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Abstract We investigate the properties of an abstract negotiation framework
where agents autonomously negotiate over allocations of indivisible resources.
In this framework, reaching an allocation that is optimal may require very
complex multilateral deals. Therefore, we are interested in identifying classes
of valuation functions such that any negotiation conducted by means of deals
involving only a single resource at a time is bound to converge to an optimal
allocation whenever all agents model their preferences using these functions. In
the case of negotiation with monetary side payments amongst self-interested
but myopic agents, the class of modular valuation functions turns out to be
such a class. That is, modularity is a sufficient condition for convergence in
this framework. We also show that modularity is not a necessary condition.
Indeed, there can be no condition on individual valuation functions that would
be both necessary and sufficient in this sense. Evaluating conditions formulated
with respect to the whole profile of valuation functions used by the agents in
the system would be possible in theory, but turns out to be computationally
intractable in practice. Our main result shows that the class of modular func-
tions is maximal in the sense that no strictly larger class of valuation functions
would still guarantee an optimal outcome of negotiation, even when we permit
more general bilateral deals. We also establish similar results in the context of
negotiation without side payments.

Y. Chevaleyre
LAMSADE, Université Paris-Dauphine, France
E-mail: yann.chevaleyre@lamsade.dauphine.fr

U. Endriss
ILLC, University of Amsterdam, The Netherlands
E-mail: ulle.endriss@uva.nl

N. Maudet
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1 Introduction

The problem of allocating a set of indivisible resources to a set of self-interested
agents has recently received much attention from the Artificial Intelligence
and Multiagent Systems communities [7,19,27] and has important applications
ranging from electronic commerce and industrial procurement [17], over the
joint exploitation of earth observation satellites [21], to Grid computing [15].
Much work in this area has focussed on combinatorial auctions [10]. In this
case, the allocation procedure is centralised, and the so-called winner deter-
mination problem is the problem of determining the allocation of resources
maximising the sum of the prices associated with the bids satisfied by that
allocation.

A different perspective is taken when one assumes that the allocation pro-
cess is distributed, in the sense that agents autonomously negotiate over the
bundles of resources they hold and that allocations emerge over time, as a
consequence of a sequence of local deals agreed upon by the agents in the
system. This assumption is justified in many applications where no central au-
thority can be relied upon to decide on the allocation of resources. This may,
for instance, be the case in view of computational limitations of any potential
centre, or in view of its trustworthiness. In this case, the system designer will
typically seek to set up the system in such way that it nevertheless guarantees
certain desirable properties, but without directly interfering in the negotia-
tion process itself. Similar considerations have led to research areas such as
distributed constraint optimisation [14] or distributed mechanism design [25,
26]. In this paper we further analyse a framework for distributed negotiation
over indivisible resources recently investigated by a number of authors [30,13,
12,29,4].

We assume a set of negotiating agents populating the system, and we model
their preferences (over different bundles of resources) by means of valuation
functions. In order to pursue their own interests, agents agree on deals ben-
efitting themselves but without planning ahead (i.e. they are both rational
and myopic [30]), thereby modifying the allocation of resources. Negotiation
is thus a local process; groups of individual agents come together to exchange
resources according to their individual interests, without regard for the sys-
tem as a whole. From a global point of view, on the other hand, a system
designer may seek to ensure that negotiation converges towards an allocation
that is “optimal” according to a suitable metric. This would typically be some
form of aggregation of the individual agents’ preferences, i.e. we can employ
well-known formal tools from welfare economics and social choice theory to
characterise optimal allocations. Standard examples are the notions of Pareto
optimality and social welfare [2,22]. In this paper, we are mostly going to
be interested in negotiating allocations of resources that maximise utilitarian
social welfare, i.e. the sum of individual agent valuations.

The work described here is complementary to the large body of literature
on mechanism design and game-theoretic models of negotiation in multiagent
systems (see e.g. [19,27,25]). Rather than analysing the incentives of individual
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agents in detail, here we simply assume that agents are rational in the sense of
never accepting a disadvantageous deal, but we do not assume that they will
necessarily attempt to negotiate the very best outcome for themselves in every
single step of a negotiation process. In fact, we assume that the system designer
does not know what the precise negotiation strategies used by the agents are.
All that is known is that no agent will ever accept a deal that would decrease
their utility. Our interests concentrate on the interplay of the local and the
global level: assuming that agents only negotiate mutually beneficial deals,
how does this affect social welfare for the system as a whole?

Section 2 introduces the negotiation framework used in this paper. We are
going to distinguish two variants of the framework. In the first one, agents may
enhance deals with monetary side payments (framework with money) to make
them more attractive to agents who would otherwise have no incentive to agree
to a particular deal. In the second variant of the negotiation framework, agents
are assumed not to have the option of using side payments (framework with-
out money). It is known that very complex multilateral deals are potentially
required to reach an optimal allocation [30,13]. When deals are restricted (e.g.
to a limited number of resources), it is only possible to guarantee an optimal
outcome by also restricting the problem space to agents whose preferences
have certain properties. These properties are modelled as restrictions to the
class of valuation functions that agents may use to model their preferences
over alternative bundles of resources. Section 3 defines two such restrictions.
The first is the well-known class of modular (also known as additive) valuation
functions. The second is a further restriction on modular functions, where the
valuation an agent may place on any one resource is limited to a choice be-
tween three given values (representing positive preference, negative preference,
and indifference). Each choice of values for positive and negative preference
gives rise to a different class of restricted valuation functions (the value for
indifference is 0 in all cases).

In this paper, we study the conditions under which negotiation conducted
by means of the simplest deals, involving one item at a time (or 1-deal nego-
tiation for short) still allows us to reach an optimal allocation. The focus on
1-deals is motivated by practical concerns: Negotiation protocols for 1-deals
are certainly realisable in practice (witness the well-known Contract-Net pro-
tocol [33]), while implementing any class of deals that is significantly more
complex is very challenging. Section 4 recalls (and slightly generalises) a re-
sult from the literature that shows that modelling preferences with modular
valuation functions is a sufficient condition for reaching an optimal alloca-
tion by means of rational (i.e. mutually beneficial) 1-deals. This applies to the
framework with money, and a similar result is proved for negotiation without
money. However, modularity is not a necessary condition. This is demonstrated
in Section 5 by means of a counterexample. We also show that there can be
no condition on valuation functions that would be both necessary and suf-
ficient for optimal allocations to be negotiable by means of rational 1-deals.
These results pertain to conditions on single valuation functions, to be met by
the functions of all the agents in the system. Section 5 concludes by showing
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that describing such a necessary and sufficient condition over the profile of
valuation functions of an entire agent society would be possible in theory, but
that it would be computationally intractable to evaluate any such condition
in practice. This result is obtained as a by-product of an NP-hardness proof
for the problem of checking whether, for a given profile of valuation functions,
any sequence of rational 1-deals is bound to result in an allocation with maxi-
mal social welfare, for a whole range of representation languages for encoding
valuation functions.

