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Abstract. In the line of some earlier work done on belief dynamics, we
propose an abstract model of belief propagation on a graph based on
the methodology of the revision theory of truth. A modal language is
developed for portraying the behavior of this model, and its expressive-
ness is discussed. We compare the proposal of this model as well as the
language developed with some of the existing frameworks for modelling
communication situations.

1 Introduction

Self-reference is a very tricky and complicated issue in logic. Ordinary proposi-
tional logic formulas can be expressed by trees, whereas there we have to resort
to cyclic graphs ([4] provides a detailed discussion on this issue). In both cases,
truth propagates backwards along the edges of the finite trees or graphs. While
this flow of truth stops in case of finite trees, giving a resultant truth value, it
goes into a loop in case of cyclic graphs. For example, consider the liar statement:
This sentence is false. Graphically, it can be represented as,
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Gaifman Pointer semantics [11,12] and the revision theory of truth developed
by Herzberger, Gupta and Belnap [17,18] provide semantics for sets of sentences
with self-reference by looking at stable patterns among the truth values of the
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sentences in the set. Under these semantics, the value of the liar sentence never
becomes stable since it oscillates between 1 and 0. On the other hand, for the
nested liars sentences,

The next sentence is false,
the previous sentence is false.

which can be represented by the graph,
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there are two assignments, 1,0 and 0,1, that generate stable patterns under
subsequent revisions of truth values. The main features of this revision theory
are the backward propagation of truth values along the edges (which correspond
to the “revisions”), and the recognition of stable patterns.

In [15], the authors provide a formal model of real life communication situa-
tions using graphs where both forward and backward propagation of values along
edges are considered. In this case, the propagation represents the way the beliefs
of a reasoning agent flows. This reasoning agent (also called the observer) wants
to decide whether to believe or disbelieve certain facts, and her only available
information is opinions of other agents about those facts. The situation becomes
more interesting when the individual agents also have opinions about each other.
The observer has some initial beliefs about the agents and facts; those beliefs
are revised against the other information.

In the proposed framework, the Assertion Network Semantics, the observer’s
information is represented as a directed labelled graph with nodes corresponding
to agents or facts and edges corresponding to opinions. The observer’s beliefs are
represented by values assigned to the nodes; these values are iteratively updated
through an iteration function that represents the step-by-step revising/merging
process. A belief semantics via stability is defined while keeping the spirit of
revision semantics mentioned earlier.

The set of belief-values considered in [15] while providing a concrete model for
such communication situations is infinite, viz. a closed interval of real numbers.
A continuous set of such values gives rise to certain difficulties, eg. segregating
those values in terms of their interpretation, as well as studying their inter-
dependence, which forms the basic focus of our approach, given the situations
we intend to model.

With a goal towards overcoming such difficulties and facilitate the formal
modelling of such communication situations, in the present work we consider a
finite set of belief-values. Such finite sets play a significant role in the better
understanding of the underlying subtleties of the mutually conflicting opinions
of the agents involved. To provide a sound formal foundation to our proposed
model, we propose a logical language to describe the revision process it carries
out. Instead of just describing the outcome of the whole process, which has been
the general tradition of the logical approaches, we channel our interests in the
small-step dynamics of such situations, resembling the connectionist viewpoint.
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In line with the proposals for describing the underlying process in connection-
ist approaches to reasoning, revising current states of beliefs as well as merging
information and beliefs [2,3,7,23], we are interested in how the observer uses the
information she currently has so as to reach a state of mind in which she finally
has firm beliefs about the agents and the facts involved. It should be mentioned
here that one of the main drawbacks of these connectionist approaches is the dif-
ficulty to provide an explanation of the underlying reasoning mechanism, that
is, the difficulty to provide a logical description of the process. Some attempts
have been made to overcome it in [7]. Also, [2,3,23] provide some interesting links
between non-monotonic reasoning and the underlying propagation mechanism
in their neural network models.

The main significance of this work lies in the fact that, though our model of
communication situations follow the connectionist framework, we have been able
to provide a logical framework also so as to give a strong formal foundation to
the proposed model. As has been pointed out by the authors in [15], the search
for an iteration function (the revision function which form an integral part of
the model) that conforms to our intuitions is largely an empirical question. Still,
we can impose certain basic restrictions on what this function should satisfy. We
propose some postulates that describe the way the observer’s beliefs at a given
stage will influence her beliefs after one step in the merging process.

The paper is organized as follows. In § 2, we recall the formal definition of the
Assertion Network Semantics and propose several postulates stating properties
the iteration function should satisfy. Then, we provide a concrete definition of
such function, and compare them with the postulates. We support our work
with the aid of a software tool called Assertion Network Toolkit, which has been
introduced in [15]. A dynamic logic of belief flow through this communication
networks is proposed in § 3. Finally, § 4 focusses on comparison with some related
works, with § 5 providing some pointers towards future work.

2 Belief networks: a concrete model

In real life communication situations, we not only deal with different sources of
information with opinions about the facts/events: but also with opinions that
these sources may have about each other. We can get information about the
weather from a radio broadcasting, a webpage as well as from a friend, and
it is not strange to hear our friend saying “you should not trust in those guys
from the radio”. Putting all this information together is not an easy task, but as
highlighted in [15], the revision theoretic framework of Herzberger, Gupta, and
Belnap [18,17] suggests a methodology that can be well applied in dealing with
these rather complicated situations.

