
Noname manuscript No.
(will be inserted by the editor)

A Graphical Formalism for Mixed Multi-Unit

Combinatorial Auctions

Andrea Giovannucci · Jesús Cerquides · Ulle

Endriss · Juan A. Rodŕıguez-Aguilar

Received: date / Accepted: date

Abstract Mixed Multi-Unit Combinatorial Auctions are auctions that allow partici-

pants to bid for bundles of goods to buy, for bundles of goods to sell, and for trans-

formations of goods. The intuitive meaning of a bid for a transformation is that the

bidder is offering to produce a set of output goods after having received a set of input

goods. To solve such an auction the auctioneer has to choose a set of bids to accept

and decide on a sequence in which to implement the associated transformations. Mixed

auctions can potentially be employed for the automated assembly of supply chains of

agents. However, mixed auctions can be effectively applied only if we can also ensure

their computational feasibility without jeopardising optimality. To this end, we propose

a graphical formalism, based on Petri nets, that facilitates the compact represention of

both the search space and the solutions associated with the winner determination prob-

lem for mixed auctions. This approach allows us to dramatically reduce the number

of decision variables required for solving a broad class of mixed auction winner de-

termination problems. An additional major benefit of our graphical formalism is that

Andrea Giovannucci
SPECS, IUA
Universitat Pompeu Fabra E-mail: agiovannucci@iua.upf.edu

Jesus Cerquides
WAI, Volume Visualization and Artificial Intelligence Research Group
Departament de Matemàtica Aplicada i Anàlisi
Universitat de Barcelona
Dept. de Deporte e Informtica
Universidad Pablo de Olavide
E-mail: cerquide@maia.ub.es

Juan A. Rodŕıguez-Aguilar
IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council
E-mail: jar@iiia.csic.es

Ulle Endriss
ILLC, Institute for Logic Language and Computation
University of Amsterdam
E-mail: ulle.endriss@uva.nl

2

it provides new ways to formally analyse the structural and behavioural properties of

mixed auctions.

1 Introduction

A combinatorial auction (CA) is an auction where bidders can buy (or sell) entire

bundles of goods in a single transaction [1]. Selling goods in bundles has the great

advantage of eliminating the risk for a bidder of not being able to obtain complementary

goods at a reasonable price in a follow-up auction. For example, think of a CA for a pair

of shoes, as opposed to two consecutive single-item auctions for each of the individual

shoes. The study of the mathematical, game-theoretic and algorithmic properties of

CAs has recently become a popular research topic in artificial intelligence and multi-

agent systems. This is due not only to their relevance to important application areas

such as electronic commerce or supply chain management, but also to the range of

deep research questions raised by this auction model.

In particular, supply chain formation (SCF) appears as a very promising applica-

tion area where strong complementarities arise. Indeed, Walsh et al. [2] observe that

production technologies often have to deal with strong complementarities: the inputs

and outputs of a production process are strongly connected since a producer may risk

to produce unsold goods, as well as fail to produce already sold goods when it is unable

to obtain the inputs, thus losing credibility on the market. Hence, a supply chain can

be regarded as an intricate network of producers (entities transforming input goods

into output goods at a certain cost), and consumers interacting in a complex way.

Nevertheless, the complementarities arising in SCF are different from the ones we do

find in CAs. The complementarities in SCF arise because of the preconditions and

post-conditions of production processes: precedences and dependencies along the sup-

ply chain must be taken into account. Hence, whilst in CAs the complementarities can

be simply represented as relationships among goods, in SCF the complementarities

involve not only goods, but also interrelated transformation (production) relationships

along several levels of the supply chain.

The first attempt to deal with the SCF problem by means of CAs was under-

taken by Walsh et al. in [3]. In order to automate SCF, they introduce the notion of

task dependency network as a way of capturing complementarities among production

processes (operations). Although very significant, this work does not allow bidders to

express their preferences over bundles of transformations; it does not define a bid-

ding language; and the structure of the supply chain has to fulfil strict criteria (e.g.

acyclicity, operations can only produce one output good, etc).

In order to overcome these drawbacks, we introduced in [4] the so-called mixed

multi-unit combinatorial auctions (henceforth mixed auction for short) and discussed

the issues of bidding and winner determination. Mixed auctions are a generalisation

of the standard model of CAs. Thus, rather than negotiating over goods, in mixed

auctions the auctioneer and the bidders can negotiate over supply chain operations

(henceforth operations for short), each one characterised by a set of input goods and

a set of output goods. A bidder offering an operation is willing to produce its output

goods after having received its input goods along with the payment specified in the

bid. While in standard CAs, a solution to the winner determination problem (WDP)

is a set of atomic bids to accept that maximises the auctioneer’s revenue, in mixed

auctions, the order in which the auctioneer “uses” the accepted operations matters.

3

Thus, a solution to the WDP is a sequence of operations. For instance, if bidder Joe

offers to make dough if provided with butter and eggs, and bidder Lou offers to bake

a cake if provided with enough dough, the auctioneer can accept both bids whenever

he uses Joe’s operation before Lou’s to obtain baked cakes from butter and eggs.

Just as the WDP for CAs, the WDP for mixed auctions can also be solved by

means of an Integer Linear Program (ILP), as shown in [4]. While this provides a first

algorithmic solution to the WDP, in the one proposed in [4] the number of variables

grows quadratically with the overall number of operations mentioned in the bids. Hence,

such an ILP limits the application of mixed auctions to small and medium scenarios, as

empirically shown in [5]. Hence, in order for mixed auctions to be effectively applied to

SCF, we must ensure computational feasibility in practice while preserving optimality.

In this paper we make headway along this direction by extending our own work in [6].

We provide a graphical formalism that allows to compactly represent the search

space of the WDP for mixed auctions, leading to dramatic computational savings. In

order to obtain such a formalism we proceed in two steps. Firstly, we define a new type

of Petri Nets [7], the so-called Weighted Transition Petri Nets (henceforth weighted

nets for short), to express the notion of transformation (production) cost. Petri nets

are a well known graphical tool to analyse discrete dynamical systems. We resort to

Petri Nets because: (i) they can naturally help capture the notions of transformation;

(ii) they have a well-defined semantics that can naturally accommodate the notion of

sequence of transformations; (iii) they have an integrated description of both states and

actions to characterise the search space where transformations occur; (iv) they have a

large number of formal analysis methods that allow the investigation of their structural

and dynamic properties; and (v) they have a graphical representation that is intuitively

very appealing to study problems related to the topology of the supply chain. Secondly,

we introduce and solve a new type of reachability problem over weighted nets to which

we map the mixed auction WDP. Two major benefits, and therefore contributions,

stem from this process. First of all, as a main benefit, we do manage to provide a

formalism with which mixed auctions, and therefore all auction types subsumed by

mixed auctions, in particular CAs for SCF, can be formally analysed. For instance,

topological problems of a supply chain can be readily analysed by means of adapting

Petri Nets tools. As a second benefit, direct consequence of the provided mapping to

weighted nets, we manage to dramatically reduce the number of decision variables in

the optimisation problem posed by mixed auctions from quadratic to linear for a wide

class of WDPs. Hence, we make headway in the practical application of mixed auctions,

and in particular to SCF as intended.

The paper is structured as follows. In Section 2 we provide some background on CAs

and discuss some relevant issues in the related literature. Then, in Section 3 we delve

into bidding languages and the WDP for mixed auctions. In Section 4 we introduce

weighted nets and a new optimisation problem on them: the so-called Constrained

Maximum Weighted Occurrence Sequence Problem. Next, we explain how to solve

such optimisation problem by means of an ILP. In Section 5 we show how to map

a mixed auction WDP to a Constrained Maximum Weighted Occurrence Sequence

Problem, thereby managing to significantly reduce the WDP search space. Finally, in

Section 6 we draw some conclusions and illustrate some paths to future research.

4

2 Background and Related work

A combinatorial auction (CA) [1] is an auction where bidders can buy (or sell) entire

bundles of goods in a single transaction. A CA is single-unit when there is a single copy

of each item at auction (each item has multiplicity one). We say that a CA is multi-unit

when there are multiple copies of some item(s). Although CAs are computationally very

complex [8], the fact that bidders can express their preferences over bundles of goods

may help both bidders and auctioneer to obtain better deals. In fact, buying items in

bundles has the great advantage of eliminating the risk for a bidder of not being able

to sell complementary items at a reasonable price in a follow-up auction. Indeed, CAs

may lead to more efficient allocations whenever complementarities among the goods at

auction hold.

CAs can potentially be employed as an allocation mechanism in a wide variety

of real-world domains. Thus, they have been proposed to be employed for allocating

loads to trucks in the transportation market [9], routes to buses [10], goods/services to

buyers/providers in industrial procurement scenarios [11], airport arrival and depar-

ture slots [12], radio-frequency spectrum for wireless communications services [13], and

supply chain formation [2].

