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Abstract

We look at two fundamental logical processes, often intertwined in plan-
ning and problem solving: inference and update. Inference is an internal
process with which we uncover what is implicit in the information we
already have. Update, on the other hand, is produced by external commu-
nication, usually in the form of announcements and in general in the form
of observations, giving us information that might have been not available
(even implicitly) before. Both processes have received attention from the
logic community, usually separately. In this work, we develop a logical
language that allows us to describe them together. We present syntax and
semantics, as well as a complete axiom system. We also discuss similari-
ties and differences with other approaches, and we mention some possible
ways the work can be extended.

1 Introduction

Consider the following situation, from van Benthem [2008a]:

You are in a restaurant with your parents, and you have ordered
three dishes: fish, meat, and vegetarian, for you, your father and
your mother, respectively. Now a new waiter comes from the
kitchen with the three dishes. What can he do to get to know
which dish corresponds to which person?

The waiter can ask “Who has the fish?”; then he can ask “Who has the meat?”.
Now he does not have to ask anymore: “two questions plus one inference are
all that is needed” (van Benthem [2008a]).

The present work looks at these two fundamental logical processes, often
intertwined in planning, problem solving and real-life activities. Inference is
an internal process: the agent revises her own information in search of what
can be derived from it. Update, on the other hand, is produced by external
communication: the agent gets new information via observations. Both are
logical processes, both describe dynamics of information, both are used in
every day situations, and still, they have been studied separately.
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Inference has been traditionally taken as the main subject of study of logic,
allowing us to extract new information from what we already have. Among the
most important branches, we can mention Hilbert-style proof systems, natural
deduction and tableaux. Recent works, like Duc [1995, 1997] and Jago [2006b,a]
have incorporated modal logics to the field, representing inference as a non-
deterministic step-by-step process.

Update, on the other hand, has been the main subject of what have been
called Dynamic Epistemic Logic. Works like Plaza [1989], Gerbrandy [1999a] and
Gerbrandy [1999b] turned attention to the effect of public announcements over
the knowledge of an agent. Many works have followed them, including the
study of more complex actions (Baltag et al. [1999], van Ditmarsch [2000], Baltag
and Moss [2004]) and the effect of announcements over a more wide proposi-
tional attitudes (the soft/hard facts of van Benthem [2007], the knowledge/belief
of Baltag and Smets [2008]).

In van Benthem [2008c], the author shows how these two phenomena fall
directly within the scope of modern logic. As he emphasize, “asking a question
and giving an answer is just as ’logical’ as drawing a conclusion!”. Here, we
propose a merging of the two traditions. We consider that both processes are
equally important in their own right, but so it is their interaction. In this work,
we develop a logical language that allows us to express both inference and
update together.

We start in section by 2 providing a modal framework for representing the
agent’s implicit and explicit information, and isolate the case of true information.
Then, in section 3, we provide a representation of inference and we focus on
the truth-preserving case. Moreover, we show how dynamics of the inference
process itself can be described too. Section 4 introduces the other logical process:
update. We compare our work with other approaches in section 5, and we
conclude in section 6 with a summary and some further work we consider
interesting. The present work focuses in the single-agent case, leaving the
analysis of group-information concepts like common or distributed knowledge
for the future.

2 Implicit and explicit information

Our goal is to represent the agent’s information, and how it evolves through the
use of inference and update. The Epistemic Logic (EL) framework with Kripke
models (Hintikka [1962]) is one of the most widely used for representing and
reasoning about agents’ information. Nevertheless, it is not fine enough to
represent the Restaurant example. Agents whose information is represented
within such framework suffer from what Hintikka called the logical omniscience
problem1: they are informed of all validities and their information is closed
under truth-preserving inference.

Though this feature is useful in some applications, it is too much in some
others. More important for us, it hides the inference process. If we represent
the Restaurant example with Kripke models, the answer to the second question
informs the waiter not only that your father will get the meat but also that
your mother will get the vegetarian dish. In this case, the inference is very

1See Sim [1997] for a survey about the logical omniscience problem.
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simple, and some could even say that there is no inference at all. Nevertheless,
inferences are in general more complex: proving a theorem basically consists
on successive application of deductive inference steps in order to show that
the conclusion indeed follows from the premises. Some theorems may be
straightforward but, as we know, some are not.

As van Benthem argues in van Benthem [2006], we can give to the modal
operator a more implicit reading, describing not the agent’s current information,
but what she may get to know after enough time and inference steps. This
work uses that interpretation, reading formulas of the form �ϕ as “the agent is
implicitly informed aboutϕ”. With this idea in mind, we extend the EL framework
to represent explicit information too. Moreover, we also provide a mechanism
with which the agent can increase it. The work of this section resembles those
presented in Fagin and Halpern [1988], Duc [1995, 1997], Jago [2006b] and Jago
[2006a]; the precise relation will be clarified in section 5.

2.1 Formulas, rules and the explicit/implicit information lan-
guage

The agent’s explicit information will be given by a set of formulas; the mech-
anism that allows her to improve it will be given by syntactic rules. Our first
step is to define the language from which these formulas come from, and what
a rule in that language is.

Definition 2.1 (Formulas and rules). Let P be a set of atomic propositions

• A formula γ of the internal language I is given by

γ ::= p | ¬γ | γ ∨ δ

with p ∈ P.

• A rule based on I is a pair (Γ, γ) (sometimes represented as Γ⇒ γ) where
Γ is a finite set of formulas and γ is a formula, all of them inI. Given a rule
ρ = (Γ, γ), we call Γ the set of premises of ρ (prem(ρ)) and γ the conclusion
of ρ (conc(ρ)). We denote by RI the set of rules based on formulas of I,
omitting the subindex when no confusion arises.

While formulas describe situations about the world, rules describe relations
between such situations. Intuitively, the rule (Γ, γ) indicates that if every δ ∈ Γ
is true, so it is γ.

The internal language is used for representing the agent’s explicit informa-
tion. By using just the propositional one, we allow the agent to have explicit
information about situations, but not about her own information or the infor-
mation of other agents. This is indeed a limitation, but it makes possible the
update definition of section 4. In section 6 we briefly discuss the reasons for
this limitation, leaving a deep analysis for a further work.

Now we can give the definition of our framework. Syntactically, we extend
Epistemic Logic by adding two new kinds of formulas: one to express the agent’s
explicit information (I γ) and another to express the rules she can apply (Lρ).

3



Definition 2.2 (Explicit/implicit information language EI). Let P be a set of
atomic propositions. The formulas of the explicit/implicit information language
EI are given by

ϕ ::= > | p | I γ | Lρ | ¬ϕ | ϕ ∨ ψ | ^ϕ

with p ∈ P, γ ∈ I and ρ ∈ R. Formulas of the form I γ are read as “the agent is
explicitly informed about γ”), and formulas of the form Lρ are read as “the agent
can apply rule ρ”.

The boolean connectives ∧, → and↔ as well as the modal operator � are
defined as usual.

Semantically, each world of our model has three components: a valuation
for the truth value of atomic propositions (just as in possible worlds models)
and two sets: one indicating the formulas the agent is explicitly informed, and
other indicating the rules she can apply at that world. We have just one relation
between worlds, the accessibility one, indicating which ones the agent considers
possible from a given one.

Definition 2.3 (Explicit/implicit information model). Let P be a set of atomic
propositions. An explicit/implicit information model is a tuple M = 〈W,R,V,Y,Z〉
where:

• W is a non-empty set of worlds.

• R ⊆ W × W is the accessibility relation, describing the agent’s implicit
information.

• V : W → ℘(P) is an atomic valuation function, indicating the atomic propo-
sitions that are true at each possible world.

• Y : W → ℘(I) is the information set function, indicating the explicit infor-
mation of the agent at each possible world. We ask for the information
sets to be preserved by the accessibility relation: if γ ∈ Y(w) and Rwu,
then γ ∈ Y(u) (the coherence property for formulas).

• Z : W → ℘(R) is the rule set function, indicating the rules the agent can
apply at each possible world. We ask for the rule sets to be preserved by
the accessibility relation: if ρ ∈ Z(w) and Rwu, then ρ ∈ Z(u) (the coherence
property for rules).

We will denote with EI the class of all explicit/implicit information models.

In the definition of the model we have two restrictions, reflecting our idea
of what it represents. Intuitively, the sets Y(w) and Z(w) represent the formulas
and rules the agent is explicitly informed about. If while staying in w the agent
considers u possible, then it is natural to ask for u to preserve everything the
agent is explicitly informed at w.

Formulas of EI are interpreted in models of EI as follows.

