proof. We define a winning strategy for Duplicator in the game
EF n

FO(LFP1)
((

⊕f
1≤i≤k Mi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk), (
⊕f

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k))

out of her winning strategies in the games EF n
FO(LFP1)

((Mi, Āi, āi), (Ni, B̄i, b̄i)) by

induction on n.
Base step: n = 0, doing nothing is a strategy for Duplicator (this can be justified by

a similar argument as in the MSO case).
Inductive step: the inductive hypothesis says that whenever Duplicator has a

winning strategy in EF n
FO(LFP1)

((Mi, Āi, āi), (Ni, B̄i, b̄i)) for some (Mi, Āi, āi), (Ni, B̄i, b̄i)

satisfying the required conditions on parameters and 1 ≤ i ≤ k, he also has one in
EF n

FO(LFP1)
((

⊕f
1≤i≤k Mi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk), (
⊕f

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k)).

We want to show that this also holds when the length of the games is n + 1.
Suppose Duplicator has a winning strategy in EF n+1

FO(LFP1)
((Mi, Āi, āi), (Ni, B̄i, b̄i))

for all 1 ≤ i ≤ k. We describe Duplicator’s answer to Spoiler’s first move in
EF n+1

FO(LFP1)
((

⊕f
1≤i≤k Mi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk), (
⊕f

1≤i≤k Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k)).

It then follows by induction hypothesis, that he has a winning strategy in the remaining
n-length game.

• Spoiler’s first move is an ∃ move.

Same argument as for MSO and FO(TC1).

• Spoiler’s first move is a ∀ move.

Symmetric.

• Spoiler’s first move is a GFP move.

Suppose Spoiler chooses a set A in the set of admissible subsets of
⊕f

1≤i≤k Mi with
some pebble aij ∈ A. Then A is necessarily of the form A1 ∪ . . . ∪ Ak, with Ai an
admissible subset of Mi. Her response B = B1∪ . . .∪Bk can now be defined locally
for each Bi using her winning strategies in the small structures. So let Spoiler choose
A = A1 ∪ . . . ∪ Ak. Keeping in mind that each small structure comes with at least
one parameter, there are four cases:

1) in dom(Mi), there is a distinguished object inside Ai and Ai 6= dom(Mi), so
Duplicator considers Ai together with this parameter and constructs Bi by
using his winning strategy in EF n+1

FO(LFP1)
((Mi, Āi, āi), (Ni, B̄i, b̄i)).
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2) in dom(Mi), there are only distinguished objects outside Ai and Ai 6=
∅, so Duplicator considers any one of these distinguished objects, let say
aj and looks at Ai ∪ {aj}, so that he can use his winning strategy in
EF n+1

FO(LFP1)
((Mi, Āi, āi), (Ni, B̄i, b̄i)) to construct an answer that we call B′

i.

Now Bi = B′
i\{bj}. This is a correct answer, because the (posimorphism)

condition to be maintained is that for every pebble al on the board at the
end of the game, al ∈ Ai ⇒ bl ∈ Bi. But by Duplicator’s winning strategy
in EF n+1

FO(LFP1)
((Mi, Āi, Ai ∪ {aj}, āi), (Ni, B̄i, B

′
i, b̄i)), we know already that for

every such pebble, al ∈ Ai ∪ {aj} ⇒ bl ∈ B′
i, so also al ∈ Ai ⇒ bl ∈ B′

i\{bj}.
3) Bi = dom(Mi). So Ai = dom(Ni). As pebbles are only chosen using Dupli-

cator’s winning strategies in the small structures, the posimorphism condition
will be maintained.

4) Bi = ∅. So Ai = ∅. As no pebble can belong to this set, the posimorphism
condition will be maintained.

