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Abstract

We compare time needed for understanding di�erent types of quan-

ti�ers. In the �rst study, we show that the distinction between quan-

ti�ers recognized by �nite-automata and push-down automata is psy-

chologically relevant. In the second study, we compare comprehension

of push-down quanti�ers in universes with randomly placed objects

and those where objects were ordered in some speci�c way simplifying

(with respect to memory resources) computational task. The reaction

time in the second case is signi�cantly shorter than in the �rst case.

Keywords: language comprehension; working memory; generalized quan-

ti�ers; �nite- and push-down automata; computational semantics of natural

language

1 Introduction

One of the primary objectives of cognitive psychology is to explain human

cognitive performance. Taking a very abstract perspective we can say that

a cognitive task is a computational task. Namely, the aim of a cognitive

task is to transform the initial given state of the world into some desired

�nal state. Therefore, cognitive tasks can be identi�ed with functions from

possible initial states of the world into possible �nal states of the world.

Notice, that this understanding of cognitive tasks is very closely related to
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psychological practice. For instance, experimental psychology is naturally

task oriented, because subjects are typically studied in the context of speci�c

experimental tasks.

David Marr (1981) proposed a commonly accepted general framework

for analyzing levels of explanation in cognitive sciences. In order to focus

on the understanding of speci�c problems, he identi�ed three levels (ordered

according to decreasing abstraction):

(1) computational level (problems that cognitive ability has to overcome);

(2) algorithmic level (the algorithms that may be used to achieve a solu-

tion);

(3) implementation level (how it is actually done in neural activity).

Marr argued that the best way to achieve progress in cognitive science

is by studying descriptions at computational level in psychological theories.

He claims:

An algorithm is likely to be understood more readily by under-

standing the nature of the problem being solved than by examin-

ing the mechanism (and the hardware) in which it is embodied.

(Marr, 1981, p. 27)

Cognitive science has put a lot of e�ort into investigating the computational

level of linguistic competence (see e.g. Isac and Reiss, 2008; Sun, 2008).

Today computational restrictions are taken very seriously when discussing

cognitive capacities. For instance, a psychological version of the Church-

Turing thesis (Turing, 1936; Church, 1936) � stating that the human mind

can only deal with computable problems � is commonly accepted. More-

over, complexity restrictions on cognitive tasks have already been noted in

the philosophy of language and mind (see e.g. Cherniak, 1981; Chalmers,

1994; Hofstadter, 2007), the theory of language (see e.g. Mostowski and Wo-

jtyniak, 2004; Levesque, 1988) and psychology of vision (see e.g. Tsotsos,

1990) leading to many variants of Tractable Cognition Thesis stating that

human cognitive (linguistic) capacities are constrained by computational re-

sources, like time and memory (see e.g. Frixione, 2001; van Rooij, 2008).
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Unfortunately, there are not many empirical studies directly linking com-

plexity predictions of computational models with psychological reality. The

present research aims at increasing our empirical evidence in favor of this

connection.

In the paper we are concerned with a very basic linguistic ability of under-

standing sentences. In particular, we deal with the capacity of recognizing

the truth-value of sentences with simple quanti�ers (like �some�, �an even

number of�, �more than 7�, �less than half�) in �nite situations illustrated by

pictures. We show that a simple computational model describing the pro-

cessing of such sentences (see Section 1.2) is psychologically plausible with

respect to reaction time predictions.

Our research was motivated � among others things � by a recent neu-

ropsychological investigation of the same problem (see McMillan et al., 2005)

and, accordingly, by some troubles with the interpretation of its results (see

Szymanik, 2007a). We discuss these matters in the next section. Then we

provide readers with some mathematical details of an automata-theoretic

model of quanti�ers processing. In Sections 2 and 3 we present our empiri-

cal studies of some predictions that can be drawn from that model. We end

with a summary and an outline of the future work.

1.1 Previous Investigations in the Area

Quanti�ers have been widely treated from the perspective of cognitive psy-

chology (see e.g. Sanford et al., 1994). However, research presented by

McMillan et al. (2005) was the �rst attempt to investigate the neural basis

of natural language quanti�ers (see also McMillan et al. (2006) for evidence

on quanti�er comprehension in patients with focal neurodegenerative disease,

and Clark and Grossman (2007) for more general discussion). It was devoted

to study brain activity during comprehension of sentences with quanti�ers.