Auction theory studies the formal properties of auctions [14,15]. CAs have recently

attracted the attention of economists and game theorists. Associated to auction theory

is also the design of auction mechanisms, devoted to study how to run an auction in

order to guarantee some economic properties such as, for instance, efficiency, incentive

compatibility, individual rationality, etc. Regarding mechanism design issues of CAs,

the reader can refer to [1].

Bidding is the process of transmitting —truthfully or otherwise— one’s valuation

function over the sets of goods on auction to the auctioneer. A bidding language is

a formal language for representing valuations. Ideally, it should allow for a compact

representation of the information to be transmitted, and it should allow the auctioneer

to reason about this information efficiently. The most widely used bidding language

is the so-called OR-language. In this setting, each bidder can submit any number of

atomic bids (bundles of goods labelled with a price), and the auctioneer may accept

any set of atomic bids, provided the associated bundles do not overlap, and charge each

bidder the sum of prices of their accepted bids. In the XOR-language, on the other

hand, the auctioneer may accept at most one atomic bid from each bidder. Different

langauges can differ in expressive power, compactness of representation, and complexity

of the associated reasoning problems. Nisan [16] surveys the formal properties of this

family of bidding languages in detail. In [4] we have shown how to adapt these languages

to mixed auctions, and in the next section we will recall the definition of the XOR-

language in detail.

The winner determination problem (WDP) is the problem of choosing which goods

to award to which bidder so as to maximise the auctioneer’s revenue. WDP for CAs is

a complex computational problem. In fact, one of the fundamental issues limiting the

applicability of CAs to real-world scenarios is the computational complexity associated

to the WDP. In particular, it has been proved that the WDP for CAs is NP-complete

[17]. General ILP solvers [18] and special purpose algorithms (e.g. [19], [20], and [21])

have been employed to solve WDP. For an extended review on WDP and related issues

the reader can refer to [22], [23], and [24].

According to Walsh et al. [3], “Supply Chain Formation (SCF) is the process of

determining the participants in a supply chain, who will exchange what with whom,

5

and the terms of the exchanges”. CAs are a negotiation mechanism well suited to deal

with complementarities among the goods at trade. Since production technologies often

have to deal with strong complementarities, the automation of SCF appears as a very

promising application area for CAs. However, whilst in CAs the complementarities can

be simply represented as relationships among goods, in SCF the complementarities

involve not only goods, but also operations (production relationships) along several

levels of the supply chain. The first attempt to deal with the SCF problem by means of

CAs was undertaken by Walsh et al. in [3]. In order to automate SCF, they introduce

the notion of task dependency network as a way of capturing complementarities among

production processes. Although very significant, this work does not allow bidders to

express their preferences over bundles of production processes; it does not define a

bidding language; and the structure of the supply chain has to fulfil strict criteria (e.g.

acyclicity, processes can only produce one output good, etc). Thus, we observe that

further requirements (namely expressiveness, computability, and formal analysis) must

be addressed to fully support automated SCF. As to expressiveness requirements, we

need: to represent complementarities among production processes (e.g. if iron and cop-

per are melt together in the same oven, the transformation can be offered at a lower

cost than the service of transforming iron and copper separately); to represent produc-

tion relationships with multiple output goods (e.g. the quartering of a cow to sell its

parts); to offer some bidding language to express combinations of bids; to consider the

notion of free disposal (buy goods or transformations that remain unused); to support

the specification of the configuration to end up with (a supply chain manager may be

interested in finishing the SCF process with a given surplus of goods); to support a wide

range of supply chain topologies beyond acyclic nets. As to computational requirements,

we must ensure computational feasibility of SCF while preserving optimality. Finally,

as to formal requirements, we advocate for counting on a formalism that supports the

formal study of structural and behavioural properties of a supply chain. We argue that

our contributions in [4] along with the contributions detailed in this paper allow us to

satisfactorily address the requirements above, and therefore address the automation of

supply chains of agents.

3 Mixed Multi-unit Combinatorial Auctions

In order to successfully tackle the automation of SCF, we introduced in [4] mixed

multi-unit combinatorial auctions (mixed auctions), a generalization of the standard

model of CAs. Rather than negotiating over goods, in mixed auctions the auctioneer

and the bidders can negotiate over supply chain operations, each one characterized by

a set of input goods and a set of output goods.

In this section we review previous work on bidding and winner determination for

mixed auctions. In particular, we describe the features of the proposed bidding lan-

guage, designed to allow bidders to express several types of complex bids; and we

summarize the features of a general ILP solver that solves the WDP by finding the

optimal sequence of supply chain operations. The material contained in this section is

described in [4], and more extensively in [25].

6

3.1 Bidding Language

Since we deal with supply chain formation, in our case the bidding language must

be able to refer to operations across the supply chain. In order to cope with this

requirement, we distinguish three kinds of supply chain operations:(i) the supply of a

manufacturing operation; (ii) the supply of a bundle of goods; and (iii) the request of

a bundle of goods. In what follows we use operation as an abbreviation of supply chain

operation.

Definition 1 Let G be the finite set of all the types of goods under consideration. An

operation is a pair (I,O) of multisets over G. ⊓⊔

We recall that given a set G, a multiset over G is a function from G to N. It can

be seen as a subset of G where the number of appearances of each element is counted.

Whenever G is a finite set, finite multisets over G can be identified with non-negative

integer vectors of dimension |G|. Let a, b ∈ G, by 3′a + 5′b we represent a multiset

containing three copies of a and five copies of b. If X = 6′a + 2′b, then X (a) = 6 and

X (b) = 2 and X (g) = 0 for all g such that b 6= g 6= a. In general, given k ∈ N ∪ {0}
and g ∈ G, we write the multiset containing k copies of g as k′g. Also, given X and Y
multisets over G, X + Y is their union, defined as (X + Y)(g) = X (g) + Y(g) for each

good g ∈ G.

An agent offering operation (I,O) declares that it can deliver O after having

received I. For instance, ({ }, 1′a) means that the agent in question is able to deliver a

(no input required), and (1′b, 1′c) means that it is able to deliver c if provided with b.

Our goal is to have agents negotiate over bundles of operations. That is, in our

setting bidders can offer any number of such operations, including several copies of

the same operation. Then, we have to introduce a formalism that allows an agent to

express preferences over bundles of operations. That is, agents will be negotiating over

multisets of operations. Notice that such a formalism will allow the bidder to express:

– offers for bundles of goods, expressed as operations with no inputs. That means

that nothing is taken as input (I = { }), and O is provided as output.

– requests of bundles of goods, expressed as operations with no output. That means

that I is taken as input, and nothing (O = { }) is provided as output.

– offers for bundles of operations, expressed as:

{α′
1(I1,O1) + α

′
2(I2,O2) + . . . + α

′
m(Im,Om)}

where αi ∈ N is the multiplicity of operation (Ii,Oi).

A bidder can express such preferences by a valuation function. In what follows we

provide a definition of valuation.

Definition 2 A valuation v is a (typically partial) function from multisets of opera-

tions to the real numbers. ⊓⊔

Intuitively, given a multiset of operations D, v(D) = p means that the agent

equipped with valuation v is willing to make a payment of p in return for being al-

located all the operations in D (in case p is a negative number, this means that the

agent will accept the deal if it receives an amount of |p|). For instance, v(1′(1′oven +

1′dough, 1′oven + 1′cake)) = −20 means that a bidder can produce a cake for 20 if

given an oven and some dough, and that she will return the oven again afterwards.

7

In order to run the auction, the bidders need to communicate their valuation func-

tions to the auctioneer and to do that they need to use a bidding language. A suitable

bidding language should allow a bidder to encode choices between alternative bids and

the like [16]. Informally, an OR-combination of several bids means that the bidder

would be happy to accept any number of the sub-bids specified, if paid the sum of the

associated prices. An XOR-combination of bids expresses that the bidder is prepared

to accept at most one of them. For the formal definition of the WDP below, we restrict

ourselves to bids in the XOR-language, which is known to befully expressive for mixed

auctions [4]. In the XOR-language each bidder submits a single bid that is an XOR

combination of a set of atomic bids. In order to properly define the XOR-language we

need to introduce the concept of atomic bid and what it means to XOR-combine a set

of atomic bids.

An atomic bid is the smallest piece of information a bidder can submit. It is com-

posed of a finite multiset of operations and a price. An atomic bid Bid = bid(D, p)

communicates to the auctioneer that the bidder is willing to pay p for being allocated

all the operations in D (or some other operation requiring him to produce at most

the same output goods from at least the same input). Hence, it defines the following

valuation:

v(D′) =



p if D provides equal or better operations than D′

−∞ otherwise

where we say that D provides equal or better operations than D′ if we can establish

a one to one mapping f from D to D′ and for every operation op ∈ D, we have that

f(op) ∈ D′ takes at least the same inputs and provides at most the same outputs1.

