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Abstract

Given a finite model M, it is possible to associate to every sentence φ

of Backslash Logic and Dependence Logic the value of the corresponding
imperfect information game H(φ).
Hodges’ compositional semantics can then be adapted to this new logic,
and the value of atomic dependence formulas in the resulting framework
is seen to correspond to one of Kivinen and Mannila’s measures of ap-
proximate functional dependency.
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1 Preliminaries

Logics of Imperfect Information are extensions of First-Order Logic which al-
low more general patterns of dependence and independence between quantified
variables - for example, in Hodges’ Slash Logic [6] the formula

∀x1∃y1∀x2(∃y2/{x1, y1})ψ(x1, x2, y1, y2) (1)

corresponds to the Skolem normal form

∃f∃g∀x1∀x2ψ(x1, x2, f(x1), g(x2))

that is, the values of y1 and y2 may only depend respectively on the values of
x1 and x2.

The two forms of Imperfect Information Logic which will be considered in
this work are Backslash Logic (called also Dependence-Friendly Logic, or DF-
Logic for short: [16], [17]), and Dependence Logic ([16]).
The former uses backslashed quantifiers (Qxn\{x1 . . . xn−1}), whose intuitive
meaning is that the value of x is dependent only on the variables x1 . . . xn−1;
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the latter, instead, introduces dependence atomic formulas =(t1 . . . tn), which
hold if and only if the value of tn is determined by the values of t1 . . . tn−1.

For example, the formula (1) would be written as

∀x1∃y1∀x2(∃y2\x2)ψ(x1, x2, y1, y2)

in DF-Logic, where (∃y2\x2) is used as a shorthand for (∃y2\{x2}), and

∀x1∃y1∀x2∃y2(=(x2, y2) ∧ ψ(x1, x2, y1, y2))

in Dependence Logic.

These two logics can be easily translated into one another: indeed, in ([16],
§3.6) it is verified that

(Qxn\{x1 . . . xn−1})ψ(x1 . . . xn) ≡ Qxn(=(x1 . . . xn) ∧ ψ(x1 . . . xn)) (2)

for all Q ∈ {∀, ∃}, and

=(t1 . . . tn) ≡ ∃y1 . . . yn−1(∃yn\{y1 . . . yn−1})(
n∧

i=1

(yi = ti)) (3)

The game-theoretic semantics for First-Order Logic can be easily adapted
to DF-Logic: the interpretation of the first-order connectives does not change,
and for the backslashed quantifiers we simply restrict the available information
of the corresponding player (Player I for ∀, Player II for ∃)) as required.

Thus, for every model M, initial assignment s and DF-Logic formula φ it is
possible to build a game HM

s (φ) such that M, s |= φ if and only if Player II
(also called the Verifier) has a winning strategy for HM

s (φ) which is uniform,
that is, which does not “cheat” by employing unavailable information.

Because of (2), the same also holds for formulas of Dependence Logic. The
semantic games Hs(φ) could also be defined directly for formulas of Dependence
Logic, as in ([16], §5.3); however, in this work dependence atomic formulas will
be interpreted as shorthands for the corresponding formulas of DF -Logic.

2 Game Values

A behavioral strategy for Player I [II] is defined as follows:

Definition 1 (Behavioral Strategy)
A behavioral strategy β for Player I [II] in the game Hs(φ) is a family of
functions βi from partial plays p̄ = (p1 . . . pi), where each pi is of the form
(ψ, s′) for some subformula instance ψ of φ and Player I [II] has to make a
choice in pi, to probability distributions of possible successors pi+1.
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Then, a behavioral strategy is said to be uniform if it respects the informa-
tion constraints stated in the formula:

Definition 2 (Uniform Behavioral Strategy)
A behavioral strategy γ for Player II is said to be uniform if and only if, for
every two partial plays (p1 . . . pi) and (p′1 . . . p

′
i) in which Player II follows γ, if

• It holds that
pi = ((∃x\V )ψ, s)

and
p′i = ((∃x\V )ψ, s′)

for the same instance of the subformula (∃x\V )ψ;

• The assignments s and s′ coincide over the set of variables V ;

then γ induces the same distribution over x in both plays, that is,

γ(p1 . . . pi)(ψ, s[m/x]) = γ(p′1 . . . p
′
i)(ψ, s

′[m/x]), for all m ∈M

The definition of behavioral strategy for Player I is analogous, except that
now the condition is concerned with backslashed universal quantifiers (∀x\V )ψ.

As the games Hs(φ) can be of imperfect recall, Kuhn’s Theorem [10] does
not hold, and not all uniform mixed strategies (that is, not all probability dis-
tributions over uniform pure strategies), correspond to an uniform behavioral
strategy.

Example 1
Let dom(M) = ({a, b}), let φ := ∃x(∃y\x)(x = y), and the two pure strategies
τ ′, τ ′′ given by

τ ′1(φ, ∅) = ((∃y\{})(x = y), ∅[a/x]);

τ ′2((φ, ∅)((∃y\{})(x = y), s)) = (x = y, s[a/y]).

and

τ ′′1 (φ, ∅) = ((∃y\{})(x = y), ∅[b/x]);

τ ′′2 ((φ, ∅)((∃y\{})(x = y), s)) = (x = y, s[b/y]).

That is, τ ′ is “always choose a” and τ ′′ is ’always choose b”; it is easy to see
that both these strategies are winning for Player II in the game.

Now, let g be the mixed strategy which selects either τ ′ or τ ′′ with equal
probability: g(τ ′) = g(τ ′′) = 1/2.
Then g does not correspond to any uniform behavioral strategy, as the probability
distribution of y according to g is not independent from that of x.
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However, every uniform behavioral strategy β induces a probability distri-
bution β∗ over uniform pure strategies. Because of this, it is possible to define
the payoff for Player II of the game Hs(φ), when Player I uses β and Player II
uses γ, as follows:

Definition 3 (Payoffs of Behavioral Strategies)
Let M be a finite model, let φ be any formula, let s be a variable assignment
over FV (φ) and let β, γ be two behavioral strategies for the two players.

Then Player II’s payoff for this pair of strategies is

PII(Hs(φ);β; γ) =
∑

σ

∑

τ

β∗(σ)γ∗(τ)P (Hs(φ);σ; τ)

where P (Hs(φ);σ; τ) is the payoff, for Player II, of the play (σ; τ), that is,

PII(Hs(φ);σ; τ) =

{
1 if the play (σ; τ) is winning for Player II;
0 otherwise.

The value for Player I PI(Hs(φ);β; γ) can be defined similarly, and it turns
out that

P (Hs(φ);β; γ) + PI(Hs(φ);β; γ) = 1 (4)

for all β and γ.

When there is no risk of confusion, the subscript II will be omitted in
PII(H(φ);β; γ).

Now, the value of the formula φ (in the model M and for the assignment s)
is the best expected payoff that Player II can guarantee, no matter what Player
I does:

Definition 4 (Value of a formula)
Let M be a finite model, let φ be a formula and let s be an assignment over
FV (φ).
Then

Vs(φ) = sup
γ

inf
β
P (Hs(φ);β; γ)

Van Benthem proposed investigating equilibria of semantic games for IF Logic
along similar lines, asking if “could it be that IF games also involve an essential
probabilistic feature, which we just have not been able to identify yet” ([2],
[18]).
Also, the above definition of value can be seen ate generalization to behavioral
strategies of the definition of value considered by Hodges in [7]; moreover, at the
very end of [3] an analogous concept is suggested, and Sevenster in [14] formal-
izes the intuitions of [3] in the context of Branching and Generalized Quantifiers.
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It is not difficult to see that it makes no difference if the infimum ranges over
pure strategies, that is,

Vs(φ) = sup
γ

inf
σ
P (Hs(φ);σ; γ)

If M, s |= φ, then Player II has an uniform winning strategy for Hs(φ) and
therefore Vs(φ) = 1; analogously, if M, s |=∼φ then Player I has an uniform
winning strategy for Hs(φ) and Vs(φ) = 0.