As specified in [15], these situations are represented by directed labelled
graphs (DLG). In such graphs, terminal vertices represent facts and non-terminal
ones represent agents. Edges, on the other hand, represent agents’ opinions about
facts or other agents: an edge labelled with “+” (“−”) from a vertex n1 to a
vertex n2 indicates that the agent represented by n1 has positive (negative)
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opinion about the agent/fact represented by n2. We should mention here that
the similar treatment given to the very different concepts of agent and fact is to
keep the model as simple as possible. Nevertheless, there is a difference between
them: agents are represented by non-terminal nodes while facts by terminal ones.
We assume that if an agent is involved in the situation, she must have some
opinion about something or someone (in other words, agents with no opinions
are not represented in the model).

An external observer reasons about the communication situations repre-
sented by the DLG. While the agents’ opinions are represented by edges in
the graph, the observer’s beliefs are represented in the following way. Vertices
are given values from a non-empty finite set Λ to indicate the states of belief
of the observer regarding those agents and facts. As mentioned before, this is a
departure from the models in [15], where the value set is a continuous interval
rather than the discrete set assumed here. We will see how this approach eventu-
ally aids in the understanding of the situation in a much more illuminating way
and also provides a better insight into the language and logic of these networks.

Thinking of vertices of the graph as agents and facts rather than just sen-
tences (discussed in § 1) leads from an analysis of truth as done in [17,18] to an
analysis of a belief network. Consider the following example given in [15].

Suppose the observer is sitting in an office without windows. Next to her
is her colleague (C), inside the same office. The observer is simultaneously
talking on the phone to her friend (F), who is sitting in a street café.

F: “Everything your colleague says is false; the sun is shining!”
C: “Everything your friend says is false; it is raining!”

The information that the observer has gathered can be described by the
following graph where S is interpreted as “the sun is shining” and, while edges
F

+−→ S and C
−−→ S represent the opinions the friend and the colleague have

about the relevant fact, edges F
−−→ C and C

−−→ F represent the opinions they
have about each other.
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“As in the Nested Liars, there are two consistent truth value assignments, but
the context makes sure that one of them is intuitively preferred, as the observer’s
friend has first hand experience of the weather in the street café”([15]).

Based on this preference, the observer experiences beliefs flowing through the
graph: the contextually based stronger belief in the node F leads her to believe
in S, but at the same time to disbelieve in node C, since it is in conflict with F.
Her disbelief in C in turn makes her belief in S much stronger which influences
her belief in F once again. Both forward and backward propagation of beliefs are
encountered.

This example shows that in this context of agents and their beliefs, together
with the idea of backward propagation of beliefs (equivalent to the backward
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propagation of truth of the pointer semantics [11,12]), there is also forward prop-
agation of beliefs. Suppose a trusted source has some positive opinion about a
certain proposition ϕ. Then, the belief of the observer over ϕ will influence her
belief on the trusted source, as well as the belief on the trusted source would
have some effect over the observer’s belief in ϕ. In the following we try to base
all these ideas on a more concrete level.

2.1 Assertion network semantics

We now move on to the formal definition of the model with which we represent
the earlier mentioned communication situations.

An Assertion Network Model M is a tuple M = (G, Ψ), where

– G = (V, E , `) is a directed labelled graph, with V the set of vertices, E ⊆ V×V
the set of edges and ` : E → {+,−} the labelling function.

– Ψ : ΛV → ΛV is the iteration function, with Λ the set of values.

As mentioned before, vertices in G represent agents and facts of the communi-
cation situation, while edges represent the agents’ positive/negative opinions.

The observer’s beliefs about agents and facts are represented in a different
way. We assume the existence of a function H : V → Λ, called an hypothesis,
which assigns to every vertex of G a value in Λ. The value H(v) is interpreted
as the state of belief the observer has about v.

We want to combine the idea of revision semantics (backward propagation)
with forward propagation of beliefs along edges; this is when the iteration func-
tion Ψ comes into play. It is used to define a revision sequence of belief of the
observer in the spirit of revision theory. Given an initial hypothesis H, we define
the sequence of functions 〈Hi ; i ∈ ω〉 as follows:

H0 := H

Hi+1 := Ψ(Hi).

Inspired by the stability concept of revision theory, we can now define a
partial stability semantics for our labelled graph. Let H be an initial hypothesis,
v be a vertex in V and λ be a value in Λ. We say that λ is the stable value
of v starting from H if there is n ∈ ω such that Hi(v) = λ for all i ≥ n. The
assertion network semantics AH is defined in this way:

AH(v) :=
{
λ if λ is the stable value of v starting from H
undefined if 〈Hi(v) ; i ∈ ω〉 oscillates.

Following Theorem 1 and Theorem 2 in the section 2 of [15], it is pretty
straightforward that,

Theorem 1. The stable truth predicate of revision semantics is a special case
of assertion network semantics, i.e., for every set of clauses Σ there is a labelled
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graph G and there are evaluation functions such that AH coincides with the
(partial) stable truth predicate on Σ. 1

Suppose the observer initially believes in an agent a, but does not have any
opinion about agent b. It may well happen that when she comes to know about
the positive opinion a has over b, her mental state about having no opinion
about b will change to believe in b. The whole idea of the iteration function is to
capture the dynamics of the mind-states which cannot be achieved by what we
had before. It represents the step-by-step transformation of the observer’s beliefs.
With this model, we are able to represent how the observer reasons to finally
decide her beliefs about agents and facts in these communication situations.

2.2 Postulates for the iteration function

As mentioned in the introduction, we will consider a finite set Λ of values for
building up the Assertion Network model. Without further ado, let us fix such
a minimal set that will represent the belief states of the observer. We define the
set of values as Λ := {−1, 0, 1}, where ‘−1’ stands for disbelief, ‘0’ for no opinion
and ‘1’ for belief.