Let Bid = Bid1 xor · · · xor Bidn be an XOR-combination of n atomic bids Bid i,

with i ∈ {1, . . . , n}. When a bidder submits it, it is communicating to the auctioneer

the following valuation:

v(D) = max{vi(D) | i ∈ {1, . . . , n}}

That is, the XOR-combination offers the auctioneer the possibility to select the atomic

bid maximizing its revenue.

3.2 Winner Determination Problem. Informal Definition

The input to the WDP consists of a complex bid expression for each bidder, a multiset

Uin of goods the auctioneer holds to begin with, and a multiset Uout of goods the

auctioneer expects to end up with.

In standard CAs, a solution to the WDP is a set of atomic bids to accept. In our

setting, however, the order in which the auctioneer “uses” the accepted operations mat-

ters. For instance, if the auctioneer holds a to begin with, then checking whether ac-

cepting the two bids Bid1 = bid(1′(1′a, 1′b), 10) and Bid2 = bid(1′(1′b, 1′c), 20) is

feasible involves realising that we have to use Bid1 before Bid2. Thus, a solution for

WDP will be a sequence of operations. A valid solution has to meet two conditions:

1. Bidder constraints. The multiset of operations in the sequence has to respect the

bids submitted by the bidders, namely:

1 This “free disposal” condition is treated more formally in [4]. For our main purposes in
this paper, the improvement of winner determination algorithms, this is not a relevant detail.

8

(a) If a bidder submits an offer over a bundle of operations, all of them must be

employed in the operation sequence.

(b) If a bidder submits an XOR-combination of atomic bids, at most one of them

may be accepted.

2. Auctioneer constraints. The sequence of operations has to be implementable, namely:

(a) the set of goods held by the auctioneer prior each operation must be a superset

of the inputs of the operation; and

(b) the set of goods held by the auctioneer at the end of the sequence must be a

superset of Uout.

An optimal solution is a valid solution that maximises the sum of prices associated

with the atomic bids selected.

3.3 Solving the WDP by Integer Linear Programming

We now show how to map the WDP defined in Section 3.2 into a more formal definition,

by encoding it in ILP. Here and in what follows:

– let n be the total number of bidders;

– i acts as a bidder index and when quantified it ranges over all bidders;

– for each bidder i, we use j as an atomic bid index ranging from 1 to mi, the number

of atomic bids submitted by bidder i;

– Bidij = bid(Dij , pij) is the j-th atomic bid within the XOR-bid submitted by

bidder i, Dij being a multiset of operations and pij the price of the bid;

– B = {Bidij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} is the set that contains all the atomic bids;

– for each atomic bid j of bidder i, k acts as an operation index and when quantified

ranges from 1 to the number of operations in that atomic bid;

– tijk is the k-th operation appearing in the j-th atomic bid of bidder i;

– Iijk and Oijk are respectively the input and output multisets of operation tijk;

– Dij(tijk) is the multiplicity of tijk in Dij ;

– D =
U

ij Dij stands for the multiset of the overall operations received with their

multiplicity;2

– T = {tijk : ∀ijk} is the set of the overall operations in the bids disregarding their

multiplicity;

– δ is the overall number of operations mentioned anywhere in the bids (taking ac-

count of their multiplicity); i.e. δ =
P

ij |Dij | =
P

ijk Dij(tijk), and therefore it

also stands for the maximum length of the solution sequence (provided all opera-

tions are used);

– G is the set types of negotiated goods;

– g ranges over all goods; and

– m always ranges from 1 to δ.

First, as in standard combinatorial auctions, we need to encode which bids are selected.

Thus, we define a set of binary decision variables xij ∈ {0, 1}, where xij takes on value

1 iff the j-th atomic bid of bidder i is selected. Furthermore, for each operation in a

selected bid we need to choose its position in the solution sequence. Thus, we define

a set of binary decision variables xm
ijk ∈ {0, 1}, where xm

ijk takes on value 1 if the

operation tijk is selected at the m-th position of the solution sequence, and 0 otherwise.

2 The operator
U

performs the sum (as described after Definition 1) of several multisets.

9

In what follows, we define the set of constraints that the solution sequence must

fulfil:

1. For simplicity, we impose that at most one operation is selected at each position of

the sequence:
X

ijk

x
m
ijk ≤ 1 (∀m) (1)

2. We enforce the constraints expressed by condition (1.a) in Section 3.2. Thus, if

bid Bidij is selected, all the operations tijk in that bid must be selected exactly

Dij(tijk) times. In other words, if bid Bidij is selected, all the operations in it must

be selected with the required multiplicity. Formally,

xij · Dij(tijk) =
X

m

x
m
ijk (∀ijk) (2)

3. We enforce that the atomic bids submitted by each bidder are exclusive (XOR).

This amounts to satisfying the following constraints (cf. condition (1.b) in Section

3.2):
X

j

xij ≤ 1 (∀i) (3)

Observe that in the case of the OR bidding language we simply have to remove

this constraint.

4. Next, we capture condition (2.a) in Section 3.2 requiring that enough goods are

available at step m to perform the next operation, namely:

Uin(g) +

m−1
X

l=0

X

ijk

x
l
ijk · [Oijk(g) − Iijk(g)] ≥

X

ijk

x
m
ijk · Iijk(g) (∀g, ∀m) (4)

5. And finally, after having performed all the selected operations, the set of goods

held by the auctioneer must be a superset of the final goods Uout (cf. condition

(2.b) in Section 3.2):

Uin(g) +
δ

X

m=0

X

ijk

x
m
ijk · [Oijk(g) − Iijk(g)] ≥ Uout(g) (∀g) (5)

Now solving the WDP for MMUCAs with XOR-bids amounts to solving the fol-

lowing binary linear program, which we name Direct Integer Program (DIP):

max
X

ij

xij · pij subject to constraints (2)– (5) (6)

Now it is time to assess the number of decision variables used by DIP.

Proposition 1 The number of decision variables used by DIP is quadratic in the num-

ber of operations involved in the auction.

Proof DIP has δ · |T | + |B| binary decision variables:

– δ · |T | variables (xm
ijk), where δ is the maximum length of the solution sequence and

|T | is the size of the set of different operations.

– |B| variables (xij), where |B| is the number of atomic bids submitted by the bidders.

Hence, the number of decision variables is O(δ · |T |). ⊓⊔

Observe that our proposed implementation can easily be amended so as to directly

encode the constraints imposed by language constructs other than the XOR-operator.

10

p2 •p3

••p1

t1

2

1

2

Fig. 1 Example of a Place Transition Net.

4 Extending Place Transition Nets

Our endeavour hereafter will focus on reducing the number of decision variables re-

quired by an ILP to solve a mixed auction WDP. Along this path we start in this

section by introducing a new optimisation problem on an extension of Place Transi-

tion Nets. In Section 5 we show how instances of the WDP for mixed auctions can be

transformed into instances of the optimisation problem described in this section. As

a result of such transformation we manage to reduce the number of decision variables

from quadratic to linear in the number of operations.

In this section, we first introduce Place Transition Nets to subsequently extend

them to incorporate a value function. We call the resulting model Weighted Place

Transition Nets. Afterwards, we define a new optimization problem on Weighted Place

Transition Nets, the Constrained Maximum Weighted Occurrence Sequence Problem.

Finally, we explain how to solve such an optimization problem (in some special cases)

by means of Integer Linear Programming.

4.1 Petri Nets and Place Transition Nets

Petri Nets are a powerful mathematical and graphical tool for the description of discrete

distributed systems. They were first introduced in 1962 by Karl Adam Petri in his

seminal dissertation [26]. In particular they are suitable for describing systems in which

parallelism, concurrency, and synchronization play an important role. We refer the

reader to [7] for a very good review.

We will focus on a particular type of Petri net called Place Transition Net. In the

following we refer to Place Transition Net as net for short. Formally, following [7]:

Definition 3 (Place Transition Net Structure) A Place Transition Net Structure

is a tuple N = (P, T, A, E) where P is a set of places, T is a finite set of transitions

such that P ∩T = ∅, A ⊆ (P ×T)∪ (T ×P) is a set of arcs, and E : A → N
+ is an arc

expression function (E(t, p) stands for the number of tokens introduced by transition

t into place p and E(p, t) stands for the number of tokens substracted from place p by

transition t). ⊓⊔

In the following, we use the term structure to refer to a Place Transition Net

Structure for short.

A distribution of tokens over the set of places is called a marking, and it stands for

the state of the net.

11

Definition 4 (Marking) A marking M : P → N of a structure is a multiset over P .

M(p) = k means that place p ∈ P contains k tokens for marking M. ⊓⊔

A net is a structure S together with a given initial marking M0. An example of net is

shown in Figure 1. The graphical representation of a net is composed of the following

graphical elements: places (drawn as circles), transitions (drawn as rectangles), arcs

(connecting places to transitions or transitions to places) labelled with values of an arc

expression function E. Tokens are drawn as bullet points inside the circles representing

places.