Definition 2.4 (Semantics for EI). Given a model M = 〈W,R,V,Y,Z〉 in EI
and a world w ∈ W, the satisfaction relation  between the pair (M,w) and >,
negations and disjunctions is given as usual. The case for atomic propositions p
and implicit information formulas^ϕ is just like in epistemic logic. For explicit
information and rule formulas, we just look at the corresponding sets.

4



(M,w)  I γ iff γ ∈ Y(w)
(M,w)  Lρ iff ρ ∈ Z(w)

As usual, we have the following definitions.

• A formula ϕ is true at w in M whenever (M,w)  ϕ.

• A a formula ϕ is valid in M (notation: M  ϕ) whenever ϕ is true at w in
M for all worlds w in M.

• A formula ϕ is valid in the class of models M (notation: M  ϕ) if ϕ is valid
in M for all models M in M.

We provide a syntactic characterization of formulas of EI that are valid in
the class of models EI. Non-defined concepts, like a (modal) logic,Λ-consistent
(inconsistent) set and maximalΛ-consistent set (for a normal modal logicΛ) are
completely standard, and can be found in chapter 4 of Blackburn et al. [2001].

Definition 2.5 (Logic EI). The logic EI is built from the axioms and rules shown
in table 1. Axioms P, K and Dual as well as the two rules MP and Gen are stan-
dard for modal logic. Axioms CohI and CohR describe the particular require-
ments of the models, the coherence property for formulas and rules, respectively.

Axioms and inference rules for EI
(P) All propositional tautologies
(K) ` �(ϕ→ ψ)→ (�ϕ→ �φ)
(Dual) ` ^ϕ↔ ¬�¬ϕ
(CohI) ` I γ→ �I γ
(CohR) ` Lρ→ �Lρ
(MP) From ` ϕ and ` ϕ→ ψ infer ` ψ
(Gen) From ` ϕ infer ` �ϕ

Table 1: Axioms and inference rules for EI.

Theorem 1 (Soundness and completeness of EI w.r.t. EI). The logic EI is sound
and strongly complete with respect to the class EI.

Proof. For soundness, we just need to prove that axioms of EI are valid in EI,
and that its rules preserve validity. We omit the details here.

For completeness, we recall that strong completeness is equivalent to satis-
fiability of consistent set of formulas (see Proposition 4.12 of Blackburn et al.
[2001]). We define the canonical model MEI for the logic EI; with the Linden-
baum’s Lemma, the Existence Lemma and the Truth Lemma, we show that
every EI-consistent set of formulas is satisfiable in MEI. Finally, we show that
MEI is indeed a model in EI. See section A.1 for details. �

Note how the agent’s implicit information includes all validities (as the
validity-preserving of the Gen rule shows) and is closed under modus ponens
(as the validity of axiom K shows). Nevertheless, her explicit information does
not have that properties, since the validity of γ does not imply the validity of
I γ and the formula I (γ→ δ)→ (I γ→ I δ) is not valid.
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2.2 When information is knowledge

As it is currently defined, an explicit/implicit information model do not impose
any restriction on the information of the agent. We do not ask for any property
for the accessibility relation, so there are no constrains for implicit information,
others than those given by the representation itself, like closure under modus
ponens (the K axiom) and the inclusion of validities (the Gen rule). In the
case of explicit information, we can have information sets with formulas that
are not true, or even inconsistent ones. Moreover, the models do not impose
any restriction about the rules the agent can apply: they do not have to be
truth-preserving.

Among the models in EI, we can distinguish those in which both implicit
and explicit information are true, and the rules are truth-preserving. We start by
considering models with equivalence accessibility relations, as it is usually done
in Epistemic Logic; this makes implicit information true. For explicit information,
we ask for every formula in the information set to be true at the corresponding
world. Finally, in the case of rules, we define a translation TR that takes rules in
R into an implication inEIwhose antecedent is the conjunction of the premises
and whose consequent is the conclusion.

TR(ρ) :=
∧

prem(ρ)→ conc(ρ)

The formal definition of this particular class of models is as follows.

Definition 2.6 (The class EIK). We denote by EIK the class of explicit/implicit
information models satisfying

• Equivalence: R is an equivalence relation.

• Truth for formulas: for every world w ∈W, if γ ∈ Y(w), then (M,w)  γ.

• Truth for rules: for every world w ∈W, if ρ ∈ Z(w), then (M,w)  TR(ρ).

Models in this class will be also called knowledge models, and instead of ex-
plicit/implicit information we will talk about explicit/implicit knowledge.

For a syntactic characterization of formulas valid in EIK models, we have
the logic EIK.

Definition 2.7 (Logic EIK). The logic EIK extends EI (see definition 2.5) by
adding the axioms of table 2. Axioms T, 4 and B make the accessibility relation
an equivalence relation. Axiom TthI guarantees that formulas in the agent’s
information set are true, and axiom TthR guarantees that the rules she can apply
are truth-preserving.

Theorem 2 (Soundness and completeness of EIK w.r.t. EIK). The logic EIK is
sound and strongly complete with respect to the models in the class EIK.

Proof. The fact that axioms of table 2 are valid in EIK proves soundness. The
fact that the canonical model for the logic EIK satisfies the equivalence, truth
for formulas and truth for rules properties proves completeness. Details can be
found in section A.2. �
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Extra axioms for the logic EIK
(T) ` ϕ→ ^ϕ
(4) ` ^^ϕ→ ^ϕ
(B) ` ^�ϕ→ ϕ
(TthI) ` I γ→ γ
(TthR) ` Lρ→ TR(ρ)

Table 2: Extra axioms for the logic EIK.

We recall the coherence property for formulas and rules: ifγ ∈ Y(w) (ρ ∈ Z(w))
and Rwu, then we have γ ∈ Y(u) (ρ ∈ Z(u)). When the accessibility relation is
an equivalence relation, we get the same information and rule set for all the
worlds that belong to the same equivalence class.

Note how in knowledge models, from axiom CohI (I γ → �I γ) and axiom
TthI (I γ → γ) we get I γ → �γ. The same apply for rules: from CohR (Lρ →
�Lρ) and TthR (Lρ → TR(ρ)) we get Lρ → �TR(ρ). These formulas indicate
that whatever is part of the agent’s explicit information also belongs to her
implicit information.

It is now time to turn our attention into the dynamics of information. In
the following sections, we extend the language to describe two different ways
in which the agent can improve her knowledge. Through inferences, she will
extract information that is implicit in what she explicitly have; moreover, we
will provide her a mechanism to improve her inferential abilities. Through
updates, she will get information that may not be available (even implicitly) to
her before.

3 Inference

The agent can extend her explicit knowledge by using rules. As mentioned
before, a rule (Γ, γ) intuitively indicates that if every δ ∈ Γ is true, so it is γ.
However, in principle, there is no restriction in the way the agent can use a
rule. She can use it to get the conclusion without having all the premises, or
even deriving the premises whenever she has the conclusion.

In the previous section we distinguished, among all the explicit/implicit
information models, those in which the agent’s information is true. In the same
spirit, in this section we will define an inference operation that preserves truth.

3.1 A particular case: truth-preserving inference

The inference process adds formulas to the information set. Since we want to
represent a truth-preserving inference, we restrict the way in which the rule can
be applied. The deduction operation over a model M is defined as follows.

Definition 3.1 (Deduction operation). Let M = 〈W,R,V,Y,Z〉 be a model in the
class EI, and let σ be a rule in R. The model Mσ = 〈W′,R′,V′,Y′,Z′〉 is given by

• W′ :=W, R′ := R
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and, for every w ∈W′,

• V′(w) := V(w), Z′(w) := Z(w) and

• Y′(w) :=
{

Y(w) ∪ {conc(σ)} if prem(σ) ⊆ Y(w) and σ ∈ Z(w)
Y(w) otherwise

The operation (·)σ is called the deduction operation with rule σ.

Note how the conclusion of the rule is added to a world just when all
the premises and the rule are already there. This allows us to prove that, in
particular, the deduction operation preserves models in EIK.

Proposition 1. Let σ be a rule in R. If M is a model in EIK, so it is Mσ.

Proof. See section A.3. �

The language EID extends EI by closing it under deduction operations.
Take a rule σ: if ϕ is a formula in EID, so it is 〈Dσ〉ϕ. These new formulas are
read as “there is a way of deductively applying σ after which ϕ is the case”. Define
the abbreviation

Preσ ≡ I prem(σ) ∧ L σ

where, for Γ a finite set of formulas of the internal language, we write I Γ for∧
γ∈Γ I γ. Then, the semantics for deduction formulas is given as follows.

Definition 3.2. Let M be a model in EI, and take a world w in it.