Now that B = B1 ∪ . . . ∪ Bk has been constructed, Spoiler picks a new element
b ∈ B which belongs to the domain of one particular small structure Ni (so b ∈ Bi)
and dom(Mi) is as previously described either in 1), 2) or 3) (but not 4), because b
cannot belong to the empty set) and in each case Duplicator does the following:

1) Duplicator answers with a according to his winning strategy in
EF n+1

FO(LFP1)
((Mi, Āi, āi), (Ni, B̄i, b̄i));

2) Duplicator again considers Ai∪{aj} and answers according to his winning strat-
egy in EF n+1

FO(LFP1)
((Mi, Āi, Ai ∪ {aj}, āi), (Ni, B̄i, B

′
i, b̄i)). This is safe, because

the pebble to be chosen has to be fresh, so it won’t be aj;

3) Duplicator picks some random pebble aj in dom(Mi) and considers
dom(Mi)\{aj}. His winning strategy provides him with a correct answer.

So in any case (either 1), 2) or 3)), Duplicator has a winning strat-
egy in EF n

FO(LFP1)
((Mi, Āi, Ai, āi, a), (Ni, B̄i, Bi, b̄i, b)). Now for all j 6= i,

1 ≤ j ≤ k, he also has one in EF n
FO(LFP1)

((Mj, Āj, Aj, āj), (Nj, B̄j, Bj, b̄j)).

So by induction hypothesis, he has one in the remaining n length game
EF n

FO(LFP1)
((

⊕f
1≤i≤k Mi, (Ā1, A1, . . . , Āk, Ak)

∪, ā1, . . . , āk, a),

(
⊕f

1≤i≤k Ni, (B̄1, B1, . . . , B̄k, Bk)
∪, b̄1, . . . , b̄k, b)).

• Spoiler’s first move is a LFP move.

Symmetric.

Corollary 12. Whenever Mi ≡n
FO(LFP1)

Ni for all 1 ≤ i ≤ k, then also⊕f
1≤i≤k Mi ≡n

FO(LFP1)

⊕f
1≤i≤k Ni.

Proof. We know that Spoiler’s first move in EF n+1
FO(LFP1)

(
⊕f

1≤i≤k Mi,
⊕f

1≤i≤k Ni) must

be a FO quantifier move, because the LFP move can only be played once there is a
pebble on the board. Let us look at the first move. Suppose Spoiler plays a point
a ∈ dom(

⊕f
1≤i≤k Mi). So a ∈ dom(Mi) for some 1 ≤ i ≤ k. By Duplicator’s

winning strategy in EF n
FO(LFP1)

(Mi,Ni), he has an answer b ∈ dom(Ni) such that
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(Mi, a) ≡n
FO(LFP1)

(Ni, b). Let us rename a with ai and b with bi. Similarly, for every

j 6= i such that 1 ≤ j ≤ k, fix some random point aj coming from the domain of Mj,
Spoiler could have played this point and so Duplicator would have had an adequate an-
swer bj such that (Mj, aj) ≡n

FO(LFP1)
(Nj, bj). Now as for all 1 ≤ i ≤ k, Duplicator

has a winning strategy in EF n−1
FO(LFP1)

((Mi, ai), (Ni, bi)), by the previous lemma, he has

one in EF n−1
FO(LFP1)

(
⊕f

1≤i≤k Mi, a1, . . . , ak), (
⊕f

1≤i≤k Ni, b1, . . . , bk)), so he also has one in

EF n−1
FO(LFP1)

(
⊕f

1≤i≤k Mi, a), (
⊕f

1≤i≤k Ni, b)).

Corollary 13. Whenever Mi ≡n
FO(LFP1)

Ni for all 1 ≤ i ≤ k, then also⊎
1≤i≤k Mi ≡n

FO(LFP1)

⊎
1≤i≤k Ni.

Proof. Analoguous to the proof of Corollary 5.

Corollary 14. ALf
1≤i≤k

is closed under FO(LFP1) parametric definability and so⊕f
1≤i≤k Mi is a FO(LFP1)-Henkin structure.

Proof. Analoguous to the proof of Corollary 6.

Corollary 15. AU
1≤i≤k Mi

is closed under FO(LFP1) parametric definability and so⊎
1≤i≤k Mi is a FO(LFP1)-Henkin structure.

Proof. Analoguous to the proof of Corollary 7.
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