
Pointer Semantics with Forward Propagation

Sujata Ghosh∗
Center for Soft Computing Research

Indian Statistical Institute
Kolkata, West Bengal, India

Benedikt Löwe†
Institute for Logic,

Language and Computation
Universiteit van Amsterdam

1018 TV Amsterdam, The Netherlands

Sanchit Saraf‡
Department of Mathematics and Statistics

Indian Institute of Technology
Kanpur 208016, India

Abstract
Pointer semantics describing a formal language with the pos-
sibility of self-reference have been invented by Haim Gaif-
man; they form a fundamental way of understanding the se-
mantics of logic programming, but have also been used exten-
sively in philosophical logic and other applications of logic.
In pointer semantics, truth values flow backwards along from
the defining statement to the propositional variable. As a con-
sequence, pointer semantics cannot deal properly with de-
pendence networks that have terminal nodes. Ghosh, Löwe
and Scorelle have proposed an abstract system of combining
pointer semantics with forward flow of truth values. Their
system was difficult to handle, and apart from the fact that
the system could handle some enlightening examples, very
few theoretical insights were made. In this paper, we now
produce a more concrete variant of this system, built on three-
valued logic which allows us to gain more theoretical control
over its properties.

Introduction
Pointer semantics were invented by Haim Gaifman (Gai88;
Gai92) as a formal propositional language for finitely many
propositions {p0, ...,pn} defined in terms of each other. The
language of pointer semantics is closely related to logic pro-
gramming and is the logical reflection of the “Revision The-
ory of Truth” (Her82; GB93). Phenomena such as self-
reference can be studied in pointer semantics as has been
done in detail in Bolander’s PhD thesis (Bol03) in a graph-
theoretic setting where the dependence of a proposition pi
on a proposition pj is represented by an edge from i to j in
the dependency graph. The revision rules of pointer seman-
tics let the truth value of pj affect the truth value of pi; we
can say that truth values “flow backwards in the dependency
graph”.
∗Additional affiliation: Department of Mathematics, Visva-

Bharati, Santiniketan, India.
†Additional affiliations: Department Mathematik, Universität

Hamburg, Hamburg, Germany; Mathematisches Institut, Rheinis-
che Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
‡The third author would like to thank the Institute for Logic,

Language and Computation (ILLC) of the Universiteit van Amster-
dam and the Department Mathematik of the Universität Hamburg
for their hospitality during his visit from May to July 2008. All
three authors would like to thank Bjarni Hilmarsson (Amsterdam)
for programming support.

In (Löw06), the second author proposed to apply the ideas
of pointer semantics to a belief framework, interpreting the
propositions not just as being defined in terms of each other,
but at the same time being sources of information. As
soon as you see propositions as sources of information, the
pointer semantics model with its backward flow of truth val-
ues is not adequate anymore. The paradigmatic example for
this is the following situation:

“Suppose a reasoning agent is sitting in an office without win-
dows. Next to him is his colleague, also located in the office
without windows; the agent is simultaneously talking to his
friend on the phone who is sitting in a street café.
Friend: Everything your colleague says is false; the sun is
shining!
Colleague: Everything your friend says is false; it is raining!
This situation can be described by the following graph:

F
− **

+
>>>

��>>>

C
−

jj

−���

�����

S

.

As in the Nested Liars, there are two consistent truth value
assignments, but the context makes sure that one of them is
intuitively preferred, as the agent’s friend has first hand expe-
rience of the weather in the street café.” (GLS07, p. 402–403)

Even if you assume that the agent trusts F, but initially be-
lieves in S (i.e., we would expect a belief revision), Gaifman
pointer semantics will never change the value of S, as truth
values only propagate backwards, and thus the values of ter-
minal nodes in the dependency graph will never be revised.

In the context of belief, this is not a realistic feature: our
trust in F, who tells us that S is true, should influence us to
change our initial belief about S. Formally, we would need
forward propagation of truth values along the dependency
graph.

