
Nash Social Welfare in Multiagent Resource
Allocation

Sara Ramezani and Ulle Endriss

Institute for Logic Language and Computation (ILLC)
University of Amsterdam

Abstract. We study different aspects of the multiagent resource alloca-
tion problem when the objective is to find an allocation that maximizes
Nash social welfare, the product of the utilities of the individual agents.
The Nash solution is an important welfare criterion that combines effi-
ciency and fairness considerations. We show that the problem of finding
an optimal outcome is NP-hard for a number of different languages for
representing agent preferences; we establish new results regarding conver-
gence to Nash-optimal outcomes in a distributed negotiation framework;
and we design and test algorithms similar to those applied in combina-
torial auctions for computing such an outcome directly.

1 Introduction

Multiagent resource allocation (MARA) is a loosely defined research area con-
cerned with the study of mechanisms for distributing a set of resources among
a group of agents—typically software agents with limited reasoning capabili-
ties [3]. Each agent has their own preferences (e.g., a utility function) over the
bundles of items they may receive, and the perceived quality of a chosen outcome
(allocation of items to agents) will depend on these individual preferences.

One quality indicator is (economic) efficiency. The most basic criterion is
Pareto efficiency: an outcome is Pareto efficient if there is no other outcome that
would make one agent better off without harming any of the others. A stronger
criterion is based on utilitarian social welfare: an allocation is optimal in this
sense if it maximizes the sum of the utilities of the individual agents. Both cri-
teria have been widely used in Artificial Intelligence, Multiagent Systems and
Electronic Commerce. Some recent work in these disciplines has also recognized
the fact that the desideratum of finding efficient allocations needs to be balanced
with appropriate fairness considerations [2, 8, 12], a dilemma that has long been
discussed in Economics, Political Science, and Philosophy [13]. Fairness criteria
include egalitarian social welfare (measuring quality in terms of the utility ex-
perienced by the poorest agent) and envy-freeness (an allocation is envy-free if
no agent would want to change bundle with any of the others).

In this paper we focus on a criterion that combines aspects of efficiency and
fairness, the Nash social welfare criterion [13]. An outcome maximizes Nash
social welfare if it maximizes the product of the individual agent utilities. This

idea goes back to John Nash’s famous solution to the bargaining problem [14].
While the Nash solution is recognized as being of central importance in the
Economics literature at large, in this paper we shall study it in the context of
two approaches to MARA in which it has received little or no attention to date.

The first of these is a distributed approach where allocations emerge as the
agents negotiate a sequence of (typically small) local deals, one deal at a time.
This approach has been studied in detail with utilitarian social welfare as the
criterion of choice [19, 8, 7], and to a lesser extent also for various fairness cri-
teria [8, 4]. Mirroring known results for other welfare criteria, we show how to
define a local criterion for assessing the acceptability of a deal that will guaran-
tee that a Nash-optimal allocation emerges eventually, and we highlight some of
the limitations of the approach by proving results on the structural complexity
of deals and the length of deal sequences required.

The second approach is based on considering the MARA problem as a prob-
lem faced by some central authority rather than the agents themselves. This
approach is inspired by combinatorial auctions [6]. The standard winner de-
termination problem in combinatorial auctions is equivalent to the problem of
finding an allocation with maximal utilitarian social welfare, if bids are taken
to reflect actual agent utility. By slightly changing the objective function in the
winner determination problem we arrive at the problem of computing a Nash-
optimal allocation. We exploit this correspondence and important techniques
from the combinatorial auction literature to tackle the problem.

The remainder of this paper is organized as follows. Section 2 collects basic
definitions on MARA, social welfare, and preference representation. Section 3
then argues why Nash social welfare is such an important criterion for measur-
ing the quality of resource allocations and gives complexity results that show that
computing a Nash-optimal allocation is NP-hard. Section 4 presents our results
on convergence and the length of deal sequences in the distributed MARA frame-
work, while Section 5 presents our winner determination algorithms for “Nash
combinatorial auctions” and provides some experimental results. Section 6 con-
cludes. (Due to space limitations, some proofs are only sketched and two have
been omitted entirely, but full proofs are available elsewhere [17].)

2 Preliminaries

In this section we introduce the MARA framework we shall use, and review basic
definitions regarding social welfare and preference representation languages.