However, undetermined formulas can take values in (0, 1), as the following
example demonstrates:

Example 2
Let M be a model with dom(M) = {a1 . . . an}, and let

φ := ∀x(∃y\{})(x = y)

Then V∅(φ) = 1/n: indeed, let σ1 . . . σn be I’s pure strategies, corresponding
to the choices “x = a1” . . . “x = an”, and analogously let II’s strategies τ1 . . . τn
correspond to “y = a1” . . . “y = an”.
Then

P (H∅(φ);σi; τj) =

{
1 if i = j;
0 otherwise.

Now, let γ be the strategy for Player II which selects the value for y randomly
in {a1 . . . an}, that is,

(γ2((φ, ∅), ((∃y\{})(x = y), s)))(x = y, s[ai/y]) = 1/n, for all i ∈ 1 . . . n

Then γ corresponds to the uniform distribution over the τi, since

γ∗(τi) = 1/n, for all i ∈ 1 . . . n

Then, let β be any uniform behavioral strategy for Player I: by definition,

P (H∅(φ);β; γ) =
∑

i,j

β∗(σi)γ
∗(τj)P (H∅(φ), σi; τj) =

∑

i,j

(β∗(σi)δij)/n =
∑

i

β∗(σi)/n = 1/n

Therefore, V∅(φ) ≥ 1/n; on the other hand, if β is given by

(β1((φ, ∅)))(∃y\{}(x = y), ∅[ai/x]) = 1/n, for i ∈ 1 . . . n.

then, by the same reasoning used above,

P (H∅(φ);β; γ) = 1/n

In conclusion, the value V∅(φ) is exactly 1/n, as stated.
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3 The Minimax Theorem

The rest of this work will attempt to characterize the logic which associates to
every formula φ the value Vs(φ).

An useful tool for this will be the Minimax Theorem, in the version found
in [15], and adapted to the games Hs(ψ) in ([5], §3.2):

Theorem 1 (The Minimax Theorem for Hs(ψ))
For every game Hs(φ) in a finite model M, there exist two behavioral strategies
βe and γe such that, for all β and γ,

P (Hs(φ);βe; γ) ≤ P (Hs(φ);βe; γe) ≤ P (Hs(φ);β; γe)

A pair of strategies (βe, γe) as above is called an equilibrium pair.

This does not contradict the results in [13], which imply that, for games of
imperfect recall, the very definitions of behavioral strategy and equilibrium are
somewhat problematic: indeed, the games Hs(φ) do not present absentminded-
ness, to use the terminology of [13] - that is, no information set contains two
partial plays p̄ and p̄′ such that the former is a proper initial segment of the
latter - and therefore the so-called “Paradox of the Absentminded Driver” has
no analogue in this class of games.

The Minimax Theorem has a well-known, useful corollary:

Corollary 1
For every game Hs(ψ) in a finite model M,

∀γ∃σPI(Hs(ψ);σ; γ) ≥ r ⇔ ∃β∀τPI (Hs(ψ);β; τ) ≥ r

and
∀β∃τPII(Hs(ψ);β; τ) ≥ r ⇔ ∃γ∀σPII(Hs(ψ);σ; γ) ≥ r

Another consequence of the Minimax Theorem is that, if V I

s (φ) is the value
for Player I of the game Hs(φ),

V I

s (φ) = sup
β

inf
γ

(1 − PII(Hs(φ);β; γ)) = 1 − inf
β

sup
γ
PII(Hs(φ);β; γ) =

= 1 − inf
β

sup
τ
PII(Hs(φ);β; τ) = 1 − sup

γ
inf
σ
PII(Hs(φ);σ; γ) =

= 1 − sup
γ

inf
β
PII(Hs(φ);β; γ) = 1 − Vs(φ)

Then, for the game-theoretic negation ∼ and for all formulas φ,

Vs(∼φ) = V I

s (φ) = 1 − Vs(φ) (5)

It is worth observing that if the model M is not finite, the Minimax Theorem
does not hold:
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Example 3
Let M = (N, <) and

φ := ∀x(∃y\{})(y > x)

Then V∅(φ) = V∅(∼φ) = 0, contradicting the corollary of the Minimax The-
orem.

This can be verified as follows:

• Let γ be any behavioral strategy for Player II in H∅(φ).
As γ must choose the value of y independently from the value of x, it in-
duces a probability distribution over N: for any assignment s with dom(s) =
{x},

Prob(y = m) = γ2((φ, ∅), (∃y\{}(y > x), s))(y > x, s[m/x])

Then, for any r > 0 there exists a nr ∈ N such that Prob(y > r) ≤ r;
thus, if σr is the pure strategy for Player I which chooses nr for x, that
is,

σr1((φ, ∅)) = (∃y\{}(y > x), ∅[nr/x])

it turns out that

PII(H∅(φ);σr ; γ) =
∑

n>n0

Prob(y = n) = Prob(y > nr) ≤ r

Hence,
inf
σ
PII(H∅(φ);σ; γ) = 0

and, as this holds for all γ,

V∅(φ) = sup
γ

inf
σ
PII(H∅(φ);σ; γ) = 0

• Let β be any behavioral strategy for Player I in H∅(φ): as above, it induces
a probability distribution of x over N, and for all r > 0 it is possible to
find a mr such that

Prob(x > mr) ≤ r

Thus, if τr is the pure strategy for Player II which chooses mr for y,

PII(H∅(φ);β; τr) ≤ r

And, since such a τr can be found for all β and for all r > 0,

V∅(∼φ) = 0
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4 Probabilistic teams and trumps

In [6], Hodges described a semantics for a game of imperfect information in
terms of sets of assignments, which, following [16], will be called teams.
In particular, the first-order semantics notion of assignment satisfying a for-
mula was substituted in Hodges’ semantics with the notion of team satisfying a
formula, called trump.
In the light of [7] and [16], it seems clear that this shift from assignments to sets
of assignments is caused by the fact that logics of imperfect information can
express statements about functional dependencies, and such a concept cannot
be meaningfully applied to single assignments.

Some variations of the definitions found in [6] and in the subsequent work
will now be presented.

Definition 5 (Probabilistic Team)
A probabilistic team µ with domain dom(µ) = {x1 . . . xn} is a probability func-
tion over the set of all assignments on {x1 . . . xn}, that is, a function

µ : {s : dom(s) = {x1 . . . xn}} → [0, 1]

such that ∑

dom(s)=dom(µ)

µ(s) = 1

Then, the game HM
µ is defined as follows:

Definition 6 (HM
µ (φ))

Let φ be a formula, M a model, and let µ be a probabilistic team.
The game HM

µ (φ) is then played as follows:

1. First, an assignment s is selected randomly, according to the distribution
µ;

2. Then, the game HM
s (φ) is played.

The definitions of strategy, uniform strategy, behavioral strategy and uniform
behavioral strategy are as usual; however, this time a play will be determined by
a triple (s, σ, τ), where s is the initial assignment (chosen according to µ) and
σ, τ are pure strategies.
Thus,

P (Hµ(φ);β; γ) =
∑

dom(s)=dom(µ)

µ(s)P (Hs(φ);β; γ)

It can be easily verified that

P (Hs(φ);β; γ) = P (Hηs
;β; γ)

where ηs is the probabilistic team which chooses s with certainty, that is,

ηs(s
′) =

{
1 if s′ = s;
0 otherwise.
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A trump, in the original Hodges semantics, is a team X such that Player II had
an uniform winning strategy for the game HX(φ), in which a s ∈ X is extracted
and then Hs(φ) is played; analogously,

Definition 7 (r-trumps and T )
A probabilistic team µ is a r-trump of a formula φ if and only if

∃γ∀σP (Hµ(φ);σ; γ) ≥ r

where, as usual, it makes no difference whether Player I can use behavioral
strategies β or if he is limited to pure strategies σ.