This idea has been implemented in a formal system in
(GLS07), but the system proposed by the authors (using the
interval [−1, 1] as the truth values and a relatively compli-
cated numerical function to combine the backward and for-
ward influences) did not shed much light into divulging the
intricate properties of belief change.

In this paper, we propose a more translucent system and
discuss some of its properties. In the section “Definitions”,

we give the basic definitions, building on the formal system
from (Löw06; GLS07), introducing an abstract algebra of
pointer systems, and proving that this abstract algebra has
logical properties if you restrict your system to backward
propagation (“B-operators”). We then extend the concept
of pointer semantics to include forward propagation in our
section “Belief Semantics with Forward Propagation”. In
the section “Properties of our Belief Semantics” we test our
system in an example originally used in (GLS07) and finally
see that our system is ostensibly non-logical. However, this
should not come as a shock, as the system is intended to
model systems of belief:

“The fact that the logic of belief, even rational belief,
does not meet principles of truth-functional deductive
logic, should no longer surprise us (Gol75, p. 6).”

Leaving the empirical study of comparing this system with
our intuitions for future endeavors, we focus on the test case
mentioned above to show non-trivial properties of the sys-
tem, with some concluding remarks.

Definitions
Abstract Pointer Semantics
Fix a finite set of propositional variables {p0, ...,pn}. An
expression is just a propositional formula using ∧, ∨, and
¬ and some of the propositional variables or the empty se-
quence, denoted by .

We fix a finite algebra of truth values T with operations
∧, ∨ and ¬ corresponding to the syntactic symbols. We as-
sume a notion of order corresponding to information content
that gives rise to a notion of infimum in the algebra of truth
values, allowing to form inf(X) for some subset of X ⊆ T.
A truth value will represent the lowest information content
(i.e., a least element in the given order); this truth value will
be denoted by ½. We allow inf to be applied to the empty
set and let inf ∅ := ½.

Our salient example is the algebra T := {0,½, 1} with
the following operations (“strong Kleene”):

∧ 0 ½ 1
0 0 0 0
½ 0 ½ ½
1 0 ½ 1

∨ 0 ½ 1
0 0 ½ 1
½ ½ ½ 1
1 1 1 1

¬
0 1
½ ½
1 0

.

The value ½ stands for ignorance, and thus the infimum is
defined as inf({t}) := t, inf({½}∪X) := ½, inf({0, 1}) :=
½. This algebra of truth values will be used in this paper,
even though the set-up in this section is more general.

If E is an expression and pi is one of the propositional
variables, then pi←E is a clause. We intuitively interpret
pi←E as “pi states E”. If E0, ..., En are expressions, a set
of clauses Σ := {p0←E0, ...,pn←En} is called a pointer
system. An interpretation is a function I : {p0, ...,pn} →
T assigning truth values to propositional letters. Note that if
T is finite, the set of interpretations is a finite set (we shall
use this later). A given interpretation I can be naturally ex-
tended to a function assigning truth values to all expressions
(using the operations ∧, ∨ and ¬ on T). We denote this ex-
tended function with the same symbol I .

A clause can be transformed into an equation in T: if
pi←E is a clause, we can read it as an equation pi = E
in T. If Q is such an equation, we say that an interpretation I
is a solution of Q if plugging the values {I(p0), ..., I(pn)}
into the corresponding variables of the equation results in
the same value left and right of the equals sign. An interpre-
tation is a solution of a set of equations if it is a solution of
each equation in the set.

A function mapping interpretations to interpretations is
called a revision function; a family of these functions in-
dexed by pointer systems is called a revision operator. If
δ is a revision operator, we write δΣ for the revision func-
tion assigned to the pointer system Σ (and sometimes just
write δ if Σ is clear from the context). We use the usual
notation for iteration of revision functions, i.e., δ0(I) := I ,
δn+1(I) := δ(δn(I)).

Given a pointer system {p0←E0, ...,pn←En}, we define
its dependency graph by letting {0, ..., n} be the vertices
and allowing an edge from i to j if pj occurs in Ei. Given
a proposition pi, arrows point to i from the propositions oc-
curring in Ei, and thus we call a revision operator δ an B-
operator (for “backward”) if the value of δ(I)(pi) only de-
pends on the values of I(pj) for pj occurring in Ei.