2.1 Multiagent Resource Allocation

A multiagent resource allocation scenario is defined as a triple 〈A,R,U〉. A is
a finite set of n agents A = {1, . . . , n}; R is a finite set of m resources R =
{r1, . . . , rm}; and U = {u1, . . . , un} is a set of utility functions, one for each
agent. Each ui ∈ U is a mapping from sets of resources to the nonnegative reals:
ui : 2R → R+ ∪ {0}. The utility functions model the preferences of the agents

over alternative bundles. An allocation A : A → 2R is a function mapping agents
to sets of resources, such that A(i)∩A(j) = ∅ if i 6= j, and

⋃n
i=1 A(i) = R. A(i)

represents the resources that agent i owns in allocation A, the resources are
non-sharable. That is, each allocation A is a partitioning of all of the resources
among the agents. The utility agent i assigns to allocation A is ui(A) = ui(A(i)),
by a slight abuse of notation since agents only care about the resources that they
obtain (not others’ bundles).

2.2 Collective Utility Functions and Social Welfare Orderings

We now review several criteria for assessing social welfare [13]. A utility profile
for an allocation A is a vector that contains the utility of all agents, i.e., a
vector u(A) = (u1(A), · · · , un(A)) ∈ Rn. A collective utility function (CUF) is a
function W : Rn → R mapping utility profiles to the reals. Most social welfare
criteria can be defined as a CUF. For each CUF, we obtain a corresponding social
welfare ordering (SWO), a transitive and complete binary preference relation on
utility profiles, by defining the ordering such that one profile is preferred over
another if and only if it has higher collective utility. As each allocation induces
a utility profile, we apply the notions of CUF and SWO also to allocations.

The utilitarian CUF is defined as the sum of the utilities of all agents; in our
framework: swu(A) =

∑
i∈A ui(A). Hence, the utilitarian SWO favors allocations

in which agents have higher average utility.
The egalitarian CUF, on the other hand, defines the lowest utility of the

profile as the collective utility; here: swe(A) = min{ui(A) | i ∈ A}. Hence, the
egalitarian SWO prefers profiles in which the worst-off agent is better off.

A drawback of the utilitarian CUF is that it only takes average utility levels
into account, and has no reservations for fairness or equality. It would, for in-
stance, prefer a utility profile (100, 1) to (50, 50), although the latter is clearly
much closer to equality with a very small cost for the total utility. Conversely, the
egalitarian CUF is insensitive to change in overall welfare, as long as the worst-
off agent has better circumstances, e.g. it prefers (25, 25) to (24, 76) although
the second doubles the utility level with a very small cost for the worst-off agent.

The Nash CUF is defined as the product of the individual agent utilities:
swN (A) =

∏
i∈A ui(A). It balances efficiency and fairness, e.g. it prefers (50, 50)

to (100, 1) and (24, 76) to (25, 25), and so it has neither of the pitfalls of the two
previously mentioned CUFs. More formal properties of the Nash CUF will be
discussed in Section 3.

2.3 Preference representation languages

So far we have only defined an agent’s utility abstractly, as a function u map-
ping bundles to numerical values. Any concrete implementation will have to use
a preference representation language for encoding u [3]. In the context of combi-
natorial auctions, for example, this is the role of the bidding language [15]. We
now briefly review the languages for which we shall give algorithms in Section 5
and complexity results in Section 3.2.

The most basic language is the explicit form; it simply lists for each bun-
dle S the value u(S), unless that value is 0. The XOR-language from the
combinatorial auction literature [20] is essentially the same language, except
that here an implicit monotonicity assumption is being made: a bid such as
〈S1, p1〉xor · · · xor 〈Sn, pn〉, where the Si ∈ 2R are bundles and the pi ∈ R+

are prices, defines the utility function u with u(X) = max1≤i≤n{pi | X ⊇ Si}.
The OR-language is similar: here the value of a bundle is the maximal sum of
prices achievable by selecting a set of non-overlapping atomic bids [15].

The language of positive cubes belongs to the family of languages based on
weighted propositional formulas [22]. The basic idea is to identify resources with
propositional variables. A goalbase G is a set of pairs {(ϕj , wj)}j , where each
ϕj is a propositional formula over these variables and each wj ∈ R is a weight.
For the language of positive cubes, each ϕj is required to be a conjunction of
positive literals. Then the utility function u induced by goalbase G is defined
via u(X) =

∑
{w | (ϕ, w) ∈ G and X |= ϕ)}.1 For example, given the goalbase

{(p, 5), (p ∧ q, 2)}, our agent would value bundle {p} at 5, bundle {q} at 0, and
bundle {p, q} at 7. Positive cubes of length ≤ k are equivalent to the well-
known class of k-additive functions [10]. We will be specifically interested in the
restriction of the language where all weights have to be positive.