The iteration function is the key of this model; it defines how the beliefs of
the observer will be in the next stage, given her beliefs in the current one. There
are many ways in which the iteration function can be defined. Nevertheless, we
can ask for it to satisfy some basic properties according to our intuitions of what
its behavior should be. Let us first make a brief analysis of what the observer
should take into account when deciding her next state of beliefs in facts and
agents, given her current ones.

The case of facts is the simple one. In order to get the beliefs the observer
has about a fact (represented by a vertex v ∈ V) at stage k + 1 (Hk+1(v)), the
observer should take into account her current beliefs about the fact (Hk(v)) and
also her current beliefs about the agents that have some opinion (positive or
negative) about the fact (Hk(u) for every u ∈ V such that 〈u, v〉 ∈ E). This is
nothing but forward propagation of beliefs.
1 Here, we refer to a propositional language as described in [27]: every propositional

variable is an expression; ⊥ and > are expressions; if E and F are expressions,
then ¬E, E ∧F , and E ∨F are expressions. If E is an expression and n is a natural
number, then n : E is a clause.

We say that an interpretation is a function I : N → {0, 1} assigning truth values
to propositional letters. Obviously, an interpretation extends naturally to all expres-
sions. If n : E is a clause and I is an interpretation, we say that I respects n : E if
I(n) = I(E), and I respects a set of clauses Σ if it respects every element of Σ.

The (partial) stable truth predicate defined by

SH(pi) :=


true if pi is stably ‘true’ in the sequence starting with H,
false if pi is stably ‘false’ in the sequence starting with H, and

undefined otherwise.

For the details the readers can have a look at [15,27]
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The case of an agent is different. Given her current information, how does
the observer determines the belief she will have over an agent i (represented by a
node v ∈ V) after one step in her reasoning process? Besides her current beliefs
about the agent (Hk(v)), she should take into account her current beliefs about
the agents that have opinions about i (Hk(u) for every u ∈ V such that 〈u, v〉 ∈ E ;
again, forward propagation). But not only that; she should also take into account
the beliefs she has regarding the agents and facts about which i has an opinion
(Hk(u) for every u ∈ V such that 〈v, u〉 ∈ E : backward propagation). All these
will influence her next state of belief regarding the agent under consideration.

In the following, we propose some postulates for rational iteration functions.
They put some intuitive restrictions on how the belief state of the observer about
some agent/fact should be modified during her introspection process.

Let v ∈ V be a node of the Assertion Network representing a fact.

1. If at the current stage the observer (a) believes in the agents that have
positive opinion about the fact (Hk(u) = 1 for every u ∈ V such that 〈u, v〉 ∈
E with `〈u, v〉 = “+′′) and (b) does not believe in the agents that have
negative opinion about it (Hk(u) = −1 for every u ∈ V such that 〈u, v〉 ∈ E
with `〈u, v〉 = “−′′), then at the next stage she should believe in the fact
(Ψ(Hk(v)) = Hk+1(v) = 1), regardless of her current beliefs about it (the
positive enforcement of facts postulate).

2. On the other hand, if at the current stage the observer (a) believes in the
agents that have negative opinion about the fact (Hk(u) = 1 for every u ∈ V
such that 〈u, v〉 ∈ E with `〈u, v〉 = “−′′) and (b) does not believe in the
agents that have positive opinion about it (Hk(u) = −1 for every u ∈ V such
that 〈u, v〉 ∈ E with `〈u, v〉 = “+′′), then at the next stage she should not
believe in the fact (Ψ(Hk(v)) = Hk+1(v) = −1), regardless of her current
beliefs about it (the negative enforcement of facts postulate).

3. Suppose the observer does not have any opinion about all the agents that
have an opinion about the fact (Hk(u) = 0 for every u ∈ V such that
〈u, v〉 ∈ E). Then, the current degree of belief of the observer about the fact
should be preserved in the next stage (the persistence of facts postulate).

Now let v ∈ V be a node representing an agent iv.

1. If at the current stage the observer (a) believes in the agents that have
positive opinion about iv (Hk(u) = 1 for every u ∈ V such that 〈u, v〉 ∈ E
with `〈u, v〉 = “+′′), (b) does not believe in the agents that have negative
opinion about her (Hk(u) = −1 for every u ∈ V such that 〈u, v〉 ∈ E with
`〈u, v〉 = “−′′), (c) believes in the agents/facts about which agent iv has
positive opinion (Hk(u) = 1 for every u ∈ V such that 〈v, u〉 ∈ E with
`〈u, v〉 = “+′′) and (d) does not believe in the agents/facts about which agent
iv has negative opinion (Hk(u) = −1 for every u ∈ V such that 〈v, u〉 ∈ E
with `〈u, v〉 = “−′′), then at the next stage she should believe in agent iv
(Ψ(Hk(v)) = Hk+1(v) = 1), regardless of her current beliefs about her (the
positive enforcement of agents postulate).
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2. On the other hand, if at the current stage the observer (a) believes in the
agents that have negative opinion about iv (Hk(u) = 1 for every u ∈ V
such that 〈u, v〉 ∈ E with `〈u, v〉 = “−′′), (b) does not believe in the agents
that have positive opinion about her (Hk(u) = −1 for every u ∈ V such
that 〈u, v〉 ∈ E with `〈u, v〉 = “+′′), (c) believes in the agents/facts about
which agent iv has negative opinion (Hk(u) = 1 for every u ∈ V such that
〈v, u〉 ∈ E with `〈u, v〉 = “−′′) and (d) does not believe in the agents/facts
about which agent iv has positive opinion (Hk(u) = −1 for every u ∈ V such
that 〈v, u〉 ∈ E with `〈u, v〉 = “+′′), then at the next stage she should not
believe in agent iv (Ψ(Hk(v)) = Hk+1(v) = −1), regardless of her current
beliefs about her (the negative enforcement of agents postulate).