Fix Σ and δ. We call an interpretation I (Σ, δ)-stable if
there is some k such that for all n ≥ k, δn(I) = I . We call
I (Σ, δ)-recurring if for every k there is a n ≥ k such that
δn(I) = I .1 If Σ is fixed by the context, we drop it from the
notation and call interpretations δ-stable and δ-recurring.
If H is an interpretation, we consider the sequence H∞ :=
{δi(H) ; i ∈ N} of interpretations occurring in the infinite
iteration of δ onH . Clearly, if there is a stable interpretation
in H∞, then this is the only recurring interpretation in H∞.
We write RecΣ,δ(H) for the set of recurring interpretations
in H∞. Note that since the set of interpretations in finite,
this set must be non-empty. If I ∈ RecΣ,δ(H), then there
are i, j > 0 such that I = δi(H) = δi+j(H). Then for ev-
ery k < j and every n, we have δi+k = δi+n·j+k(H), so the
sequence H∞ exhibits a periodicity of length j (or a divisor
of j). After the first occurrance of an I ∈ RecΣ,δ(H), all
further elements of H∞ are recurring as well, and in partic-
ular, there is a recurring J such that δ(J) = I . We shall call
this an I-predecessor and will use this fact in our proofs.

Finally, we define our semantics and let

JΣ,piKδ,H := inf{I(pi) ; I ∈ RecΣ,δ(H)}, and

JΣ,piKδ := inf{I(pi) ; ∃H(I ∈ RecΣ,δ(H))}.

An algebra of pointer systems
In the language of abstract pointer systems, the possibility of
complicated referential structures means that the individual
proposition cannot be evaluated without its context.

As a consequence, the natural notion of logical opera-
tions is not that between propositions, but that between sys-
tems. In this section, we define conjunction, disjunction and

1We are ignoring here the additional complications that might
arise if the initial hypothesis oscillates infinitely many times but
stabilizes after a limit ordinal. For more on this, cf. (GB93; Her82;
Löw06).

negation of statements in pointer systems. The definitions
are straightforward, but very little systematic work has been
done.

If Σ = {p0←E0, ...,pn←En} is a pointer system and
0 ≤ i ≤ n, we define a pointer system that corresponds to
the negation of pi with one additional propositional variable
p¬,

¬(Σ,pi) := Σ ∪ {p¬←¬pi}.

If we have two pointer systems

Σ0 = {p0←E0,0, ...,pn0←E0,n0}, and

Σ1 = {p0←E1,0, ...,pn1←E1,n1},
we make their sets of propositions disjoint by considering a
set {p0, ...,pn0 ,p

∗
0, ...,p

∗
n1
,p∗} of n0 +n1 +2 propositional

variables. We then set

Σ∗1 := {p∗0←E1,0, ...,p∗n1
←E1,n1}.

With this, we can now define two new pointer systems (with
an additional propositional variable p∗):

(Σ0,pi) ∧ (Σ1,pj) := Σ0 ∪ Σ∗1 ∪ {p∗←pi ∧ p∗j},

(Σ0,pi) ∨ (Σ1,pj) := Σ0 ∪ Σ∗1 ∪ {p∗←pi ∨ p∗j}.

Logical properties of Gaifman pointer semantics
Fix a system Σ = {p0←E0, ...,pn←En}. A proposition
pi is called a terminal node if Ei = ; it is called a
source node if pi does not occur in any of the expressions
E0, ..., En. This corresponds directly to the properties of i
in the dependency graph: pi is a terminal node if and only
if i has no outgoing edges in the dependency graph, and it is
a source node if and only if i has no incoming edges in the
dependency graph.

The Gaifman-Tarski operator δB is defined as follows:

δB(I)(pi) :=
{
I(Ei) if pi is not terminal,
I(pi) if pi is terminal.