Then T is defined as

T = {(φ, µ, r) : µ is a r-trump of φ}

The following operations will be useful to characterize T :

Definition 8 (Linear combination)
If µ1, µ2, and µ′ are probabilistic teams with dom(µ1) = dom(µ2) = dom(µ′)
and p ∈ [0, 1], it holds that

µ′ = pµ1 + (1 − p)µ2

if and only if

µ′(s) = pµ1(s) + (1 − p)µ2(s), for all s with dom(s) = dom(µ′)

It is easy to verify that µ′ is still a team:

∑

s

µ′(s) = p
∑

s

µ1(s) + (1 − p)
∑

s

µ2(s) = p+ (1 − p) = 1

Definition 9 (Supplementation)
If µ is a probabilistic team, F is a function from {s : dom(s) = dom(µ)} to
probability distributions over M , that is, a mapping

F : {s : dom(s) = dom(µ)} → D(M)

where
D(M) = {f : M → [0, 1],

∑

m∈M

f(m) = 1}

and y 6∈ dom(µ), then µ[F/y] is defined as the probabilistic team such that

µ[F/y](s[m/y]) = µ(s) · F (s)(m)

for all s such that dom(s) = dom(µ) and for all m ∈M .
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It can be verified that µ[F/y] is a team over dom(µ) ∪ {y}:
∑

dom(s′)=dom(µ)∪{y}

µ[F/y](s′) =

=
∑

dom(s)=dom(µ)

∑

m∈M

µ[F/y](s[m/y]) =

=
∑

dom(s)=dom(µ)

∑

m∈M

µ(s) · F (s)(m) =

=
∑

dom(s)=dom(µ)

µ(s)
∑

m∈M

F (s)(m) =

=
∑

dom(s)=dom(µ)

µ(s) = 1

5 A compositional semantics

It is now possible to compositionally characterize the set T :

Theorem 2
If M is a finite model and φ is a formula, the following results hold1:

1. If φ is a literal, then (φ, µ, r) ∈ T if and only if
∑

s|=F Oφ

µ(s) ≥ r

where the expression s |=FO φ means that, in the current model, the first-
order formula φ is satisfied by the assignment s.

2. (ψ ∨ θ, µ, r) ∈ T if and only if µ can be written as a linear combination of
probabilistic teams

µ = pξ1 + (1 − p)ξ2

such that, for some r1 and r2, the following conditions hold:

(ψ, ξ1, r1) ∈ T ;

(θ, ξ2, r2) ∈ T ;

pr1 + (1 − p)r2 ≥ r

3. (ψ ∧ θ, µ, r) ∈ T if and only if for all ξ1, ξ2, p such that

µ = pξ1 + (1 − p)ξ2

there exist r1, r2 such that

(ψ, ξ1, r1), (θ, ξ2, r2) ∈ T

and
pr1 + (1 − p)r2 ≥ r

1A. Mann has informed us that he has proved a similar result.
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4. (∃xψ, µ, r) ∈ T if and only if there exists a

F : {s : dom(s) = dom(µ)} → D(M)

such that
(ψ, µ[F/x], r) ∈ T

5. (∃x\{x1, . . . , xk}ψ, µ, r) ∈ T if and only if the conditions for the above
case hold, and moreover

s(x1) = s′(x1), . . . , s(xk) = s′(xk) ⇒ F (s) = F (s′)

for any two s, s′ with dom(s) = dom(s′) = dom(µ).

6. (∀xψ, µ, r) ∈ T if and only if for all

F : {s : dom(s) = dom(µ)} → D(M)

it holds that
(ψ, µ[F/x], r) ∈ T

7. (∀x\{x1 . . . xk)ψ, µ, r) ∈ T if and only if the conditions of the previous
case hold for all F such that

s(x1) = s′(x1), . . . , s(xk) = s′(xk) ⇒ F (s) = F (s′)

for every two s, s′ with the same domain of µ.

8. (∼φ, µ, r) ∈ T if and only if

(φ, µ, r′) ∈ T ⇒ r′ ≤ 1 − r

for all r ∈ [0, 1].

Proof:

1. If φ is a literal, there are no strategies available except the trivial ones,
and therefore

(φ, µ, r) ∈ T iff P (Hµ(φ); ∅; ∅) ≥ r iff
∑

s|=F Oφ

µ(s) ≥ r

2. Suppose that (ψ ∨ θ, µ, r) ∈ T : then there exists an uniform behavioral
strategy γ such that, for all σ,

P (Hµ(ψ ∨ θ);σ; γ) ≥ r

Now, for every assignment s, let λs be the probability, according to γ,
that Player II chooses the left disjunct ψ when the initial assignment s is
extracted - that is,

λs = (γ1(ψ ∨ θ, s))(ψ, s)
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Then, the total probability that the left disjunct is selected is

p =
∑

s

µ(s)λs

As a consequence, the conditional probability distribution

Prob(s is selected in Hµ(ψ ∨ θ) | the next position is (ψ, s))

is given by

ξ1(s) =
µ(s)λs
p

=
µ(s)λs∑
s µ(s)λs

And, analogously,

Prob(s is selected in Hµ(ψ ∨ θ) | the next position is (θ, s))

is

ξ2(s) =
µ(s)(1 − λs)

1 − p
=

µ(s)(1 − λs)∑
s µ(s)(1 − λs)

Clearly,
µ = pξ1 + (1 − p)ξ2

Moreover, let γL and γR be two behavioral strategies for H(ψ) and H(θ)
such that

γLi ((ψ, s) . . . pi) = γi+1((ψ ∨ θ, s)(ψ, s) . . . pi);

γRi ((θ, s) . . . pi) = γi+1((ψ ∨ θ, s)(θ, s) . . . pi).

Analogously, for each pure strategy σ for Player I let us define σL and σR

such that

σLi ((ψ, s) . . . pi) = σi+1((ψ ∨ θ, s)(ψ, s) . . . pi);

σRi ((θ, s) . . . pi) = σi+1((ψ ∨ θ, s)(θ, s) . . . pi).

Then

P (Hµ(ψ ∨ θ);σ; γ) =
∑

s

µ(s)P (Hs(ψ ∨ θ);σ; γ) =

=
∑

s

µ(s)λsP (Hs(ψ);σL; γL) +
∑

s

µ(s)(1 − λs)P (Hs(θ);σ
R; γR) =

= p
∑

s

ξ1(s)P (Hs(ψ);σL; γL) + (1 − p)
∑

s

ξ2(s)P (Hs(θ);σ
R; γR) =

= pP (Hξ1(ψ);σL; γL) + (1 − p)P (Hξ2(θ);σ
R; γR)
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Now, by hypothesis P (Hµ(ψ ∨ θ);σ; γ) ≥ r; therefore, there exist r1 and
r2 such that

P (Hξ1(ψ);σ; γL) ≥ r1 for all σ;

P (Hξ2(θ);σ; γR) ≥ r2 for all σ;

pr1 + (1 − p)r2 ≥ r.

as required.

Conversely, suppose that

µ = pξ1 + (1 − p)ξ2

with

(ψ, ξ1, r1) ∈ T ;

(θ, ξ2, r2) ∈ T ;

pr1 + (1 − p)r2 ≥ r

Then, by the definition of T , there exist behavioral strategies γL, γR such
that

P (Hξ1(ψ);σL; γL) ≥ r1 for all σL;

P (Hξ2(θ);σ
R; γR) ≥ r2 for all σR;

Then consider the following behavioral strategy γ for Player II in Hµ(ψ∨
θ): if the assignment s is selected, choose the left disjunct ψ with proba-
bility

λs =
pξ1(s)

µ(s)

that is, let

(γ1(ψ ∨ θ, s))(ψ, s) = λs

Then, for the successive moves, let

γi+1((ψ ∨ θ, s)(ψ, s), . . .) = γLi ((ψ, s), . . .);

γi+1((ψ ∨ θ, s)(θ, s), . . .) = γRi ((θ, s), . . .).