The main contribution of this paper, as far as the framework with money is
concerned, is to show that the class of modular valuation functions is maximal,
in the sense that no class strictly including the modular valuations functions
would still be sufficient for 1-deal negotiation. In fact, even if we allow for
any kind of bilateral deals (each involving two agents and any number of re-
sources), we cannot guarantee convergence anymore as soon as valuations are
drawn from any superclass of the class of modular functions. The proof de-
tailed in Section 6 shows that, given any non-modular valuation function, it is
always possible to construct modular valuation functions for the other agents
and select an initial allocation of resources such that the optimal allocation
cannot be reached by means of rational bilateral deals alone. This is followed
by a similar result for the framework without money, where each of the afore-
mentioned restrictions on the class of modular valuation functions turns out
to be both sufficient and maximal. We also show that when we change our
requirements from obtaining outcomes with maximal social welfare to obtain-
ing outcomes that are merely Pareto optimal, then we lose the maximality
property for the framework without money. Finally, Section 7 concludes.

2 Myopic negotiation over indivisible resources

In this section, we introduce the decentralised negotiation framework used
throughout this paper and report a number of known technical results [13,30].

2.1 Negotiation problems and deals

In this framework, a finite set of agents negotiate over a finite set of indivisible
resources. A resource allocation is a partitioning of the resources amongst
the agents (that is, every resource has to be allocated to one and only one
agent). As an example, the allocation A defined by A(i) = {r1} and A(j) =
{r2, r3} would allocate resource r1 to agent i, while resources r2 and r3 would
be owned by agent j. We are going to model the preferences of agents by
means of valuation functions mapping bundles of resources to real numbers.
The parameters of a negotiation problem are summarised in the following
definition:

Definition 1 (Negotiation problems) A negotiation problem is a triple
P = 〈N ,R,V〉, where
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– N = {1, . . . , n} is a finite set of agents (n ≥ 2);
– R = {r1, . . . , rm} is a finite set of indivisible resources;
– V = 〈v1, . . . , vn〉 is a profile of valuation functions, such that for all i ∈ N ,

vi is a mapping from 2R to R.

Sometimes we will talk about negotiation problems together with an initial
allocation A0 : N → 2R.

Observe that the value of a valuation function only depends on the re-
sources held by the agent in question, i.e. agents are not concerned with re-
sources held by other agents or any other external factors. We are frequently
going to use the abbreviation vi(A) for vi(A(i)), representing the value as-
signed by agent i to the bundle it holds in allocation A.

Agents may agree on a deal to exchange some of the resources they pos-
sess. Such a deal transforms the current allocation of resources A into a new
allocation A′; that is, we can define a deal as a pair δ = (A,A′) of allocations
(with A 6= A′). When speaking of a sequence of deals 〈δ1, δ2, δ3, . . .〉, it is un-
derstood that the input allocation for δ2 is the output allocation for δ1, the
input allocation for δ3 is the output allocation for δ2, and so forth.

We should stress that this is a multilateral negotiation framework. A single
deal may involve the displacement of any number of resources between any
number of agents. An actual implementation of this abstract framework may,
however, not allow for the same level of generality. Sandholm [30] has proposed
a typology of different types of deals, such as swap deals involving an exchange
of single resources between two agents or cluster deals involving the transfer
of a set of items from one agent to another. The simplest type of deals are
those involving only a single resource (and thereby only two agents).

Definition 2 (1-deals) A 1-deal is a deal δ = (A,A′) reallocating exactly
one resource: #{r ∈ R | ∃i, j ∈ N such that i 6= j and r ∈ A(i) ∩A′(j)} = 1.

Another important class of deals are those that may involve any number of
resources, but only two agents at a time.

Definition 3 (Bilateral deals) A bilateral deal is a deal δ = (A,A′) between
exactly two agents: #{i ∈ N | A(i) 6= A′(i)} = 2.

The above are conditions on the structure of a deal. Other conditions relate
to the acceptability of a deal to a given agent. We assume that agents are
rational in the sense of aiming at maximising their individual welfare (util-
ity/valuation). Furthermore, agents are assumed to be myopic. This means
that agents will not accept deals that would reduce their level of welfare, not
even temporarily, because they are either not sufficiently able to plan ahead
or not willing to take the associated risk (see also Sandholm’s work [30] for a
justification of such an agent model).

2.2 Negotiating with money

In the first variant of this framework, we will permit agents to enhance deals
with monetary side payments, in order to compensate other agents for a
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possible loss in valuation. This can be modelled using a payment function
p : N → R. Such a function has to satisfy the side constraint

∑
i∈N p(i) = 0,

i.e. the overall amount of money in the system remains constant. If p(i) > 0,
then agent i pays the amount of p(i), while p(i) < 0 means that it receives the
amount of −p(i). The following rationality criterion will define the acceptabil-
ity of deals:

Definition 4 (Individual rationality) A deal δ = (A,A′) is individually
rational (IR) if there exists a payment function p such that vi(A′)−vi(A) > p(i)
for all i ∈ N , except possibly p(i) = 0 for agents i with A(i) = A′(i).

From a system designer’s perspective, we are interested in assessing the well-
being of the whole society, or social welfare [2,22], which is often defined as
the sum of valuations of all the agents.

Definition 5 (Social welfare) The social welfare sw(A) of an allocation A
is defined as follows:

sw(A) =
∑
i∈N

vi(A)

This is the utilitarian definition of social welfare. While this is the definition
usually adopted in the multiagent systems literature [31,36], we should stress
that also several of the other notions of social welfare developed in the so-
cial sciences (e.g. egalitarian social welfare [2,22]) do have applications in the
context of multiagent resource allocation [7].

We now recall two important known results. The first one makes the con-
nection between the local decisions of agents and the global behaviour of the
system explicit [13]:

Lemma 1 (Rationality and social welfare) A deal δ = (A,A′) is IR iff
sw(A) < sw(A′).

That is, side payments can be arranged in such a way that a given deal is
beneficial for all the agents involved if and only if that deal increases social
welfare. The second result is the fundamental convergence theorem for this
negotiation framework [30]:

Theorem 1 (Maximising social welfare) Any sequence of IR deals will
eventually result in an allocation of resources with maximal social welfare.