Note that this operator can be described as follows:

“From the clause pi←Ei form the equation Qi by replac-
ing the occurrences of pi on the right-hand side of the
equality sign with the values I(pi). If pi is a terminal
node, let δ(I)(pi) := I(pi). Otherwise, let I∗ be the
unique solution to the system of equations {Q0, ..., Qn}
and let δ(I)(pi) := I∗(pi).”

(*)

This more complicated description will provide the motiva-
tion for the forward propagation operator δF in the section
“Belief semantics with forward propagation”.

The operator δB gives rise to a logical system, as the se-
mantics defined by δB are compatible with the operations in
the algebra of pointer systems.

Proposition 1 Let Σ = {p0←E0, ...,pn←En} be a pointer
system. For any i ≤ n, we have

J¬(Σ,pi)KδB = ¬JΣ,piKδB .

Proof. In this proof, we shall denote interpretations for the
set {p0, ...,pn} by capital letters I and J and interpreta-
tions for the bigger set {p0, ...,pn,p¬} by letters Î and Ĵ .
It is enough to show that if Î is δB-recurring, then there is
some δB-recurring J such that Î(p¬) = ¬J(pi). If I is
δB-recurring, we call J an I-predecessor if J is also δB-
recurring and δB(J) = I , and similarly for Î . It is easy to
see that every δB-recurring I (or Î) has an I-predecessor (or
Î-predecessor) which is not necessarily unique.

As δB is a B-operator, we have that if Ĵ is δB-recurring,
then so is J := Ĵ�{p0, ...,pn}.

Now let Î be δB-recurring and let Ĵ be one of its Î-
predecessors. Then by the above, J := Ĵ�{p0, ...,pn} is
δB-recurring and

Î(p¬) = δB(Ĵ)(p¬) = ¬Ĵ(pi) = ¬J(pi).

q.e.d.

Proposition 2 Let Σ0 = {p0←E0, ...,pn←En} and Σ1 =
{p0←F0, ...,pm←Fm} be pointer systems. For any i, j ≤
n, we have

J(Σ0,pi) ∨ (Σ1,pj)KδB = JΣ0,piKδB ∨ JΣ1,pjKδB .

Similarly for ∨ replaced by ∧.

Proof. The basic idea is very similar to the proof of Proposi-
tion 1, except that we have to be a bit more careful to see how
the two systems Σ0 and Σ1 can interact in the bigger system.
We reserve letters I0 and J0 for the interpretations on Σ0, I1
and J1 for those on Σ1 and I and J for interpretations on
the whole system, including p∗. If JΣ0,p1K = 1, then any
δB-recurring I must have I(p∗) = 1 by the ∨-analogue of
the argument given in the proof of Proposition 1. Similarly,
for JΣ1,pjK = 1 and the case that JΣ0,piK = JΣ1,pjK = 0.
This takes care of six of the nine possible cases.

If I0 and I1 are δB-recurring, then so is the function
I := δ(I0) ∪ δ(I1) ∪ {〈p∗, I0(pi) ∨ I1(pj)〉} (if I0 is k-
periodic and I1 is `-periodic, then I is at most k ·`-periodic).
In particular, if we have such an I0 with I0(pi) = ½ and an
I1 with I1(pj) 6= 1, then I(p∗) = ½ (and symmetrically for
interchanged rôles). Similarly, if we have recurring interpre-
tations for relevant values 0 and 1 for both small systems, we
can put them together to δB-recurring interpretations with
values 0 and 1 for the big system. This gives the truth value
½ for the disjunction in the remaining three cases.

q.e.d.

Note that the proof does not really depend on the partic-
ular operator δB. Other B-operators, as long as the logical
connectives are properly represented by our semantical rules
for the revised values of p¬ and p∗, will be fine here. This
shows that δB interacts with our algebra of pointer systems
to give rise to a logical system.