Using neuroimaging methods (BOLD fMRI) the authors examined the pat-

tern of neuroanatomical recruitment while subjects were judging the truth-

value of statements containing natural language quanti�ers. According to

the authors their results verify a particular computational model of natural

language quanti�er comprehension posited by several linguists and logicians
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(see e. g. van Benthem, 1986). One of the authors of the present paper has

challenged this statement by invoking the computational di�erence between

�rst-order quanti�ers and divisibility quanti�ers (see Szymanik, 2007a). The

starting point of this research is this very criticism. Let us have a closer look

at it.

McMillan et al. (2005) were considering the following two standard types

of quanti�ers: �rst-order and higher-order quanti�ers. First-order quanti-

�ers are those de�nable in �rst-order predicate calculus, which is the logic

containing only quanti�ers ∃ and ∀ binding individual variables. In the re-

search, the following �rst-order quanti�ers were used: �all�, �some�, and �at

least 3�. Higher-order quanti�ers are those not de�nable in �rst-order logic,

for example �most�, �every other�. The subjects taking part in the experi-

ment were presented with the following higher-order quanti�ers: �less than

half of�, �an even number of�, �an odd number of�.

The expressive power of higher-order quanti�ers is much greater than

the expressibility of �rst-order quanti�ers. For instance, we cannot speak

about in�nite sets in �rst-order logic, but this is possible using higher-order

quanti�ers. This di�erence in expressive power corresponds to a di�erence in

the computational resources required to check the truth-value of a sentence

with those quanti�ers.

In particular, to recognize �rst-order quanti�ers we only need computabil-

ity models which do not use any form of internal memory (data storage).

Intuitively, to check whether sentence (1) is true we do not have to involve

short-term memory (working memory capacity) (see e.g. Baddeley, 2007, for

a psychological model).

(1) Every sentence in this paper is correct.

It su�ces to read the sentences from this article one by one. If we �nd an

incorrect one, then we know that the statement is false. Otherwise, if we

read the entire paper without �nding any incorrect sentence, then statement

(1) is true (see Figure 2 for an illustration of a relevant automaton). We

can proceed in a similar way for other �rst-order quanti�ers. Formally, it

was proved by Johan van Benthem (1986) that �rst-order quanti�ers can

be computed by such simple devices as �nite automata (see Theorem 1 in

4



Section 1.2 containing mathematical details of the correspondence between

quanti�ers and automata).

However, for recognizing some higher-order quanti�ers, like �less than

half� or �most�, we need computability models making use of internal mem-

ory. Intuitively, to check whether sentence (2) is true we must identify the

number of correct sentences and hold it in working memory to compare with

the number of incorrect sentences.

(2) Most of the sentences in this paper are correct.

Mathematically speaking, such an algorithm can be realized by a push-down

automaton.

From this perspective, McMillan et al. (2005) have hypothesized that

all quanti�ers recruit the right inferior parietal cortex, which is associated

with numerosity. Taking the distinction between the complexity of �rst-

order and higher-order quanti�ers for granted, they also predicted that only

higher-order quanti�ers recruit the prefrontal cortex, which is associated

with executive resources, like working memory. In other words, they be-

lieve that the computational complexity di�erences between �rst-order and

higher-order quanti�ers are also re�ected in brain activity during processing

quanti�er sentences (McMillan et al., 2005, p. 1730). This hypothesis was

con�rmed.

In our view the authors' interpretation of their results is not convincing.

Their experimental design may not provide the best means of di�erentiat-

ing between the neural bases of the various kinds of quanti�ers. The main

point of criticism is that the distinction between �rst-order and higher-order

quanti�ers does not coincide with the computational resources required to

compute the meaning of quanti�ers. There is a proper subclass of higher-

order quanti�ers, namely divisibility quanti�ers, which corresponds � with

respect to memory resources � to the same computational model as �rst-

order quanti�ers.

McMillan et al. (2005) suggest that their study honours a distinction in

complexity between classes of �rst-order and higher-order quanti�ers. They

also claim that:

higher-order quanti�ers can only be simulated by a more com-
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plex computing device � a push-down automaton � which is

equipped with a simple working memory device. (McMillan et al.,

2005, p. 1730)

Unfortunately, this is not true. In fact, most of the quanti�ers identi�ed

in the research as higher-order quanti�ers can be recognized by �nite au-

tomata. As we will see in the next chapter both �an even number� and �an

odd number� are quanti�ers recognized by two-state �nite automata with a

transition from the �rst state to the second and vice versa.