3 Nash Social Welfare: Axiomatics and Complexity

In this section we discuss some properties of the Nash CUF/SWO defined earlier.
We review its axiomatic characterization and we analyze its complexity.

3.1 Axiomatic Characterization of Nash Social Welfare

The Nash SWO encourages both increases in overall utility in a society and im-
proved equality among agents, which is an important factor for assessing fairness
and collective welfare. More formally, the Nash SWO can be characterized by
a set of axioms that represent some generally desirable properties for an SWO,
and thus justify its position as one of the most important social welfare orderings
in the literature.

Before we review these axioms, note that it is only meaningful to define the
Nash SWO when the utility functions are nonnegative, since if some utilities are
negative, the outcome of the Nash CUF would not be continuous (with respect to
changes in the individual utilities), and would fluctuate unreasonably between
positive and negative values depending on whether the number of individuals
with negative utilities is even or odd. Also, for some of our results, it is required
for the utility profiles to be strictly positive, because a single zero in the profile
would make the rest of the profile irrelevant, which is not desirable. Sometimes
replacing zeros with very small positive values can be useful, as it keeps the value
of the CUF low, without losing sensitivity to the other values in the profile.
1 The consequence relation |= is defined in the obvious way; for positive cubes ϕ it

amounts to X |= ϕ if and only if each of the conjuncts in ϕ is an element of X.

Following Moulin [13], we now sketch the unique properties of the Nash SWO.
The Nash SWO, along with the utilitarian SWO and a generalized version of
the egalitarian SWO (called the leximin ordering) are the main representatives
of a family of social welfare orderings characterized by three important axioms:

– Independence of unconcerned agents: Agents whose utility levels are the same
in two utility profiles should not have an effect on the ordering of the profiles.
This is in line with the assumption that agents’ happiness depends on their
own utilities only.

– Pigou-Dalton transfer principle: An SWO that satisfies this principle prefers
or is at least indifferent to any change that involves only two agents and
that is both mean-preserving and inequality-reducing as far as the utilities
of these two agents are concerned. This is the most basic fairness principle.

– Independence of common utility scale: Re-scaling the utility functions of all
agents with the same factor should not affect the SWO. That is, the ordering
should not change if all agents scale their utilities with the same factor, e.g.,
if they use a different currency.

In addition to these axioms, which are clearly reasonable and desirable for an
SWO, the Nash SWO is uniquely identified by being independent of the indi-
vidual scale of utilities: the SWO remains the same even if each agent rescales
his utility function using a different factor, This property ensures that the Nash
CUF eliminates the possibility of manipulation by means of changing the scale
used by an individual agent; examples for this can be found in [13, 17].

3.2 Computational complexity

Next we analyse the computational complexity of the problem of finding an
allocation that maximises Nash social welfare. We shall assume basic familiar-
ity with the theory of NP-completeness [16]. The decision variant of the Nash
Welfare Optimisation problem is defined as follows:

Nash Welfare Optimisation (Nash)
Given: Resource allocation scenario 〈A,R,U〉 and K ∈ Q.
Question: Is there an allocation A such that swN (A) > K?

The precise complexity of Nash will depend on the language used to represent U .
First, consider the related problem MaxUtil: given a single utility function u
and some K ∈ Q, is there a bundle S such that u(S) > K? MaxUtil is known
to be NP-hard for a number of representation languages, including the OR-
language [18] and the language of positive cubes with arbitrary (positive and
negative) weights [22]. For these languages, we obtain NP-hardness of Nash as
an immediate corollary (because MaxUtil is equivalent to Nash for societies
consisting of just a single agent). On the other hand, for the XOR-language,
for the explicit form, and for positive cubes with positive weights, MaxUtil is
trivial and cannot be used to establish complexity results for Nash.

We now prove complexity results for the two languages for which we shall
provide algorithms in Section 5.

Theorem 1. Nash is NP-complete if the XOR-language is used, even when
each agent only assigns a value to a single bundle.