Belief semantics with forward propagation
In (GLS07), the authors gave a revision operator that incor-
porated both backward and forward propagation. The value
of δ(I)(pi) depended on the values of all I(pj) such that j is

H0 δB(H0) δF(H0) H1 δB(H1) δF(H1) H2 δB(H2) δF(H2) H3 δB(H3) δF(H3) H4

0 ½ 0 0 1 0 ½ 1 ½ 1 1 1 1
1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1
0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0
½ 0 ½ 0 0 ½ 0 0 ½ 0 0 0 0
½ ½ ½ ½ 1 ½ 1 1 1 1 1 1 1

Figure 1: The first three iterations of values of H0 = (0, 1, 0,½,½) up to the point of stability (H3 = (1, 1, 0, 0, 1)).

connected to i in the dependency graph.2 Here, we split the
operator in two parts: the backward part which is identical
to the Gaifman-Tarski operator, and the forward part which
we shall define now.

In analogy to the definition of δB, we define δF as follows.
Given an interpretation I , we transform each clause pi←Ei
of the system into an equation Qi ≡ I(pi) = Ei where the
occurrences of the pi on the left-hand side of the equation
are replaced by their I-values and the ones on the right-hand
side are variables. We obtain a system {Q0, ..., Qn} of n+ 1
equations in T. Note that we cannot mimic the definition of
δB directly: as opposed to the equations in that definition,
the system {Q0, ..., Qn} need not have a solution, and if it
has one, it need not be unique. We therefore define: if pi is
a source node, then δF(I)(pi) := I(pi). Otherwise, let S be
the set of solutions to the system of equations {Q0, ..., Qn}
and let δF(I)(pi) := inf{I(pi) ; I ∈ S} (remember that
inf ∅ = ½). Note that this definition is literally the dual
to definition (*) of δB (i.e., it is obtained from (*) by inter-
changing “right-hand side” by “left-hand side” and “termi-
nal node” by “source node”).

We now combine δB and δF to one operator δT by defin-
ing pointwise

δT(I)(pi) := δF(I)(pi)⊗ δB(I)(pi)

where ⊗ has the following truth table:

⊗ 0 ½ 1
0 0 0 ½
½ 0 ½ 1
1 ½ 1 1

.

Let us briefly motivate this table. The values for agreement
(0 ⊗ 0, ½ ⊗ ½, and 1 ⊗ 1) are obvious choices. The two
values for complete disagreement (0⊗ 1 and 1⊗ 0) are also
relatively clear: as long as you do not want to give one of the
two directions primacy over the other, you have little choice
but give the value ½ of ignorance. For reasons of symmetry,
this leaves two values ½ ⊗ 0 = 0 ⊗ ½ and ½ ⊗ 1 = 1 ⊗ ½
to be decided. We opted here for the most informative truth
table that gives classical values the benefit of the doubt. The
other options would be the tables

⊗0 0 ½ 1
0 0 ½ ½
½ ½ ½ 1
1 ½ 1 1

⊗1 0 ½ 1
0 0 0 ½
½ 0 ½ ½
1 ½ ½ 1

⊗2 0 ½ 1
0 0 ½ ½
f½ ½ ½ ½
1 ½ ½ 1

.

2Actually, the system was even more complicated, as interpre-
tations did not only provide values for the vertices, but also for the
edges in the dependency graph.

Each of these connectives will give rise to a slightly differ-
ent semantics. We opted for the first connective ⊗, as the
semantics based on the other three seem to have a tendency
to stabilize on the value ½ very often (the safe option: in
case of confusion, opt for ignorance).

Properties of our belief semantics
As mentioned in the introduction, we should not be shocked
to hear that a system modelling belief and belief change does
not follow basic logical rules such as Propositions 1 and 2.
From its beginnings (Hin62) to modern doxastic systems,
logics of belief have always dealt with the peculiarities of
the logical structure of belief. Let us take the particular ex-
ample of conjunction: the fact that belief is not closed un-
der the standard logical rules for conjunction is known as
the preface paradox and has been described by Kyburg as
“conjunctivitis” (Kyb70; HB99). While the phenomenon of
“conjunctivitis” focusses on the fact that something strange
happens with the belief of large conjunctions of individually
believes propositions, in other contexts (that of the modality
of “ensuring that”), we have a problem with simple binary
conjunctions (Sch08).