That is, there can be no infinite sequence of IR deals, and any finite sequence
that does not culminate in an allocation with maximal social welfare can still
be extended with a further IR deal. The main significance of this result, above
and beyond the equivalence of rational deals and social welfare-increasing deals
stated in Lemma 1, is that any sequence of deals satisfying the rationality
criterion will eventually converge to an allocation that is socially optimal.
There is no need for agents to consider anything but their individual interests.
Every single deal is bound to increase social welfare and there are no local
optima the system could get stuck in.
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2.3 Negotiating without money

What happens if we do not allow agents to enhance deals with monetary side
payments (or explicit utility transfers), in order to compensate other agents
for a possible loss in value? In this context, we shall assume that agents are
cooperatively rational in the sense of accepting deals that may not result in a
strict increase in personal welfare, with the further condition that at least one
agent will strictly benefit from the deal.

Definition 6 (Cooperative rationality) A deal δ = (A,A′) is called co-
operatively (CR) rational if vi(A) ≤ vi(A′) for all i ∈ N and there exists an
agent j ∈ N such that vj(A) < vj(A′).

Note that we have sw(A) < sw(A′) for any deal δ = (A,A′) that is CR, but
not vice versa. Clearly, in this general setting, it is not possible to guarantee
that agents will eventually reach an allocation with maximal social welfare, in
the sense previously defined. A result similar to Theorem 1 can be achieved,
though, if we consider the Pareto optimality criterion instead (an allocation
is Pareto optimal when no other allocation is strictly better for one agent
without being worse for any of the others): any sequence of deals satisfying the
cooperative rationality criterion will eventually converge to a Pareto optimal
allocation [13].

3 Modular valuation functions and variants

In this section, we introduce several classes of restricted valuation functions.
These types of functions will later be used to derive more specific results re-
garding negotiation when agents use such functions to model their preferences.
We are first going to define the well-known class of modular functions. This is
an important (see e.g. [27]), albeit simple, class of functions that can be used
in negotiation domains where there are no synergies (either complementaries
or substitutables) between different resources.

Definition 7 (Modular valuation) A valuation function v is modular if
the following condition is satisfied for all bundles R1, R2 ⊆ R:

v(R1 ∪R2) = v(R1) + v(R2)− v(R1 ∩R2) (1)

The class of modular functions includes the class of additive functions.1 This
may be seen as follows. Let R be any non-empty bundle of resources and let
r ∈ R. Then equation (1) implies v(R) = v(R \ {r}) + [v({r}) − v(∅)]. If we
apply this step recursively for every resource in R, then we end up with the
following equation:

v(R) = v(∅) +
∑
r∈R

[v({r})− v(∅)] (2)

1 A valuation function is additive if the valuation assigned to a set of resources is always
the sum of valuations assigned to its members.
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That is, in case v(∅) = 0, the value given to a set will be the sum of the values
of its members (i.e. v will be additive). Clearly, equation (2) also implies
equation (1), i.e. the two characterisations of the class of modular valuation
functions are equivalent.

A further useful characterisation of the class of modular valuations func-
tions is the following. A valuation function v is modular iff the following holds
for every bundle R ⊆ R and every pair of resources r1, r2 ∈ R \R:

v(R ∪ {r1, r2}) = v(R ∪ {r1}) + v(R ∪ {r2})− v(R) (3)

The equivalence to equation (1) is readily checked (one direction is obvious;
the other can be established by a simple inductive argument).

We now introduce a restriction on the class of modular valuation func-
tions, namely the classes of modular functions with fixed α, β-values (or Mα,β

for short). Intuitively, Mα,β functions are suitable in domains where agents
can only like, dislike, or possibly be indifferent towards any given resource
in the system. The key point is that agents all agree on the intensities used
to indicate positive and negative preferences for each single resource. Mα,β

functions hence define a set of classes, each class being parametrised by the
range of possible values assigned to each resource.

Definition 8 (Modular functions with fixed α, β-values) A profile of
valuation functions 〈v1, . . . , vn〉 is called modular with fixed α, β-values if

– there exists a list of coefficients α = (αr1 , . . . , αr|R|) ∈ (R+)|R|,
– there exists a list of coefficients β = (βr1 , . . . , βr|R|) ∈ (R−)|R|, and
– for each valuation function vi, there exist two sets S+

i , S−i ⊆ R with S+
i ∩

S−i = ∅, such that for all bundles R ⊆ R, vi(R) can be computed as:

vi(R) = vi(∅) +
∑

r∈R∩S+
i

αr +
∑

r∈R∩S−i

βr

Given two lists of coefficients α ∈ (R+)|R| and β ∈ (R−)|R|, the class Mα,β

is defined as the largest set of modular functions with fixed α, β-values.

Consider, for example, the class M(2,1),(−20,−7) over resources {r1, r2}, and let
v1 and v2 be two valuation functions drawn from this class such that v1(∅) =
v2(∅) = 0, S+

1 = {r1}, S−1 = {r2}, S+
2 = {r2}, and S−2 = ∅. Then, the values

of v1 and v2 are as shown in the following table:

R v1(R) v2(R)
∅ 0 0

{r1} 2 0
{r2} -7 1

{r1, r2} -5 1

Observe that the union of all classes of modular functions with fixed α, β-values
is the class of modular functions.
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4 Sufficient classes of valuation functions

While Theorem 1 shows that, in principle, it is always possible to negotiate
an allocation of resources that is optimal from a social point of view, deals
involving any number of agents and resources may be required to do so [13,
30]. In particular, the most basic type of deal, which involves moving a single
resource from one agent to another and which is the type of deal implemented
in most systems realising a kind of Contract-Net protocol [33], is certainly not
sufficient for negotiation between agents that are not only rational but also
myopic.2 This is best explained by means of an example. Let N = {1, 2, 3} and
R = {r1, r2, r3}. Suppose the valuation functions of these agents are defined
as follows (over singleton sets):

v1({r1}) = 5 v1({r2}) = 4 v1({r3}) = 0
v2({r1}) = 0 v2({r2}) = 5 v2({r3}) = 4
v3({r1}) = 4 v3({r2}) = 0 v3({r3}) = 5

Furthermore, for any bundle R not listed above, suppose vi(R) = 0 for all
i ∈ N . Let A0 with A0(1) = {r2}, A0(2) = {r3} and A0(3) = {r1} be the initial
allocation, i.e. sw(A0) = 12. The optimal allocation is A∗ with A∗(1) = {r1},
A∗(2) = {r2} and A∗(3) = {r3}, which yields a social welfare of 15. All other
allocations have lower social welfare than both A0 and A∗. Hence, starting from
A0, the deal δ = (A0, A

∗) would be the only deal increasing social welfare. By
Lemma 1, δ would also be the only deal that is IR. This deal, however, involves
all three resources and affects all three agents. In particular, δ is not a 1-deal.
Hence, if we choose to restrict ourselves to IR deals, then 1-deals are not
sufficient to negotiate allocations of resources with maximal social welfare. Of
course, for some particular negotiation problems, IR 1-deals will be sufficient.
The difficulty lies in recognising the problems where this is so.