1.2 Quanti�ers and Automata

In what follows we give a short description of relevant mathematical results.

We assume familiarity with basic terminology of automata theory and math-

ematical linguistics (see e.g. Hopcroft et al., 2000).

1.2.1 Simple Generalized Quanti�ers

Generalized quanti�ers are one of the basic tools of today's linguistics and

their mathematical properties have been extensively studied since the �fties

(see Peters and Westerståhl, 2006, for a recent overview). In its simplest form

� the one we are concerned with in this paper � Generalized Quanti�er

Theory assigns meaning to statements by de�ning semantics for quanti�ers

occurring in them. For instance, for quanti�ers �every�, �some�, �at least 7�,

�an even number of�, and �most� build up the following sentences.

(3) Every poet has low self-esteem.

(4) Some dean danced nude on the table.

(5) At least 7 grad students prepared presentations.

(6) An even number of the students saw a ghost.

(7) Most of the students think they are smart.

(8) Less than half of the students received good marks.
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What is the semantics assigned to these quanti�ers? Formally they are

treated as relations between subsets of the universe. For instance, in sentence

(3) �every� is a binary relation beetween set of poets and set of people having

low self-esteem. Following the natural linguistic intuition we will say that

sentence (3) is true if and only if the set of poets is included in the set of

people having low self-esteem. Hence, the quanti�er �every� corresponds in

this sense to the inclusion relation. Let us now have a look at sentence (6).

It is true if and only if the intersection of the set of all students with the

set of people who saw a ghost is of even cardinality. Then this quanti�er

says something about parity of the intersection of two sets. Finally, let us

consider example (7). We understand the quanti�er �most� here as �more

than half�. Hence, sentence (7) is true if and only if the cardinality of the

set of students who think they are smart is greater than cardinality of the

set of students who do not think they are smart. Therefore, the quanti�er

�most� expresses that there is a speci�c proportion between these two kinds

of students.

Formally the notion of a generalized quanti�er was introduced by Andrzej

Mostowski (1957) and developed further by Per Lindström (1966). It was

introduced to linguistics by Barwise and Cooper (1981). Below we give

a formal de�nition of monadic generalized quanti�ers binding two unary

variables:

De�nition 1. A monadic generalized quanti�er binding two unary variables

is a class Q of models of the form M = (M,A,B), where A and B are subsets

of the universe M . Additionally, Q is closed under isomorphism.

Let us explain this de�nition further by giving a few examples. First of

all, models are precise mathematical representations of possible situations.

Therefore, a class of models represents a class of possible situations, in this

case corresponding to a quanti�er.

Sentence (3) is of the form Every A is B, where A stands for poets and B

for people having low self-esteem. As we explained above the sentence is true

if and only if A ⊆ B. Therefore, according to the de�nition, the quanti�er

�every� corresponds to the class of models in which A ⊆ B. Because of the

same reasons the quanti�er �an even number of� corresponds to the class
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of models in which the cardinality of A ∩ B is an even number. Finally,

let us consider the quanti�er �most�. As we mentioned before the sentence

Most As are B is true if and only if card(A∩B) > card(A−B) and therefore

the quanti�er corresponds to the class of models where the inequality holds.

Why do we assume that these classes are closed under isomorphism?

Simply put, it guarantees that the quanti�ers are topic neutral. The quanti-

�er �most� means exactly the same when applied to people as when applied

to natural numbers.

Before we move to the computational model let us try to explain a dis-

tinction between �rst-order and higher-order quanti�ers. Some generalized

quanti�ers, like �at least 3�, �exactly 5�, and �at most 8� are easily expressible

in elementary logic. It is also true for many natural language determiners.

For example, we can express the quanti�er �some� by a �rst-order existential

quanti�er in the following way:

Some x (A(x), B(x)) ⇐⇒ ∃x(A(x) ∧B(x)).

However, it is well-known that many generalized quanti�ers are not de�nable

in �rst-order logic. For example: �most�, �every other�, �odd�, and �less than

half� (see e.g. Peters and Westerståhl, 2006).