Of course, the failure of certain logical rules in reason-
ing about belief is closely connected to the so-called “errors
in reasoning” observed in experimental psychology, e.g.,
the famous Wason selection task (Was68). What consti-
tutes rational belief in this context is an interesting ques-
tion for modellers and philosophers alike (Ste97; Chr07;
Cou08).

The fact that reasoning about beliefs is such a complicated
topic makes it unlikely that there is one objectively accurate
semantics that describes reasoning about beliefs in pointer
structures. Instead, different semantics will be relevant in
different situations. Which semantics to choose is a deci-
sion that the modeller has to make with as much informa-
tion as possible. This is one of the reasons why we decided
for a very lean and easy to survey system (as opposed to
the more complicated system of (GLS07)). Let us focus on
some concrete examples to validate our claim that the se-
mantics we propose do agree with intuitive understanding,
and thus serve as a quasi-empirical test for our system as a
formalization of reasoning in self-referential situations with
evidence.

Concrete examples
So far, we have just given an abstract system of belief flow
in our pointer systems. In order to check whether our sys-
tem results in intuitively plausible results, we have to check

H∗0 δB(H∗0) δF(H∗0) H∗1 δB(H∗1) δF(H∗1) H∗2 δB(H∗2) δF(H∗2) H∗3 δB(H∗3) δF(H∗3) H∗4 δB(H∗4) δF(H∗4) H∗5
0 ½ 0 0 1 0 ½ 1 ½ 1 1 1 1 1 1 1
1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1
0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0
½ 0 ½ 0 0 ½ 0 0 ½ 0 0 0 0 0 0 0
0 ½ ½ ½ ½ ½ ½ 1 ½ 1 1 ½ 1 1 1 1
1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1
0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0
½ 0 1 ½ 0 ½ 0 0 ½ 0 0 0 0 0 0 0
½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 ½ 1 1 1 1

Figure 2: The first three iterations of values of H∗0 = (0, 1, 0,½, 0, 1, 0,½,½) up to the point of stability (H∗4 =
(1, 1, 0, 0, 1, 1, 0, 0, 1)).

a few examples. Keep in mind that our goal should be to
model human reasoning behaviour in the presence of par-
tially paradoxical situations. In this paper, we can only give
a first attempt at testing the adequacy of our system: an em-
pirical test against natural language intuitions on a much
larger scale is needed. For this, also cf. our section “Dis-
cussion and Future Work”.

The Liar As usual, the liar sentence is interpreted by the
system Σ := {p0←¬p0}. Since we have only one propo-
sitional variable, interpretations are just elements of T =
{0,½, 1}. It is easy to see that δB(0) = δF(0) = δT(0) = 1,
δB(½) = δF(½) = δT(½) = ½, and δB(1) = δF(1) =
δT(1) = 0. This means that the δT-behaviour of the liar
sentence is equal to the Gaifman-semantics behaviour.

The Miller-Jones Example Consider the following test
example from (GLS07):

Professors Jones, Miller and Smith are colleagues in a com-
puter science department. Jones and Miller dislike each other
without reservation and are very liberal in telling everyone
else that “everything that the other one says is false”. Smith
just returned from a trip abroad and needs to find out about
two committee meetings on Monday morning. He sends out
e-mails to his colleagues and to the department secretary. He
asks all three of them about the meeting of the faculty, and
Jones and the secretary about the meeting of the library com-
mittee (of which Miller is not a member).
Jones replies: “We have the faculty meeting at 10am and the
library committee meeting at 11am; by the way, don’t believe
anything that Miller says, as he is always wrong.”
Miller replies: “The faculty meeting was cancelled; by the
way don’t believe anything that Jones says, as he is always
wrong.”
The secretary replies: “The faculty meeting is at 10 am and
the library committee meeting is at 11 am. But I am sure
that Professor Miller told you already as he is always such an
accurate person and quick in answering e-mails: everything
Miller says is correct.” (GLS07, p. 408)