Proof. If each agent only values a single bundle, then the XOR-language is equiv-
alent to the OR-language; and for this case Utilitarian Welfare Optimisation is
known to be NP-hard [18, 3]. Given that there is a polynomial reduction from
that problem to Nash (replace each price p in the bids by 2p), NP-hardness of
Nash follows. NP-membership also holds: if an oracle produces an allocation A,
it is possible to verify in polynomial time whether swN (A) > K. ut

Theorem 2. Nash is NP-complete if the language of positive cubes with positive
weights is used, even when each agent only assigns a value to a single bundle.

Proof. Again, for the case where each agent only attaches a non-zero weight to
a single bundle (cube), positive cubes with positive weights work exactly as the
OR-language. Hence, the same proof as given for Theorem 1 applies. ut

While the proofs given are basically the same, we emphasise that neither of the
two theorems entails the other. This is so, because neither of the two languages
is as succinct as the other in all cases [5].

4 Distributed Approach

We now apply the tools of a distributed approach to MARA [19, 8, 7] to the
problem of optimizing Nash social welfare. In this framework, there is no central
authority and agents are free to negotiate allocations by means of deals over some
of their exchanging resources. The main appeal of such a model is that the agents
can be designated as independent entities (e.g., software programs) that make
decisions based on their locally available information only. The computational
costs can also be distributed among the agents in this way. Throughout this
section, it is assumed that all utility functions are strictly positive.

4.1 Deals

We assume that the agents start out in an initial allocation, and can agree on
deals that result in changes in the allocation. A deal δ = (A,A′) is a an ordered
pair of distinct allocations (before/after). The set of agents involved in δ is
Aδ = {i ∈ A|A(i) 6= A′(i)}. This definition of a deal is very broad and may
involve the reallocation many resources among many agents.

4.2 Convergence and Necessity

Previous work has shown that deals that satisfy myopic individual rationality
are sufficient for guaranteeing that any sequence of such deals will result in an
allocation that maximizes the utilitarian CUF [19]. Here we try to obtain a
similar result for the Nash CUF. Consider the following class of deals: A deal

δ = (A,A′) is called a Nash deal if
∏

i∈Aδ ui(A) <
∏

i∈Aδ ui(A′). That is, a Nash
deal is a deal that locally increases the Nash CUF; it increases the Nash CUF
of those involved in the deal. We obtain the following convergence theorem.

Theorem 3. Starting from any initial allocation, any sequence of Nash deals
will eventually lead to a Nash-optimal allocation.

Proof. First, it is not difficult to verify that a deal is a Nash deal if and only if it
increases Nash social welfare. The claim then follows from the fact that the set
of possible allocations is finite: Nash social welfare must strictly increase with
each deal, so an optimal allocation will be reached eventually. ut

The theorem shows that any sequence of Nash deals is guaranteed to culminate
in an optimal outcome and the process of negotiation cannot get stuck in a local
optimum. This is particularly interesting since agents can choose the deals only
depending on the effect that particular deal has within their local group. On the
other hand, it must be recognized that our notion of Nash deal is conceptually
less satisfying than the corresponding notion of myopic individual rationality
used in the literature on distributed approaches to computing allocations with
maximal utilitarian social welfare [19, 8]. The drawback is that agents need to
share information on their utilities (even if just locally, i.e., within the group of
agents participating in a specific deal) before an individual can decide whether or
not a deal is acceptable to them. Also, the mechanism is not incentive-compatible
(a requirement that is difficult to meet when fairness rather than just efficiency is
sought). Nevertheless, whenever agents can be assumed to be cooperative, The-
orem 3 shows that finding a Nash-optimal allocation can be left to a procedure
requiring no central coordination.

A relevant question that arises at this point is how complicated the deals
needed in the process may be. We continue with two results on the structural
complexity of the Nash deals used in the negotiation process. The first is similar
to a known result from the literature [8]. It makes use of the concept of indepen-
dently decomposable deals: δ = (A,A′) is independently decomposable if there
are two deals δ1 = (A,A′′) and δ2 = (A′′, A′) such that Aδ1 ∩ Aδ2 = ∅.

Theorem 4. For any set of agents and resources, for any particular deal δ that
is not independently decomposable there exist a choice of utility functions and an
initial allocation such that δ would have to be included in any sequence of Nash
deals that leads to a Nash-optimal allocation.

The proof (omitted for lack of space) involves the construction of utility func-
tions and a non-optimal initial allocation so that δ is the only applicable Nash
deal [17]. This necessity result shows that when using Nash deals to reach a
Nash-optimal allocation, it may be necessary to use any deal that is not inde-
pendently decomposable, no matter how complex it may be, and such deals may
even involve all agents and all resources.