1.2.2 Representation of Finite Models

Having a quanti�ed sentence and a model we would like to know how to

compute the truth-value of this sentence in that model. The �rst step is to

represent �nite situations (models) as strings over some �nite alphabet. In

other words, we need to encode our �nite models in a linear form. Here is

the idea for doing it.

We restrict ourselves to �nite models of the form M = (M,A,B). For

instance, let us consider the model from Figure 1. We list all elements of the

model in some order, e.g., c1, . . . , c5. Then we replace every element in that

sequence with one of the symbols from alphabet Γ = {aĀB̄, aAB̄, aĀB, aAB},
according to the constituents to which it belongs to. This means that we

put the string of letters aĀB̄ in place of element c1 as it belongs to the

complement of set A (denoted as Ā) and to the complement of set B. We
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write aAB̄ for element c2 because it belongs to set A and to the complement

of set B, and so on. As a result, in our example, we get the word αM =

aĀB̄aAB̄aABaĀBaĀB. The word αM corresponds to the model in which:

c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB. Hence, it uniquely (up to

isomorphism) describes the model from Figure 1.

De�nition 2. The class Q corresponding to a quanti�er is represented by

the set of words (language) LQ ⊆ Γ∗ describing all elements (models) of the

class.

U A B

S0

S1 S2S3c1

c2
c3

c4

c5

Figure 1: This model is uniquely described by αM = aĀB̄aAB̄aABaĀBaĀB.

1.2.3 Quanti�er Automata

Having these de�nitions we would like to know what kind of automata cor-

respond to particular quanti�ers.

Aristotelian quanti�ers Aristotelian quanti�ers, like �all�, �every�, �some�,

�no�, and �not all�, are �rst-order de�nable. They need �nite-automata with

a �xed-number of state to be recognized. Let us consider an example.

Every A is B is true if and only if A ⊆ B. In other words, the sentence

is true as long as there is no element belonging to A but not B. Having rep-

resentation αM of a �nite model M over alphabet Γ we can easily recognize

whether M satis�es sentence Every A is B. The following �nite automaton

from Figure 2 does the job. The automaton gets αM as its input. It in-
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q0 q1

Γ− {aAB̄}

aAB̄

Γ

Figure 2: Finite automaton recognizing LEvery

spects the word letter by letter starting in the accepting state. As long as

it does not �nd letter aAB̄ it stays in the accepting state, because it means

that there was no element belonging to A but not to B. If it �nds such an

element (letter), then it already �knows� that the sentence is false and move

to the rejecting state, where it stays no matter what happens next.

In other words, the quanti�er �every� corresponds to the following regular

language:

LEvery = {α ∈ Γ∗ : #aAB̄(α) = 0},

where #c(α) is the number of occurrences of the letter c in the word α.

Cardinal Quanti�ers Cardinal quanti�ers, e. g., �at least 3�, �at most 7�,

and �between 8 and 11�, like Aristotelian quanti�ers are also �rst-order de�n-

able. However, the number of states of �nite-automata recognizing cardinal

quanti�ers increases in proportion to the number that needs to be repre-

sented. Consider for example the following automata for At least three As are B:

q0 q1 q2 q3

Γ− {aAB} Γ− {aAB} Γ− {aAB} Γ

aAB aAB aAB

Figure 3: Finite automaton recognizing LAt least three

This automata needs 4 states and it corresponds to the language:

LAt least three = {α ∈ Γ∗ : #aAB(α) ≥ 3}.

Further, to recognize �at least 8� we would need 9 states and so on.
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Divisibility Quanti�ers What about the quanti�er �an even number of�?

It corresponds to the following regular language:

LEven = {α ∈ Γ∗ : #aAB(α) is even }.

The �nite automaton from Figure 4 checks whether the number of occur-

rences of the letter aAB in the string coding a given model is of even parity.

It needs to remember whether it is in the �even state� (q0) or the �odd state�

(q1) and loops between these states.

q0 q1

Γ− {aAB}

aAB

aAB

Γ− {aAB}

Figure 4: Finite automaton recognizing LEven

Proportional Quanti�ers Finally, let us have a look at the quanti�er

�most�. The sentence Most As are B is true if and only if card(A ∩ B) >

card(A−B). Therefore, the quanti�er corresponds to the following context-

free language:

LMost = {α ∈ Γ∗ : #aAB(α) > #aAB̄(α)}.