The structural complexity of deals required to be able to guarantee socially
optimal outcomes partly stems from the generality of the framework. By in-
troducing restrictions on the class of admissible valuation functions, it could
conceivably be the case that it is possible to ensure convergence to an alloca-
tion with maximal social welfare by means of simpler deals. In other words,
if all valuation functions belong to a certain restricted class of functions, then
this may turn out to be a sufficient condition for convergence to a social op-
timum by means of structurally simple deals. In this section, we establish two
such results for modular valuation functions and 1-deals.

4.1 Framework with money

It turns out that in domains where all valuation functions are modular, it is
always possible to reach a socially optimal allocation by means of a sequence

2 Dunne and colleagues [12,11] have analysed the computational complexity of checking
whether, for a given scenario, 1-deal negotiation is sufficient (a topic which we will also
address in Section 5.3). Andersson and Sandholm [1] have run several experiments to analyse
the quality of allocations that can be attained using 1-deals in practice.
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of rational deals involving only a single resource each. This is a slight gener-
alisation of a result originally proved for the case of additive valuations [13],
and our proof closely follows that original proof.

Theorem 2 (Convergence in modular domains) If all valuation func-
tions are modular, then any sequence of IR 1-deals will eventually result in an
allocation with maximal social welfare.

Proof By Lemma 1, any IR deal results in a strict increase in social welfare.
Together with the fact that the number of distinct allocations is finite, this
ensures that there can be no infinite sequence of IR deals (termination). It
therefore suffices to show that for any allocation that does not have maximal
social welfare there still exists an IR 1-deal that would be applicable.

We are going to use the alternative characterisation of modular valuation
functions given by equation (2). For any allocation A, let fA be the function
mapping each resource r to the agent i that holds r in situation A. Then,
for modular domains, the formula for social welfare (see Definition 5) can be
rewritten as follows:

sw(A) =
∑
i∈N

vi(∅) +
∑
r∈R

v′fA(r)({r})

with v′i(R) = vi(R) − vi(∅). Now assume we have reached an allocation of
resources A that does not have maximal social welfare, i.e. there exists another
allocation A′ with sw(A) < sw(A′). Considering the above definition of social
welfare and observing that

∑
i∈N vi(∅) is a constant that is independent of

the current allocation, this implies that at least one resource r must satisfy
the inequality v′fA(r)({r}) < v′fA′ (r)

({r}), i.e. the agent owning r in allocation
A values that resource less than the agent owning it in allocation A′. But
then the 1-deal consisting of passing r from agent fA(r) to agent fA′(r) would
already increase social welfare and thereby be rational. ut

Like Theorem 1, the above establishes an important convergence result towards
a global optimum by means of decentralised negotiation between self-interested
agents. In addition, provided all valuation functions are modular, convergence
can be guaranteed by means of a much simpler negotiation protocol, which
only needs to cater for agreements on 1-deals (rather than multilateral deals
over sets of resources).

4.2 Framework without money

We now prove a similar result for the variant of our framework that does not
allow for monetary side payments.

Theorem 3 (Convergence in Mα,β-domains) Let Mα,β be a class of mod-
ular functions with fixed α, β-values. If all valuation functions are drawn from
Mα,β, then any sequence of CR 1-deals will eventually result in an allocation
of resources with maximal social welfare.
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Proof By Definition 6, any CR deal results in a strict increase in social welfare.
Together with the fact that the number of distinct allocations is finite, this
ensures that there can be no infinite sequence of CR deals (termination). It
therefore suffices to show that for any allocation that does not have maximal
social welfare there still exists a CR 1-deal that would be applicable. If an
allocation A does not have maximal social welfare then it must be the case
that some agent i holds a resource r and that there is another agent j in the
system such that vi({r}) < vj({r}). That is, either (1) some agent i holds
a resource r with vi({r}) − vi(∅) = 0, and there is another agent j in the
system with vj({r})− vi(∅) = αr, or (2) some agent i holds a resource r with
vi({r}) − vi(∅) = βr, and there is another agent j in the system such that
either vj({r}) − vj(∅) = 0, or vj({r}) − vj(∅) = αr. In each case, passing r
from i to j would be a CR deal, so either negotiation has not yet terminated
or we are in situation with maximal social welfare. ut

Theorem 3 generalises a previous result stating that any sequence of CR 1-
deals will eventually result in an allocation with maximal social welfare in case
all agents are using so-called 0-1 functions to model their preferences [13]. A
valuation function vi is a 0-1 function if it is additive and vi({r}) = 0 or
vi({r}) = 1 for all r ∈ R. That is, the class of 0-1 functions is like the class
M(1,1,...,1),(0,0,...,0), except that the former does not allow for non-zero values
to be assigned to the empty set.

5 Necessity issues

As explained earlier, the convergence results of the previous section may be
considered results on sufficient conditions on valuation functions for conver-
gence by means of rational 1-deals. This naturally raises the question whether
there may be a corresponding set of necessary conditions on valuation func-
tions. In this section, we are going to give a negative answer to this question.
We are first going to show that all valuation functions belonging to the class
of modular functions (which we have shown to be a sufficient condition for
convergence by means of 1-deals) is not a necessary condition. Then we are
going to show that, in fact, there can be no condition on individual valuation
functions that would be both necessary and sufficient in this sense. Of course,
it is possible to formulate a necessary and sufficient condition for convergence
by means of 1-deals for profiles of valuation functions (i.e. if we are allowed to
give conditions on how the valuations of different agents should relate to each
other). However, as we are going to show, evaluating such a condition would
be computationally intractable.3

3 While the analysis in this section applies to the framework of negotiation with money,
a similar case may be made for negotiation without money.
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5.1 Modularity is not necessary

Modularity is not a necessary condition for convergence by means of IR 1-deals.
We demonstrate this by means of the following example. Suppose R = {r1, r2}
and there are two agents with valuation functions v1 and v2 defined as follows:

v1(∅) = 0 v2(∅) = 0
v1({r1}) = 10 v2({r1}) = 10
v1({r2}) = 10 v2({r2}) = 10
v1({r1, r2}) = 0 v2({r1, r2}) = 0

These functions are not modular. The situation is as follows: each agent is
willing to hold a single resource, and has no preference as to which resource
it actually holds. The optimal allocations are those where each agent holds
exactly one resource. Furthermore, as may easily be checked, IR 1-deals are
sufficient to move to the optimal allocation for this scenario, despite the func-
tions not being modular. Hence, modularity cannot be a necessary condition
for convergence.