3. Suppose the observer (a) does not have any opinion about all the agents that
have an opinion about iv (Hk(u) = 0 for every u ∈ V such that 〈u, v〉 ∈ E)
and (b) does not have any opinion about all the agents/facts about which iv
has an opinion (Hk(u) = 0 for every u ∈ V such that 〈v, u〉 ∈ E). Then, the
current degree of belief of the observer about iv should be preserved in the
next stage (the persistence of agents postulate).

2.3 Concrete model

Let us now work towards a concrete definition of the iteration function Ψ . We
want to represent backward and forward propagation of beliefs, that is, how the
beliefs of the observer about an agent/fact change according to the way they
are related to other agents/facts. As discussed before, the observer’s new belief
about a vertex v should depend on her current beliefs about it and the vertices
that can reach v as well as those that can be reached from v.

Let M = (G, Ψ) be an Assertion Network Model with G = (V, E , `). For a
vertex v ∈ V, we define

In(v) := {w ∈ V ; 〈w, v〉 ∈ E},

that is, In(v) is the set of vertices that can reach v. We split such set into In+(v)
and In−(v), the sets of vertices that can reach v through a “+”- labelled edge and
the sets of vertices that can reach v through an “−”- labelled edge, respectively.

In the same way, we define

Out(v) := {w ∈ V ; 〈v, w〉 ∈ E},

that is, Out(v) is the set of vertices that can be reached from v. We split the set
again, so we get Out+(v) and Out−(v) as above. The set of terminal vertices of
G, denoted by TG , can be defined as TG := {v ∈ V ; Out(v) = ∅}.

Now assume the existence of a hypothesis H. For all w ∈ In(v), define sv
w as

the H-value of w with sign according to the label of the edge that links v and
w, that is,

sv
w :=

{
H(w) if w ∈ In+(v)
−H(w) if w ∈ In−(v)
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Similarly, for all w ∈ Out(v), define tvw as the H-value of w with sign according
to the label of the edge that links v and w, that is,

tvw :=
{
H(w) if w ∈ Out+(v)
−H(w) if w ∈ Out−(v)

For each value λ ∈ Λ, define Sv
λ as the set of vertices w ∈ In(v) such that

sv
w = λ; similarly, define T v

λ as the set of vertices in w ∈ Out(v) such that tvw = λ.

Sv
λ := {w ∈ In(v) ; sv

w = λ} T v
λ := {w ∈ Out(v) ; tvw = λ}

For a terminal vertex v ∈ TG , its Ψ(H)-value depends on the H-values of v
itself and on those of the vertices in In(v). Here is our particular definition.

Ψ(H)(v) :=

1 if |Sv
1 | > |Sv

−1|
−1 if |Sv

1 | < |Sv
−1|

H(v) otherwise.

For a non-terminal vertex v ∈ V\TG , the definition is a bit more complicated.
Unlike the terminal ones, in addition to the current value of v we now have to take
into account the influences of both the incoming edges as well as the outgoing
ones, since we want to represent both forward and backward propagation of
beliefs. The value suggested by the incoming edges (IE v) and the one suggested
by the outgoing ones (OE v) are considered separately.

IE v :=

1 if |Sv
1 | > |Sv

−1|
−1 if |Sv

1 | < |Sv
−1|

H(v) otherwise.
OE v :=

1 if |T v
1 | > |T v

−1|
−1 if |T v

1 | < |T v
−1|

H(v) otherwise.

Their combination gives the Ψ(H)-value of v defined by the following table:

IEv\OEv -1 0 1
-1 -1 -1 0
0 -1 0 1
1 0 1 1

With this definition of Ψ , the next theorem can be easily proved.

Theorem 2. Ψ satisfies the three fact postulates and the three agent postulates.

2.4 Assertion network toolkit

As mentioned in the introduction, looking for the adequate iteration function Ψ
is largely an empirical task. At least we can claim that the definition given just
now is a plausible one since it satisfies all the intuitive postulates. Still, more
complicated examples are to be checked to validate the claim that this particular
definition reflects our intuitive interpretation.

The Assertion Network Toolkit (ANT), developed in [15] allows us to play
around with the functions and values. It is a piece of graphical interface software
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written solely in C/C++ and built on the Boost Graphing Library (BGL), GTK,
GTKmm, and the Cairo graphics library. Boost property maps contain all the
data of a graph object while the drawing area and table widgets serve as a view
for the values stored in the maps. Stepping through a function locks the map
and updates the view according to the new values.

Fig. 1. Initial opinions

Fig. 2. Final opinions

As an example of its use, consider the communication situation described
at the beginning of this section. The iteration function Ψ defined before is the
one currently implemented in the ANT. Figure 1 shows two screenshots with
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difference in the values of the initial hypothesis. Figure 2 shows the corresponding
final values after the iteration process.

In the first case (the left hand side figure of Figure 1), as mentioned in the
example earlier, the observer’s friend has a first hand experience of what is
happening outside the office, so the observer is inclined to believe him; besides
that, she does not have any initial opinion about her colleague or the discussed
fact. In this setting, the initial hypothesis H0 assigns a value of 1 to the vertex
representing the friend (H0(F) = 1) and a value of 0 to the others (H0(C) = 0
and H0(S) = 0). The second one (the right hand side figure of Figure 1), depicts
the case that for some reason whatsoever, the observer has an equally high
opinion about her friend as well as her colleague in the beginning. Here, the
initial hypothesis H0 assigns a value of 1 to both her friend (H0(F) = 1) and
colleague (H0(C) = 1), but 0 to the mentioned fact (H0(S) = 0).