(M,w)  〈Dσ〉ϕ iff (M,w)  Preσ and (Mσ,w)  ϕ

The formula [Dσ]ϕ is defined as the dual of 〈Dσ〉ϕ, that is, [Dσ]ϕ ↔
¬〈Dσ〉 ¬ϕ. Therefore,

(M,w)  [Dσ]ϕ iff (M,w)  Preσ implies (Mσ,w)  ϕ

We now provide a syntactic characterization of the formulas in EID that
are valid in models in EIK. By proposition 1, the deduction operation is closed
for models in EIK, so we can rely on the logic EIK: all we have to do is give a
set of reduction axioms for formulas of the form 〈Dσ〉ϕ

Definition 3.3 (Logic EIKD). The logic EIKD is built from axioms and rules of
EIK (see definition 2.7) plus axioms and rules in table 3. Each one of the axioms
express how formulas after the deduction operation are related with formulas
before the operation.

Theorem 3 (Soundness and completeness of EIKD w.r.t. EIK). The logic EIKD is
sound and strongly complete for the class of models EIK.

Proof. Soundness follows from the validity of the new axioms and the validity-
preserving property of the new rule. Strong completeness follows from the
fact that, by a repetitive application of such axioms, any deduction operation
formula can be reduced to a formula in EI, for which EIK is strongly complete
with respect to EIK. �
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Axioms and inference rules for the deduction operation
D> ` 〈Dσ〉> ↔ Preσ
Dp ` 〈Dσ〉 p ↔ (Preσ ∧ p)
D¬ ` 〈Dσ〉 ¬ϕ ↔ (Preσ ∧ ¬〈Dσ〉ϕ)
D∨ ` 〈Dσ〉 (ϕ ∨ ψ) ↔ (〈Dσ〉ϕ ∨ 〈Dσ〉ψ)
D^ ` 〈Dσ〉^ϕ ↔ (Preσ ∧ ^〈Dσ〉ϕ)
DI ` 〈Dσ〉 I conc(σ) ↔ Preσ
DI ` 〈Dσ〉 I γ ↔ (Preσ ∧ I γ) for γ , conc(σ)
DL ` 〈Dσ〉Lρ ↔ (Preσ ∧ Lρ)
GenD From ` ϕ, infer ` [Dσ]ϕ

Table 3: Axioms and rules for deduction operation formulas.

In previous versions of the present work (Velazquez-Quesada [2008]) infer-
ence was represented as a modal relation between worlds. Formulas of the
form 〈σ〉ϕ, read as “there is a way to apply the rule σ after which ϕ is the case”,
were interpreted with a relation Dσ for every rule σ. In order to preserve the
intuitive meaning, some properties for the relation were required. Inference re-
lations should relate worlds with the same valuation and, for the particular case
of deduction, the following four properties were stated, indicating properties
that the sets of formulas should have to properly represent a truth-preserving
inference:

1. to apply a rule we need the premises and the rule,

2. after applying it, we preserve the explicit information we had before,

3. the explicit information is increased by the conclusion of the rule, and

4. there is no other difference between the explicit information before and
after the rule application.

In the present work, inference is represented not as a modal relation but
as a model operation. From its definition we can see that deduction preserves
world-valuation. But not only that: the four previous properties still hold, as
the validity of the following formulas shows.

1. 〈Dσ〉> → Preσ 2. I γ→ [Dσ] I γ
3. [Dσ] I conc(σ) 4. 〈Dσ〉 I γ→ I γ (for γ , conc(σ))

Moreover, in this representation, inference is functional: we can apply a rule
deductively every time we have it together with its premises, and the result of the
application is unique. The first property was a problem for update operations
in the previous setting, and the second one was only expressible with the use
of nominals.

The deduction operation adds a formula to the information sets only if it
is the conclusion of an applicable rule (i.e., we already have the rule and its
premises). Note how in such cases, the conclusion of the rule is actually part of
the agent’s implicit information: if a rule is applicable in the current world, then
we have it as well as its premises. Axioms CohI and CohR put both premises
and rule in every world of the equivalence class, and TthI and TthR make the

9



premises and the implication that results of translating the rule true at them.
Then, the K axiom makes the conclusion true in all these worlds. The validity
of (I prem(ρ) ∧ Lρ)→ �conc(ρ) proves our point, but the converse is not true.
In general there are formulas belonging to the agent’s implicit information that
are not reachable via deduction, since her rule set may not have a rule to derive
each one of them. And even if there are such rules, the agent may not have all
the needed premises.

3.2 Dynamics of deduction

Just as the agent’s explicit information changes, her inferential abilities can also
change. This may be because he is informed about another rule (as we will
describe when we work with updates in section 4), but it may be also because
she builds new rules from the ones she already has. For example, from the rules
({p}, q) and ({q}, r), it makes sense to derive the rule ({p}, r). It may take one step
to the agent to add it to her rule set, but it will save intermediate steps later by
allowing the agent to go directly from having p to having r.

In fact the example, a kind of transitivity, represents the application of Cut
over the rules the agent has available. In general, inference relations can be
characterized by the structural rules they satisfy. These structural rules indicate
how to derive new rules from the ones we already have. In the case of deduction
the rules are the following:

Reflexivity:
ϕ⇒ ϕ

Contraction: ψ, χ, ξ, χ, φ⇒ ϕ
ψ, χ, ξ, φ⇒ ϕ

Permutation: ψ, χ, ξ, φ⇒ ϕ
ψ, ξ, χ, φ⇒ ϕ

Monotonicity: ψ,φ⇒ ϕ
ψ, χ, φ⇒ ϕ

Cut: χ⇒ ξ ψ, ξ, φ⇒ ϕ
ψ, χ, φ⇒ ϕ

Each time a structural rule is applied, we get a new rule. In our framework,
the application of an structural rule modifies the model by adding the new rule
to the rule set. Note that Contraction and Permutation are not so interesting for
us, since we are already considering the premises of a rule as a set, and hence
their application does not yield a new rule. On the other hand, Reflexivity,
Monotonicity and Cut can increase the agent’s inferential abilities.

Definition 3.4 (Structural operations). Let M = 〈W,R,V,Y,Z〉 be a model in EI.

Reflexivity. Let δ be a formula of the internal language. Consider the rule
ςδ = ({δ}, δ). The model MRef(δ) = 〈W′,R′,V′,Y′,Z′〉 is the result of adding
ςδ to every rule set. Formally,

• W′ :=W, R′ := R,

• V′(w) := V(w), Y′(w) := Y(w), for every w ∈W′,

• Z′(w) := Z(w) ∪ {ςδ}, for every w ∈W′.

The operation (·)Ref(δ) is called the reflexivity operation with δ.
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Monotonicity. Let δ be a formula in I, and let ς be a rule over I. Consider the
rule ς′ = (prem(ς)∪ {δ}, conc(ς)), extending ς by adding δ to its premises.
The model MMon(δ,σ) = 〈W′,R′,V′,Y′,Z′〉 is the result of adding ς′ to every
rule set that already contains ς. Formally,

• W′ :=W, R′ := R

and, for every w ∈W′,

• V′(w) := V(w), Y′(w) := Y(w) and

• Z′(w) :=
{

Z(w) ∪ {ς′} if ς ∈ Z(w)
Z(w) otherwise

The operation (·)Mon(δ,ς) is called the monotonicity operation with δ and ς.

Cut. Let ς1, ς2 be rules over the internal language, such that the conclusion of ς1
is contained in the premises of ς2 (that is, conc(ς1) ∈ prem(ς2)). Consider
the rule ς′ = ((prem(ς2) − {conc(ς1)}) ∪ prem(ς1) , conc(ς2)), combining ς1
and ς2. The model MCut(ς1,ς2) = 〈W′,R′,V′,Y′,Z′〉 is the result of adding
ς′ to every rule set that already has ς1 and ς2. Formally,

• W′ :=W, R′ := R

and, for every w ∈W′,

• V′(w) := V(w), Y′(w) := Y(w) and

• Z′(w) :=
{

Z(w) ∪ {ς′} if {ς1, ς2} ⊆ Z(w)
Z(w) otherwise

The operation (·)Cut(ς1,ς2) is called the cut operation with ς1 and ς2.

Just as the deduction operation, the three structural operations preserve
models in EIK.

Proposition 2 (Closure of structural operations). Let M be a model in EIK, and let
MSTR stand for either MRef(δ), MMon(δ,ς) or MCut(ς1,ς2). If M is in EIK, so it is MSTR.