Given a marking M, we say that a transition is enabled if all its input places contain

at least as many tokens as required by the the transition’s input arcs. Intuitively, a

transition is enabled if enough tokens are present in its input places. In other words, a

transition t ∈ T is said to be enabled if each input place p of t is marked with at least

E(p, t) tokens, where E(p, t) represents the weight of the arc connecting p to t. More

formally,

Definition 5 (Enabled Transition) Given a marking M, a transition t ∈ T is

enabled iff M(p) ≥ E(p, t) ∀(p, t) ∈ A. ⊓⊔

If a transition is enabled it can fire consuming the tokens specified by E of the

input places and producing the tokens specified by E in the output places. An enabled

transition may or may not fire. If it fires, it changes the current marking to a new

marking by removing tokens from the input places and putting tokens into the output

places. More formally:

Definition 6 (Firing of an enabled transition) The firing of an enabled transition

t removes E(pi, t) tokens from each input place pi and adds E(t, po) tokens to each

output place po. The firing of a transition t changes marking Mk−1 to a marking Mk.

The new marking can be computed employing the following equation:

Mk(p) = Mk−1(p) + E(t, p) − E(p, t) ∀p ∈ P (7)

Note that in this equation and henceforth, for simplicity, we assume that E(p, t) = 0

if (p, t) 6∈ A and E(t, p) = 0 if (t, p) 6∈ A. ⊓⊔

4.1.1 Reachability

Recall that any WDP for a mixed auction defines an initial multiset of goods Uin and

a final multiset of goods Uout. Hence, we can think of the problem as reaching Uout

starting from Uin. There is a similar problem in nets: the problem of reachability. It

studies whether we can reach a particular state of a net departing from a given initial

state only by using a sequence of net transitions.

Definition 7 (Firing Sequence) Given a structure S and a marking M0, a firing

sequence is a sequence of transitions 〈t1, t2, . . . , td〉 from S such that t1 is enabled in

M0 and for all i ∈ [2, d], ti is enabled after firing ti−1. ⊓⊔

By the repeated application of equation (7) a firing sequence J = 〈t1, t2, . . . , td〉
brings marking M0 to Md:

Md(p) = M0(p) +
X

t∈J

[E(t, p) − E(p, t)] ∀p ∈ P (8)

12

Definition 8 (Reachability) A marking Md is reachable from a marking M0 in a

structure S if there exists a firing sequence that transforms M0 into Md. ⊓⊔

All the markings reachable from M0 in a structure S are written R(S,M0), and

are called the reachable set of a net.

4.1.2 Reachability and the state equation

In the general case Lipton [27] proved that the reachability problem is EXPSPACE-

hard. And yet, it is reasonable to wonder whether there are special classes of nets on

which reachability is computationally simpler. In this section we show that indeed

computation is simpler for a particular topology of nets by relying on results proved

in [7].

Given a net with r transitions and n places, its incidence matrix A = [aij] is an

r × n matrix of integers. Each entry is given by aij = E(ti, pj) − E(pj , ti). Hence, aij

is the difference in the number of tokens in place j when transition i fires once.

We can represent a marking Mk as an n× 1 column vector Mk such that the j-th

entry of Mk represents the number of tokens present in place pj . We can identify each

transition ti with a firing vector uti , an r × 1 column vector having a 1 at position i

and zeros elsewhere. We can now express equation (7) in matrix form as:

Mk = Mk−1 + AT
u

t (9)

where AT stands for the transpose of incidence matrix A.

Given a firing sequence J = 〈t1, . . . , td〉, its firing count vector KJ is an r×1 column

vector containing at the i-th position the number of times that the i-th transition in

T is repeated in sequence J . Formally, KJ =
Pd

k=1 utk .

Say that Md is reachable from M0, then there exists a firing sequence J =

〈t1, t2, ..., td〉 bringing from marking M0 to Md. Therefore, a necessary condition on

reachability can be expressed in terms of a matrix equation:

Theorem 1 (Murata,1989) If Md is reachable from M0, then the following equa-

tion has a non-negative integer solution x:

Md = M0 + AT x (10)

The proof consists in showing that x = KJ is a solution. Notice that the i-th entry

of vector x encodes the number of times a transition ti must be fired to transform M0

into Md.

Equation (10) is called the state equation, since it describes the states that a

net would reach if the transitions encoded in x were fired. However, notice that the

condition is not sufficient because the existence of a solution does not always imply

that Md is reachable from M0. However, we can show that sometimes all the states

reachable by a net are described by the state equation. In particular, this happens

when the net is acyclic.

Definition 9 (Acyclicity) A directed cycle in a structure (P, T, A, E) is a sequence

of places and transitions 〈p1, t1, p2, t2, . . . , tn−1, pn〉 such that p1 = pn and for all

i ∈ [1, n] we have that (pi, ti) ∈ A and (ti, pi+1) ∈ A.

A structure is said to be acyclic if it does not contain any directed cycle. ⊓⊔

13

In [7], it is shown that in an acyclic net, the condition expressed by Theorem 1 is

not only necessary, but also sufficient to guarantee reachability.

Theorem 2 (Murata,1989) In an acyclic structure (P, T, A, E), Md is reachable

from M0 iff the following equation has a non-negative integer solution in x:

Md = M0 + AT x (11)

That is, for any acyclic net, if there exists a solution to equation (11), a firing

sequence reaching Md from M0 is guaranteed to exist, and x represents its firing

count vector.

Moreover, Murata further extends the class of nets for which the condition is still

sufficient. These particular nets (trap-circuit and syphon-circuit nets) have special

topologies with particular types of circuits. For such nets, the state equation represents

all the reachable states if the initial marking M0 satisfies some constraints. Further

efforts have been made for extending the validity of the state equation to more classes

of nets [28].

4.2 Weighted Place Transition Nets

There is a feature of some discrete systems (in particular the ones we consider) that, to

the best of our knowledge, has never been considered so far in the Petri net literature,

and that we deem as fundamental. A change in the state of a system may have an

associated value. For instance, in our case, an operation has an associated value every

time it is performed. Thus, in order to model operations, we need to extend nets to

incorporate the notion of transition value. Such extension will allow us not only to

represent the fact that a value is associated with each transition firing, but also to

easily compute the value of a firing sequence.

We extend the notion of net (see Section 4.1) by attaching a value to each transition.

This leads us to the definition of Weighted Place Transition Net Structure and Weighted

Place Transition Net (henceforth referre to as weighted structure and weighted net

respectively for short).

Definition 10 (Weighted Structure) A weighted structure is a a tuple (P, T, A, E, V)

where:

– (P, T, A, E) is a structure.

– V : T → R is a function that assigns a value to each transition.

⊓⊔

We define a weighted net by associating to a weighted structure an initial marking

M0.

The initial marking in a net represents the initial state of the system, the very same

semantics is inherited by weighted nets.

Weighted structures and weighted nets preserve all the properties of structures and

nets respectively, but allow the quantitative representation of the value of a transition.

Therefore, we can naturally apply to them all the concepts employed for nets. Those

include the concepts of enabling of a transition, firing of a transition, marking, firing

sequence, and so on.

A weighted net processes a firing sequence (Section 4.1.1)as follows: firstly, the

weighted net evolves through a sequence of markings (states); and secondly, a value is

assessed for the firing sequence according to the following definition:

14

Definition 11 (Value of a firing sequence) The value V of a firing sequence J =

〈t1, t2, ..., td〉 is the sum of the values of each transition contained in the sequence:

V (J) =
d

X

i=1

V (ti) (12)

⊓⊔
If a transition fires more than once, say k times, then its value will be added k

times.

4.2.1 Constrained Maximum Weight Occurrence Sequence Problem

Since each transition has a value, it is reasonable to wonder about the optimal firing

sequence leading from an initial marking to some final marking. Moreover, and more

generally, we may require to compute the optimal firing sequence leading from an initial

marking M0 to a final marking Md that fulfils some constraints. For instance, a given

problem may require that each place in the final marking contains at least one token

(Md(p) > 1, ∀p ∈ P). In order to model this more general optimisation problem, we

define the Constrained Maximum Weight Occurrence Sequence Problem (MAXSEQ).

Definition 12 (MAXSEQ) Given

– a weighted net N = (P, T, A, E,M0, V),

– a set of inequality constraints over a subset (P≥) of the places of a marking Md,

expressed as:

∀p ∈ P
≥ Md(p) ≥ gp, (13)

– and a set of equality constraints over a subset (P=) of the places of a marking Md,

expressed as:

∀p ∈ P
= Md(p) = hp (14)

find a firing sequence Jopt = 〈t1, t2, ..., td〉 that maximizes the sequence value V among

the ones that bring from some initial marking M0 to a final marking Md that fulfills

the constraints in equations (13) and (14). ⊓⊔

4.2.2 Reducing MAXSEQ to ILP

An ILP takes the form: maximize f(x) subject to g(x) ≥ g and h(x) = h where f ,g and

h are linear functions, g and h are real vectors and x is a vector of integer variables.