5.2 There is no sufficient and necessary class

In fact, it is possible to show that there can be no class of valuation functions
that would be both sufficient and necessary. It suffices to produce two concrete
functions v1 and v2 such that (i) each of them would guarantee convergence
if all agents were to use it, and (ii) there is a scenario where some agents are
using v1 and others v2 and convergence is not guaranteed. This is so, because
assuming that a necessary and sufficient class exists, (i) would imply that both
v1 and v2 belong to that class, while (ii) would entail the contrary. We give
two such functions for the case of two agents and two resources (the argument
is easily augmented to the general case):

v1(∅) = 0 v2(∅) = 0
v1({r1}) = 1 v2({r1}) = 5
v1({r2}) = 2 v2({r2}) = 5
v1({r1, r2}) = 3 v2({r1, r2}) = 5

The function v1 is modular, i.e. all agents using that function is a sufficient
condition for guaranteed convergence to an optimal allocation by means of IR
1-deals (Theorem 2). Clearly, convergence is also guaranteed if all agents are
using v2. However, if the first agent uses v1 and the second v2, then the alloca-
tion A with A(1) = {r1} and A(2) = {r2} is not socially optimal and the only
deal increasing social welfare (and thereby, the only IR deal) would be to swap
the two resources simultaneously. Hence, no condition on all agents’ valuation
functions can be both sufficient and necessary to guarantee convergence to an
optimal allocation by means of IR 1-deals alone.
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5.3 Evaluating conditions on profiles of valuations functions is intractable

Our argument for the non-existence of any necessary and sufficient condition
for guaranteed convergence has directly exploited the fact that we were look-
ing for a single condition to be met by the valuation functions of all agents.
The problem could be circumvented by looking for suitable conditions on ne-
gotiation problems as a whole, where different valuation functions may meet
different such conditions. That is, we could try to formulate a condition for
profiles 〈v1, . . . , vn〉 of valuation functions. Clearly, such a condition does ex-
ist: trivially, 〈v1, . . . , vn〉 meets that condition iff convergence to an optimal
allocation is guaranteed for any initial allocation when agents are using the
valuation functions 〈v1, . . . , vn〉. Of course, phrased like this, this condition is
of no practical use. What we would require is a “simple” condition on valua-
tion profiles. The condition of modularity (for single valuations), for instance,
clearly is such a simple condition.

To make this notion of simplicity precise, we first need to fix a represen-
tation language for valuation functions. Then we can ask whether or not it is
the case that checking a particular condition for valuation profiles represented
in this language is a tractable decision problem. As we are going to argue
in this section, for a wide range of representation languages, there can be no
condition on valuation profiles that would be simple in this sense.

Formally, a representation language overR is defined in terms of a language
L ⊆ Σ∗, where Σ is some finite set of symbols, and a function f : L × 2R →
Q mapping each pair of a word (representing a valuation function) and a
set of resources to a rational number. A representation language is said to
be polynomial-time computable if the computation of f(v,R) can be done in
polynomial time with respect to the number of symbols in v and the size of R,
for any v ∈ L and R ⊆ R. We will continue to write v(R) as a shorthand for
f(v,R). Most widely-used languages fit this definition. We will discuss several
of them below. Note that there are also exceptions though, such as the so-
called OR-language, mainly used in the combinatorial auction literature [24],
which is not polynomial-time computable.

Checking whether a given profile of valuation functions guarantees conver-
gence to an allocation with maximal social welfare by means of IR 1-deals is
equivalent to a decision problem that has been referred to as 1-convergence
(1-Conv) in the literature [7,11]:

Definition 9 (1-convergence problem) Given a negotiation problem
〈N ,R,V〉, with V being represented in the representation language REP, the
1-convergence problem 1-Conv(REP) is the problem of checking whether any
sequence of IR 1-deals (originating from any initial allocation) will eventually
result in an allocation with maximal social welfare.

1-Conv has been shown to be coNP-complete in case valuations are repre-
sented using the so-called SLP form, which encodes valuation functions as
straight-line programs [11]. This means that checking whether a profile of
valuation functions given in SLP form satisfies the necessary and sufficient
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condition for successful 1-deal negotiation is also coNP-complete, hence com-
putationally intractable. In the sequel, we are going to extend this complexity
result to a whole range of representation languages, which only have to meet
very weak conditions for the hardness result to apply.

We are going to establish our hardness result via a reduction from the so-
called valuation improvement problem (Vip) problem, which is closely related
to the problem of finding the maximum of a valuation function. These problems
are known to be NP-hard for a wide range of representation languages.

Definition 10 (Valuation improvement problem) Given a valuation
function v, expressed in a particular representation language REP, and a bun-
dle Q ⊆ R, the valuation improvement problem Vip(REP) is the problem of
checking whether there exists a bundle Q′ ⊆ R such that v(Q) < v(Q′).

Our proof will apply to representation languages that are r-composed, where
r is a particular resource. Roughly, a representation language REP satisfies
this property, if for any valuation function v that can be represented in REP
we can also represent certain functions that are like v, except that they either
return 0 or the same value as v reduced by a particular constant, depending
on whether or not r is included in the bundle being evaluated. (We stress that
this is an artificial property of a language, specifically designed to suit the
reduction to follow.)

Definition 11 (r-composition) Let REP and REP ′ be two representation
languages for valuation functions and let r ∈ R be a resource. REP is said
to be an r-composition over REP ′ if for all v ∈ REP and for all x ∈ {v(R) |
R ⊆ R}, the functions v and v defined below belong to REP ′ and the number
of symbols needed to represent both functions is polynomial in |v| (the number
of symbols needed to encode v) and in the number of resources.4

v(R) =
{

v(R)− x if r ∈ R
0 otherwise v(R) =

{
v(R)− x if r /∈ R
0 otherwise

For the sake of simplicity, we will say that a representation language REP
is r-composed (for some given resource r) if there exist some representation
language REP ′ over which REP is an r-composition.

Our result will apply to any representation language REP that is r-
composed over some representation language REP ′ for which the valuation

4 Note that encoding the function v (or v) as a sequence of bits requires encoding v, r,
and x. Unfortunately, x may be a huge fractional number. Thus, if we choose to encode x
directly as a sequence of bits, the total number of bits may not be polynomial in |v| and
|R|. To overcome this problem, instead of encoding x, one may encode the bundle R whose
value under v is x. This way, the size of v remains polynomial in |v| and |R|. This will be
of some importance in the proof to follow, as we will use a reduction to a decision problem
in which the size of instances will also be polynomial in |v| and |R|. For representation
languages REP that encode the numbers used to make up the values of v directly (such as
e.g. the k-additive form discussed in the sequel), this point is of course not an issue, as the
complexity of representing those numbers is already being accounted for when we consider
the complexity of representing v.
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improvement problem Vip(REP ′) is either NP-hard or coNP-hard. As many
interesting representation languages satisfy these properties, the results pre-
sented here are fairly general. Let us briefly mention some of the representation
languages commonly used in multiagent resource allocation [7]. In the follow-
ing, r is any resource chosen from R.