We let the program iterate the function several times. As output of the
process (Figure 2), we see that though in the first case all the vertices reach
stable values, in the second case only the vertex representing the fact gets a
stable value, that of ‘no opinion’ of the observer. The readers will definitely
consent to the fact that in both these cases, the final opinion values completely
agree with our intuitions.

The sequence of values generated by the iteration (see the tables below)
indicates us that in the first case it takes just two steps to reach such stable
values, and in the second case the values of F and C oscillate.

H0 H1 H2 H3 · · ·
F 1 0 1 1 · · ·
C 0 -1 -1 -1 · · ·
S 0 1 1 1 · · ·

H0 H1 H2 H3 · · ·
F 1 -1 1 -1 · · ·
C 1 -1 1 -1 · · ·
S 0 0 0 0 · · ·

3 Expressing belief networks

In this section we provide a logical language with which we can express the
behavior of the Assertion Network Model. Since the network focuses on the
observer’s point of view, we define a language that takes her perspective. Our
atomic propositions are expressions indicating the state of belief the observer
has about some agent or fact portrayed in the network, and then we build more
complex formulas using the standard logical connectives. This language does not
describe the graph (we cannot express things like “agent i has a positive opinion
about p”), but it describes the observer’s beliefs about what is happening in
the situation represented by the graph (the observer believes in agent i in the
beginning but may not have any opinion about i anymore, after considering the
surroundings). It will serve our purpose here. Readers who are interested in a
language describing the graph can have a look at [16].

In the language we provide a way to talk about the most important part of the
model: the update of beliefs carried out by the iteration function. We introduce
the syntactic operator # to represent the iteration function; it allows us to
talk about what happens with the observer’s beliefs after one step of revision
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and merging of beliefs. Formulas of the form #ϕ are interpreted as “after one
iteration of the function, ϕ is the case”. We want this next-step operator since
we intend to describe the way the beliefs of the agent propagate through the
network after a single iteration step.

Finally, we are also interested in the outcome of the whole process. Such a
process reaches an end whenever the beliefs of the observer become stable, that is,
whenever they reach a stage from which further iterations of the function will not
change them anymore (which is not always the case). We introduce a syntactic
operator �; it represents the stable stage reached by the network (whenever it
exists) and allows us to talk about what happens with the observer’s belief at
the end of the process (if it ever ends). Formulas of the form �ϕ are interpreted
as “after the whole process, ϕ is the case”.

3.1 A language expressing the observer’s beliefs

To express the observer’s epistemic attitudes about the communication situa-
tions, we define the following language which is extensional in nature. Given a
set of agents A, a set of propositions P, the Language of Beliefs LB is given by:

ϕ := Bγ | Nγ | Dγ | ¬ϕ | ϕ ∨ ψ

with γ ∈ A∪P. Formulas of the form Bγ indicates “the observer believes in γ”,
while Nγ indicates “the observer does not have any opinion about γ” and Dγ
indicates “the observer disbelieves in γ”.

To avoid any confusion that may arise due to the use of the traditional
intensional operators in an extensional language, we make the following remarks.

– Formulas in LB express exclusively the observer’s beliefs. Though we may
have simply avoided B, N and D from the atomic propositions, they are
incorporated to make the language more intuitive, keeping in mind the formal
interpretations of these formulas, as defined later.

– The language LB is not a modal language. Its atomic propositions Bγ, Nγ
and Dγ have special meanings, but they are still atomic propositions.

– Propositional languages evaluate formulas by assigning truth values to basic
propositions and then extending it to more complex formulas. Usually, there
is no relation between the atomic propositions, so the truth value of one of
them is independent of the truth value of the others. In our language, the
semantics of atomic propositions will be defined in a way such that the truth
value of some of them is related: formulas like Bγ ∧ Dγ, for example, will
never be true.

Consider an Assertion Network Model M = (G, Ψ) with G = (V, E , `). In
order to use it to give meaning to formulas in LB, we need to uniquely identify
each vertex in V with an agent or a fact in A ∪ P. Moreover, the map should
satisfy the already mentioned requirement: facts should be mapped to terminal
vertices. An interpretation I is a partial injective function I : A ∪P → V such
that, for each p ∈ P, we have I(p) ∈ TG , when it is defined.
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Given an interpretation I and an initial hypothesis H, the truth definition
of formulas of LB in an Assertion Network Model M = (G, Ψ) is given by

M, I,H |= Bγ iff H(I(γ)) = 1
M, I,H |= Nγ iff H(I(γ)) = 0
M, I,H |= Dγ iff H(I(γ)) = −1
M, I,H |= ¬ϕ iff M, I,H 6|= ϕ
M, I,H |= ϕ ∨ ψ iff M, I,H |= ϕ or M, I,H |= ψ

Thus, the formula Bγ is true in the model M under the interpretation I if
and only if the H-value of the graph component to which γ is mapped is equal
to 1; similarly Nγ corresponds to the value 0 and Dγ to -1.

3.2 A language expressing belief flow

The language LB allows us to express just the observer’s beliefs about a commu-
nication situation, but does not permit us to express how the opinions change
as a result of the belief propagation. Our first step towards such a goal is to
extend the language to express what happens after one step in the observer’s
introspection process. For that purpose, the language is extended by closing it
under the # operator: if ϕ is a formula of the language, so it is #ϕ.

To give truth value to the new formulas, we use the iteration function; this
way we can modify the hypothesis H. Formally, we have:

M, I,H |= #ϕ iff M, I, Ψ(H) |= ϕ

Now we have formulas like Bγ∧#Nγ, expressing “originally, the observer believes
in γ, but after one introspection step (that is, after considering once all the
information she has), she does not have an opinion anymore.”