Trying to analyse Smith’s reasoning process after he re-
turns from his trip, we can assume that he generally believes
the secretary’s opinions, and that he has no prior idea about
the truth value of the statements “the faculty meeting is at
10am” and “the library meeting is at 11am” and the utter-
ances of Miller and Jones. We have a vague intuition that

tells us that in this hypothetical situation, Smith should at
least come to the conclusion that the library meeting will be
held at 11am (as there is positive, but no negative evidence).
His beliefs about the faculty meeting are less straightfor-
ward, as there is some positive evidence, but also some neg-
ative evidence, and there is the confusing fact that the secre-
tary supports Miller’s statement despite the disagreement in
truth value.

In (GLS07, p. 409), the authors analysed this example
with their real-valued model and ended up with a stable so-
lution in which Smith accepted both appointments and took
Jones’s side (disbelieving Miller). In our system, we now
get the following analysis: A pointer system formulation is
given as follows.

p0 ← ¬p1 ∧ ¬p4,
p1 ← ¬p0 ∧ p2 ∧ p4,
p2 ← ,
p3 ← p0 ∧ p2 ∧ p4,
p4 ← ,

where p0 is Miller’s utterance, p1 is Jones’s utterance, p2

is “the library meeting will take place at 11am”, p3 is the
secretary’s utterance, and p4 is the “the faculty meeting will
take place at 10am”.

We identify our starting hypothesis with H :=
(½,½,½, 1,½) (here, as usual, we identify an interpretation
with its sequence of values in the order of the indices of the
propositional letters). Then δB(H) = (½,½,½,½,½) and
δF(H) = (½,½, 1, 1,½), so that we get H ′ := δT(H) =
(½,½, 1, 1,½). Then, in the second iteration step, δB(H ′) =
(½,½, 1,½,½) and δF(H ′) = (½,½, 1, 1,½), so we obtain
stability at δT(H ′) = H ′.

Examples of nonlogical behaviour
In what follows, we investigate some logical properties of
the belief semantics, viz. negation and disjunction, fo-
cussing on stable hypotheses. To some extent, our results
show that the operator δT is rather far from the logical prop-
erties of δB discussed in Propositions 1 and 2.

Negation Consider the pointer system Σ given by

p0 ← ¬p3, p1 ← ,
p2 ← , p3 ← p1 ∧ p2.

The interpretation H := (0, 1, 0,½) is δT-stable, as
δB(H) = (½, 1, 0, 0), δF(H) = (0,½,½, 1), and thus
δT(H) = H .

Now let us consider the system ¬(Σ,p3). Remember
from the proof of Proposition 1 that stable interpretations for
the small system could be extended to stable interpretations
for the big system by plugging in the expected value for p¬.
So, in this particular case, the stable value for p3 is ½, so
we would expect that by extending H by H0(p¬) := ½, we
would get another stable interpretation.

But this is not the case, as the table of iterated values given
in Figure 1 shows. Note that H0 is not even recurring.

Disjunction Consider the pointer systems Σ and Σ∗ and
their disjunction (Σ,p4) ∨ (Σ∗,p∗1) given as follows:

p0 ← ¬p3, p∗0 ← ¬p∗3,
p1 ← p∗1, ← ,
p2 ← p∗2, ← ,
p3 ← p1 ∧ p2, p∗3 ← p∗1 ∧ p∗2,
p∗ ← p4 ∨ p∗1.

Note that Σ and Σ∗ are the same system up to isomorphism
and that Σ is the system from the previous example. We
already know that the interpretation H = (0, 1, 0,½) is δT-
stable (therefore, it is δT-stable for both Σ and Σ∗ in the
appropriate reading.

The natural extension of H to the full system
with nine propositional variables would be H∗0 :=
(0, 1, 0,½, 0, 1, 0,½,½), as p∗ should take the value
H(p4) ∨ H(p∗1) = ½ ∨ 0 = ½. However, we see in Fig-
ure 2 that this interpretation is not stable (or even recurring).