– The k-additive form [18,8] models a valuation function v as a set of coef-
ficients αT for T ⊆ R and |T | ≤ k, and fixes v(R) =

∑
T⊆R αT . That is,

αT is the marginal value of obtaining all the items in T together, beyond
the value associated with any of its strict subsets. Vip is NP-hard for the
k-additive form for any k ≥ 2 [34]. Also, for any k ∈ N, the k-additive form
is an r-composition over the (k+1)-additive form. To see this, observe that
given a representation {αT } of v, we can represent v by means of the co-
efficients {α′T } defined as follows: α′{r} := α∅− x, α′T∪{r} := αT for T 6= ∅,
and αT := 0 for all T not containing r (and similarly for v).

– Posiforms of degree k [5], which are a generalisation of the k-additive form
that also permit the definition of marginal values for not obtaining certain
resources, are r-compositions over posiforms of degree k+1. The argument
for r-composability is similar to the one given above, and NP-hardness of
the Vip follows from the corresponding result for the k-additive form (or
from observing that it is equivalent to a standard NP-hard combinatorial
problem known as Weighted Max k-Constraint Sat [3]).

– The language of weighted propositional formulas associates resources with
propositional variables and encodes valuation functions as sets of weighted
formulas [34,7]. The value of a bundle is then given by the sum of the
weights of the formulas that are “true” over that bundle. This language
is an r-composition over itself: to construct a representation of v given
a representation of v, we rewrite each weighted formula (ϕ, w) as (ϕ ∧
r, w) and add the weighted formula (r,−x). Clearly, Vip is NP-hard for
this language, by virtue of an immediate reduction from Sat [3,34]. Many
sublanguages of this general framework will also satisfy r-composability
and NP-hardness of the associated Vip [34]. These languages include the
languages advocated by Boutilier and Hoos [6], amongst others, for the
compact representation of bids in combinatorial auctions.

– The SLP (straight-line program) representation is an r-composition over
itself. Intuitively, SLPs are computer programs without loops, taking a
bundle of resources as input and returning the associated valuation as
output. Here, Vip is also NP-hard [12].

We should also note that our result does not cover languages such as the
so-called “bundle form” (which simply lists the valuation for each bundle in
a large table) or the XOR-language used in combinatorial auctions [7,24],
which is like the bundle form, except that there is an implicit monotonicity
assumption. These languages lack succinctness for most interesting classes of
valuation functions, and as a consequence the associated Vip problem is linear
in the size of the representation.
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We are now ready to present our theorem on the intractability of 1-Conv.
Our proof employs a polynomial-time Turing reduction (as opposed to the
more widely used Karp reductions).5

Theorem 4 (Complexity of 1-convergence) Let REP be a polynomial-
time computable representation language. If the following conditions hold, then
1-Conv(REP) is NP-hard under polynomial-time Turing reductions, even
with only two agents:

– there exist a resource r ∈ R and a representation language REP ′ over
which REP is an r-composition;

– the Vip problem for this representation language REP ′ is NP-hard; and
– the zero-valued valuation function v0 ≡ 0 is representable in REP.

Proof In the following, we will show NP-hardness using a Turing reduction
from the Vip problem. More precisely, we will show that, given an oracle
deciding the 1-Conv(REP) problem in a single time unit, we can build a
deterministic algorithm solving the Vip(REP’) problem in polynomial time.
The proof is constructive, i.e. the algorithm will be given below.

Let 〈v,Q〉 be an instance of the Vip problem over the REP ′ representation.
Note that the number of bits required to encode such an instance is bounded
from above by O(|v|+ |R|). Let v0 be the zero-valued valuation function, and
let the set of agents be N = {1, 2}. Now define two valuation functions (where
r is the fixed resource mentioned in the theorem):

v(R) =
{

v(R)− v(Q) if r ∈ R
0 otherwise v(R) =

{
v(R)− v(Q) if r /∈ R
0 otherwise

Clearly, these two valuation function can be represented in REP, because of
the r-composition property. Based on these functions, we can now define two
instances of 1-Conv using two agents and the same set of resources, as follows:
Let I be the 1-Conv instance for two agents with valuation functions v and
v0; and let I be the 1-Conv instance with v and v0. We will show next that
deciding whether these instances are 1-convergent or not will eventually give
us the answer to the Vip problem 〈v,Q〉.

First of all, note that if the answer to the Vip problem over 〈v,Q〉 is NO
(i.e. if Q is an optimal bundle), then both I and I are 1-convergent. The
reason is that 0 will be the highest value the functions v and v can take in
this case, and moving resource r from an agent to another in I or I will lead
to an optimal allocation if the current allocation is not already optimal. By
contraposition, we can deduce the following:

– If I or I are not 1-convergent, then the answer to the Vip problem is YES.

5 To be precise, we are using a polynomial-time truth-table reduction, which is a special
case of a Turing reduction [20]. Recall that polynomial-time Turing (and truth-table) reduc-
tions do not allow us to distinguish between NP- and coNP-hardness [16,20], which explains
why our NP-hardness result is not at odds with the known coNP-hardness result for the
special case for the SLP form [11]
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Algorithm: deciding Vip with the help of an oracle for 1-Conv
Input: valuation function v, bundle Q ⊆ R
Output: YES or NO

(1) if 〈v, v0〉 is not in 1-Conv or 〈v, v0〉 is not in 1-Conv, then return YES; else
(2) if there exists an IR 1-deal improving allocation 〈∅,R〉 for 〈v, v0〉, then return YES; else
(3) if there exists an IR 1-deal improving allocation 〈R, ∅〉 for 〈v, v0〉, then return YES; else
(4) return NO

Fig. 1 Algorithm summarising the reduction from 1-Conv to Vip

Consider now the case where both problems are 1-convergent. By definition of
v and v, the answer to the Vip problem is YES iff there exists an allocation A
such that v(A) > 0 or there exists an allocation A such that v(A) > 0. This in
turn is equivalent to checking whether there exists an allocation A such that
sw(A) > 0 for I or there exists an allocation A such that sw(A) > 0 for I.
Checking whether there exist allocations with social welfare exceeding 0 can
be done the following way: First, identify allocations A0 with sw(A0) = 0 for I
and A0 with sw(A0) = 0 for I. Such allocations are easily constructed. Simply
set A0 = 〈∅,R〉 and A0 = 〈R, ∅〉, yielding v(∅) + v0(R) = v(R) + v0(∅) =
0. Then, because both problem instances are assumed to be 1-convergent,
checking whether there exist allocations that are superior to A0 and A0 can be
reduced to checking whether there are any IR 1-deals that would be applicable
from these allocations. This can be checked in polynomial time. To summarise:

– If both I and I are 1-convergent, then consider allocations A0 = 〈∅,R〉
and A0 = 〈R, ∅〉. If there exists an IR 1-deal from A0 for I or if there exists
an IR 1-deal from A0 for I, then the answer to the Vip problem is YES,
otherwise it is NO.