Finally, to get to the logic of Assertion Network Semantics proposed in the
earlier section, we introduce the operator � in the language to talk about the
stable positions in the model. The full language of the Logic of Belief Flow LBF ,
is given by:

ϕ := Bγ | Nγ | Dγ | ¬ϕ | ϕ ∨ ψ | # ϕ | � ϕ

with γ ∈ A ∪P, as before.
Formulas of the form #ϕ express “after the observer considers once all the

information she has, ϕ is the case”. The new operator � is used to express the
observer’s state of beliefs after the whole introspection process: formulas of the
form �ϕ express “after the observer considers all the information she has, ϕ is
the case”. Its truth definition is given by:

M, I,H |= �ϕ iff ∃n ∈ ω such that M, I, Ψ i(H) |= ϕ for all i ≥ n.

In the new language we have formulas like Bγ → �Dγ, expressing “origi-
nally, the observer believes in γ, but after the introspection process (that is, after
considering all the information she has), she does not believe in γ anymore”.

Now we have a language with which we can express the observer’s initial
beliefs, and also how such beliefs change as a result of the introspection process,
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either in one step (with the operator #) or after the whole process (with the
operator �). To close this section, we give examples of formulas that hold in
the Assertion Network Model corresponding to the example described in § 2 and
whose iterated values are shown in tables in page 11.

Formally, the Assertion Network Model and the interpretation are given to-
gether by M = ((V, E , `), Ψ) with

– V := {F, C, S},
– E := {〈F, C〉, 〈C, F〉, 〈F, S〉, 〈C, S〉},
– `〈F, S〉 = “+′′; `〈F, C〉 = `〈C, F〉 = `〈C, S〉 = “−′′.

and Ψ as defined before. The initial hypothesis H is given by

H(F) = 1 H(C) = 0 H(S) = 0

From the values shown in the corresponding table, we have that the following
formulas hold in M, I,H:

• BF ∧ NC ∧ NS
• #(NF ∧ DC ∧ BS)
• # # (BF ∧ DC ∧ BS)
• �(BF ∧ DC ∧ BS)

Considering some variations of the initial hypothesis, ANT shows us that the
following formulas also hold.

• (BF ∧ BS) → �(BF ∧ DC ∧ BS)
If the observer initially believes in F and S, then her initial belief about C
is irrelevant.

• (BF ∧ BC ∧ NS) → ((#kBF→ #k+1DF) ∧ (#kDF→ #k+1BF)) (k ≥ 0)
If she initially believes in F and C without having an opinion about S,
then her beliefs about F will oscillate (#0ϕ := ϕ and #k+1ϕ := # #k ϕ).

• (BF ∧ BC ∧ NS) → ¬� (BF ∨ NF ∨ DF)
Therefore, there is no stable value for F.

• (BF ∧ BC ∧ NS) → �NS
But there is a stable value (viz. 0) for S.

Evidently, the last three formulas express the observer’s opinions in the sec-
ond example we dealt with in section 2.4. Finally, we also have some validities
which provide some insights towards the complete axiomatization of the pro-
posed logic, which we leave for future work:

• Bγ → (¬Nγ ∧ ¬Dγ)
• Dγ → (¬Nγ ∧ ¬Bγ)
• Nγ → (¬Bγ ∧ ¬Dγ)
• #(ϕ ∧ ψ) ↔ (#ϕ ∧#ψ)
• �(ϕ ∧ ψ) ↔ (�ϕ ∧�ψ)
• �ϕ→ � # ϕ
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4 Other models and logics: a comparison

An extensive amount of work has been done in formalizing and modelling the
revising/merging of belief/information in a multi-agent setting, and it is still
going on. In the following we provide a discussion so as to highlight the novelty
of our approach in the current setting both from the modelling as well as the
logical perspectives.

4.1 Different approaches for revising/merging

As mentioned, there is a huge amount of existing literature in area of revising
and/or merging of beliefs. Some of them have a logical perspective, providing
postulates, models and formal languages to describe the respective processes.
Some others have a connectionist perspective, considering the phenomena as the
emergent processes of interconnected networks of simple units (usually, neural
network models).

The classical work on belief revision is the so called AGM approach [1],
where the authors presented postulates that an operator which performs revision
should satisfy in order to be considered rational. Several other frameworks for
modelling revision have been proposed. Particularly related with our proposal
are those focused on iterated revision, like [5] and [19]. The field has extended
to incorporate the more general branch of belief merging, focussed on situations
where both the current and the incoming information have the same priority
and the same structure ([20,21,22]).

Our approach lies on the revision side, with the agents’ opinions and the
observer’s beliefs are represented in a different way. Nevertheless, we do not
consider simple revision, but revision by merging, since the observer revises her
beliefs against the merged opinions of all the agents involved, very much in the
spirit of [13]. Also, the main novelty of our work is that it considers agents that
have opinions not only about the discussed facts, but also about themselves.

The dynamic logic framework provides a natural way to express changes in
information. Various logics have been proposed for modelling such information
change, like dynamic epistemic logic (DEL; [14,28]) and dynamic doxastic logic
(DDL; [29]). In [30] the author looks into DEL together with the AGM style
belief revision theory [1] and provides a joint perspective. While DDL captures
the AGM postulates for belief revision in a logical language, DEL talks about
concrete information update procedures that change models/situations.