Now, it could still be possible to contain the structural complexity of deals
if we impose constraints on the agents’ utility functions. The following result

shows that even restricting utility functions to the very narrow class of modular
functions is not useful to this effect. A modular utility function u is one for which
u(X) = α∅ +

∑
r∈X αr, where α∅ = u(∅) and αr = u({r}).

Theorem 5. For any set of agents and resources, if the number of resources is
not less than the number of the agents, there exist a choice of utility functions
and an initial allocation such that when only Nash deals are used, a deal that
involves all agents may be necessary in order to reach a Nash-optimal allocation.
This holds even if all utility functions are required to be modular.

Proof. Suppose we have a distributed negotiation problem where the number of
resources are at least as as many as the agents (m ≥ n). Let A be any allocation
in which each agent i owns resource ri, ri ∈ A(i). We will use three parameters
M , d, and ε in defining the utilities. Suppose that 0 < ε < d < M . We shall show
that it is always possible to define these parameters such that a deal involving
all agents would be necessary to reach the Nash optimal allocation.

The utility functions in modular form are defined such that αri
i = d − ε for

all 1 ≤ i ≤ n, α
ri−1
i = M − ε for all 1 < i ≤ n, αrn

1 = M − ε, and α∅i = ε for all
i. This means that each agent gives utility d to allocation A, M to allocation A′

that can be reached from A if agent i gives the resource ri to agent (i mod n)+1
and ε to cases where they have neither of their two desired items.

So we have swN (A) = dn and swN (A′) = Mn. Now for any deal starting
from A in which the agents do not trade in the cycle specified above that takes
A to A′, the utility of the agents would not increase since either resources that
are redundant in the outcome (ri with i > n) would be traded, or at least one of
the agents would be deprived of the resource he values d, and his utility would
drop to ε, without the utility of another agent increasing.

Thus the only other deals we have to consider are deals that involve trading
on the specified cycle, but do not complete it. Any deal of this sort of length i
has the same effect. It will reduce the utility of the first agent in the chain from
d to ε, increase the utility of the last agent to M + d− ε, and increase the utility
of the agents in between to M . In order for A′ to be the only allocation that
improves upon the utility of A, we need to define the parameters such that the
Nash CUF is smaller than that of A in allocations resulting from all of these
deals. The length of such deals can be between 1 and n − 1, so we must have
εMk−2(M + d− ε) < dk for all 0 ≤ k ≤ n.

It is easy to see that for any M , d and n, there exists an ε that satisfies

ε <
dn

Mn−2(M + d)
,

and that it satisfies all of the other inequalities as well. So A′ is the only allocation
with Nash social welfare higher than A, and thus starting from A, the deal (A,A′)
that involves all agents would be necessary [19]. ut

4.3 Communication Complexity

Next, we investigate the number of deals needed to reach an optimal allocation,
and prove two kinds of upper bounds on it. This aspect of the complexity of

a distributed negotiation framework has been termed communication complex-
ity [7] (this is different from, albeit inspired by, the use of the term in Theoretical
Computer Science [24]). In our first approach to this question, we would like to
know how many Nash deals are absolutely required in a sequence of deals that
leads to an optimal allocation.

Theorem 6. Starting with any initial allocation, it is always possible to reach
a Nash-optimal allocation with at most one Nash deal.

Proof. It is always possible to reach an optimal allocation with a deal from the
initial allocation to the optimal one, unless the initial allocation is itself optimal,
in which case no deal is needed. ut

The more interesting question here does not involve the shortest negotiation
sequence, but the longest one. The next result gives an upper bound on how
long a negotiation process can get in the worst case, but we first need to prove
the following lemma.

Lemma 1. It is possible to define utility functions such that any two distinct
allocations have different Nash social welfare.

Proof. Let us assign to each agent i a prime number Pi so that Pi 6= Pj whenever
i 6= j. Now suppose each agent has an ordering on all possible bundles, and
ui(R) = (Pi)j if R is the jth bundle in agent i’s ordering. For any two distinct
allocations A and A′, there must be an agent k whose bundle is different in these
two allocations. So the power of Pk is different in swN (A) and swN (A′). Since
any natural number has a unique prime factorization, swN (A) 6= swN (A′). ut

Above lemma lies at the heart of the following proof. Whenever all allocations
have distinct values, we can get a sequence of Nash deals of the maximal size:

Theorem 7. Any sequence of Nash deals can consist of at most |A||R|−1 deals.