Proof. See section A.4. �

We enrich the language to express how the structural operations change
the agent’s inferential abilities. The language EID∗ extends EID by making
it closed under formulas representing structural operations: if ϕ is in EID∗, so
they are 〈Ref δ〉ϕ, 〈Monδ,ς〉ϕ and 〈Cutς1,ς2〉ϕ. Each one of the formulas are read
as “there is a way of applying the structural operation after which ϕ is the case”. With
the following abbreviations

PreMon(δ,ς) ≡ L ς
PreCut(ς1,ς2) ≡ L ς1 ∧ L ς2 ∧ (I prem(ς2)→ I conc(ς1))

the semantics of the new formulas is given as follows.

Definition 3.5. Let M be a model in EI, and let w ∈W be a world in it. Then,
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(M,w)  〈Ref δ〉ϕ iff (MRef(δ),w)  ϕ
(M,w)  〈Monδ,ς〉ϕ iff (M,w)  PreMon(δ,ς) and (MMon(δ,ς),w)  ϕ
(M,w)  〈Cutς1,ς2〉ϕ iff (M,w)  PreCut(ς1,ς2) and (MCut(ς1,ς2),w)  ϕ

Just as before, the boxed versions of the structural operation formulas is
defined as the dual of their correspondent diamond versions:

(M,w)  [Ref δ]ϕ iff (MRef(δ),w)  ϕ
(M,w)  [Monδ,ς]ϕ iff (M,w)  PreMon(δ,ς) implies (MMon(δ,ς),w)  ϕ
(M,w)  [Cutς1,ς2 ]ϕ iff (M,w)  PreCut(ς1,ς2) implies (MCut(ς1,ς2),w)  ϕ

It is now time to provide reduction axioms for the new formulas. The fact
that structural operations are closed for models in EIK (Proposition 2) allows us
to rely on the logic EIK once again. Tables 4, 5 and 6 provide axioms indicating
how the truth value of formulas after the structural operations depends on the
truth value of formulas before them.

Definition 3.6 (Logic EIKDS). The logic EIKDS extends EIKD (definition 3.3) with
axioms and rules of tables 4, 5 and 6. Just as the axioms for deduction for-
mulas, those of the mentioned tables express how formulas after the structural
operations are related with formulas before them.

Axioms and inference rules for the reflexivity operation
with ςδ the rule ({δ}, δ))

Ref> ` 〈Ref δ〉>
Refp ` 〈Ref δ〉 p ↔ p
Ref¬ ` 〈Ref δ〉 ¬ϕ ↔ ¬〈Ref δ〉ϕ
Ref∨ ` 〈Ref δ〉 (ϕ ∨ ψ) ↔ (〈Ref δ〉ϕ ∨ 〈Ref δ〉ψ)
Ref^ ` 〈Ref δ〉^ϕ ↔ ^〈Ref δ〉ϕ
RefI ` 〈Ref δ〉 I γ ↔ I γ
RefL ` 〈Ref δ〉L ςδ
RefL ` 〈Ref δ〉Lρ ↔ Lρ for ρ , ςδ
GenRef From ` ϕ, infer ` [Ref δ]ϕ

Table 4: Axioms and rules for reflexivity formulas.

Theorem 4 (Soundness and completeness of EIKDS w.r.t. EIK). The logic EIKDSis
sound and strongly complete with respect to the models in the class EIK.

Proof. Just as for the logic EIKD, soundness follows from the validity of the
new axioms and the validity-preserving property of the new rules. Strong
completeness follows from the fact that, by a repetitive application of such
axioms, any structural operation formula can be reduced to a formula in EID,
for which EIKD is strongly complete with respect to EIK. �

Strictly speaking, we do not need axioms relating deduction and structural
operations. We can focus on the deepest occurrence of them, apply the cor-
respondent reduction axioms to eliminate it and then proceed with the next
until we remove all the operation formulas. Nevertheless, it is interesting to
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Axioms and inference rules for the monotonicity operation
with ς′ the rule (prem(ς) ∪ {δ}, conc(ς)))

Mon> ` 〈Monδ,ς〉> ↔ PreMon(δ,ς)
Monp ` 〈Monδ,ς〉 p ↔ (PreMon(δ,ς) ∧ p)
Mon¬ ` 〈Monδ,ς〉 ¬ϕ ↔ (PreMon(δ,ς) ∧ ¬〈Monδ,σ〉ϕ)
Mon∨ ` 〈Monδ,ς〉 (ϕ ∨ ψ) ↔ (〈Monδ,ς〉ϕ ∨ 〈Monδ,ς〉ψ)
Mon^ ` 〈Monδ,ς〉^ϕ ↔ (PreMon(δ,ς) ∧ ^〈Monδ,ς〉ϕ)
MonI ` 〈Monδ,ς〉 I γ ↔ (PreMon(δ,ς) ∧ I γ)
MonL ` 〈Monδ,ς〉L ς′ ↔ PreMon(δ,ς)
MonL ` 〈Monδ,ς〉Lρ ↔ (PreMon(δ,ς) ∧ Lρ) for ρ , ς′

GenMon From ` ϕ, infer ` [Monδ,ς]ϕ

Table 5: Axioms and rules for monotonicity formulas.

Axioms and inference rules for the cut operation
with ς′ the rule ( (prem(ς2) − {conc(ς1)}) ∪ prem(ς1), conc(ς2) )

Cut> ` 〈Cutς1,ς2〉> ↔ PreCut(ς1,ς2)
Cutp ` 〈Cutς1,ς2〉 p ↔ (PreCut(ς1,ς2) ∧ p)
Cut¬ ` 〈Cutς1,ς2〉 ¬ϕ ↔ (PreCut(ς1,ς2) ∧ ¬〈Cutς1,ς2〉ϕ)
Cut∨ ` 〈Cutς1,ς2〉 (ϕ ∨ ψ) ↔ (〈Cutς1,ς2〉ϕ ∨ 〈Cutς1,ς2〉ψ)
Cut^ ` 〈Cutς1,ς2〉^ϕ ↔ (PreCut(ς1,ς2) ∧ ^〈Cutς1,ς2〉ϕ)
CutI ` 〈Cutς1,ς2〉 I γ ↔ (PreCut(ς1,ς2) ∧ I γ)
CutL ` 〈Cutς1,ς2〉L ς′ ↔ PreCut(ς1,ς2)
CutL ` 〈Cutς1,ς2〉Lρ ↔ (PreCut(ς1,ς2) ∧ Lρ) for ρ , ς′

GenCut From ` ϕ, infer ` [Cutς1,ς2 ]ϕ

Table 6: Axioms and rules for cut formulas.

see the relation between the different operations and, in particular, it is inter-
esting to see how deduction is affected by structural operations. We finish this
section presenting some validities, expressing how deduction after structural
operations is related with deduction before them.

Theorem 5. The formulas in table 7 are valid in models of the class EIK.

Reflexivity with ςδ the rule ({δ}, δ)
• 〈Ref δ〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈Ref δ〉ϕ for σ , ςδ
• 〈Ref δ〉 〈Dςδ〉ϕ ↔ (〈Dςδ〉ϕ ∨ (I δ ∧ 〈Ref δ〉ϕ))
Monotonicity with ς′ the rule (prem(ς) ∪ {δ}, conc(ς))
• 〈Monδ,ς〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈Monδ,ς〉ϕ for σ , ς′

• 〈Monδ,ς〉 〈Dς′〉ϕ ↔ (〈Dς′〉ϕ ∨ (I δ ∧ L ς ∧ 〈Dς〉 〈Monδ,ς〉ϕ))
Cut with ς′ the rule ( (prem(ς2) − {conc(ς1)}) ∪ prem(ς1), conc(ς2) )
• 〈Cutς1 ,ς2〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈Cutς1 ,ς2〉ϕ for σ , ς′

• 〈Cutς1 ,ς2〉 〈Dς′〉ϕ ↔
(〈Dς′〉ϕ ∨ (I prem(ς1) ∧ L ς1 ∧ (I conc(ς1)→ 〈Dς2〉 〈Cutς1 ,ς2〉ϕ)))

Table 7: Relation between structural operations and deduction
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Proof. See section A.5. �

4 Update

So far, our language can express the agent’s internal dynamics, but it cannot
express external ones. We can express how deductive steps modify explicit
knowledge, and even how structural operations extends the rules the agent
can apply, but we cannot express how both explicit and implicit knowledge are
affected by external observations. Here we add the other fundamental source
of information; in this section, we extend the language to express updates.

Updates are the result of the agent’s social nature. We get new information
because of our interaction with our environment, information that may be
completely new in the sense that it does not follows from what we explicitly
know. Updates are usually represented as operations, modifying the semantic
model. In Public Announcement Logic (PAL), for example, an announcement is
defined by an operation that removes the worlds where the announced formula
does not hold, restricting the epistemic relation to those that are not deleted. In
our semantic model, we have a finer representation of the agent’s knowledge:
we have explicit knowledge (her information sets) but we also have implicit one
(given by the accessibility relation). We can extend PAL by defining different
kinds of model operations, affecting explicit and implicit knowledge in different
forms, and therefore expressing different ways the agent processes the incoming
information. Here, we present one of the possible definitions, what we have
called explicit observations.