There is no �nite automata recognizing all such languages. As models might

be of arbitrary �nite cardinality so also the length of the coding strings is

unbounded. In such a case it is impossible to compute �most� having only a

�xed �nite number of states as we are not able to predict how many states

are needed. To give a computational device for this problem, some kind

of internal memory, which allows the automaton to compare any number of

occurrences of the symbols aAB and aAB̄, is needed. A Push-down automata

is a computational model that can achieve this by implementing the idea of

a stack.
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Characterization Above considered examples already give us a �avor of

what is going on. Below we give a general answer to the question about

computing devices recognizing particular quanti�ers. We start by saying

what it means that a class of monadic quanti�ers is recognized by a class of

devices.

De�nition 3. Let D be a class of recognizing devices, Ω a class of monadic

quanti�ers. We say that D accepts Ω if and only if for every monadic quan-

ti�er Q:

Q ∈ Ω ⇐⇒ there is a device A ∈ D such that A accepts LQ.

Now we are ready to state the relevant results. Quanti�ers de�nable in

�rst-order logic, FO, can be recognized by acyclic �nite automata, which are

a proper subclass of the class of all �nite automata (van Benthem, 1986).

Theorem 1. A quanti�er Q is �rst-order de�nable i� LQ is accepted by an

acyclic �nite automaton.

A less known result due to Marcin Mostowski (1998) says that exactly

the quanti�ers de�nable in divisibility logic, FO(Dn) (i.e. �rst-order logic

enriched by all quanti�ers �divisible by n�, for n ≥ 2), are recognized by

�nite automata (FA) .

Theorem 2. A monadic quanti�er Q is de�nable in the divisibility logic i�

LQ is accepted by a �nite automaton.

For instance, the quanti�er D2 can be used to express the natural lan-

guage quanti�er �an even number of�. An example of a quanti�er falling

outside the scope of divisibility logic is �most�. Hence, it cannot be recog-

nized by a �nite-automaton1.

Some quanti�ers not de�nable in divisibility logic, like �most� and �less

than half�, can be recognized by push-down automata. Indeed, as we have

1More results on push-down automata and quanti�ers can be found in a survey by
Mostowski (1998), where a class of quanti�ers recognized by the deterministic push-down
automata is characterized. This class seems particularly interesting from the cognitive
point of view.
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argued, �most� is recognized by a push-down automaton. Obviously, the

semantics of many natural language quanti�er expressions cannot be modeled

by such simple devices as PDA (Sevenster, 2006; Szymanik, 2007b).

To sum up, �rst-order and higher-order quanti�ers do not always di�er

with respect to the memory requirements. For example, �an even number of�

is a higher-order quanti�er that can still be recognized by a �nite automa-

ton. Therefore, di�erences in processing cannot be explained based solely on

de�nability properties, as those are not enough �ne grained. A more careful

perspective � taking into account all mentioned results summed up in Ta-

ble 1 � have to be applied to investigate quanti�er comprehension. In what

follows we present research exploring the subject empirically with respect to

the computational model described in this section.

de�nability examples recognized by

FO �all cars�, �some students", �at least 3 balls� acyclic FA

FO(Dn) �an even number of balls� FA

not FO(Dn) �most lawyers�, �less than half of the students� PDA

Table 1: Quanti�ers, de�nability, and complexity of automata.

1.3 The Present Experiment

Our experiment consists of 2 separate studies. The �rst study, described in

Section 2, compares reaction times needed for the comprehension of di�er-

ent types of quanti�ers. In particular, it improves upon the hypothesis of

McMillan et al. (2005) by taking directly into account predictions of the com-

putational model and not only de�nability considerations. Additionally, we

compare two classes of quanti�ers inside the �rst-order group: Aristotelian

and cardinal quanti�ers.

The second study described in Section 3 dwells more on the engagement

of working memory capacity in quanti�er comprehension by using ordered

and random distributions of the objects in pictures presented to participants.
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1.3.1 General Idea of the 1st Study: Comparing Quanti�ers

First, we compared reaction time with respect to the following classes of

quanti�ers: those recognized by acyclic FA (�rst-order), those recognized

by FA (divisibility), and those recognized by PDA. McMillan et al. (2005)

did not report any data on di�erences between �rst-order and divisibility

quanti�ers.

We predict that reaction time will increase along with the computational

power needed to recognize quanti�ers. Hence, divisibility quanti�ers (even,

odd) will take less time than �rst order-quanti�ers (all, some) but not as

long as proportional quanti�ers (less than half, more than half).