In contrast, LBF focusses on introspection of a reasoning agent regarding
the transition of her belief states in a communication situation. While the belief
states can be easily expressible in a propositional language, their transition is
captured by the dynamic modal operators # and �. It should be mentioned
here that the underlying belief flow of the observer regarding the agents and
the events taking part in the interaction gets portrayed in a very illustrative
way. Note how DDL expresses agents’ beliefs after a certain revision process
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that occur in her doxastic state, while DEL provides a framework for dealing
with hard information capable of changing one’s knowledge state, as well as
soft information by which her beliefs get affected. On the other hand, LBF is
proposed to capture the process of continuing change in the opinions/beliefs that
goes on in the observer’s mind in the described situations.

On the other side of the spectrum, and closer to the Assertion Network
semantics, we have approaches that are based on interconnected networks, where
the result of the process is related with the values that become stable once the
information has propagated along the net.

In [25,26], a Neural-Logic Belief Network (NLBN ) is defined, which is ba-
sically a hybrid symbolic-neural network structure - a finite acyclic directed
weighted graph with nodes representing propositions and edges representing re-
lations between these propositions. Different categories of nodes, viz. input nodes
and base nodes as well as that of edges like combinative and alternative links are
considered, together with sets of deterministic operations for node value propa-
gation and also for dynamic belief changes. The network propagation functions
consist of neural-net feed-forward computations together with degree-of-belief
computations which are symbolic in nature and they provide a stable belief
state in any NLBN, where belief states are finite sets of propositions providing
positive or negative information, together with their associated ordinal belief-
values. As exemplified in the above mentioned papers, NLBN can be used to
model common sense reasoning, and provides a way for representing transitions
in the belief attitudes of agents.

A very different approach to belief revision has been provided in [8], viz.
a distributed approach. Models have been proposed to represent the collective
activity of a group of interacting agents, taking into consideration the local
beliefs of the individual components and their communication with each other.
The assimilation of the different beliefs is done by the whole group through
an election mechanism. Several simulation experiment were performed so as to
compare between the group action under a distributed architecture, where the
agents can communicate with each other and a more centralized architecture
where it is the task of a single agent to combine the different opinions of the
group. Numerical values as probability measures have been incorporated in these
models to represent degrees of uncertainty, and computation is performed using
Dempster rule and Bayesian conditioning.

The discussion here will not be complete if we do not mention Bayesian
belief nets (BBN ) [31]. They are really powerful tools modelling cause and effect
relationship in a wide range of fields. BBN s are basically directed acyclic graphs,
with nodes representing the variables and the edges representing their causal
relationship. Each node (variable) corresponds to a set of its states (probable
values). The probability that a node is in one of its corresponding states is given
by a conditional probability table, based on the causal relationship. Based on
these tables, BBN can be used in decision making, where both inductive as well
as deductive reasoning can be performed, the basic computations being done
with respect to Bayes’ rule.
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Let us now focus on our model proposed in § 2 in this perspective. Real life
communication situations talking about facts/events, agents and their opinions
are represented by directed cyclic labelled graphs. Both forward and backward
propagation of belief flow are taken into consideration. The computation function
is a simple three-valued one, which is deterministic, also. The novelty lies in the
semantics derived from stability as used in the revision theory of truth [18,17]. In
NLBN, only forward propagation of belief is considered and the representation
is restricted to propositions only. Similar is the case in BBN, though in some
sense, BBN, with its probabilistic computation approach can be used in a greater
variety of domains. The work of Dragoni and Giorgini [8] is closer to our approach
though with subtle but important differences, as the readers can easily notice.
The most notable among them is that our approach is very centralized in nature.

Different from connectionist approaches, logical ones have the advantage of
providing a better understanding of the underlying process. On the other hand,
networks and the stability concept are natural representations of the intercon-
nected information and the discussion process that leads to agreements. The
work we mention now is a nice combination of the two perspectives.

In [13], the authors propose a conciliation operation via iterated belief merg-
ing. The beliefs of several agents are first merged to create a new belief set, and
then each agent revises her own initial beliefs with respect to the result of the
merging. The process is iteratively repeated until a fixed point is reached, and
the conciliation operator is defined with respect to it. The paper explores two
strategies for the revision steps, relative to the agent’s confidence in her own
beliefs: credulous, in which the result of the merging takes precedence over the
agent’s beliefs, or sceptical, where the agent gives priority to what she believes.

This work is similar to ours in the sense that it also looks for a stable situation
where further interaction between the diverse components will not modify the
current status of the model. Unlike our approach, they use a two-stage iterative
process: the first one merging the beliefs of all the different agents, and the
second one allowing each agent to revise her own initial beliefs in accord with
the merging process. But, once again, in this work as well as in similar such, the
basic focus lies on different agents’ belief sets with no mention of belief/trust
over other agents, where the novelty of our work lies.

4.2 Small steps

The idea of focusing on the small steps of a process is also not new. In fact, it
has been a proposed solution for the so called logical omniscience problem. This
problem is about unrealistic assumptions on the reasoning power of the agents.
In epistemic logic with Kripke semantics, for example, the knowledge of the
represented agents includes all validities and is closed under logical consequence.

In [9,10], Duc proposes a dynamic epistemic logic to reason about agents
that are neither logically omniscient nor logically ignorant. The main idea is to
represent the knowledge of an agent as a set of formulas, but also to allow her
to improve her information set as time goes by. Agents represented within this
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framework are not logically omniscient, since the sets of formulas do not have
to contain all validities and do not have to be closed under logical consequence.
Nevertheless, they are not logical ignorant also: at every point of time their
information gets increased, and eventually they will get to know all validities
and the consequences of their initial knowledge. Instead of representing agents
that know everything (they are supposed to know) from the very beginning, this
approach focusses on the step-by-step process that leads to that outcome.