This covers all possible cases. Hence, given our oracle for 1-Conv, we can
always decide Vip in polynomial time. Our reduction is summarised by the
algorithm shown in Fig. 1. ut

We stress that the decision problem 1-Conv, for which we have given a com-
plexity analysis here, is not intended to be viewed as a problem to be solved
by any of the participating parties during negotiation. Instead, this is a (hypo-
thetical) problem that would have to be solved by someone who wants to check
whether an agent society with a given profile of valuation functions could be
expected to solve any given resource allocation problem in an optimal manner
by means of 1-deals alone. By establishing NP-hardness, we have shown that
this would be an infeasible prospect.

To conclude this section, we recall that the NP-hardness result for 1-Conv
entails that, for many common representation languages, checking whether
profiles of valuation functions will guarantee convergence by means of IR 1-
deals is intractable. Therefore, searching for a condition over profiles of valu-
ation functions is unrealistic. As we have shown that no condition on single
valuation functions is both sufficient and necessary, and as, on top of that, we
have just argued that checking conditions on profiles of functions is intractable
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in most cases, the best thing we can do is to investigate whether some restricted
classes of valuation functions can be identified as being maximal. This is what
we shall do in the next section.

6 Maximal classes of valuation functions

Recall that valuation functions being modular is a sufficient condition for
convergence by means of IR 1-deals. In previous work [9] we have shown that
the class of modular valuation functions are also maximal with respect to the
class of 1-deals. This is to say that for no class of valuation functions strictly
including the class of modular functions we would still be able to ensure the
same kind of convergence result. The significance of this (surprising) result
can only be fully appreciated when considered together with the “negative”
result on necessary and sufficient conditions discussed in the previous section.

In this section, we are going to substantially strengthen the known maxi-
mality theorem by proving maximality with respect to the much larger class
of bilateral deals, and we are also going to establish two related results for the
framework without money.

6.1 Framework with money

The class of bilateral deals includes all 1-deals. Hence, by Theorem 2, if all
valuation functions are modular, then negotiation by means of IR bilateral
deals guarantees an outcome with maximal social welfare. We now show that
this ceases to be the case as soon as just a single valuation is non-modular.
That is, the class of modular valuation functions is maximal with respect to
the class of bilateral deals if we wish to ensure convergence for the framework
with money. This result applies to negotiation problems with three or more
agents (naturally, for two agents the class of bilateral deals is sufficient).

Theorem 5 (Maximality wrt. bilateral deals) Let M be the class of
modular valuation functions. Then for any class of valuation functions F such
that M ⊂ F , there are a negotiation problem with valuation functions drawn
from F and an initial allocation such that no sequence of IR bilateral deals
will lead to an allocation with maximal social welfare.

Proof Observe that for |R| ≤ 1, any valuation function is modular, i.e. the
theorem holds vacuously in these cases. Therefore, without loss of generality,
from now on we assume that there are at least two distinct resources in the
system.

We first prove the claim for the case of three agents 1, 2, 3 and two resources
r1, r2 and then argue how this immediately generalises to the general theorem.
Let v1 be any valuation function over {r1, r2} that is not modular. We will
show how to construct modular valuation functions v2 and v3 and an initial
allocation A0 such that moving to an optimal allocation is not possible by
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means of bilateral deals alone. v1 can be expressed in k-additive form using
coefficients a, b, c, d ∈ R:6

v1 = a + b.r1 + c.r2 + d.r1.r2

Given that v1 is non-modular we know that d 6= 0. We distinguish two cases:

(1) First, suppose d > 0. We define v2 and v3 as follows:

v2 = (b +
1
3
d).r1 + (c +

1
3
d).r2

v3 = (b +
1
3
d).r1 + (c +

1
3
d).r2

Furthermore, let A0 be such that agent 2 holds r1 and agent 3 holds r2.
Hence, sw(A0) = a + b + c + 2

3d. Let A∗ be the allocation where both
resources are held by agent 1. We have sw(A∗) = a + b + c + d > sw(A0).
The direct deal δ = (A0, A

∗) would not be bilateral. In fact, we can easily
check that there are no IR bilateral deals from A0: First, as agents 2 and
3 have identical modular valuation functions, no deal between them would
be IR. Second, the deal where agent 2 is selling r1 to agent 1 is reducing
social welfare by 1

3d and similarly for the deal where agent 3 is selling r2

to agent 1. There are no other bilateral deals from A0. Hence, A0 is not
optimal, but negotiation by means of IR bilateral deals is stuck.

(2) Now suppose d < 0. Choose a very large Ω ∈ R (in fact, any Ω > |b + 2
3d|

will do) and define v2 and v3 as follows:

v2 = (b +
2
3
d).r1

v3 = (c +
1
2
d).r2 −Ω.r1

Furthermore, let A0 be such that agent 2 holds r1 and agent 1 holds r2.
Hence, sw(A0) = a + b + c + 2

3d. Let A∗ be the allocation where agent 1
holds r1 and agent 3 holds r2, i.e. sw(A∗) = a + b + c + 1

2d. This sum is
greater than sw(A0), because d is negative. That is, there exists a better
allocation than A0 and that allocation is not reachable by means of a single
bilateral deal. It remains to be checked that no bilateral deal applicable
in A0 would be IR: First, the only possible deal between agents 1 and 2
would be to give r1 to agent 1, which would decrease social welfare by | 13d|.
Second, the only possible deal between agents 1 and 3 would be to give r2

to agent 3, which would decrease social welfare by | 12d|. Third, the only
possible deal between agents 2 and 3 would be to give r1 to agent 3, which
would also reduce social welfare (due to our choice of Ω).