Moreover, we have additionally compared Aristotelian quanti�ers with

cardinal quanti�ers of higher rank, for instance �less than 8�. In the study of

McMillan et al. (2005) only one cardinal quanti�er of relatively small rank

was taken into consideration, namely �at least 3�. We predict that complex-

ity of the mental processing of cardinal quanti�ers depends on the number

of states in the relevant automata. Therefore, cardinal quanti�ers of high

rank should be more di�cult than Aristotelian quanti�ers. Additionally,

we suggest that the number of states in automata (size of memory needed)

in�uences comprehension more directly than the use of loops. Hence, we hy-

pothesize that the reaction time for the comprehension of cardinal quanti�ers

of higher rank is between that for divisibility and proportional quanti�ers.

1.3.2 General Idea of the 2nd Study: Quanti�ers and Ordering

In the �rst study, sentences with pictures were presented to subjects, who

had to decide whether the sentence was true. Array elements were randomly

generated. However, the ordering of elements can be treated as an additional

independent variable in investigating the role of working memory capacity.

For example, consider the following sentence:

(9) Most As are B.

Although checking the truth-value of sentence (9) over an arbitrary universe

needs a use of working memory, if the elements of a universe are ordered in

pairs (a, b) such that a ∈ A, b ∈ B, then we can easily check it without using
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working memory. It su�ces to go through the universe and check whether

there exists an element a not paired with any b. This can be done by a �nite

automaton.

We have compared reaction time while subjects are judging the truth-

value of statements containing proportional quanti�ers, like sentence (9),

over ordered and arbitrary universes. We predict that when dealing with

an ordered universe working memory is not activated as opposed to when

the elements are placed in an arbitrary way. As a result reaction time over

ordered universes should be much shorter.

2 The First Study: Comparing Quanti�ers

2.1 Participants

Forty native Polish-speaking adults took part in this study. They were volun-

teers from the University of Warsaw undergraduate population. 19 of them

were male and 21 were female. The mean age was 21.42 years (SD = 3.22)

with a range of 18�30 years. Each subject was tested individually and was

given a small �nancial reward for participation in the study.

2.2 Materials and Procedure

The task consisted of eighty grammatically simple propositions in Polish

containing a quanti�er that probed a color feature of car on display. For

example:

(10) Some cars are red.

(11) Less than half of the cars are blue.

Eighty color pictures presenting a car park with cars were constructed to

accompany the propositions. The colors of the cars were red, blue, green,

yellow, purple and black. Each picture contained �fteen objects in two colors

(see Figure 5).
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Figure 5: An example of a stimulus used in the �rst study.

Eight di�erent quanti�ers divided into four groups were used in the study.

The �rst group of quanti�ers was �rst-order Aristotelian quanti�ers (all,

some); the second was divisibility quanti�ers (odd, even); the third was

�rst-order cardinal quanti�ers of relatively high rank (less than 8, more than

7); and the fourth was proportional quanti�ers (less than half, more than

half) (see Table 2). Each quanti�er was presented in 10 trials. Hence, there

were in total 80 tasks in the study. The sentence matched the picture in half

of the trials. Propositions with �less than 8�, �more than 7�, �less than half�,

�more than half� were accompanied with a quantity of target items near

the criterion for validating or falsifying the proposition. Therefore, these

tasks required a precise judgment (e.g. seven targets in �less than half�).

Debrie�ng following the experiment revealed that none of the participants

had bee aware that each picture consisted of �fteen objects.

The experiment was divided into two parts: a short practice session

followed immediately by the experimental session. Each quanti�er problem

was given one 15.5 s event. In the event the proposition and a stimulus

array containing 15 randomly distributed cars were presented for 15000 ms
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followed by a blank screen for 500 ms. Subjects were asked to decide if the

proposition was true at the presented picture. They responded by pressing

the button with letter �P� if true and the button with letter �F� if false. The

letters refer to �rst letters of Polish words for �true� and �false�.

The experiment was performed on a PC computer running E-Prime ver-

sion 1.1.

2.3 Results

2.3.1 Analysis of Accuracy

As we expected the tasks were quite simple for our subjects and they made

only a few mistakes. The percentage of correct answers for each group of

quanti�ers is presented in Table 2.