Our aim now is to encode MAXSEQ as an ILP. Since the structure is very similar, we

only need to identify what ILP variables we will use and then show that the function

to maximize and the constraints in MAXSEQ are a linear function of these variables.

As state space we will use a vector x of r integer variables, r being the number

of transitions in the network. Each variable represents the number of times a transi-

tion has fired. In Section 4.1.2, we showed that under some hypothesis on a net, it

is possible to express its overall reachability set by means of an equation, the state

equation. Concretely, Theorem 2 establishes that given an M0 and a acyclic net with

incidence matrix A, the set {M0 + AT x ≥ 0 | x is a vector of non-negative integers}
contains exactly the markings reachable from M0. This result allows us to represent

the MAXSEQ search space by a means of the vector of integers x. Furthermore, this

15

result also shows that the final marking Md in term of which the constraints are ex-

pressed, is a linear function of x (since Md = M0 +AT x). This result can be extended

to weighted nets without changes and is the basis for our ILP program.

Notice also that the function to maximize, (that is, the value of each firing sequence)

does not depend on the order of the sequence (see equation (12)). Furthermore, since

a value is associated to each transition in the net, the value depends linearly on the

number of times each transition fires. We define a vector v ∈ R
|T | whose j-th position

represents the value associated with transition tj (v[j] = V (tj)). Hence, the value

associated with the firing sequence represented by x, is:

V (x) = vT x (15)

Now that we have shown the connection between MAXSEQ and ILP, we can for-

mally state it.

Theorem 3 Given a MAXSEQ instance formed by a weighted net (P, T, A, E,M0, V)

with incidence matrix A and the constraints appearing in equations (13) and (14):

If the state equation describes all the reachable states of the weighted net, then all

the non-negative integer solutions x of the following ILP:

max vT x (16)

subject to ∀p ∈ P
≥ Md(p) ≥ gp (17)

∀p ∈ P
= Md(p) = hp (18)

where Md = M0 + AT x (19)

represent the firing count vectors of all the optimal solutions to the MAXSEQ instance.

Proof Notice that equation (19) computes the final marking as a linear function of x.

Since the state equation describes all the reachable states, Md will range over every

possible final marking. Then equations (17) and (18) directly translate the constraints

in equations (13) and (14) in MAXSEQ. Finally, equation (16) computes the value of

the firing sequence as given by (15). As a result, a solution x∗ to the ILP defined by

equations (16)-(19) optimizes the sum of the values associated with fired transitions

while ensuring that the final marking is reachable and fulfils the constraints defined by

the MAXSEQ instance. ⊓⊔

Note that the number of integer variables required to solve MAXSEQ via ILP is

exactly |T |, that is, the number of transitions of the net.

According to the results stated in Theorem 2, it is possible to express the reacha-

bility set with the state equation when the net is acyclic. Then, we apply this result to

MAXSEQ via the following corollary:

Corollary 1 Provided that a net is acyclic, every MAXSEQ defined on it can be re-

duced to ILP.

Proof Since the net is acyclic, in virtue of Theorem 2, all the reachable states M are

the non-negative integer solutions of equation (11). Given a MAXSEQ instance over

that net, by Theorem 3 the firing count vectors of all the solutions are represented by

the solutions to the ILP in equations (16)-(19).

16

Hence, every MAXSEQ instance over the net can be solved in two steps. First, we

determine the optimal firing count vector xopt by solving the ILP in equations (16)-

(19). Then, since the net is acyclic, we can establish a partial order among transitions

so that t1 ≺ t2 iff t2 uses as input some output of t1. We can construct an occurrence

sequence Jopt by ordering the transitions in xopt non-decreasingly according to our

partial ordering. In that way, every step in Jopt is guaranteed to be enabled and con-

sequently Jopt is a solution to the MAXSEQ instance. ⊓⊔

5 Mapping mixed auctions to weighted nets

In this section we demonstrate that an instance of the mixed auction WDP can be

transformed into an instance of the MAXSEQ problem introduced in Section 4.2.1.

Notice that this mapping allows us to benefit from analysis methods to study behavioral

properties of Petri nets. Hence, we exploit such analysis methods to provide an ILP

formulation for some classes of weighted nets, and therefore some types of supply chain

networks.

5.1 Intuitions behind the mapping

The idea behind the mapping is that an atomic operation can be regarded as a tran-

sition in a weighted net. Consider the following offer, expressed by a bidder in the

bidding language introduced in Section 3.1:

Bid1 = bid(1′(2′H2O, 1′O2 + 2′H2),−8) (20)

This represents an offer to perform an hydrolysis process: 2 moles of water are

transformed into 1 mole of oxygen and two moles of hydrogen at a price of e 8. Now

consider the transition depicted in Figure 2, and say that each place represents a good.

Let the place labelled with H2O be water, H2 be hydrogen, and O2 be oxygen. The

transition in Figure 2 perfectly captures the semantics of a supply chain operation: the

input places of the transitions are the input goods of the operation, its output places

are the output goods of the operation, and the transition value is the value associ-

ated with the operation. Analogously, an operation offering goods can be represented

as a transition with only output places, whereas an operation requesting goods as a

transition with only input places.

Example 1 Say that the following bids are submitted to a mixed auction:

bid1 = bid(1′({ }, 2′H2O),−10) (21)

bid2 = bid(1′({ }, 2′H2O),−14) (22)

bid3 = bid(1′(2′H2O, 1′O2 + 2′H2),−8) (23)

bid4 = bid(1′(2′H2 + 1′O2, { }), 23) (24)

bid5 = bid(1′(2′H2 + 1′O2, { }), 25) (25)

We can represent them graphically by the weighted net in Figure 3. ⊓⊔

17

O2 H2

H2O

Bid1e 8

2

1

2

Fig. 2 Example of an operation represented as a transition in a weighted net.

bid1 e−10 bid2 e−14

bid4e 23 bid5e 25

O2 H2

H2O

bid3e−8

2

1

2

2

2

1
2

1
2

Fig. 3 Example of bids in a mixed auction represented as a weighted net.

Finding the revenue-maximizing solution in example 1 is straightforward. Firstly,

buy two moles of water from bid1, then process the water through the operation in bid3,

and then sell the products of the reaction to bid5. The total revenue of the supply chain

is 25 − 8 − 10 =e 7. Notice that this is also the solution to the MAXSEQ problem3

defined on the weighted net in Figure 3 with an empty initial marking and with a

destination marking Md satisfying the following constraints:

Md(H2O) ≥ 0 (26)

Md(O2) ≥ 0 (27)

Md(H2) ≥ 0 (28)

Given the example above, we argue that if we construct a MAXSEQ instance by:

1. building a weighted net joining all the atomic operations received within bids;

3 So far under the hypothesis that transitions can fire at most once. We will solve the issue
of limiting the number of times each transition can fire further on.

18

2. setting the initial marking to the goods initially available to the auctioneer (Uin);

and

3. setting some constraints on the final marking (Uout),

then the solution to the MAXSEQ instance corresponds to the solution to the mixed

auction WDP.

Nonetheless, we must take some more details into account. Firstly, in the previous

example, given the weighted net representation, each operation can be used an arbi-

trary number of times. Instead, the semantics of the bidding language imposes that

operations must be used a limited number of times. Secondly, we must provide bidders

with the capability of encoding on the weighted net both offers or requests over bundles

of operations. Moreover, they also require the capability of encoding on the weighted

net sets of mutually exclusive (XOR) atomic bids. Addressing these three issues is the

purpose of the following section.

5.2 Representing Bids

In Example 1, we restricted ourselves to the case in which agents can only submit one

atomic bid. Moreover, we only consider bidding over a single atomic operation, i.e.

|Dij | = 1. Next, we progressively relax all these constraints. First of all, we explain

how to represent a weighted net a bid on a bundle (multiset) of operations.

5.2.1 Expressing bids on bundles of operations

Given an atomic bid Bidij , combinatorial on operations, we have to ensure that:

– if an atomic operation tijk in bid Bidij is included in the solution sequence,

– it must be included in the solution as many times as required by the multiplicity

of tijk in the bid (Dij(tijk));

– all the other atomic operations tijk′ within the same atomic bid (all the opera-

tions in Dij) must be included as many times as required by their multiplicities

(Dij(tijk′)) as well;

– the money that the bidder must pay (receive) is the price of the whole bid (pij).

Recall that bidder constraint 1.a) in Section 3.2 imposed that if a bidder submits

an offer over a bundle of operations, all of them must be employed in the operation

sequence. This is precisely what the first condition above captures.

We achieve this by introducing some auxiliary places and transitions. The example

in Figure 4 represents the following bid:

Bidij = bid(1′tij1 + 3′tij2 + 2′tij3,−20)

where tij1 = (2′p1, 1′p2 +2′p3), tij2 = (1′p4, 1′p6 +1′p7) and tij3 = (1′p5, 1′p8 +1′p9).