Proof. There are a total of |A||R| allocations. By Lemma 1, there are utility
functions for which each allocation has a different Nash CUF value. Then, if the
initial allocation is the one with the least Nash CUF, and we traverse through all
allocations in order of increasing Nash CUF, we obtain a sequence of |A||R| − 1
deals, all of which are Nash deals. ut

5 Centralized Approach: Combinatorial Auctions

Combinatorial auctions are centralized variants of MARA. Instead of having
the agents agree on an allocation interactively, they express their preferences as
bids and a central authority, the auctioneer, computes an optimal allocation for
them. In the standard case, the auctioneer is expected to compute an allocation
that maximizes the utilitarian CUF (and thus revenue for the auctioneer). This
is called the winner determination problem (WDP). Here we aim at optimizing
the Nash CUF and call the corresponding problem the Nash WDP.

The exact definition of the WDP and the design of algorithms for solving
it, both in the standard case and for our Nash combinatorial auctions, crucially
depend on the bidding language used to encode the individual agents’ prefer-
ences [15]. In this section, we shall present algorithms for solving the Nash WDP
for two languages: the XOR-language and the language of positive cubes with
positive weights. Theorems 1 and 2 show that both these problems are NP-hard.
In the first case, we use integer programming, in the second an algorithm based
on heuristic-guided search.

5.1 Winner Determination for the XOR-Language

If agent utilities are modeled using the XOR-language, then we can represent the
WDP as an integer programming (IP) problem [21]. This means that, in this case,
there are very powerful off-the-shelf tools available for solving the WDP. The
downside of this approach is that the XOR-language is not a compact preference
representation language: agents have to explicitly list all the bundles they have
an interest in.

Suppose each bidder has submitted an XOR-combination of atomic bids,
associating a price with a bundle of goods. Let 〈Sij , pij〉 be the bundle/price
pair that is the jth atomic bid of the ith bidder. We introduce a binary decision
variable xij for each 〈Sij , pij〉. (Index i ranges from 1 to the number of bidders;
j ranges for each i from 1 to the number of atomic bids submitted by bidder i.)
Solving the Nash WDP then amounts to solving the following integer program:

Maximize
∑

ij xij · log pij , subject to
(i)

∑
j xij ≤ 1 for each bidder i, and

(ii)
∑
{xij | r ∈ Sij} ≤ 1 for each resource r.

Constraint (i) encodes the semantics of the XOR-language and constraint (ii)
ensures that each item is sold at most once. That is, we are simply using the
standard IP formulation for the standard WDP with the logarithms of the prices,
exploiting the relationship between utilitarian and Nash social welfare.

Unfortunately, for compact representation languages, such as the OR-
language or weighted propositional formulas, this approach is not applicable.
The reason is that here prices (utilities) are computed as the sum of several
partial prices that a bidder has assigned to certain bundles/formulas, and the
Nash CUF is the product of these sums. So the “trick” of using logarithms does
not work anymore. There are IP solutions for the standard WDP for weighted
propositional formulas [1], but it is unclear whether they could be adapted to our
problem. Certainly, as Nash social welfare is defined in terms of multiplication,
the Nash WDP cannot be stated directly as a linear program.

5.2 Winner Determination for the Positive Cubes Language

Here we consider the Nash WDP when the preferences are represented using the
positive cubes language (with positive weights) defined in Section 2. We propose
a heuristic for pruning the search tree and prove that it is admissible and also
conduct some experiments and report their results.

Heuristic algorithm. Various studies have been carried out on algorithms and
particularly heuristic-guided search methods for solving the WDP for classical
bidding languages [9, 20]. The positive cubes language has also been considered
for the standard WDP in [23]; we follow this approach for the Nash WDP.

We construct a search tree, each of its nodes being a partial allocation and
the leaves complete allocations. A partial allocation is similar to an allocation,
except that some of the items may not be assigned to any agent. The root of the
tree is the partial allocation in which no resources have been assigned yet. Each
child of a node corresponds to the allocation that is the result of assigning one
more item to one of the agents. Thus each node has |A| = n children, and the
depth of the tree is |R| = m.