Discussion and future work
Testing the behaviour of our system on the liar sentence and
one additional example cannot be enough as an empirical
test of the adequacy of our system. After testing more exam-
ples and having developed some theoretical insight into the
system and its properties, we would consider testing the sys-
tem experimentally by designing situations in which people
reason about beliefs in self-referential situations with evi-
dence, and then compare the predictions of our system to
the actual behaviour of human agents.

Such an experimental test should not be done with just
one system, but with a class of systems. We have already
discussed that our choice of the connective ⊗ combining δB
and δF to δT was not unique. Similarly, the rules for how to
handle multiple solutions (“take the pointwise infimum”) in
the case of forward propagation are not the only way to deal
with this formally. One natural alternative option would be
to split the sequenceH∞ into multiple sequences if there are
multiple solutions. For instance, if we are trying to calculate
δF(H) and we have multiple solutions to the set of equa-
tions, then δF(H) becomes a set of interpretations (possibly
giving rise to different recurrences and stabilities, depend-
ing on which possibility you follow). There are many vari-
ants that could be defined, but the final arbiter for whether
these systems are adequate descriptions of reasoning pro-
cesses will have to be the experimental test.

References
Thomas Bolander. Logical Theories for Agent Introspec-
tion. PhD thesis, Technical University of Denmark, 2003.
David Christensen. Putting Logic in its place. Formal Con-
straints on Rational Belief. Oxford University Press, 2007.
Marian E. Counihan. Looking for logic in all the wrong
places: an investigation of language, literacy and logic in
reasoning. PhD thesis, Universiteit van Amsterdam, 2008.
ILLC Publications DS-2008-10.
Haim Gaifman. Operational pointer semantics: Solution
to self-referential puzzles I. In Moshe Y. Vardi, editor,
Proceedings of the 2nd Conference on Theoretical Aspects
of Reasoning about Knowledge, Pacific Grove, CA, March
1988, pages 43–59. Morgan Kaufmann, 1988.
Haim Gaifman. Pointers to truth. Journal of Philosophy,
89(5):223–261, 1992.
Anil Gupta and Nuel Belnap. The revision theory of truth.
A Bradford Book. MIT Press, Cambridge, MA, 1993.
Sujata Ghosh, Benedikt Löwe, and Erik Scorelle. Belief
flow in assertion networks. In Uta Priss, Simon Polovina,
and Richard Hill, editors, Conceptual Structures: Knowl-
edge Architectures for Smart Applications, 15th Interna-
tional Conference on Conceptual Structures, ICCS 2007,
Sheffield, UK, July 22-27, 2007, Proceedings, volume 4604
of Lecture Notes in Computer Science, pages 401–414.
Springer, 2007.
Alan H. Goldman. A note on the conjunctivity of knowl-
edge. Analysis, 36:5–9, 1975.
James Hawthorne and Luc Bovens. The preface, the lottery,
and the logic of belief. Mind, 108:241–264, 1999.
Hans G. Herzberger. Notes on naive semantics. Journal of
Philosophical Logic, 11(1):61–102, 1982.
Jaakko Hintikka. Knowledge and Belief. Cornell, 1962.
Henry Kyburg. Conjunctivitis. In Marshall Swain, edi-
tor, Induction, Acceptance, and Rational Belief, page 5582.
Reidel, 1970.
Benedikt Löwe. Revision forever! In Henrik Schärfe,
Pascal Hitzler, and Peter Øhrstrøm, editors, Conceptual
Structures: Inspiration and Application, 14th International
Conference on Conceptual Structures, ICCS 2006, Aal-
borg, Denmark, July 16-21, 2006, Proceedings, volume
4068 of Lecture Notes in Computer Science, pages 22–36.
Springer, 2006.
Benjamin Schnieder. On what we can ensure. Synthese,
162:101–115, 2008.
Edward Stein. Without good reason. The rationality debate
in philosophy and cognitive science. Clarendon Library of
Logic and Philosophy. Clarendon Press, 1997.
Peter Wason. Reasoning about a rule. Quarterly Journal
of Experimental Psychology, 20(3):273–281, 1968.