4.1 Explicit observations

The previously defined operations do not modify the accessibility relation, and
therefore do not affect implicit knowledge. With respect to explicit information,
they add formulas or rules to the correspondent sets whenever they follow from
what is already there. The deduction operation adds the conclusion of the rule
whenever the premises and the rule are already present, and the structural
operations add a rule whenever it logically follows from the ones that are
currently available.

Observations, on the other hand, do modify the accessibility relation because
it removes worlds where the observation does not holds. With respect to explicit
information, they add arbitrary true information (formulas or rules), no matter
if it was implicitly available (i.e., it follows from the explicit information) or
not.

Definition 4.1 (Explicit observation operation). Let M = 〈W,R,V,Y,Z〉 be a
model in EI, and let χ be a formula of I (a rule based on I). The model Mχ! =
〈W′,R′,V′,Y′,Z′〉 is the result of removing the worlds that are not compatible
with χ, restricting the accessibility relation accordingly, and adding χ to the
agent’s information (rule) set. Formally,

• W′ := {w ∈W | (M,w)  χ }, (W′ := {w ∈W | (M,w)  TR(χ) })

• R′ := R ∩ (W′
×W′),

• V′(w) := V(w) for every w ∈W′,
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• Y′(w) := Y(w) ∪ {χ} (Y′(w) := Y(w)) for every w ∈W′,

• Z′(w) := Z(w) (Z′(w) := Z(w) ∪ {χ}) for every w ∈W′.

The operation (·)χ! is called the explicit observation operation with χ.

The operation preserves models in EIK too.

Proposition 3 (Closure of structural operations). Let M be a model in EIK and χ
a formula in I (a rule based on I); if M is in EIK, so it is Mχ!.

Proof. See section A.6. �

The languageEID∗! extendsEID∗ by closing it under explicit observations:
if ϕ is in EID∗!, so it is 〈χ!〉ϕ. These formulas are read as “there is a way of
explicitly observing χ after which ϕ is the case”. In case χ is a formula, define
Preχ! ≡ χ; in case χ is a rule, define Preχ! ≡ TR(χ). The semantics of explicit
observation formulas is given as follows.

Definition 4.2. Let M be a model in EI and let w ∈W be a world in it. Then,

(M,w)  〈χ!〉ϕ iff (M,w)  Preχ! and (Mχ!,w)  ϕ

The formula [χ!]ϕ is defined as the dual of 〈χ!〉ϕ, as usual.

Definition 4.3 (Logic EIKDSO). The logic EIKDSO is built from axioms and rules
of EIKDS (definition 3.6) plus axioms and rules in table 8.

Axioms and rules for the explicit observation operation
EO> ` 〈χ!〉> ↔ Preχ!
EOp ` 〈χ!〉 p ↔ (Preχ! ∧ p)
EO¬ ` 〈χ!〉 ¬ϕ ↔ (Preχ! ∧ ¬〈χ!〉ϕ)
EO∨ ` 〈χ!〉 (ϕ ∨ ψ) ↔ (〈χ!〉ϕ ∨ 〈χ!〉ψ)
EO^ ` 〈χ!〉^ϕ ↔ (Preχ! ∧ ^〈χ!〉ϕ)
If χ is a formula:
EOI ` 〈χ!〉 I χ ↔ Preχ!
EOI ` 〈χ!〉 I γ ↔ (Preχ! ∧ I γ) for γ , χ
EOL ` 〈χ!〉Lρ ↔ (Preχ! ∧ Lρ)
If χ is a rule:
EOI ` 〈χ!〉 I γ ↔ (Preχ! ∧ I γ)
EOL ` 〈χ!〉Lχ ↔ Preχ!
EOL ` 〈χ!〉Lρ ↔ (Preχ! ∧ Lρ) for ρ , χ
GenEO From ` ϕ, infer ` [χ!]ϕ

Table 8: Axioms and rules for explicit observation formulas.

Theorem 6 (Soundness and completeness of EIKDSO w.r.t. EIK). The logic EIKDSO
is sound and strongly complete for the class of models EIK.
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5 Comparison with other works

The present work explores a representation of explicit/implicit information that
allows us to describe the way different process affects both kinds of information.
Several other works have proposed similar frameworks; in this section we
present a brief comparison between some of those approaches and our proposal.

5.1 Fagin-Halpern’s logics of awareness

Fagin and Halpern presented in Fagin and Halpern [1988] what they called
logic of general awareness (LA). Given a set of agents, formulas of the language
are given by a set of atomic propositions P closed under negation, conjunction
and the modal operators Ai and Li (for an agent i). Formulas of the form Aiϕ
are read as “the agent i is aware of ϕ”, and formulas of the form Liϕ are read as
“the agent i implicitly believes that ϕ”. The operator Bi, which expresses explicit
beliefs, is defined as Biϕ := Aiϕ ∧ Liϕ.

A Kripke structure for general awareness is defined as a tuple M = (W,Ai,Li,V),
where W , ∅ is the set of possible worlds, Ai : W → ℘(LA) is a function that
assigns a set of formulas of LA to the agent i in each world (her awareness set),
the relation Li ⊆ (W×W) is a serial, transitive and Euclidean relation over W for
each agent i (LA deals with beliefs rather than knowledge) and V : P → ℘(W)
is a valuation function.

Given a Kripke structure for general awareness M = (W,Ai,Li,V), semantics
for atomic propositions, negations and conjunctions are given in the standard
way. For formulas of the form Ai ϕ and Li ϕ, we have

M,w  Aiϕ iff ϕ ∈ Ai(w)
M,w  Liϕ iff for all u ∈W, Liwu implies M,u  ϕ

It follows that M,w  Biϕ iff ϕ ∈ Ai(w) and, for all u ∈W, Liwu implies M,u  ϕ.
Note how the explicit beliefs implies implicit beliefs property holds because

of the definition of explicit beliefs: an agent explicit believes that ϕ (Biϕ) if
and only if she is aware of it (Aiϕ) and she implicitly believes it (Liϕ). In
our approach, explicit and implicit information are defined separately, and it
is because of the coherence and the truth properties that explicit information
implies explicit information.

Given the similarities between the functions Ai and Y and between the
relations Li and R, formulas Aiϕ and Liϕ in LA behaves exactly like Iϕ and �ϕ
in EI (plus the subindexes). The difference between the approaches is in the
rules we use to perform inference and, therefore, in the dynamic part.

The rule set function Z represents explicitly the processes that the agent can
use at w to improve her explicit information about formulas. The information
of the agent consists not only of formulas about the world, but also of rules that
allow her to infer new formulas. It is not that the agent knows that after a rule
application her information set will change; it is that she knows the process that
leads the change. We interpret a rule as an object that can be part of the agent’s
information, and whose presence is needed for the agent to be able to apply it.

For the internal dynamics, the language LA does not express changes in the
agent’s awareness sets, though later in the same paper the authors explore the
incorporation of time to the language by adding a deterministic serial binary
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relation T over W representing steps in time. Still, they do not indicate what
the process(es) that change the awareness sets is (are).

Our approach does indicate the process that transform the explicit infor-
mation: inference. Different from their relational approach, in our work this
process is represented not as relation between worlds, but as a model operation
that modifies the content of the information set at each world. They represent
steps in the agent’s reasoning process, increasing her explicit information.

Finally, the language of formulas belonging to the awareness sets is more
powerful that our internal languageI. As we mentioned before, that limitation
allows us to define the update operation for representing external dynamics
(observations), a process that is not considered in LA.

5.2 Duc’s dynamic epistemic logic

In Duc [1995, 1997] and Duc [2001], Ho Ngoc Duc proposed a dynamic epistemic
logic to reason about agents that are neither logically omniscient nor logically
ignorant.

The syntax of the language is very similar to the inference part of our
language. There is an internal language, the classic propositional one (PL), to
express agent’s information. There is also another language to talk about how
this information evolves. Formally, At denotes the set of formulas of the form
Kγ, for γ in PL. The language LBDE contains At and is closed under negation,
conjunction and the modal operator 〈F〉. Formulas of the form Kγ are read as
“γ is known”; formulas of the form 〈F〉ϕ are read as “ϕ is true after some course of
thought”. Note how the language just focus on the way the agent’s information
evolves and does not provide formulas to talk about the real world.