In general, in order to incorporate a bid over multiple operations we proceed as

follows:

– for each bid Bidij we introduce an auxiliary transition tij (bid transition) and an

auxiliary place cij (bid place).

– for each atomic operation tijk within bid Bidij , we add an auxiliary place cijk

(cij1, cij2, and cij3 in Figure 4), called operation place.

19

tij3tij2

p2 p3

p1 p4 p5

p6 p7 p8 p9

tij1

2

1
2

1 1

1
1

1
1

cij1 cij2 cij3

•

cij

tij e−20

1 1 1

1

1 3
2

Fig. 4 Bids on bundles of operations.

– we attach the valuation pij of bid Bidij to the corresponding bid transition tij .

In the example, we associate the bid value pij=−e 20 to transition tij . Hence,

whenever tij fires, the cost/value pij is added to the value of the firing sequence.

It is easy to check that the weighted net in Figure 4 allows to fire any subset

of {tij1, tij2, tij3} (depending on the tokens) with the corresponding multiplicities

(1, 3, 2). Notice also that firing at least one of the three transitions requires to pre-

viously fire transition tij , because this guarantees having the required tokens in the

input places cijk. In this way, we guarantee that firing at least one of the transitions

implies firing also tij , and therefore that the corresponding money is added to the

overall cost/value.

Any legal firing sequence on the weighted net in Figure 4 guarantees that selecting

at least one of the tijk implies also selecting tij . However, we need a further require-

ment: either none of the tijk fires, or all of them fire. If they all fire, they have to fire

as many times as expressed by their multiplicities in the bids. In the figure, we have

to enforce that if tij fires, then tij1 fires once (Dij(tij1) = 1), tij2 fires three times

(Dij(tij2) = 3), and tij3 fires twice (Dij(tij3) = 2).

The weighted net in Figure 4 cannot guarantee such property by itself. For instance,

a firing sequence in which only transitions tij1 and tij2 fire (not tij3) is legal but

does not comply with our all-or-nothing assumption. In order to enforce it, we simply

impose some constraints on the final configuration of the net. Say that we impose that

in the final configuration cij1, cij2, and cij3 contain no tokens. More formally, the final

marking should fulfil the constraints:

Md(cij1) = 0 (29)

Md(cij2) = 0 (30)

Md(cij3) = 0 (31)

20

This implies that all the legal firing sequences leading to the final configuration Md

contain either none or the three transitions tij1, tij2, tij3 with multiplicities 1, 2, and

3 respectively.

Therefore, the semantics regarding the multiplicity of the operations offered in bid

Bidij is completely captured by the weighted net provided. Furthermore, the weights

of the arcs connecting each bid transitions tij with its operation places cijk, along with

the constraints on the final marking, enforce that either none of the operations in Dij

is used, or all of them are used as many times as indicated by their multiplicities in

Dij .

The following proposition formalises how a weighted net structure as constructed

above can capture the semantics of an atomic bid.

Proposition 2 Let Bidij be an atomic bid with value pij and its corresponding weighted

structure (P, T, A, E, V) with initial marking M0(cij) = 1, and M0(cijk) = 0 for all

operation places. If any final marking Md is required to fulfil that Md(cijk) = 0 for

all operation places, then any legal firing sequence fires either all or none of the atomic

operations in the bid, being pij the value of the firing sequence in the first case and 0

otherwise.

Proof Since M0(cij) = 1, bid transition tij is enabled and thus can be fired. We

distinguish two cases at this point. On the one hand, if tij does not fire, none of the

atomic operations can fire, the constraints on the final marking hold and the value of

not firing tij is 0. On the other hand, if tij fires, then each operation place cijk receives

Dij(tijk) tokens from transition tij . Since each transition tijk requires a single token

to be enabled, all atomic transitions are enabled. Since we have imposed that the final

marking Md leaves no tokens at the operation places, namely Md(cijk) = 0 ∀cijk,

all atomic transitions must fire. Therefore, both the bid transition tij along with all

atomic transitions tijk compose the firing sequence. Since firing atomic transitions has

no cost, the value of the firing sequence is V (tij) = pij , which is the value of bid

Bidij . ⊓⊔

5.2.2 Expressing XOR of atomic bids

We have learnt how to represent an atomic bid on a weighted net. However, we still

have to encode the XOR relationships among the atomic bids that come from each

bidder to fully represent our bidding language. Consider the following bid:

bid(1′tij1 + 3′tij2 + 2′tij3,−20)

XOR

bid(1′tij′1 + 1′tij′2,−10)

where tij1 = (2′p1, 1′p2 + 2′p3), tij2 = (1′p4, 1′p6 + 1′p7), tij3 = (1′p5, 1′p8 + 1′p9),

tij′1 = (3′p5, 2′p8 + 2′p9), and tij′2 = ({ }, 2′p4 + 2′p5).

Hereafter we refer to the two bids above submitted by some bidder i in XOR as to

Bidij and Bidij′ . Figure 5 depicts bids Bidij and Bidij′ .

In order to incorporate the semantics of the XOR operator into a weighted net,

we introduce a new place, labelled with pXOR
i , called an XOR place. Notice that an

XOR place replaces bid places. In particular, in figure 5 it replaces bid places cij and

cij′ corresponding to bids Bidij and Bidij′ . An XOR place has no input arcs and is

21

p2 p3

p1 p4 p5

p6 p7 p8 p9

tij1 tij2 tij3

2

1
2

1 1

1
1

1
1

tij′1

3

2

2

tij′2

2

2

cij1

cij2

cij3

cij′1

cij′2

tije−20 tij′e−10

1

1
1

1
3

2

1

1

1

1

•

pXOR
i

1
1

Fig. 5 XOR of atomic bids.

enforced to contain a single token by the initial marking. Hence, the resulting weighted

net topology enforces that at most one of the atomic bids in XOR is selected. In figure 5

either tij or tij′ can fire, but not both. When either of them fires, it consumes the

unique token in pXOR
i , thus preventing the firing of the other one. This corresponds

to selecting at most one bid out of bids Bidij and Bidij′ . This reasoning naturally

applies to the general case of m bids in XOR. Moreover, say that, for instance, we

choose to fire tij . Then all atomic operations in the bid (namely tij1, tij2, tij3) must

fire as stated by proposition 2. In other words, an XOR place acts as an exclusive bid

place for all the atomic bids involved in an XOR bid.

5.3 Connecting the mixed auction WDP and MAXSEQ: the Mixed Auction Net

In this section we formalize what was explained informally in the previous section: how

to build a weighted net that encodes all the bids received by an auctioneer. We shall

call such weighted net the Mixed Auction Net.

Definition 13 Given a finite set of bids B in the XOR bidding language and a multiset

Uin over a set of goods G, its Mixed Auction Net is the weighted net computed by

function ConstructMixedAuctionNet(B,Uin) in Algorithm 1. ⊓⊔

22

Algorithm 1 details how to build a mixed auction net from some set B of XOR bids.

Line 1 creates a place for each good at auction and initialises the remaining variables to

empty sets. We call PG the set that contains the places that represent goods. Lines 2-4

establish that the initial marking for places that represent goods is set according to the

number of units that Uin specifies for each good. Line 7 adds a new place (pXOR
i) for

each XOR bid and adds a single token (unit) to the initial marking (so that each XOR

bid can be only selected once). The PXOR set contains all XOR places. Line 10 adds a

new transition (tij) for each atomic bid and sets its value to pij (the value specified by

the bid), whereas line 11 links each newly created transition with the place representing

its XOR bid. Line 13 adds a control place cijk to control each operation and line 14

links it as an output to the transition representing its combinatorial bid (tij), setting

the number of tokens to output to the cardinality of operation tijk in the combinatorial

bid (namely to Dij(tijk)). The PC set contains all the control places. Line 16 adds a

new transition tijk (with value zero) for each atomic bid, which line 17 links to its

control place cijk so that each time tijk fires, it consumes a token from cijk. We call

the set of all transitions representing operations TOP . Finally, lines 18-20 and 21-23

link each transition tijk representing an operation with its input and output goods

respectively.

The introduction of the mixed auction net allows us to define the mixed auction

WDP as a MAXSEQ problem.