The algorithm is an A? search that uses a heuristic estimate to guide search
on this tree. For each node (or accordingly partial allocation) an acquired value
(g) and an estimated heuristic value (h) is computed. The A? algorithm expands
the nodes in order of highest heuristic estimate value. So if the heuristic estimate
of a node is less than the acquired value of another node that has already been
seen it has no chance of being expanded further in the search.

The acquired value of any partial allocation is computed as the product of
the acquired value of each agent, which is in turn the sum of the weights of
cubes for which the agent already owns all the corresponding resources. The
heuristic estimate for each partial allocation is the the product of the heuristic
estimates of all the agents. Each agent’s heuristic estimate is the sum of the
weights of cubes for which the agent still has a chance of getting all corresponding
resources, i.e., none of the resources have already been given to someone else
in the partial allocation. This heuristic can be shown to be admissible, i.e., it
never underestimates the true value of the Nash CUF of allocations that can be
obtained by completing the partial allocation at any given node [17].

Theorem 8. The function h defined above is an admissible heuristic for the
Nash WDP problem when preferences are represented using the language of pos-
itive cubes with positive weights.

Thus the heuristic-led search will always yield a Nash-optimal allocation since
it will never skip a node that can possibly lead to an optimal allocation.

Experimental results. We have implemented the presented heuristic algo-
rithm and run some experiments to test its performance.2

For generating the test cases we have used a simple random algorithm. Note
that it would have been more desirable to use more “realistic” test data, of the
kind generated by the CATS software [11], a standard benchmark for generat-
ing test cases for combinatorial auctions. However, this was not possible because
CATS does not support logic-based languages. For generating the test cases, half
of each agent’s goalbase formulas are generated so that each of the propositional
formulas has a 20% chance of containing each of the variables. The other half of
2 The framework of the source code used to implement the algorithm was written by

Joel Uckelman, and is the same as that used to run the experiments in [23].

Fig. 1. The comparison of the number of nodes generated by the heuristic method and
brute force search. The horizontal axis is the number of resources, the vertical axis is
the logarithm in base 10 of the number of nodes of the tree generated. N is the number
of total nodes of the search tree. n(ave), n(min), and n(max) are the average, minimum
and maximum of the number of nodes generated in the experiments respectively.

the formulas of these goalbases each contain a single variable, these are also de-
termined randomly. The weights are then determined by assigning each resource
a nominal value and computing the weight of each bundle using that value as an
estimate. This is generally appealing since it reduces the chance of having very
long formulas without eliminating it altogether, and also ensures that there is a
higher number of smaller formulas.

The implementation is a Java program and the experiments have been run
on a Fedora Linux operating system on an Intel Pentium 4 with 3.00GHz CPU
and 1 GB of RAM. It should be noted here that we have used the best-estimate
first branching policy of [23]. This means that in each step the next good to be
allocated is one of the goods that has the best estimate according to the heuristic
presented in that article.

In order to assess the efficiency of the algorithm we have compared the run-
time and number of nodes created in the heuristic algorithm with a brute force
search that traverses all nodes of the search tree. For any number of resources
between 5 and 17, we generated a setting consisting of 50 MARA scenarios
containing 5 agents randomly using the method explained above. The average,
minimum, and maximum number of nodes in each setting is shown in Fig. 1; the
runtime of the algorithm is proportional to the number of nodes generated and
is for example on average 0.58 seconds for 10 resources and 107 seconds for 17
resources. As is clear from the figure, the variation of runtimes and number of
nodes generated for problems of the same size is rather high.

Although the heuristic works much better than brute force search, its runtime
increases rather quickly itself. In fact, in the results for these experiments it can

be observed that the runtime of the heuristic algorithm and hence the number
of nodes, roughly doubles with the addition of each extra item. Note that since
the runtime of the algorithm preserves a roughly constant proportion with the
number of nodes even in the larger cases, the experiments do not seem to run
into problems with memory, thus employing other informed search methods with
the same heuristic (e.g., a branch-and-bound method) would probably not lead
to significantly improved results since the A? algorithm will provably generate
a smaller search tree than any other method using the same heuristic.

It is important to keep in mind that the performance of this algorithm is not
comparable to state-of-the art algorithms for combinatorial auctions. Our main
purpose here has been to demonstrate that techniques from the combinatorial
auction literature can in principle be applied to optimizing Nash social welfare,
but this is only the first step in designing efficient algorithms in this regard.