A model M is a tuple (W,R,Y), where W , ∅ is the set of possible worlds,
R ⊆ (W ×W) is a transitive binary relation and Y : W → ℘(At) associates a set
of formulas of At to each possible world. A BDE-model is a model M such that:
(1) for all w ∈ W, if Kγ ∈ Y(w) and Rwu, then Kγ ∈ Y(u); (2) for all w ∈ W,
if Kγ and K(γ → δ) are in Y(w), then Kδ is in Y(u) for some u such that Rwu;
(3) if γ is a propositional tautology, then for all w ∈ W there is a world u such
that Rwu and Kγ ∈ Y(u). Such restrictions guarantees that the set of formulas
will grow as the agent reasons, and that her information will be closed under
modus ponens and will contain all tautologies at some point in the future.

Given a BDE-model, the semantics for negation and conjunctions are stan-
dard. The semantics of atomic and reasoning-steps formulas are given by:

M,w  Kγ iff Kγ ∈ Y(w)
M,w  〈F〉ϕ iff there is some u ∈W such that Rwu and M,u  ϕ

The main difference between the approaches is the treatment of the mech-
anism that increases explicit information. While in Duc’s approach it is rep-
resented as a relation between worlds (the relation R), in our approach it is
represented as a model operation. Moreover, Duc’s approach do not specify
what this mechanism is (he just call it “course of though”) while our framework
considers a concrete interpretation: inference. Finally, the language is restricted
to express what the agent can infer through some “course of though”, but it does
not express external dynamics, as explicit observations in our language do.
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5.3 Jago’s logic for resource-bounded agents

In Jago [2006b,a], Jago presented a logic for resource-bounded agents. He
considers a semantic model similar to ours, based in Kripke models and with
a set of formulas of some internal language assigned to every agent in each
possible world to describe explicit information. Moreover, he also considers
rule-based inference as the mechanism through which the agent can improve
her information. Similar to Duc and different from us, inference is represented
as a relation between worlds: there is an arrow labelled with a rule ρ from
world w to world u if and only if at w the agent has the rule and all its premises,
and at u the agent extends what she has at w by adding the conclusion of ρ.

There are two main differences in the approaches. The first one is again the
treatment of the mechanism to improve explicit information, but here we go
further in the comparison since Jago’s work is the origin of our proposal. As
mentioned before, our model-operation representation facilitates the work by
giving us a functional treatment of inference for free, while the modal repre-
sentation forces us to ask for properties of the relation in order for inference to
behave in a functional way. Those properties may need a more powerful lan-
guage to be expressed (the uniqueness of the result of a rule application can only
be expressed with nominals, in order to really differentiate worlds) and some
of them may be not preserved after updates (the existence of a world resulting
from an available rule application is not preserved since new information may
turn applicable rules that were not before). And that is precisely the second
difference: our approach considers not only internal dynamics (inference) but
also external ones (updates).

5.4 van Benthem’s acts of realization

In van Benthem [2008b], the author considers a language extending the propo-
sitional one with the operators K and I for implicit and explicit information,
respectively. Semantically, we have tuples (W,Wacc,∼,V) where (W,∼,V) is a
Kripke model and Wacc is the set of access worlds: pairs (w,X) with w a standard
world and X a set of formulas of the propositional language (the access set).
There are three restrictions: accessibility relations are equivalence relations,
for each access world (w,X), all formulas in X should be true at (w,X), and
epistemically indistinguishable worlds should have the same access set. These
models are similar to our knowledge models of definition 2.6, the only difference
being our rule set function and their properties. Given a model and an access
world (w,X), atomic propositions are interpreted according to the valuation at
w, boolean connectives and K are interpreted as usual, and Iϕ is true at (w,X)
if and only if ϕ ∈ X.

Then, implicit and explicit observations are defined. The first restricts the
worlds to those that satisfy the observation, just as public announcements
do; the second performs the same operation but also modifies the access sets
by adding the observation to it. This explicit observation is exactly like our
explicit observation of section 4, and the implicit observation can be defined in
our framework.

The main difference in the approaches is that, after the previous definitions,
van Benthem notices that “the preceding is not yet a right division of labour, as events
of explicit seeing and implicit seeing ‘overlap’ in their effects on a model”. Then he
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goes further and proposes two more “orthogonal” acts: one simply delimiting
the implicit information in the style of standard public announcements (what
he calls “bare observation”, syntactically represented with [!ϕ]) and another one
simply adding true formulas to the access sets (what he calls “act of realiza-
tion”, syntactically represented with [#ϕ]). The previous implicit observation
becomes a bare observation, while the explicit one becomes a composition of a
bare observation and an act of realization.

An act of realization is more general than our deduction. As we mentioned
before, formulas that can be added by a deduction operation are part of the
agent’s implicit information (as the validity of (I prem(ρ) ∧ Lρ) → �conc(ρ)
shows) but the converse is not true. On the other hand, any formula that is
part of the implicit information can be added to the access sets by an act of
realization (as the validity of 〈#ϕ〉Iϕ↔ Kϕ shows). Validities, for example, can
be added without any further consideration.

6 Final remarks and further work

Let us describe the restaurant example with our framework. The initial setting
can be given by a model M with six possible worlds, each one of them indicating
a possible distribution of the dishes from the new waiter’s point of view. For
him, all of them are indistinguishable from each other, that is, the accessibility
relation is an equivalence relation.

For explicit information, consider a set of atomic propositions of the form
pd where p stands for a person (father, mother or you) and d stands for some
dish (meat, fish or vegetarian). The waiter explicitly knows each person will
get only one dish, so we can put the rules

ρ1 : {yf} ⇒ ¬yv ρ2 : {fm} ⇒ ¬fv

and similar ones in each world. Moreover, he explicitly knows that each dish
corresponds to one person, so the rule

σ : {¬yv,¬fv} ⇒ mv

can be also added, among many others. Let w be the real world, where yf, fm
and mv are true. The formula ¬I mv∧¬�mv, indicating that the waiter does not
know yet (neither explicitly nor implicitly) that your mother has the vegetarian,
is true at (M,w).

While approaching to the table, the waiter can improve the rules he knows:
he can, for example, apply the Cut rule over ρ1 and σ, since he has both rules
and the conclusion of the first is in the premises of the second. This does not
give him new explicit information, but will allow him to infer faster later. From
the application, he gets the rule

ς1 : {yf,¬fv} ⇒ mv

Then, the formulas

• 〈Cutρ1,σ〉 ¬I mv • 〈Cutρ1,σ〉L ς1
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are also true at (M,w). Moreover, he can apply Cut again, this time with ρ2 and
ς1, obtaining the rule

ς2 : {yf, fm} ⇒ mv

and making the formulas

• 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 ¬I mv • 〈Cutρ1,σ〉 〈Cutρ2,ς1〉L ς2

true at (M,w).
After the answer to the question “Who has the fish?”, the waiter explicitly

knows that you have the fish. Four possible worlds are removed from the
model and the rule ς2 is preserved, but he still does not know (neither explicitly
nor implicitly) that your mother has the vegetarian. Then,

• 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!〉 (I yf ∧ L ς2) • 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!〉 (¬I mv ∧ ¬�mv)

are true at (M,w).
Then he asks “Who has the meat?”, and the answer removes one of the

remaining worlds. Not only he knows implicitly that your mother has the
vegetarian dish: he is also able to infer it, adding it to his explicit information:

〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!〉 〈fm!〉 (�mv ∧ 〈Dς2〉 I mv)

Two structural operations, two explicit observations and one inference is all the
waiter needs.

The work can be extended in several ways. The first one is by extending the
internal language beyond the propositional one. As we mentioned, we choose
the propositional language because it allows us the definition of updates given
in section 4. If we extend the language to the full explicit/implicit information
one, we may face Moore-type-observations, like p ∧ ¬^p indicating that p is
the case and the agent did not know it explicitly. Formulas like these cannot
be simply added to the information sets since, although they are true at the
moment they are observed, they become false immediately after. A simple
solution is to keep in the information sets those formulas that are true in the
new model, but we still have difficulties because of circularity: we define
the new information set as those formulas that were there before and are still
true in the new model, but in order to check whether an explicit information
formula is true or not we already need the information set. A further analysis
providing a solution to this limitation will greatly increase the expressivity of
the framework.

We have analyzed the particular case where the agent has true information,
that is, when the accessibility relation is an equivalence relation and formulas
as well as the translation of the rules are true at the correspondent worlds. This
is not the general case: by removing such restrictions we can talk not only about
knowledge but also about other kinds of information, like beliefs. Some recent
works combine these two notions, giving us a nice way of studying these two
propositional attitudes together.