Theorem 4 Given a mixed auction with a multiset of available goods Uin, a multiset

of required goods Uout, and a set of bids B in the XOR language over the goods in

G, solving the WDP amounts to solving the MAXSEQ problem defined on the Mixed

Algorithm 1 ConstructMixedAuctionNet(B,Uin)

1: P ← {pg | g ∈ G}; T ← ∅; A ← ∅; M0 ← ∅;
2: for g in G do

3: M0 ← M0 + {Uin(pg) copies of pg}; /* Establish initial marking for goods */
4: end for

5: for Bidi in B do

6: /* Add a place for each XOR bid and set its initial marking to contain one token */
7: P ← P ∪ {pXOR

i }; M0 ← M0 + {pXOR
i };

8: for Bidij in Bidi do

9: /* Add a new transition for each atomic bid, set its value to the bid’s value */
10: T ← T ∪ {tij}; V (tij) = pij ;

11: A ← A ∪ {(pXOR
i , tij)}; E(pXOR

i , tij) = 1; /* and link it to its XOR bid */
12: for Bidijk in Bidij do

13: P ← P ∪ {cijk}; /* Add a new place for each operation */
14: A ← A ∪ {(tij , cijk)}; E(tij , cijk) = Dij(tijk); /* and link it to its combin. bid */
15: /* Add a new transition for each operation, set its value to zero */
16: T ← T ∪ {tijk}; V (tij) = 0;
17: A ← A∪{(cijk, tijk)}; E(cijk, tijk) = 1; /* link it to its control place, */
18: for g in Iijk do

19: A ← A ∪ {(pg , tijk)}; E(pg, tijk) = Iijk(pg); /* link it to its inputs */
20: end for

21: for g in Oijk do

22: A ← A∪{(tijk, pg)}; E(tijk, pg) = Oijk(pg); /* and link it to its outputs */
23: end for

24: end for

25: end for

26: end for

27: return (P, T, A, E,M0, V);

23

Auction Net S = (P, T, A, E,M0, V) with destination marking Md that fulfils the

following constraints

Md(p) ≥ Uout(g) p ∈ PG (32)

Md(p) = 0 p ∈ PC (33)

Md(p) ≥ 0 p ∈ PXOR (34)

Proof The proof is long and needs a bit more notation than introduced in this paper.

We only report about the way the two solutions can be mapped to each other. For the

complete proof the reader can consult [25].

⇒) First, we prove that a solution to MAXSEQ can be transformed into a solution to

the WDP. Note that each solution to MAXSEQ is a sequence of transitions, some of

them representing atomic bids and some others representing operations. A solution to

the mixed auction WDP is composed by two sets of binary variables xm
ijk (that takes

on 1 if tijk is at position m in the solution sequence) and xij (that takes on 1 if bid

Bidij is accepted). We construct the mixed auction WDP solution by removing from

the MAXSEQ solution all the transitions that represent atomic bids. In the resulting

sequence, transitions only represent operations. Hence, we can set to 1 those variables

xm
ijk such that operation tijk appears at position m. Regarding the transitions in the

MAXSEQ solution that represent atomic bids, we can set xij to 1 if tij appears in

the MAXSEQ solution. It is then straightforward (although tedious and beyond the

scope of this paper) to show that this assignment of values to xm
ijk and xij fulfils the

conditions in equations (1)-(6) corresponding to the Direct Integer Program that solves

the MMUCA WDP.

⇐) We prove the converse as well. Given a solution {xm
ijk,xij} to the mixed auction

WDP, it can be transformed into a solution to the MAXSEQ problem posed in the

theorem. In this case we construct a sequence of transitions by placing a transition tij
(representing an atomic bid) in the sequence for each bid Bidij such that xij is 1. We

can place these transitions at any order at the beginning of the sequence. We complete

the remainder of the sequence with transitions that represent operations following the

order specified by xm
ijk. More precisely, if k atomic bids are selected for the solution

(k variables xij taking on 1), then for every variable xm
ijk with value 1 we can place

the transition representing operation tijk at position k + m of the transition sequence.

It is also tedious but simple to show that such sequence fulfils the conditions to be a

solution to the MAXSEQ problem. ⊓⊔

Notice that it is straightforward to generalise the previous result for the OR lan-

guage by incorporating appropriate changes to the weighted net. Thus, we should only

represent all the bids as in Figure 4, omitting the XOR places.

Now we can start benefitting from Theorem 4 by providing (under acyclicity) a

better mapping of the mixed auction WDP to ILP than the one provided in Section

3.3.

Corollary 2 Whenever a mixed auction net is acyclic, the mixed auction WDP can

be reduced to ILP using |B|+ |T | variables, where |B| stands for the number of atomic

bids received and |T | stands for the number of different operations appearing in the

bids.

Proof Follows directly from the fact that the mixed auction WDP can be reduced to

MAXSEQ and that whenever the weighted net is acyclic MAXSEQ can be reduced to

ILP using as many variables as transitions. ⊓⊔

24

Recall that the number of variables needed for the mapping in Section 3.3 is O(δ ·
|T |), i.e. it is quadratic in |T |, and possibly even significantly larger than that, namely

when transformations appear with high multiplicity. The acyclicity constraint excludes

some interesting cases such as those where a good is borrowed and returned after the

execution of the operation. However, it covers some common topologies such as the

assembly of a good from its components or its dissasembly into its parts (though not

both simultaneously).

Our aim in this section is showing that, from the firing sequence associated with

a particular MAXSEQ problem on the Mixed Auction Net, we can derive an optimal

solution sequence to the corresponding mixed auction WDP.

5.4 Advantages of the mapping to MAXSEQ

It is time to highlight the advantages brought about by mapping the mixed auction

WDP to the MAXSEQ problem over weighted nets. In particular, the mapping allows

to import all the Petri net tools and properties presented in the literature to analyze

structural and behavioral properties of the supply chain resulting from a mixed auction.

Some examples of application are listed below:

1. One can very efficiently solve the underlying ILP when the supply chain is acyclic.

This benefit comes from exploiting an important nets analysis tool, the state equa-

tion.

2. One may be interested in maintaining under a certain threshold the level of re-

sources present in each place (for instance, because of inventory capacity con-

straints). In order to guarantee that resources do not exceed some threshold(s)

amounts to investigating the so-called boundedness property [7], a well-known be-

havioural property of nets.

3. Due to the very appealing and intuitive weighted net graphical representation, we

can compactly encode and visualize the search space associated with the mixed

auction WDP. This stems from the the fact that the semantics of transitions on

nets naturally accommodates the representation of operations.

4. Once a solution sequence to the mixed auction WDP is obtained, one can visualize

it by means of a token game showing the evolution of the supply chain at any step

of the operation sequence.

5. One can graphically visualize the mixed auction WDP problem. This provides

a very helpful guidance to obtaine insights about the problem. For instance, by

visualizing the mixed auction WDP by means of a weighted net, one can incorporate

new bidding language constructs with a minimum effort. For instance, consider the

following example.

Example 2 We explained that switching to the OR language instead of the XOR

bidding language is as simple as removing the XOR place from Figure 5, as shown

in Figure 4. However, there is another widely employed bidding language that is

very compact and human-readable. Is is called the XOR-of-OR bidding language

(refer to Section 3.1). When employing a XOR-of-OR bidding language, any XOR

combination of OR combinations of atomic bids can be selected. For instance, the

following bid:

((a, 1) OR (a, 1) OR (a, 1) OR (a, 1) OR (a, 1)) XOR (b, 2) (35)

25

means that an auctioneer can select from 0 to 5 copies of atomic bid (a, 1) or one

copy of atomic bid (b, 2), but not both things at the same time. In Figure 6, we

graphically show how to incorporate the XOR-of-OR bidding language by depicting

the following bid:

(bid(1′tij1 + 3′tij2 + 2′tij3,−20) OR (36)

bid(1′tij′1 + 1′tij′2,−10)) XOR (37)

bid(1′tij′′1,−2) (38)

tij1 tij2 tij3

tij′1

tij′2

= 0

cij1

= 0

cij2

= 0

cij3

= 0

cij′1

= 0

cij′2

tije−20 tij′e−10

1 1 11

1
3

2

1

1

1

11

•
pXOR

i

≥ 0

≥ 0 ≥ 0

tOR
ij′

tij′′1

= 0

cij′′1 tij′′

e−2

1

1

1
1

1
1

11

Fig. 6 XOR-of-OR of atomic bids

The single token in place pXOR
i allows either to fire transition tij′′ or (exclusively)

transition tOR
ij′ . If transition tij′′ fires, then the auctioneer would be using the bid

bid(1′tij′′1,−2). Otherwise, the firing of transition tOR
ij′ would place exactly one

token in each one of its output places. That would enable both transitions tij
and tij′ , and therefore the auctioneer could select firing either: (i) tij (namely

accepting bid(1′tij1 +3′tij2 +2′tij3,−20)); (ii) tij′ (namely accepting bid(1′tij′1 +

1′tij′2,−10))); (iii) both. All these combinations would fulfil the final constraints

represented by the inequalities at the output places of transition tOR
ij′ . ⊓⊔

26

6 Conclusions and future work

Mixed auctions can potentially be employed for the automated assembly of supply

chains of agents. However, in order for mixed auctions to be effectively applied to SCF,

we must ensure computational feasibility while preserving optimality. In this paper we

have tried to make headway along this direction.