Then, for all strategies σ,

P (Hµ(ψ ∨ θ);σ; γ) =
∑

s

µ(s)P (Hs(ψ ∨ θ);σ; γ) =

=
∑

s

µ(s)λsP (Hs(ψ);σL; γL) +
∑

s

µ(s)(1 − λs)P (Hs(θ);σ
R; γR) =

= p
∑

s

ξ1(s)P (Hs(ψ);σL; γL) + (1 − p)
∑

s

ξ2(s)P (Hs(θ);σ
R; γR) =

= pP (Hξ1(ψ);σL; γL) + (1 − p)P (Hs(θ);σ
R; γR) ≥ pr1 + (1 − p)r2 ≥ r
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where σL, σR are defined as above and the fact that

1 − λs =
µ(s) − pξ1(s)

µ(s)
=

(1 − p)ξ2(s)

µ(s)

has been used.

3. Suppose that (ψ ∧ θ, µ, r) ∈ T : then, there exists a behavioral strategy
γ for Player II such that, no matter which behavioral strategy β Player
I uses to select φ or ψ, the payoff P (Hµ(ψ∧θ);β; γ) is greater or equal to r.

Now, suppose that µ = pξ1+(1−p)ξ2, and let βL, βR be any two behavioral
strategies for Player I for the gamesH(ψ) and H(θ); then, let β be defined
as

(β1(ψ ∧ θ, s))(ψ, s) = pξ1(s)/µ(s);

(β1(ψ ∧ θ, s))(θ, s) = (1 − p)ξ2(s)/µ(s);

βi+1((ψ ∧ θ, s)(ψ, s), . . .) = βLi ((ψ, s), . . .);

βi+1((ψ ∧ θ, s)(θ, s), . . .) = βRi ((θ, s), . . .);

Then, for γL and γR defined as in the previous case,

r ≥ P (Hµ(ψ ∧ θ;β; γ) =
∑

s

µ(s)P (Hs(ψ ∨ θ;β; γ) =

= p
∑

s

ξ1(s)P (Hs(ψ);βL; γL) + (1 − p)
∑

s

ξ2(s)P (Hs(θ);β
R; γR) =

= pP (Hξ1(ψ);βL; γL) + (1 − p)P (Hξ2(θ);β
R; γR)

and, since this holds for every βL and βR, there exist r1, r2 such that

(ψ, ξ1, r1) ∈ T ;

(θ, ξ2, r2) ∈ T ;

pr1 + (1 − p)r2 ≥ r

as required.

Conversely, suppose that whenever

µ = pξ1 + (1 − p)ξ2

there exist r1, r2 such that

(ψ, ξ1, r1) ∈ T ;

(θ, ξ2, r2) ∈ T ;

pr1 + (1 − p)r2 ≥ r
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Then, let β be any behavioral strategy for Player I, and, as usual, let

λs = (β1(ψ ∧ θ, s))(ψ, s)

and let ξ1 and ξ2 be the conditional assignment distributions when Player
I chooses ψ or θ, that is,

ξ1(si) =
µ(si)λi∑
i µ(si)λi

and

ξ2(si) =
µ(si)(1 − λi)∑
i µ(si)(1 − λi)

Then, for p =
∑
i µ(si)λi it holds that

µ = pξ1 + (1 − p)ξ2

Now, by hypothesis, there exist r1, r2 such that (ψ, ξ1, r1), (θ, ξ2, r2) ∈ T
and pr1 + (1 − p)r2 ≥ r, and thus it is possible to find two behavioral
strategies γL and γR for Player II such that

P (Hξ1(ψ);β′; γL) ≥ r1, for all β′;

P (Hξ2(θ);β
′′; γR) ≥ r2, for all β′′.

Now, let the strategy γ for Player II in H(ψ ∧ θ) be defined as

γi+1((ψ ∧ θ, s), (ψ, s), . . .) = γLi ((ψ, s), . . .);

γi+1((ψ ∧ θ, s), (θ, s), . . .) = γRi ((θ, s), . . .).

Then

P (Hµ(ψ ∧ θ);β; γ) =
∑

s

µ(s)P (Hs(ψ ∧ θ);β; γ) =

= p
∑

s

ξ1(s)P (Hs(ψ);βL; γL) + (1 − p)
∑

s

ξ2(s)P (Hs(θ);β
R; γR) ≥

≥ pr1 + (1 − p)r2 ≥ r

Thus,
∀β∃γP (Hµ(ψ ∧ θ);β; γ) ≥ r

But then, by the minimax theorem and its corollary,

∃γ∀βP (Hµ(ψ ∧ θ);β; γ) ≥ r

and, in conclusion, (ψ ∧ θ, µ, r) ∈ T .

15



4. Suppose that (∃xψ, µ, r) ∈ T : then, there is a behavioral strategy γ such
that, for all σ,

P (Hµ(∃xψ);σ; γ) ≥ r

Then, for all assignments s, let F (s) be defined as

F (s)(m) = (γ1(∃xψ, s))(ψ, s[m/x]), for all m ∈ M

and, moreover, let

γ′i((ψ, s[m/x]) . . .) = γi+1((∃xψ, s)(ψ, s[m/x]) . . .)

Now, let σ′ be any strategy for Player I in Hµ[F/x](ψ), and let σ be a
strategy for Hµ(ψ) such that

(F (s))(m) > 0 ⇒ σ((∃xψ, s), (ψ, s[m/x]), . . .) = σ′((ψ, s[m/x]), . . .)

Then,

r ≤ P (Hµ(∃xψ);σ; γ) =
∑

s

µ(s)P (Hs(∃xψ);σ; γ) =

=
∑

s

µ(s)
∑

m

(F (s))(m)P (Hs[m/x](ψ);σ′; γ′) =

= P (Hµ[F/x](ψ);σ′; γ′)

Since this holds for all σ′, one can conclude that

(ψ, µ[F/x], r) ∈ T

as required.

Conversely, suppose that there exists a behavioral strategy γ′ such that

P (Hµ[F/x](ψ);σ′; γ′) ≥ r for all σ′

Then, let the strategy γ for Hµ(∃xψ) be as follows:

(γ1(∃xψ, s))(ψ, s[m/x]) = F (s)(m);

γi+1((∃xψ, s), (ψ, s[m/x]), . . .) = γ′i((ψ, s[m/x]), . . .)

Now, let σ be any strategy for Player I in Hµ(∃xψ), and let σ′ be such
that

σ′
i((ψ, s[m/x]) . . .) = σi+1((∃xψ, s)(ψ, s[m/x]), . . .)

Then,

P (Hµ(∃xψ);σ; γ) =
∑

s

µ(s)P (Hs(∃xψ);σ; γ) =

=
∑

s

∑

m

µ(s)(F (s)(m))P (Hs[m/x](ψ);σ′; γ′) =

= P (Hµ[F/x](ψ);σ′; γ′) ≥ r

as required.
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5. Suppose that (∃x\V ψ, µ, r) ∈ T , where V is a set of variables, and
let γ be the corresponding uniform behavioral strategy for Player II in
Hµ(∃x\V ψ).
Then, as in the previous case, let F be such that

(F (s))(m) = (γ1(∃x\V ψ, s))(ψ, s[m/x])

Then it is possible to verify, using exactly the same argument of the pre-
vious case, that

(ψ, µ[F/x], r) ∈ T ;

Moreover, since γ is uniform

s(xi) = s′(xi) for all xi ∈ V ⇒ F (s) = F (s′)

as required.

Conversely, suppose that there exists a γ′ such that, for all σ′,

P (Hµ[F/x](ψ), σ′; γ′) ≥ r

where F is such that

s(xi) = s′(xi) for all xi ∈ V ⇒ F (s) = F (s′)

Then, as in the previous case, let the behavioral strategy γ forHµ(∃x\V ψ)
be defined as follows:

(γ1(∃x\V ψ, s))(ψ, s[m/x]) = F (s)(m);

γi+1((∃x\V ψ, s), (ψ, s[m/x]), . . .) = γ′i((ψ, s[m/x]), . . .)