Moreover, we have analyzed the case where inference preserves truth, but
there are other interesting inference processes, like default reasoning, abduction
or belief revision. They are not deductive, but they are important and widely
used, with particular relevance on incomplete information situations. Within
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the proposed framework, we can represent different inference processes, and
we can study how all of them work together.

For the external dynamics, this finer representation of knowledge allows us
to define different kinds of observations. Given the already discussed restriction
of the internal language, we can represent observations that do not affect explicit
information (like van Benthem’s bare observations previously discussed) and our
already defined explicit observations. If we lift the restriction, we will be able
to represent more kinds of observations, all differing between them in how
introspective is the agent about the observed fact.

In the context of agent diversity (Liu [2006, 2008]), this finer representation
of the processes that affect information allows us to make a distinction between
agents with different reasoning abilities. The rules an agent has may be very
different from those of another, and they will not be able to perform the same
inference steps. Moreover, some of them may be able to perform several in-
ference steps at once instead of a single one. The idea works also for external
dynamics: agents may have different observational power. It will be interesting
to explore how agents that differs in their reasoning and observational abilities
interact with each other.
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A Technical appendix

A.1 Completeness for basic models

The key observation is that a logicΛ is strongly complete with respect to a class
of structures if and only if every Λ-consistent set of formulas is satisfiable on
some structure of the given class (Proposition 4.12 of Blackburn et al. [2001]).
Using the the canonical model technique, we show that every EI-consistent set
of formulas is satisfiable in a model in EI. Proofs of Lindenbaum’s Lemma,
Existence Lemma and Truth Lemma are standard.

Lemma 1 (Lindenbaum’s Lemma). For any EI-consistent set of formulas Σ, there
is a maximal EI-consistent set Σ+ such that Σ ⊆ Σ+.

Definition A.1 (Canonical model for EI). The canonical model of the logic EI is
the epistemic inference model MEI = 〈WEI,REI,VEI,YEI,ZEI

〉, where:

• WEI is the set of all maximal EI-consistent set of formulas.

• REI := { (w,u) | for all ϕ in EI, ϕ ∈ u implies ^ϕ ∈ w } (or, equivalently,
REI := { (w,u) | for all ϕ in EI, �ϕ ∈ w implies ϕ ∈ u }).

• VEI(w) := { p ∈ P | p ∈ w }.
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• YEI(w) := {γ ∈ I | I γ ∈ w }.

• ZEI(w) := {ρ ∈ R | Lρ ∈ w }.

Lemma 2 (Existence Lemma). For every world w ∈WEI, if ^ϕ ∈ w, then there is a
world u ∈WEI such that REIwu and ϕ ∈ u.

Lemma 3 (Truth Lemma). For all w ∈WEI, we have (MEI,w)  ϕ iff ϕ ∈ w.

By the mentioned Proposition of Blackburn et al. [2001], all we have to show
is that every EI-consistent set of formulas is satisfiable, so take any such set Σ.
By Lindenbaum’s Lemma, we can extend it to a maximal EI-consistent set of
formulas Σ+; by the Truth Lemma, we have (MEI,Σ+)  Σ, so Σ is satisfiable
in the canonical model of EI at Σ+. It is only left to show that MEI is indeed a
model in EI, that is, we have to show that it satisfies coherence for formulas and
rules.

Remember that any maximal EI-consistent set Φ is closed under modus
ponens, that is, if ϕ and ϕ→ ψ are in Φ, so it is ψ.

• Coherence for formulas. Suppose γ ∈ YEI(w); we want to show that for all
u such that REIwu we have γ ∈ YEI(u). Note that I γ→ �I γ (axiom CohI)
is in w.

By definition, γ ∈ YEI(w) implies I γ ∈ w; by the modus ponens closure,
we have �I γ ∈ w. Take any u such that REIwu; then I γ ∈ u and therefore
γ ∈ YEI(u).

• Coherence for rules. Similar to the case of formulas, with the CohR axiom.

A.2 Completeness for knowledge models

We know already that EI is complete with respect to models in EI (section A.1).
In order to show that EIK is complete with respect to EIK, we just have to show
that the canonical model for EIK satisfy equivalence, truth for formulas and truth
for rules.

Definition A.2 (Canonical model for EIK). The canonical model for EIK, MEIK =
(WEIK ,REIK ,VEIK ,YEIK ,ZEIK ), is defined just as the canonical model for EI, but
the worlds are maximal EIK-consistent sets of formulas instead of maximal
EI-consistent ones.

Here is the proof for the three properties.

• Equivalence. Axioms T, 4 and B are canonical for reflexivity, transitivity
and symmetry, respectively, so REIK is an equivalence relation.

• Truth for formulas. We want to show that γ ∈ YEIK (w) implies (MEIK ,w) 
γ. Suppose γ ∈ YEIK (w); then we get I γ ∈ w. By axiom TthI we have
γ ∈ w; by the Truth Lemma, (MEIK ,w)  γ.

• Truth for rules. Similar to the case of formulas, with axiom TthR.
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A.3 Closure of deduction operation

Let M be a model in EIK. To show that Mρ (definition 3.1) is also in EIK, we will
show that it satisfes coherence and truth for formulas, coherence and truth for
rules and equivalence. Equivalence and both properties of rules are immediate
since neither the accessibility relation nor the rule set function are modified.
For the properties of formulas, we have the following.

• Coherence for formulas. Suppose γ ∈ Y′(w) and pick any u ∈ W′ such
that R′wu; we will show that γ ∈ Y′(u). From R′wu we get Rwu.

From the definition of Y′, we know that either γ was added by the oper-
ation or else was already in Y(w). In the first case, γ should be conc(σ)
and therefore prem(σ) ⊆ Y(w) and σ ∈ Z(w). But then, by coherence for
formulas and rules of M and Rwu, we have prem(σ) ⊆ Y(u) and σ ∈ Z(u);
therefore conc(σ) ∈ Y′(u), that is, γ ∈ Y′(u). In the second case, by co-
herence for formulas of M and Rwu, we have γ ∈ Y(u) and therefore
γ ∈ Y′(u).

• Truth for formulas. Suppose γ ∈ Y′(w); we will show that (Mσ,w)  γ.

Again, from the definition of Y′, we know that either γ was added by
the operation or else was already in Y(w). In the first case, γ should
be conc(σ) and therefore prem(σ) ⊆ Y(w) and σ ∈ Z(w). By truth for
formulas of M we have (M,w) 

∧
prem(σ); by truth for rules of M we

have (M,w) 
∧

prem(σ)→ conc(σ). Therefore, we have (M,w)  conc(σ),
i.e., (M,w)  γ. In the second case, by truth for formulas of M we get also
(M,w)  γ.

Now, γ is a propositional formula, whose truth value depends only on
the valuation at w. Since V′(w) = V(w), we get (Mσ,w)  γ, as required.

A.4 Closure of structural operations

Let M = 〈W,R,V,Y,Z〉 be a model in EIK. To show that MRef(δ), MMon(δ,ς) and
MCut(ς1,ς2) are also in EIK, we will show that they satisfy coherence and truth for
formulas, coherence and truth for rules and equivalence. Equivalence and both
properties of formulas are immediate since neither the accessibility relation nor
the information set function are modified. For the properties of rules, we have
the following.

Let MRef(δ) be given by 〈W′,R′,V′,Y′,Z′〉, as in definition 3.4. Recall that
ςδ = ({δ}, δ).

• Coherence for rules. Suppose ρ ∈ Z′(w) and pick any u ∈ W′ such that
R′wu; we will show that ρ ∈ Z′(u). From R′wu we get Rwu.

From the definition of Z′, we know that either ρ was added by the oper-
ation or it was already in Y(w). In the first case, ρ should be ςδ, and we
have ςδ ∈ Z′(u) for every u ∈ W′; in the second case, coherence for rules
of M and Rwu give us ρ ∈ Z(u), and therefore ρ ∈ Z′(u).

• Truth for rules. Suppose ρ ∈ Y′(w); we will show that (MRef(δ),w)  TR(ρ).

From the definition of Z′, we know that either ρ was added by the oper-
ation or it was already in Y(w). The first case is simple since ρ should be
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ςδ and we clearly have (MRef(δ),w)  δ→ δ; the second case follows from
the truth for rules of M ((M,w)  TR(ρ)), the fact that the truth value of
TR(ρ) depends just on the valuation of the world, and the definition of V′

(V′(w) = V(w)).

Let MMon(δ,ς) be given by 〈W′,R′,V′,Y′,Z′〉, as in definition 3.4. Recall that
ς′ = (prem(ς) ∪ {δ}, conc(ς)).