Firstly we discussed the notions of bidding language and winner determination for

mixed auctions following [4]. Integer programming allows to solve the mixed auction

WDP on any supply chain network topology. However, it has the disadvantage to be

computationally expensive. In fact, such a an ILP formulation requires a number of

decision variables that grows quadratically with the number of operations mentioned in

the bids. This computational cost motivates the need for efficient solvers that support

the practical application of mixed auctions.

Contributions on computationally efficient WDP solvers for different auction types

(namely, [22] for CAs and [29] for multi-attribute double auctions) agree on and defend

that a careful, formal analysis of the structure of the WDP can provide guidance for

developing efficient solvers. Along this line we have introduced a graphical formalism

that allows to compactly represent both the search space and the solutions associated

with the mixed auction WDP. To attain this goal we have extended Place Transition

Nets to provide the so-called weighted nets, we have defined a new optimisation problem

over weighted nets, the so-called Constrained Maximum Weight Occurrence Sequence

Problem (MAXSEQ), and we have mapped the mixed auction WDP to a MAXSEQ.

Notice that the validity of the mapping from the mixed auction WDP to weighted nets

is not restricted to bids in the XOR language, but in fact it can easily cope with other

languages. For instance, as discussed in Section 5.4, the extension to the OR and the

OR-of-XOR language is trivial.

A major benefit of our graphical formalism is that it allows to formally analyse the

structural and behavioural properties of the mixed auction WDP. In this work, as a

first result of our structural analysis, we demonstrate how to dramatically reduce the

number of decision variables (from quadratic to linear with respect to the number of

operations) for a broad class of mixed auctions WDPs (in particular, when the weighted

nets underlying the mixed auction WDP is acyclic).

Notice that although our approach is limited to a class of mixed auction WDPs,

we know from the literature that it is possible to increase the classes of Petri nets for

which the state equation represents the whole reachability set. As an example, one

may add linear side constraints to the state equation [30]. In general, we would like

to broaden the class of mixed auction WDPs we can efficiently solve. Thus, our future

aim will be to devise the most efficient solver for each class of mixed auction WDP.

This work opens several paths to future research. The most interesting extension

we envisage to mixed auctions concerns the incorporation of time and uncertainty. On

the one hand, there is the need to express the release time and duration of operations,

as well as their inclusion in the WDP. Hence, an auctioneer would be able to fix

deadlines to have his production process completed. Moreover, the participants in the

supply chain would be able to synchronise their operations by fulfilling not only the

producer/consumer relationships, but also time constraints. On the other hand, an

auctioneer might be interested in assigning a probability of success to each operation

to obtain more robust supply chains that prevent failures and shortcomings. In both

cases, we would require to extend our current model of weighted net along with the

mapping to the mixed auction WDP.

27

Acknowledgements

We would like to thank the anonymous reviewers for their extensive and helpful com-

ments. This work was funded by the Jose Castillejo programme (JC2008-00337), IEA

(TIN2006-15662-C02-01), OK (IST-4-027253-STP), eREP(EC-FP6-CIT5-28575) and

Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010).

References

1. P. Cramton, Y. Shoham, R. Steinberg (Eds.), Combinatorial Auctions, MIT Press, 2006.
2. W. E. Walsh, M. P. Wellman, F. Ygge, Combinatorial auctions for supply chain formation,

in: EC ’00: Proceedings of the 2nd ACM conference on Electronic commerce, ACM, New
York, NY, USA, 2000, pp. 260–269.

3. W. Walsh, M. Wellman, Decentralized supply chain formation: A market protocol and
competitive equilibrium analysis, Journal of Artificial Intelligence Research 19 (2003) 513–
567.

4. J. Cerquides, U. Endriss, A. Giovannucci, J. A. Rodriguez-Aguilar, Bidding languages
and winner determination for mixed multi-unit combinatorial auctions, in: Proc. of the
20th Intl. Joint Conferences on Artif. Intelligence (IJCAI), Hyderabad, India, 2007, pp.
1221–1226.

5. M. Vinyals, A. Giovannucci, J. Cerquides, P. Meseguer, J. A. Rodriguez-Aguilar, A test
suite for the evaluation of mixed multi-unit combinatorial auctions, Journal of Algorithms
63 (1-3) (2008) 130–150.

6. A. Giovannucci, J. A. Rodriguez-Aguilar, J. Cerquides, U. Endriss, Winner determination
for mixed multi-unit combinatorial auctions via petri nets, in: AAMAS ’07: Proceedings
of the 6th international joint conference on Autonomous agents and multiagent systems,
ACM, New York, NY, USA, 2007, pp. 710–717.

7. T. Murata, Petri nets: Properties, analysis and applications, in: Proceedings of the IEEE,
Vol. 77, 1989, pp. 541–580.

8. T. Sandholm, S. Suri, A. Gilpin, D. Levine, Winner determination in combinatorial auction
generalizations, in: AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, ACM Press, Bologna, Italy, 2002, pp. 69–76.

9. C. Caplice, Y. Sheffi, Combinatorial Auctions for Truckload Transportation, MIT Press,
2006, Ch. 21. Combinatorial Auctions.

10. E. Cantillon, M. Pesendorfer, Auctioning Bus Routes: The London Experience, MIT Press,
2006, Ch. 22. Combinatorial Auctions.

11. M. Bichler, A. Davenport, G. Hohner, J. Kalagnanam, Industrial Procurement Auctions,
MIT Press, 2006, Ch. 23. Combinatorial Auctions.

12. M. O. Ball, G. L. Donohue, K. Hoffman, Auctions for the Safe, Efficient, and Equitable
Allocation of Airspace System Resources, MIT Press, 2006, Ch. 20. Combinatorial Auc-
tions.

13. A. Pekec, M. H. Rothkopf, Combinatorial auction design, Manage. Sci. 49 (11) (2003)
1485–1503.

14. V. Krishna, Auction Theory, Academic Press, 2002.
15. P. Milgrom, Putting Auction Theory to Work, Cambridge University Press, 2004.
16. N. Nisan, Bidding Languages for Combinatorial Auctions, MIT Press, 2006, Ch. 9. Com-

binatorial Auctions.
17. M. H. Rothkopf, A. Pekec, R. M. Harstad, Computationally manageable combinational

auctions, Management Science 44 (8) (1998) 1131–1147.
18. A. Andersson, M. Tenhunen, F. Ygge, Integer programming for combinatorial auction

winner determination, in: Fourth International Conference on Multiagent Systems (ICMAS
2000), Boston, MA, 2000, pp. 39–46.

19. T. Sandholm, Algorithm for optimal winner determination in combinatorial auctions, Ar-
tificial Intelligence 135 (1-2) (2002) 1–54.

20. Y. Fujishima, K. Leyton-Brown, Y. Shoham, Taming the computational complexity of
combinatorial auctions: Optimal and approximate approaches., in: Proceeding of the Six-
teenth International Joint Conference on Artificial Intelligence (IJCAI’99), 1999, pp. 548–
553.

28

21. K. Leyton-Brown, Y. Shoham, M. Tennenholtz, An algorithm for multi-unit combinatorial
auctions, in: Proceedings of the American Association for Artificial Intelligence Conference
(AAAI), 2000, pp. 56–61.

22. D. Lehmann, R. Müller, T. Sandholm, The winner determination problem, MIT Press,
2006, Ch. 12. Combinatorial Auctions.

23. R. Müller, Tractable Cases of the Winner Determination Problem, MIT Press, 2006, Ch.
13. Combinatorial Auctions.

24. T. Sandholm, Optimal Winner Determination Algorithms, MIT Press, 2006, Ch. 14. Com-
binatorial Auctions.

25. A. Giovannucci, Computationally Manageable Combinatorial Auctions for Supply Chain
Automation, Ph.D. thesis, Universitat Autonoma de Barcelona. Departamento de ciencias
de la Computacion. http://specs.upf.edu/files/u20/Monografia.pdf. (2008).

26. C. Petri, Kommunikation mit Automaten.Univ. Bonn, Institut für Instrumentelle Mathe-
matik, Schriften des IIM Nr. 2, 1962., Tech. rep., English translation: RADC-TR-65-377,
Griffiths Air Base, New York (1966).

27. R. Lipton, The reachability problem requires exponential space, Tech. Rep. 62, Yale Uni-
versity (1976).

28. A. Tarek, N. Lopez-Benitez, Optimal legal firing sequence of Petri nets using linear pro-
gramming, Optimization and Engineering 5 (1) (2004) 25–43.

29. Y. Engel, M. P. Wellman, K. M. Lochner, Bid expressiveness and clearing algorithms in
multiattribute double auctions, in: EC ’06: Proceedings of the 7th ACM conference on
Electronic commerce, ACM Press, New York, NY, USA, 2006, pp. 110–119.

30. J. Esparza, S. Melzer, Verification of safety properties using integer programming: Beyond
the state equation, Formal Methods in System Design 16 (2004) 159–189.