For the same argument used for the non-backslashed existential quantifier.
Then,

P (Hµ(∃x\V ψ);σ; γ) ≥ r

and it only remains to verify that γ is uniform.

Indeed, let (p1 . . . pi) and (p′1 . . . p
′
i) be two partial plays of Hµ(∃x\V ψ)

in which Player II follows γ, pi and p′i are of the form (∃z\V ′θ, s) and
(∃z\V ′θ, s) for the same instance of this subformula, and

s(xi) = s′(xi) for all x ∈ V ′

Then
γ(p1 . . . pi) = γ(p′1 . . . p

′
i)

Indeed,

17



• If i = 1, the current subformula is ∃x\V ψ, and

s(xi) = s′(xi) for all xi ∈ V

Then F (s) = F (s′), and therefore

(γ1(∃x\V ψ, s))(ψ, s[m/x]) = (γ1(∃x\V ψ, s
′))(ψ, s[m/x])

for all m ∈M , as required.

• If i > 1 and (p1 . . . pi), (p′1 . . . p
′
i) are as above, then (p2 . . . pi) and

(p′2 . . . p
′
i) are plays of Hµ[F/x](ψ) in which Player II follows γ′, and

since γ′ is uniform the desired result holds.

6. Suppose that there exists a behavioral strategy γ for Player II such that,
for all behavioral strategies β for Player I,

P (Hµ(∀xψ);β; γ) ≥ r

Now, let F be any function

F : {s : dom(s) = dom(µ)} → D(M)

and let β′ be any strategy of Player I for Hµ[F/x](ψ).

Then, let the strategy β for Hµ(∀xψ) be defined as

(β1(∀xψ, s))(ψ, s[m/x]) = (F (s))(m);

βi+1((∀xψ, s)(ψ, s[m/x]), . . .) = β′
i((ψ, s[m/x]) . . .).

By hypothesis,
P (Hµ(∀xψ);β; γ) ≥ r;

Therefore, if one defines the strategy γ′ for Player II in Hµ[F/x](ψ) as

γ′i((ψ, s[m/x]) . . .) = γi+1((∀xψ, s)(ψ, s[m/x]) . . .)

then

r ≤ P (Hµ(∀xψ);β; γ) =
∑

s

µ(s)P (Hs(∀xψ);β; γ) =

=
∑

s

µ(s)
∑

m

(F (s))(m)P (Hs[m/x](ψ);β′; γ′) = P (Hµ[F/x](ψ);β′; γ′)

and therefore (ψ, µ[F/x], r) ∈ T , as required.

Conversely, suppose that for all F : {s : dom(s) = dom(µ)} → D(M) as
above there exists a strategy γF such that

P (Hµ[F/x](ψ);βF ; γF ) ≥ r
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for all behavioral strategies βF of Player I.

Then, let β be any behavioral strategy of Player I in Hµ(∀xψ), and let F
be defined by

(F (s))(m) = (β1(∀xψ, s))(ψ, s[m/x])

Moreover, let βF be the strategy such that

βFi ((ψ, s[m/x]) . . .) = βi+1((∀xψ, s)(ψ, s[m/x]) . . .)

And let γ be defined by

γi+1((∀xψ, s)(ψ, s[m/x]) . . .) = γFi ((ψ, s[m/x]) . . .)

Then,

P (Hµ(∀xψ);β; γ) =
∑

s

µ(s)P (Hs(∀xψ);β; γ) =

=
∑

s

µ(s)
∑

m

(F (s))(m)P (Hs[m/x](ψ);βF ; γF ) = P (Hµ[F/x](ψ);βF ; γF ) ≥ r

In conclusion,
∀β∃γP (Hµ(∀xψ);β; γ) ≥ r

and, by the corollary of the Minimax Theorem, this implies that (∀xψ;µ; r) ∈
T , as required.

7. Let γ be such that, for all uniform behavioral strategies β for Player I,

P (Hµ(∀x\V ψ);β; γ) ≥ r

and let F : {s : dom(s) = dom(µ)} → D(M) be such that

s(xi) = s′(xi) for all xi ∈ V ⇒ F (s) = F (s′)

Then, for every uniform behavioral strategy β′ for Player I in Hµ[F/x](ψ),
let β be defined as

(β1(∀x\V ψ, s))(ψ, s[m/x]) = (F (s))(m);

βi+1((∀x\V ψ, s)(ψ, s[m/x]) . . .) = β′((ψ, s[m/x]) . . .)

This β is uniform, since β′ is uniform and since

s(xi) = s′(xi) for all xi ∈ V ⇒ F (s) = F (s′) ⇒ β1(∀x\V ψ, s) = β1(∀x\V ψ, s
′)

Therefore, P (Hµ(∀x\V ψ);β; γ) ≥ r; but then, the γ′ defined by

γ′i((ψ, s[m/x]) . . .) = γi+1((∀x\V ψ, s)(ψ, s[m/x]) . . .)
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is such that
∀β′, P (Hµ[F/x](ψ);β′; γ′) ≥ r

as required.

Conversely, suppose that for all F which satisfy the dependence condition
there exists a γF such that

∀β′, P (Hµ[F/x](ψ);β′; γ′) ≥ r

Then, let β be any uniform behavioural strategy for Hµ(∀x\V ψ), and as
usual let F be given by

(F (s))(m) = (β1(∀x\V ψ, s))(ψ, s[m/x])

Since β must be uniform,

s(xi) = s′(xi) for all xi ∈ V ⇒ β1(∀x\V ψ, s) = β1(∀x\V ψ, s
′) ⇒ F (s) = F (s′)

Therefore, F satisfies the dependence requirement, and if βF is the re-
striction of β to the subgame H(ψ), as in the case of the non-backslashed
universal quantifier,

P (Hµ[F/x](ψ);βF ; γF ) ≥ r

But then, for the γ defined by

γi+1((∀x\V ψ, s)(ψ, s[m/x]) . . .) = γFi ((ψ, s[m/x]) . . .)

it holds that
P (Hµ(∀x\V ψ);β; γ) ≥ r

Thus,
∀β∃γP (Hµ(∀x\V ψ);β; γ) ≥ r

and therefore, by the Minimax Theorem,

∃γ∀βP (Hµ(∀x\V ψ);β; γ) ≥ r

as required.

8. By the Minimax Theorem’s corollary,

(∼φ, µ, r) ∈ T iff

iff ∃γ∀σPII(Hµ(∼φ);σ; γ) ≥ r, iff

iff ∃β∀τPI (Hµ(φ);β; τ) ≥ r, iff

iff ∃β∀τPII (Hµ(φ);β; τ) ≤ 1 − r, iff

iff ∀γ∃σPII(Hµ(φ);σ; γ) ≤ 1 − r, iff

iff ¬∃γ∀βPII(Hµ(φ);σ; γ) > 1 − r, iff

iff ((φ, µ, r′) ∈ T ⇒ r′ ≤ 1 − r)

as required.
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�

Given the definition of value, it is easy to see that

Vµ(φ) = sup{r : (φ, µ, r) ∈ T }

Thus, by the about results about T , V satisfies the following properties:

Corollary 2

1. If φ is a literal,

Vµ(φ) =
∑

s|=F Oφ

µ(s);

2. If φ = ψ ∨ θ,

Vµ(ψ ∨ θ) = sup{pVξ1(ψ) + (1 − p)Vξ2 (θ) : pξ1 + (1 − p)ξ2 = µ};

3. If φ = ψ ∧ θ,

Vµ(ψ ∧ θ) = inf{pVξ1(ψ) + (1 − p)Vξ2 (θ) : pξ1 + (1 − p)ξ2 = µ};

4. If φ = ∃xψ,
Vµ(∃xψ) = sup

F
Vµ[F/x](ψ);

5. If φ = ∃x\{x1 . . . xk}ψ,

Vµ(∃x\{x1 . . . xk}ψ) = sup{Vµ[F/x](ψ) : F depends only on x1, . . . xk};

6. If φ = ∀xψ,
Vµ(∀xψ) = inf

F
Vµ[F/x](ψ);

7. If φ = ∀x\{x1 . . . xk}ψ,

Vµ(∀x\{x1 . . . xk}ψ) = inf{Vµ[F/x](ψ) : F depends only on x1, . . . xk}.