• Coherence for rules. Suppose ρ ∈ Z′(w) and pick any u ∈ W′ such that
R′wu; we will show that ρ ∈ Z′(u). From R′wu we get Rwu.
From the definition of Z′, we know that either ρ was added by the oper-
ation or it was already in Y(w). In the first case, ρ should be ς′ and we
should have ς ∈ Z(w). From coherence for rules of M and Rwu we get
ς ∈ Z(u) and therefore ς′ ∈ Z′(u). The second case follows immediately
from coherence for rules of M and the definition of Z′.

• Truth for rules. Suppose ρ ∈ Y′(w); we will show that (MMon(δ,ρ),w) 
TR(ρ).
From the definition of Z′, we know that either ρ is ς′ or it was already
in Z(w). From the definition of Z′, we know that either ρ was added
by the operation or it was already in Y(w). In the first case, ρ should
be ς′ and we should have ς ∈ Z(w); then, truth for rules of M gives us
(M,w) 

∧
prem(ς)→ conc(ς). Since V′(w) = V(w), we get

(MMon(δ,ς),w) 
∧

prem(ς)→ conc(ς)

and therefore

(MMon(δ,ς),w)  (
∧

prem(ς) ∧ δ)→ conc(ς)

i.e., (MMon(δ,ς),w)  TR(ς′). The second case follows from the truth for
rules of M ((M,w)  TR(ς)), the fact that the truth value of TR(ρ) depends
just on the valuation of the world, and the definition of V′ (V′(w) = V(w)).

Let MCut(ς1,ς2) be given by 〈W′,R′,V′,Y′,Z′〉, as in definition 3.4. Recall that
ς′ = ((prem(ς2) − {conc(ς1)}) ∪ prem(ς1) , conc(ς2)).

• Coherence for rules. Suppose ρ ∈ Z′(w) and pick any u ∈ W′ such that
R′wu; we will show that ρ ∈ Z′(u). From R′wu we get Rwu.
From the definition of Z′, we know that either ρ was added by the op-
eration or it was already in Y(w). In the first case, ρ should be ς′ and
we have {ς1, ς2} ⊆ Z(w); from coherence for rules of M and Rwu we get
{ς1, ς2} ⊆∈ Z(u) and therefore ς′ ∈ Z′(u). The second case follows imme-
diately from coherence for rules of M and the definition of Z′.

• Truth for rules. Suppose ρ ∈ Y′(w); we will show that (MCut(ς1,ς2),w) 
TR(ρ).
From the definition of Z′, we know that either ρwas added by the opera-
tion or it was already in Y(w). In the first case, ρ should be ς′and we have
{ς1, ς2} ⊆ Z(w). Now, suppose (M,w) 1 TR(ς′); then,

(M,w) 
∧

prem(ς′) and (M,w) 1 conc(ς′)
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The first part implies (M,w)  γ for every γ ∈ (prem(ς2) − {conc(ς1)}) and
every γ ∈ prem(ς1). Since every γ ∈ prem(ς1) is true at w, so should it be
conc(ς1) by truth for rules of M, because we have ς1 ∈ Z(w). Then, we
have (M,w)  γ for every γ ∈ prem(ς2). But the second part says that
conc(ς2) is false at w, and we get (M,w) 1 TR(ς2), contradicting truth for
rules of M since ς2 ∈ Z(w). Hence, we should have (M,w)  TR(ς′), from
which it follows that (MCut(ς1,ς2),w)  TR(ς′) because of the definition of
V′(w).

The second case follows immediately from truth for rules of M and the
definition of Z′.

A.5 Structural operations and deduction

The validity of the formulas follows from the bisimilarities between models
stated below. In our case, the bisimulation concept extends the standard one by
asking for related worlds to have the same information and rule set: given two
models M1 = 〈W1,R1,V1,Y1,Z1〉 and M2 = 〈W2,R2,V2,Y2,Z2〉, a non empty
relation B between W1 and W2 is a bisimulation if and only if B is a standard
bisimulation between 〈W1,R1,V1〉 and 〈W2,R2,V2〉 and, if Bw1w2, then Y1(w1) =
Y2(w2) and Z1(w1) = Z2(w2).

Let M be the model 〈W,R,V,Y,Z〉 and let w be a world in W; in all cases the
bisimulation is the identity relation over worlds reachable from w.

Reflexivity. Let ςδ be the rule ({δ}, δ):

• If σ , ςδ, then (MRef(δ)σ,w) - (MσRef(δ),w).

• If δ ∈ Y(w) and ςδ ∈ Z(w), then (MRef(δ)ςδ
,w) - (Mςδ ,w).

• If δ ∈ Y(w), then (MRef(δ)ςδ
,w) - (MςδRef(δ),w).

Monotonicity. Let ς′ be the rule (prem(ς) ∪ {δ}, conc(ς)):

• If σ , ς′, then (MMon(δ,ς)σ,w) - (MσMon(δ,ς),w).

• If ς′ ∈ Z(w), then (MMon(δ,ς)ς′ ,w) - (Mς′ ,w).

• If δ ∈ Y(w) and ς ∈ Z(w), then (MMon(δ,ς)ς′ ,w) - (MςMon(δ,ς),w).

Cut. Let ς′ be the rule ( (prem(ς2) − {conc(ς1)}) ∪ prem(ς1), conc(ς2) ):

• If σ , ς′, then (MCut(ς1,ς2)σ,w) - (MσCut(,Cut(M,))
ς1ς2,w).

• If ς′ ∈ Z(w), then (MCut(ς1,ς2)ς′ ,w) - (Mς′ ,w).

• If (prem(ς1)∪{conc(ς1)}) ∈ Y(w) and ς1 ∈ Z(w), then (MCut(ς1,ς2)ς′ ,w) -
(Mς2 Cut(ς1,ς2),w).

The involved model operations (structural ones and deduction) preserve
worlds, accessibility relations and valuations. Then, in order to show that the
identity relation over worlds reachable from w is a bisimulation, we just need
to show that w and all such worlds have the same information and rule set in
both models. The proofs follow from the definitions of the structural and the
deduction operations.

Consider as an example the third bisimilarity for monotonicity. For infor-
mation sets, take any γ in the information set of w at MMon(δ,ς)ς′ ; by definition
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of (·)ς′ , either it was already in that w at MMon(δ,ς) or else it was added by the
deduction operation. In the first case, it is also in the information set of w at M,
since structural operations do not modify information sets; then it is also in w
at Mς and finally it is in w at MςMon(δ,ς). In the second case, if it was added by
the deduction operation, then it should be conc(ς′) and, moreover, we should
have the premises of ς′ (and hence those of ς) in w at MMon(δ,ς); then they are
already in w at M. But by hypothesis we also have the rule ς in w at M, so
conc(ς) = conc(ς′) is in w at Mς and hence it is in w at MςMon(δ,ς).

For the other direction, take γ in w at MςMon(δ,ς). Then it is in w at Mς and
therefore either it was already in w at M or else it was added by the deduction
operation. In the first case, γ is preserved through the monotonicity and the
deduction operations, and therefore it is in w at MMon(δ,ς)ς′ . In the second case, γ
should be conc(ς), and then we should have prem(ς) and ς in the correspondent
sets of w at M. Since by hypothesis we have δ in w at M, we have all the premises
of ς′ in w at M and therefore they are also in w at MMon(δ,ς). Since we have ς in
w at M, we have ς′ in w at MMon(δ,ς) too. Hence, we have conc(ς′) = conc(ς) in
w at MMon(δ,ς)ς′ , as required. The case for rules is similar.

Now suppose a world u is reachable from w through the accessibility relation
at MMon(δ,ς)ς′ . Since neither the relations nor the worlds are not modified by
the operations, u is reachable from w at M and therefore u is reachable from
w at MςMon(δ,ς) too. Here we make use of the coherence properties, preserving
formulas and rules across accessibility relations. Since δ ∈ Y(w) and ς ∈ Z(w),
we have δ and ς in the correspondent sets of u, and then we can apply again
the argument we used for w to show that u has the same information and rule
set on both models.

A.6 Closure of explicit observation operation

Let M = 〈W,R,V,Y,Z〉 be a model in EIK. To show that Mχ! is also in EIK, we
will show that it satisfies coherence and truth for formulas, coherence and truth
for rules and equivalence.

If χ is a formula. Equivalence follows immediately, as well as the properties
for rules (coherence and truth) since Z is not affected in the remaining worlds.
Coherence for formulas holds because χ is added uniformly, and truth for
formulas holds because of the definition of W′, keeping worlds where χ is true.
If χ is a rule. Equivalence is just as before, and the properties for formulas
(coherence and truth) hold because Y is not affected in the remaining worlds.
Coherence for rules holds because χ is added uniformly, and truth for rules
holds because of the definition of W′, keeping worlds where TR(χ) holds.
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