Our proposed language LBF shares this concept. Instead of considering the
revision process as a single-step operation, we focus on the small steps that may
or may not lead to an outcome. In some situations, the revision process will in
fact lead to a sequence of stable values, indicating that the (possible inconsistent)
initial information and the observer’s initial attitudes can fit together. In some
others, like with the liar sentence, the beliefs of the observer oscillate, indicating
that the initial information and the observer’s initial attitudes cannot find a way
to live together.

4.3 Trust

One of the main features of the Assertion Networks is that it allows us to rep-
resent not only the opinion the observer has about the discussed facts, but also
the opinion she has about other agents. These opinions basically indicate if the
observer trusts the agents or not. Several efforts have been made to analyze the
notion of trust in multi-agent systems. The notion is important since it allows
us to represent asymmetries in the way the agents’ opinions at some stage will
influence the observer’s beliefs at the next one.

In [24], Liau proposes a modal logic with three modal operators: Bi (a nor-
mal KD45 operator), Iij (a normal KD operator) and Tij (a non-normal modal
operator). Formulas of the form Biϕ express agent i’s beliefs, Iijϕ’s represent
communication indicating that agent i acquires information ϕ from agent j, and
Tij indicate that agent i trust the judgment of agent j about ϕ.

Since beliefs and information are normal modal operators, an agent’s belief
set is closed under logical consequence, and once she acquires some information
from another agent, she also acquires all its logical consequences. Trust, on the
other hand, is given by an operator with neighborhoods semantics: if an agent
i trust in the judgement of j about ϕ, she does not have to trust j about the
judgment of all logical consequences of ϕ.

In [6], the authors extend Liau’s work by introducing topics and questions. As
they observe, Liau’s work explains the consequence of trust, but does not explain
where trust comes from. The notion of topic allows to create trust of agent i on
agent j about fact ψ whenever i trusts j about a fact ϕ that shares the same
topic with ψ (topic-based trust transfer). The notion of question allows to create
trust or distrust from the answer of a question (question-based trust derivation
and question-based distrust derivation). Consider an agent j answering positively
to a question of agent i about ϕ: if i believes in ϕ, she will trust j about ϕ, if
i believes in ¬ϕ, she will not trust j about ϕ. This is somewhat similar to the
backward propagation concept.
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Let us now come back to our proposed framework. It is to be noted that the
notion of belief in an agent, analogous to the notion of trust of the described
works, is not relative to a particular statement of the agent (as formulas of
the form Tijϕ express), but relative to the agent itself. Also, since facts are
represented independently from each other, beliefs of the observer are not closed
under any inference relation. Moreover, the observer’s initial beliefs about the
facts and the agents are not necessarily related: the agent can initially believe
in p without believing in agents having a positive opinion about p.

As mentioned, our approach does not ask for particular initial properties of
the observer’s beliefs and the agents’ opinions. In most of the revision approaches,
the initial beliefs should be consistent, but by removing such restriction we allow
a more general initial setting. Our observer’s reasoning does not start from an
ideal state, but it will reach it whenever possible.

The just described works consider properties of the relations between beliefs,
information and trust, but they work on a static approach without consider-
ing dynamics of the system. Even exchanges of information and questions are
semantically represented as properties of the model (properties on the corre-
sponding binary relations) and not as actions that modifies it. On the other
hand, the main focus of our approach is the dynamic process through which
all the involved participants start working, updating the model and influencing
themselves while trying to reach an agreement (a stable consistent situation).

5 Conclusion and intentions

In this work, we propose a model of belief propagation on a graph representing
communication situations based on the methodology of the revision theory of
truth. A dynamic language is developed for expressing the belief flow in the
model in terms of an external observer’s introspection process. We have also
compared this model as well as the language developed with some of the existing
frameworks for modelling communication situations.

As we have mentioned, the belief about a particular node in the graphical
model at the next stage is given in terms of the beliefs at this stage about the in-
coming and outgoing nodes (forward and backward propagation) corresponding
to the concerned node. The postulates we have stated leave open the way the
iteration function should behave in more general situations. In situations where
the balance is not completely biased to one side, there is no unique way for the
observer of determining her beliefs at the next stage.

Different kinds of observers can be represented by iteration functions with
different properties. A majority function may represent an observer that follows
what the majority says; a confident function can represent an agent that gives
more weight to her current beliefs while a credulous one can represent observers
that give more precedence to others’ opinions. We can even consider a preferential
function, representing observers that give precedence to agents for which she has
positive beliefs. It will be interesting to formalize those different policies. Some
further possible avenues for future work are as follows.
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Opinionated edges One way of refining this approach is to consider beliefs about
agents’ opinions also. We can think of situations where a given agent is an expert
in a given subject but not in some other. In our current model, the observer has
to decide the degree of belief over the agent, regardless of the facts the agent has
opinions about, but in some cases it is more natural to have different degrees
of beliefs in the agent’s different opinions. Semantically, this would extend the
domain of the hypothesis to the set V ∪ E and will force a new definition of the
iteration function Ψ .

Extending value set The degrees of belief of the observer range over the members
of the value set Λ. Here we have considered a three-valued Λ, but it can easily
be extended to any finite valued one, so as to express more possible epistemic
states of an agent. Things will get more complicated this way but closer to the
actual real life situations. This will also involve a redefinition of the iteration
function Ψ .

Comparing expressivity On the logical side, the presented language allows us
to express the observer’s current beliefs, how they change after steps in the
introspection process and whether any stability is attained. Formulas of the
form �ϕ expressing stable values also relates with fixed points in some sense. It
would be interesting to make a study about the expressiveness of the language
compared with fixpoint logics, like the modal µ-calculus.
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