8. Vµ(∼φ) = 1 − Vµ(φ).

Proof:

1. Obvious.

2. We have that

sup{r : (ψ ∨ θ, µ, r) ∈ T } =

= sup{pr1 + (1 − p)r2 : µ = pξ1 + (1 − p)ξ2, (ψ, ξ1, r1) ∈ T , (θ, ξ2, r2) ∈ T } =

= sup{pr1 + (1 − p)r2 : µ = pξ1 + (1 − p)ξ2, r1 < Vξ1 (ψ), r2 < Vξ2 (θ)} =

= sup{pVξ1(ψ) + (1 − p)Vξ2(θ) : pξ1 + (1 − p)ξ2 = µ}
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3. Similarly to the previous case,

sup{r : (ψ ∧ θ, µ, r) ∈ T } =

= sup{r : µ = pξ1 + (1 − p)ξ2 ⇒ ∃r1r2 s.t. (ψ, ξ1, r1) ∈ T ,

(θ, ξ2, r2) ∈ T , r ≤ pr1 + (1 − p)r2} =

= sup{r : µ = pξ1 + (1 − p)ξ2 ⇒ r < pVξ1(ψ) + (1 − p)Vξ2(θ)} =

= sup{r : r < inf{pVξ1(ψ) + (1 − p)Vξ2(θ) : pξ1 + (1 − p)ξ2 = µ}} =

= inf{pVξ1(r1) + (1 − p)Vξ2(θ) : pξ1 + (1 − p)ξ2) = µ}

4. For the existential quantifier,

sup{r : (∃xψ, µ, r) ∈ T } =

= sup{r : ∃F s.t. (ψ, µ[F/x], r) ∈ T } =

= sup{r : ∃F s.t. r < Vµ[F/x](ψ)} =

= sup
F
Vµ[F/x](ψ)

5. The case for the backslashed existential quantifier is similar to that for
the non-backslashed one, except that now F must satisfy a dependence
condition.

6. For the universal quantifier,

sup{r : (∀xψ, µ, r) ∈ T } =

= sup{r : ∀F, (ψ, µ[F/x], r) ∈ T } =

= sup{r : ∀F, r < Vµ[F/x](ψ)} =

= inf
F
Vµ[F/x](ψ)

7. The case for the backslashed universal quantifier is exactly as that for
the non-backslashed one, except that now F must satisfy a dependence
condition.

8. Already proved.

�

These results provide a compositional semantics for Probabilistic Depen-
dence Logic.

6 The range of the value function

Any finite model M induces now a function φ 7→ V (φ).
In this section, it will be attempted to obtain some results about the range of
this mapping.
The following theorem was proved independently in Sevenster and Sandu (to
appear).
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Theorem 3 If the domain of M is finite and contains at least two elements,

{r ∈ R : V (φ) = r for some φ} = Q ∩ [0, 1]

Proof:

• {r ∈ R : V (φ) = r for some φ} ⊇ Q ∩ [0, 1]:
Let r = p/q, where p < q, and let s = ⌈log2(q)⌉.
Then, let φ be the following sentence:

φ ≡ ∃x0∃x1((x0 6= x1)∧

∧ (∃y1,1∃y1,2 . . . ∃y1,s)(∃y2,1∃y2,2 . . . ∃y2,s) . . . (∃yq,1∃yq,2 . . . ∃yq,s)
(

q∧

i=1

s∧

k=1

yi,k = x0 ∨ yi,k = x1

)
∧




q∧

i=1

q∧

j=i+1

s∨

k=1

yi,k 6= yj,k



∧

∀z1∀z2 . . .∀zs

(
q∧

i=1

s∨

k=1

(zk 6= yi,k)∨

∨ (∃w1,1/{z1 . . . zs}) . . . (∃w1,s/{z1 . . . zs})

(∃w2,1/{z1 . . . zs}) . . . (∃w2,s/{z1 . . . zs})

. . .

(∃wp,1/{z1 . . . zs}) . . . (∃wp,s/{z1 . . . zs})


p∨

i=1

q∨

j=1

s∧

k=1

wi,k = zj,k













where ∃w/{z1 . . . zs} is the slashed quantifier of IF-logic, which requires
the choice of w to be independent from the choice of z1 . . . zs, and can be
easily translated in terms of the usual backslashed quantifier.

Then V (φ) = p/q: indeed, the game H(φ) can be described as follows:

1. Player II selects two distinct elements x0, x1 ∈M ;

2. Player II selects q distinct strings y1, . . . yq in {x0, x1}s;

3. Player I selects a string z ∈ {y1, . . . yq};

4. Player II selects p strings w1 . . . wp, without knowing z, and wins if
and only if wi = z for some i = 1 . . . p.

Now, let γ be the following strategy for Player II:

1. Select two fixed distinct elements x0 and x1.

2. Select q fixed distinct strings y1, . . . , yq ∈ {x0, x1}s;
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3. Extract p strings w1, . . . wp from {y1 . . . yq}, with uniform probability
and without repetition - that is, w1 can be each yi with probability
1/q, w2 can be each remaining element with probability 1/(q − 1),
and so on.

Now, consider any strategy σ for Player I: by definition, σ selects an
element z ∈ {y1 . . . yq}, and Player II wins if it is one of {w1 . . . wp}.
When II uses the behavioral strategy γ,

P (H(φ);σ; γ) = Prob(wi = z for some i) =

= Prob(w1 = z) + Prob(w1 6= z & w2 = z) + . . .+

+ Prob(w1 6= z & w2 6= z & . . . & wp−1 6= z & wp = z) =

= 1/q + (q − 1)/q · 1/(q − 1) + . . .+ (q − 1)/q · (q − 2)/(q − 1) · . . .

. . . · 1/(q − p+ 1) = p/q

Since this holds for any σ,

V (φ) = sup
γ

inf
σ
P (H(φ);σ; γ) ≥ p/q

On the other hand, consider the behavioral strategy β for Player I which
selects the value of z among y1 . . . yq with uniform probability, and let τ
be any pure strategy for Player II.
Then, τ fixes, independently from I’s choice of z, some values of w1 . . . wp ∈
{y1 . . . yq}, and

P (H(φ);β; τ) = Prob(z ∈ {w1 . . . wp}) =

p∑

i=1

Prob(z = wi) = p/q

Thus,
∃β∀τP (H(φ);β; τ) ≤ p/q

and therefore, by the Minimax Theorem,

∀γ∃σP (H(φ);σ;β) ≤ p/q

But then V (φ) ≤ r and, in conclusion,

V (φ) = p/q

• {r ∈ R : V (φ) = r for some φ} ⊆ Q ∩ [0, 1]:
Since the model is finite, in HM(φ) there exists a finite set {σ1, σ2, . . . σk}
of all pure strategies for Player I, and a finite set {τ1, τ2, . . . τt} of all pure
strategies for Player II.

Now, let us consider all uniform behavioral strategies γ for Player II, or,
more precisely, the corresponding distributions of pure strategies γ∗.
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It has already been seen that not all distributions derive from a behavioral
strategy: more precisely, if γ is required to be uniform then, for all partial
plays (p1 . . . pi) and (p′1 . . . p

′
i) with

pi = (∃x\V ψ, s), p′i = (∃x\V ψ, s′) for the same instance of ∃x\V ψ;

s(xi) = s′(xi) for all xi ∈ V

it must hold that, for all m ∈M ,

γi(p1 . . . pi)(ψ, s[m/x]) =
∑

{γ∗(τi) : τi(p1 . . . pi) = (ψ, s[m/x])} =

=
∑

{γ∗(τi) : τi(p
′
1 . . . p

′
i) = (ψ, s′[m/x])} = γi(p

′
1 . . . p

′
i[m/x])

Since the model is finite, there exist only finitely many possible partial
plays (p1 . . . pi) and (p′1 . . . p

′
i) as above, and therefore the requirement

that a vector

γ̄∗ =





γ∗(τ1)
γ∗(τ2)
. . .
γ∗(τt)





corresponds to an uniform behavioral strategy γ can be expressed by a
linear equation

Aγ̄∗ = c

for a suitable matrix A and for a vector c with rational coefficients.