Quanti�er group Examples Percent

Aristotelian FO all, some 99

Divisibility odd, even 91

Cardinal FO less than 8, more than 7 92

Proportional less than half, more than half 85

Table 2: The percentage of correct answers for each group of quanti�ers.

2.3.2 Comparison of Reaction Times

To examine the di�erences in means we used repeated measures analysis of

variance with type of quanti�er (4 levels) as the within-subject factor. The

assumption of normality was veri�ed by the Shapiro-Wilk test. Because the

Mauchly's test showed violation of sphericity, Greenhouse-Geiser adjustment

was applied. Moreover, polynomial contrast analysis was performed for the

within-subject factor. SPSS 14 was used for the analysis.

Table 3 presents mean (M) and standard deviation (SD) of the reaction

time in milliseconds for each type of quanti�er.
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Group Quanti�ers M SD

Aristotelian FO all, some 2257.50 471.95

Divisibility even, odd 5751.66 1240.41

Cardinal FO less than 8, more than 7 6035.55 1071.89

Proportional less than half, more than half 7273.46 1410.48

Table 3: Mean (M) and standard deviation (SD) of the reaction time in
milliseconds for each type of quanti�er.

We found out that the increase in reaction time was determined by the quan-

ti�er type (F (2.4, 94.3) = 341.24, p < 0.001, η2=0.90). Pairwise comparisons

among means indicated that all four types of quanti�ers di�ered signi�cantly

from one another (p < 0.05). Polynomial contrast analysis showed the best

�t for a linear trend (F (1, 39) = 580.77, p < 0.001). The mean reaction time

increased as follows: Aristotelian quanti�ers, divisibility quanti�ers, cardinal

quanti�ers, proportional quanti�ers (see Figure 6).

Figure 6: Average reaction times in each type of quanti�ers in the �rst study.
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3 The Second Study: Quanti�ers and Ordering

3.1 Participants

Thirty native Polish-speaking adults took part in the second study. They

were undergraduate students from two Warsaw universities. 12 were male

and 18 were female. The mean age was 23.4 years (SD = 2.51) with a range

of 20�28 years. Each subject was tested individually.

3.2 Materials and Procedure

In the task, we used sixteen grammatically simple propositions in Polish

containing proportional quanti�ers that probed a color feature of cars on a

display (e.g. �More than half of the cars are blue�). Color pictures presenting

a car park with 11 cars were constructed to accompany the propositions. As

in the �rst study, the colors used for the cars were: red, blue, green, yellow,

purple and black. Each picture contained objects in two colors.

Two di�erent proportional quanti�ers (less than half, more than half)

were presented to each subject in 8 trials. Each type of sentence matched the

picture in half of the trials. Moreover, each quanti�er was accompanied with

four pictures presenting cars ordered in two rows with respect to their colors

(see Figure 7) and four pictures presenting two rows of randomly distributed

cars. The rest of the procedure was the same as in the �rst study.

3.3 Results

3.3.1 Analysis of Accuracy

The behavioral data showed higher accuracy of subjects' judgments for or-

dered universes (89% correct) than for unordered universes (79% correct).

3.3.2 Comparison of Reaction Times

Since there were only two types of situations (random and ordered) in the

study, a paired-samples t-test was used to analyze di�erences in the reac-

tion times. Proportional quanti�ers over randomized universes (M=6185.93;
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Figure 7: An example of a stimulus used in the second study. A case when
cars are ordered.

SD=1759.09) were processed signi�cantly longer than these over ordered

models (M=4239.00; SD=1578.26) (t(29) = 5.87 p < 0.001; d = 1.16).

4 Conclusions and Perspectives

We have been studying comprehension of natural language quanti�ers from

the perspective of simple, automata-theoretic computational models. Our

investigation is a continuation of previous studies. In particular, it enriches

and explains some data obtained by McMillan et al. (2005) with respect to

reaction times. Our results support the following conclusions:

(1) The automata-theoretic model described in Section 1.2 correctly pre-

dicts that quanti�ers computable by �nite-automata are easier to un-

derstand than quanti�ers recognized by push-down automata. It im-

proves results of McMillan et al. (2005), which compared only �rst-

order quanti�ers with higher-order quanti�ers, putting in one group

quanti�ers recognized by �nite-automata and those recognized by push-
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down automata.