6 Conclusion

We have presented a number of results pertaining to the quest of finding alloca-
tions that are optimal with respect to the notion of Nash social welfare, similar
to those that have been obtained for other kinds of efficiency and fairness criteria
in different parts of the literature on multiagent resource allocation.

First, we have shown that this is an NP-hard optimization problems, for sev-
eral languages for encoding the problem. Second, in the context of a well-studied
distributed negotiation framework, we have obtained a simple convergence re-
sult, and we have relativized this result by showing that deals of high structural
complexity may be required during convergence and that the number of deals in
a sequence leading to the optimum may be exponential. Third, we have shown
that it can be instructive to view the problem of finding a Nash-optimal alloca-
tion as a variant of the winner determination problem in combinatorial auctions.
We have presented two algorithms, for different preference representation lan-
guages: one using integer programming (for a en explicit representation of agent
utilities) and one using heuristic-guided search (for a more sophisticated com-
pact representation of the problem input). Finally, we have reported on initial
experiments with the latter algorithm. While our experiments clearly show that
there is still room for improvement, we believe to have been able to demonstrate
that Nash social welfare is not only an important quality criterion, but that it
is also a criterion that can be tackled successfully with the variety of methods
that have been developed in the multiagent resource allocation community.

Acknowledgement. We would like to thank Joel Uckelman for providing us with
the source code that facilitated the implementation of the heuristic algorithm.

References

1. C. Boutilier. Solving concisely expressed combinatorial auction problems. In Proc.
18th National Conference on Artificial Intelligence (AAAI-2002), 2002.

2. S. Bouveret and J. Lang. Efficiency and envy-freeness in fair division of indivisible
goods: Logical representation and complexity. Journal of Artificial Intelligence
Research, 32:525–564, 2008.

3. Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-
get, S. Phelps, J. A. Rodŕıguez-Aguilar, and P. Sousa. Issues in multiagent resource
allocation. Informatica, 30:3–31, 2006.

4. Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Reaching envy-free states
in distributed negotiation settings. In Proc. 20th International Joint Conference
on Artificial Intelligence (IJCAI-2007), 2007.

5. Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource alloca-
tion in k-additive domains: Preference representation and complexity. Annals of
Operations Research, 163(1):49–62, 2008.

6. P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT
Press, 2006.

7. U. Endriss and N. Maudet. On the communication complexity of multilateral
trading. Journal of Autonomous Agents and Multiagent Systems, 11(1):91–107,
2005.

8. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Negotiating socially optimal allo-
cations of resources. Journal of Artificial Intelligence Research, 25:315–348, 2006.

9. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In Proc.
16th International Joint Conference on Artificial Intelligence (IJCAI-1999), 1999.

10. M. Grabisch. k-order additive discrete fuzzy measures and their representation.
Fuzzy Sets and Systems, 92:167–189, 1997.

11. K. Leyton-Brown and Y. Shoham. A test suite for combinatorial auctions. In
P. Cramton et al., editors, Combinatorial Auctions. MIT Press, 2006.

12. R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair alloca-
tions of indivisible goods. In Proc. 5th ACM Conference on Electronic Commerce,
2004.

13. H. Moulin. Fair Division and Collective Welfare. MIT Press, 2003.
14. J. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.
15. N. Nisan. Bidding languages for combinatorial auctions. In P. Cramton et al.,

editors, Combinatorial Auctions. MIT Press, 2006.
16. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
17. S. Ramezani. Nash social welfare in multiagent resource allocation. Master’s thesis,

ILLC, University of Amsterdam, 2008.
18. M. Rothkopf, A. Pekec̆, and R. Harstad. Computationally manageable combina-

tional auctions. Management Science, 44(8):1131–1147, 1998.
19. T. W. Sandholm. Contract types for satisficing task allocation: I Theoretical re-

sults. In Proc. AAAI Spring Symposium: Satisficing Models, 1998.
20. T. W. Sandholm. Algorithms for optimal winner determination in combinatorial

auctions. Artificial Intelligence, 135(1–2):1–54, 2002.
21. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.
22. J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing utility functions

via weighted goals. Mathematical Logic Quarterly, 2009. In press.
23. J. Uckelman and U. Endriss. Winner determination in combinatorial auctions

with logic-based bidding languages. In Proc. 7th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2008), 2008.

24. A. C.-C. Yao. Some complexity questions related to distributive computing. In
Proc. 11th Annual ACM Symposium on Theory of Computing (STOC-1979), 1979.