Then the value V (φ) is the result of the following linear programming
problem:

maximize v, with respect to the variables (v, λ1, . . . λt),

and under the conditions






∑t
i=1 λ1 = 1;∑t
i=1 λiP (H(φ);σj ; τi) ≥ v, for all j = 1 . . . k;

A(λ1, . . . λt)
T = c;

λi ≥ 0, for all i = 1 . . . t.

where the tuple (λ1, . . . λt) represents the probability distribution over
pure strategies induced by a uniform behavioral strategy γ.

In other words, the problem of calculating V (φ) is equivalent to the prob-
lem of finding the maximum of the linear function z in a t+1-dimensional
polytope described by the above linear inequalities and equalities with ra-
tional coefficients.
It is then clear that the maximum is always reached at one of the vertices
of the polytope2; but since the linear inequalities have rational coefficients,
the coordinates of these vertices are also rational, and thus the value of

2This is also the basis of the simplex method for solving linear optimization problems.
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our target function z at this point will also be rational.

Moreover, the value function always assumes values between 0 and 1, and
this concludes the proof.

This for finite models; instead, ([5], §3.5) shows a sentence φ such that, for
every r ∈ R ∩ [0, 1] there exists an infinite model Mr in which Vµ(φ) = r.
The idea is to build φ so that the game H(φ) is as follows:

1. Player II chooses two points a and b on the unit circumference such that
the arc âb (obtained starting from a, and moving clockwise until b is
reached) is long exactly r/2π;

2. Player I chooses a point c on the circumference, without knowing a and b;

3. Player II wins the game if and only if c lies in the arc âb; otherwise, Player
I wins.

It is not difficult to write φ and Mr explicitly, and to verify that the value of φ
in Mr is precisely r.
However, there are difficulties in extending the approach described in this work
to infinite models: since the Minimax Theorem does not hold, some clauses of
Theorem 2 fail, and moreover the very notion of game value loses much of its
interest, as von Neumann himself observes in [12].
�

7 The values of first-order formulas

Let φ be a first-order formula. What can one say, in general, about Vµ(φ)?
The next theorem shows that, in this case, the value of φ is the relative size of
the biggest subteam of µ which satisfies φ:

Theorem 4

Let φ be a first-order formula with FV (φ) = {x1 . . . xn}, let M be a finite
model and let µ be a probabilistic team with dom(µ) = FV (φ).
Then

VM
µ (φ) =

∑

s|=F Oφ

µ(s)

that is, the value of φ is the probability, under the distribution µ, that a random
assignment satisfies classically φ.

Proof:
The proof is by structural induction on φ:

• φ is a literal:
In this case, the result has already been proved.
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• φ = ψ ∧ θ: In this case,

Vµ(φ) = inf{pVξ1(ψ) + (1 − p)Vξ2(θ) : pξ1 + (1 − p)ξ2 = µ} =

= inf




p
∑

s|=FOψ

ξ1(s) + (1 − p)
∑

s|=F Oθ

ξ2(s) : pξ1 + (1 − p)ξ2 = µ






For every assignment s, let λs be the fraction of the weight µ(s) which is
assigned to ξ1, that is,

λs =
pξ1(s)

µ(s)

Then, it is easy to verify that

p =
∑

s

µ(s)λs

and that

ξ1(s) =
λsµ(s)

p
;

ξ2(s) =
(1 − λs)µ(s)

1 − p
.

Then, every decomposition of µ in pξ1 + (1 − p)ξ2 is determined by the
values of the λs; and moreover, every family of values λs ∈ [0, 1] corre-
sponds to an unique linear decomposition.

Thus,

Vµ(ψ ∧ θ) = inf





∑

s|=F Oψ

pξ1(s) +
∑

s|=F Oθ

(1 − p)ξ2(s) : pξ1 + (1 − p)ξ2 = µ




 =

= inf





∑

s|=F Oψ

λsµ(s) +
∑

s|=F Oθ

(1 − λs)µ(s) : λs ∈ [0, 1] for all s






The infimum is then obtained by letting λs = 1 for all s such that s 6|=FO ψ
and λs = 0 for all s such that s |=FO ψ but s 6|=FO θ; the choice of λs for
the remaining s does not make any difference, and

Vµ(ψ ∧ θ) =
∑

s|=F Oψ∧θ

µ(si)

as required.
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• φ = ψ ∨ θ: The proof is very similar to that for the conjunction: the
supremum

sup{pVξ1(ψ) + (1 − p)Vξ2 (θ) : pξ1 + (1 − p)ξ2 = µ} =

= sup




p
∑

s|=F Oψ

ξ1(s) + (1 − p)
∑

s|=F Oθ

ξ2(s) : pξ1 + (1 − p)ξ2 = µ




 =

= sup





∑

s|=F Oψ

λsµ(s) +
∑

s|=F Oθ

(1 − λs)µ(s) : λs ∈ [0, 1] for all s






is reached by letting λs = 1 for all s such that s |=FO ψ, and λs = 0 and
all s such that s |=FO θ; as a consequence,

Vµ(ψ ∨ θ) =
∑

s|=F Oψ∨θ

µ(s)

• φ = ∀xψ: By definition,

Vµ(∀xψ) = inf
F
Vµ[F/x](ψ) = inf

F

∑

s[m/x]|=F Oψ

µ(s) · (F (s))(m)

The infimum can be reached as follows: given an assignment s, if there
exists a c ∈M such that s[c/x] 6|=FO ψ, let F satisfy

F (s)(m) =

{
1 if m = c;
0 otherwise.

If instead s[c/x] satisfies ψ for all c, the choice of the distribution F (s)
has no importance, since

∑
c∈M µ(s) · F (s)(m) = µ(s). In conclusion,

Vµ(∀xψ) =
∑

s|=F O∀xψ

µ(s)

as required.

• φ = ∃xψ: The proof is as for the universal quantifier: we have that

Vµ(∃xψ) = sup
F
Vµ[F/x](ψ) = sup

F

∑

s[m/x]|=FOψ

µ(s) · F (s)(m)

The supremum is reached as follows: for every s, if there exists a c ∈ M
such that s[c/x] |=FO ψ then let

F (s)(m) =

{
1 if m = c;
0 otherwise.

If this is not the case, the choice of F (si) is again of no consequence, and

Vµ(∃xψ) =
∑

s|=F O∃xψ

µ(s)
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• φ =∼ψ: As the law of the excluded middle holds in first-order logic,

Vµ(∼ ψ) = 1 − Vµ(ψ) = 1 −
∑

s|=F Oψ

µ(s) =
∑

s|=F O¬ψ

µ(s)

This concludes the proof.

�

8 The value of dependence atomic formulas

In this section, dependence atomic formulas =(t1 . . . tn), meaning “The value of
tn is determined by the values of t1 . . . tn−1”, will be taken in exam.
These formulas, as said before, can be defined as

=(t1 . . . tn) := ∃y1 . . . yn−1(∃yn\{t1 . . . tn})
n∧

i=1

(yi = ti)

Then, the next theorem shows that the value of dependence formulas is the
relative size of the biggest subteam of the probabilistic team µ which satisfies
the dependency relation:

Theorem 5
Vµ(=(t1 . . . tn)) = sup

{Bi}

∑

s∈Bi

µ(s)

where the Bi are the maximal sets of assignments which satisfy the dependence
condition, that is,

s, s′ ∈ Bi, ti〈s〉 = ti〈s
′〉 for i = 1 . . . n− 1 ⇒ tn〈s〉 = tn〈s

′〉

Proof:
By the Minimax Theorem,

Vµ(=(t1 . . . tn)) = sup
γ

inf
σ
P (Hµ(=(t1 . . . tn));σ; γ) = inf

β
sup
τ
P (Hµ(=(t1 . . . tn));β; τ) =

= inf
β

sup
τ
P (Hµ(∃y1 . . . ∃yn−1(∃yn\{y1 . . . yn−1})

n∧

i=1

yi = ti);β; τ)

An optimal pure strategy τ for Player II in this game fixes a function f :
dom(M)n−1 → dom(M): if the assignment s is extracted, it will choose the
elements s〈t1〉 . . . s〈tn−1〉 for y1 . . . yn−1, and then it will compute the value of
yn by applying the function f to these values.