(2) We have observed a signi�cant di�erence in reaction time between Aris-

totelian and divisible quanti�ers, even though they are both recognized

by �nite automata. This di�erence may be accounted for by observing

that the class of Aristotelian quanti�ers is recognized by acyclic �nite

automata, whereas in the case of divisible quanti�ers we need loops.

Therefore, loops are another example of computational resources hav-

ing in�uence on the complexity of cognitive tasks.

(3) We have shown that processing �rst-order cardinal quanti�ers of high

rank takes more time than comprehension of parity quanti�ers. This

suggests that the number of states in the relevant automaton plays an

important role when judging the di�culty of a natural language con-

struction. Arguably, the number of states required in�uences hardness

more than the necessity of using cycles in the computation.

(4) Decreased reaction time in the case of proportional quanti�ers over

ordered universes supports �ndings of McMillan et al. (2005), who

attributed the hardness of these quanti�ers to the necessity of using

working memory.

(5) Last but not least, our research provides direct evidence for the claim

that human linguistic abilities are constrained by computational re-

sources (internal memory, number of states, loops).

There are many questions we leave for further research. Below we list a

few of them.

(1) Our experimental setting can be used for neuropsychological study ex-

tending the one by McMillan et al. (2005). On the basis of our research

and �ndings of McMillan et al. (2005) we predict that comprehension

of divisibility quanti�ers � but not �rst-order quanti�ers � depends

on executive resources that are mediated by dorsolateral prefrontal

cortex. This would correspond to the di�erence between acyclic �-

nite automata and �nite automata. Moreover, we expect that only
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quanti�ers recognized by PDAs but not FAs activate working mem-

ory (inferior frontal cortex). Additionally, the inferior frontal cortex

should not be activated when judging the truth-value of sentences with

proportional quanti�ers over ordered universes. Further studies would

contribute to extending our understanding of simple quanti�er com-

prehension on Marr's implementation level.

(2) What about the algorithmic level of explanation? It would be good to

describe procedures actually used by our subjects to deal with compre-

hension. In principle it is possible to try to extract real algorithms by

letting subjects manipulate the elements, tracking their behavior and

then drawing some conclusions about their strategies. This is one of

the possible future directions to enrich our experiments.

(3) Before starting any neuropsychological experiments it would be use-

ful to measure memory involvement for di�erent types of quanti�ers

using some more classical methods known from cognitive psychology,

like a dual-task paradigm combining a memory span measure with a

concurrent processing task.

(4) We �nd it interesting to explore di�erences in comprehension of Aris-

totelian and cardinal quanti�ers in more detail, both from the empirical

and theoretical points of view. It would provide us with an opportu-

nity to better understand the connection between the number of states

as a part of computational models and the real cognitive capacities

described by these models.

(5) It has been observed by Geurts (2003) that monotonicity plays a cru-

cial role in reasoning with quanti�ers (see also Geurts and van der

Silk, 2005). Upward monotone quanti�ers are easier than downward

monotone ones2 with respect to reasoning. It is the matter of empirical

testing to check whether the same holds for comprehension. Our study

was not designed to explore this possibility. However, we compaired

2A quanti�er Q is upward monotone (increasing) i� the following holds: if Q(A, B) and
moreover B ⊆ B′ then Q(A, B′). The downward monotone (decreasing) quanti�ers are
de�ned analogously as being closed on taking subsets.

22



pairs of quanti�ers with respect to monotonicity in the right argument

and observed the following. In the case of the Aristotelian quanti�ers

�all� and �some� monotonicity in�uences reaction time for comprehen-

sion in a way close to being signi�cant. Divisibility quanti�ers are

non-monotone, but we have observed that �odd� is more di�cult. For

cardinal �rst-order quanti�ers we have a signi�cant result: the de-

creasing quanti�er �less than 8� is more di�cult than its increasing

counterpart. Unfortunately, we did not observe any statistical depen-

dencies between proportional quanti�ers of di�erent monotonicity. We

leave investigation of the role of monotonicity in comprehension for a

future research.

(6) Finally, the automata-theoretic model can be extend for other notions

than simple quanti�ers. For example � as it was already suggested

by van Benthem (1987) � by considering richer data structures it

can account for conditionals, comparatives, compound expressions in

natural language, non-elementary combinations of quanti�ers, link to

lernability theory (see e.g. Gierasimczuk, 2007) and others. Possibly

such extensions could be valuable not only from linguistic but also

cognitive point of view.
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