The optimal behavioral strategy βe for Player I is also easy to find out, as
the only choice of Player I in this game is which one of the conjuncts to verify:
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if for some i ∈ 1 . . . n it holds that yi 6= ti, Player I can select the corresponding
conjunct and win, and otherwise Player II wins.
Thus,

Vµ(=(t1 . . . tn)) = sup
f

∑

s∈B(f)

µ(s)

where
B(f) = {s : f(s〈t1〉, . . . s〈tn−1〉) = s〈tn〉}

In order to prove the desired result, it then suffices to verify that for every choice
of f the set B(f) is contained in one of the maximal sets Bi and that each Bi
can be written as B(f) for some f .

This is trivial: as every B(f) satisfies the dependency condition, it is con-
tained in some Bi. Moreover, since every Bi satisfies the dependency condition,
it is possible to define a function fi as

fi(a1 . . . an−1) =

{
s〈tn〉 if ∃s ∈ Bi s.t. s〈ti〉 = ai, i = 1 . . . n− 1;
some fixed a0 otherwise.

By definition, Bi ⊆ B(fi); but Bi is maximal, and therefore Bi = B(fi), as
required.
�

9 Approximate Functional Dependency in Database The-

ory

The concept of functional dependency is also one of the main tools of Database
Theory [4], and its definition corresponds exactly to Väänänen’s interpretation
of the dependence atomic formulas:

Definition 10
Given a relation r ⊆ A1 × . . .×Ak, and two attribute sets X,Y ⊆ {A1, . . . Ak},
it is said that Y is functionally dependent from X if and only if, for all the
tuples u, v ∈ r,

πi(u) = πi(v) ∀Ai ∈ X ⇒ πj(u) = πj(v) ∀Aj ∈ Y

where πi(u) is the i-th element of the tuple u.

In this case, one can write that

r |=DT X → Y

This dependency relation satisfies Armstrong’s Axioms :

Axiom of reflexivity: If X ⊇ Y , then, for all r, r |=DT X → Y ;
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Axiom of augmentation: If r |=DT X → Y , then, for all Z, r |=DT X ∪Z →
Y ∪ Z;

Axiom of transitivity: If r |=DT X → Y and r |=DT Y → X then r |=DT

X → Z.

which are also known to be complete, in the sense that, given a set F of depen-
dency conditions, the condition X → Y is derivable from F if and only if every
relation which satisfies all dependencies in F satisfies X → Y .

Some measures of Approximate Functional Dependency have been intro-
duced, one of the most commonly used ones being the g3 measure of Kivinen
and Mannila ([9], [11], [8]):

Definition 11 (g3 measure)
Let X → Y be a functional dependency, and let r be a relation over the attribute
set R.
Then G3(X → Y, r) is the minimum number of tuples that one must remove
from r in order to obtain a relation s satisfying X → Y , that is,

G3(X → Y, r) = |r| − max{|r′| : r′ ⊆ r, r′ |=DT X → Y }

Then, the g3 measure is defined as

g3(X → Y, r) = G3(X → Y, r)/|r|

This definition is quite similar to the semantics of our dependence operator.
This intuition is formalized by the next theorem:

Theorem 6 Let r be a relation over A1×. . .×An, and let µ be the corresponding
probabilistic team over {x1 . . . xn} that is,

µ(s) =

{
1/|r| if 〈s(x1), . . . , s(xn)〉 ∈ r;
0 otherwise.

Then, for all functional dependencies of the form

{Ai1 . . . Aiq−1
} → {Aq}

it holds that

g3({Ai1 . . . Aiq−1
} → {Aq}, r) = 1 − Vµ(=(xi1 , . . . xiq ))

Proof:
As it is known,

Vµ(=(xi1 . . . xiq )) = max
Bj

∑

s∈Bj

µ(s)

where {B1, B2, . . . Bk} are all maximal sets of assignments which satisfy the
dependency condition =(xi1 , . . . xiq ).
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Therefore,

Vµ(=(xi1 . . . xiq )) = max
Bj

∑

s∈Bj

µ(s) =

= max
Bj

∑
{1/|r| : s ∈ Bj , 〈s(x1), . . . s(xn)〉 ∈ r} =

= 1/|r|max
Bj

|{s ∈ Bj , 〈s(x1), . . . s(xn)〉 ∈ r}| =

= 1/|r|max{|r′| : r′ ⊆ r, s |=DT {A1 . . . Aq−1} → {Aq}}

where the last equivalence follows from the fact that every subset of r satisfying
the dependence condition corresponds to a subset of some Bj .

In conclusion,

Vµ(=(xi1 . . . xiq )) = 1 − g3({Ai1 . . . Aiq−1
} → {Aiq}, r)

as required.
�

10 Further work

a) Dynamic Dependence Logic

In this work, the atomic dependence formulas =(t1 . . . tn) have been interpreted
as shorthands for the corresponding DF-Logic formulas.
Because of this, it is obvious that

Vµ(=(t1 . . . tn)) = Vµ(∃y1 . . . yn−1(∃yn\{y1 . . . yn−1})
∧

i

(yi = ti))

in all finite models M and for all probabilistic teams µ.

However, although in the non-probabilistic framework it is true that

(∃xn\{x1 . . . xn−1})ψ ≡ ∃xn(=(x1 . . . xn) ∧ ψ)

this equivalence, in general, does not carry over to probabilistic dependence
logic - for example, in [5] it is shown that, for some team µ,

Vµ((∃z\{})(=(y) ∧ x = z)) < Vµ(∃z(=(z)∧ =(y) ∧ x = z))

The problem lies in the fact that the value of the conjunction of two depen-
dence atomic formulas is not, in general, the measure of the biggest subteam of
µ satisfying both of them, since the interpretation of ψ ∧ θ is “Player I decides
whether to verify ψ or θ” rather than “Player I verifies ψ; if it turns out to be
true, he verifies θ too”.
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Introducing this new kind of conjunction, which semantically seems to cor-
respond to the sequential conjunction of [1], would not increase the expressive
power of the logic, but would allow us to recover the above equivalence and, more
importantly, to express complex patterns of dependence and independence in
terms of conjunctions atomic dependence formulas.

The last part of [5] sketches (although with a minor mistake, for which a
solution has already been found) how to adapt the machinery described in this
article to the resulting “Dynamic Probabilistic Dependence Logic”, and further
investigation on this matter is underway.

b) (Probabilistic) Dependence Logic and Database Theory

The link between Dependence Logic and Database Theory runs certainly deeper
than what was hinted to in this article.

For example, one of the problems in database theory and data mining is
the search, given a relation r, of a minimal set of dependence relations which
entail all functional dependencies occurring in r - in effect, Kivinen and Mannila
introduced their measures of approximate functional dependency as a tool for
searching efficiently such minimal sets [9].

This and similar questions could, in the author’s opinion, benefit from a thor-
ough investigation on the model theory of Dependence Logic and Probabilistic
Dependence Logic.

c) Infinite models

One of the main drawbacks of the analysis described in this work is that it only
holds for finite models.
As the Minimax Theorem seems to be an essential requisite of our adaptation of
Hodges’ semantics, there is little hope to transfer these results to general infinite
models; however, it may be worthwhile to attempt to define “well-behaved”
classes of infinite models, possibly by considering limits of directed chains of
finite models.
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