6 The k-additive form has been introduced in Section 5.3. Here (and in the sequel) we
use a simplified notation: an agent with valuation function v1 assigns value a to the empty
bundle, increases their valuation of the bundle by b on receiving r1, by c on receiving r2,
and by an additional amount of d if both r1 and r2 are being received.
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According to the characterisation of modular functions given by equation (3)
in Section 3, if there are more than two resources in the system, then v1 must
still be non-modular with respect to two of the resources and a particular fixed
allocation as far as the other resources are concerned. We can distribute these
other resources amongst agents 1 and 2 according to this particular partial
allocation and define v2 such that agent 2 places prohibitively high positive
or negative values on them so that these additional resources will never be
involved in any IR deal. For example, if v1 = 2.r1 + 3.r2 − 1.r1.r2 + 5.r1.r2.r3,
then v1 is non-modular with respect to {r1, r2} for the fixed partial allocation
where agent 1 receives r3. Then, if we add the term −100.r3 to the definition
of v2, our proof given above (with d = 5 − 1) still applies. Clearly, this is a
general approach that applies to any non-modular function v1. Hence, it is
sufficient to consider the case of two resources, as done above. ut

Observe that the theorem only makes an existential statement, so there is
no need to prove anything for more than three agents, although examples for
larger numbers of agents can be constructed in the same manner as done in
the proof. Clearly, for the special case of just two agents, bilateral deals do
guarantee convergence—whatever the valuation functions may be.

Theorem 5 entails our earlier result [9] on the maximality of modular valu-
ation functions with respect to 1-deals, because every 1-deal is also a bilateral
deal. We state this result here as a corollary.

Corollary 1 (Maximality wrt. 1-deals) Let M be the class of modular
valuation functions. Then for any class of valuation functions F such that
M⊂ F , there are a negotiation problem with valuations drawn from F and an
initial allocation such that no sequence of IR 1-deals will lead to an allocation
with maximal social welfare.

The original direct proof of Corollary 1 [9] has been considerably more complex
than our proof of Theorem 5. We reproduce that proof in Appendix A, because
beyond of what follows from Theorem 5 that proof also shows that the class
of modular valuation functions is maximal with respect to 1-deals even for
problems with only two agents.

Why is Corollary 1 significant? As argued earlier, while the full abstract
negotiation framework introduced at the beginning of this paper would be
difficult to implement, designing a system that only allows for pairs of agents
to agree on deals over one resource at a time is entirely feasible. As we would
like to be able to guarantee socially optimal outcomes in as many cases as
possible, also for such a restricted negotiation system, we would like to be able
to identify the largest possible class of valuation functions for which such a
guarantee can be given. However, our discussion in Section 5 has shown that
there can be no class of valuation functions that exactly characterises the class
of negotiation problems for which negotiating socially optimal allocations by
means of rational 1-deals is always possible. Still, there are classes of valuation
functions that do guarantee optimal outcomes by means of 1-deal negotiation.
As shown by Theorem 2, the class of modular functions is such a class and it
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is certainly a natural, albeit simple and limiting, class to consider. An obvious
question to ask is therefore whether this class can be enlarged in any way
without losing the desired convergence property. Corollary 1 settles this ques-
tion by giving a negative answer: For any agent with a non-modular valuation
function there exist modular valuation functions (for the other agents) and an
initial allocation such that rational 1-deals alone do not suffice to negotiate an
allocation of resources with maximal social welfare. This is the case even for
small systems with just two agents.7

Theorem 5 substantially sharpens the previously known maximality result
(here stated as Corollary 1). It says that even if we are able to implement a
negotiation framework in which agents can successfully negotiate arbitrary bi-
lateral deals (requiring a rich negotiation protocol, going well beyond of what
is possible in many existing systems today), we cannot give guarantees for
socially optimal outcomes, unless all agents have preferences that are express-
ible in terms of modular valuation functions alone. Given the very limited
expressive power of modular preferences and the seemingly powerful concept
of general bilateral negotiation, this result is both sobering and surprising.

Can Theorem 5 be generalised even further? As we shall argue next, it
can but not in interesting ways. For instance, the class of modular valuation
functions is also maximal with respect to the class of bilateral deals enriched
with one specific trilateral deal, such as e.g. the deal that moves r1 from agent 1
to agent 2 and at the same time r2 from agent 1 to agent 3 (to see this, revisit
the proof of Theorem 5 and observe that having this additional deal available
would not have made a difference for the argument used). However, this specific
extension is of course of no practical interest. Extending Theorem 5 to larger
classes of deals that are natural and interesting does not seem possible. For
instance, it is not the case that the class of modular valuations functions
would be maximal with respect to the class of all bilateral and trilateral deals
together. Put differently, at least for some superclasses of M we can always
guarantee convergence by means of IR deals that involve at most three agents
each. This follows from known results: Observe that two resources suffice to
construct a non-modular function. In a domain with two resources any deal
can involve at most four agents. But in fact, a deal involving four agents must
be the composition of two independent deals between two agents each, and it
is known that such a deal can always be decomposed without violating IR [13].

7 As an aside we remark here that there may well be further such classes (that are both
sufficient and maximal), but we have not been able to identify any such class that would
also be interesting. An example for a class of valuation functions that is sufficient but not
interesting is the class of pseudo-constant functions. A valuation function vi is pseudo-
constant iff there exists a c ≥ 0 such that vi(R) = c for all R 6= ∅ and vi(∅) = 0. Clearly,
if all agents use such a function, then IR 1-deals will be possible until an allocation with
maximal social welfare has been reached—but this is of course a very limited model of agent
preferences.
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6.2 Framework without money

We now turn our attention to the framework without money and study maxi-
mality questions for the family of classes Mα,β of modular valuation functions
with fixed α, β-values introduced in Section 3. We shall prove two theorems.
The first establishes maximality with respect to CR 1-deals. The second shows
that when we lower our ambitions from negotiating allocations with maximal
social welfare to negotiating Pareto optimal allocations, then we lose the max-
imality property.

As we have seen in the proof of Theorem 3, for any classMα,β , all valuation
functions being drawn from that class is a sufficient condition for convergence
to an allocation with maximal social welfare by means of CR 1-deals. It turns
out that any such class is also maximal.

Theorem 6 (Maximality wrt. 1-deals) Let Mα,β be a class of modular
valuation functions with fixed α, β-values. Then for any class of valuation func-
tions F such that Mα,β ⊂ F , there are a negotiation problem with valuation
functions drawn from F and an initial allocation such that no sequence of CR
1-deals will lead to an allocation with maximal social welfare.

Proof Suppose agent 1 has a valuation function v1 6∈ Mα,β . We shall construct
a negotiation problem with two further agents with valuation functions in
Mα,β and an initial allocation such that that allocation is not optimal, but
no CR 1-deal can improve upon it. We distinguish two cases:

(1st case) Suppose there exist a bundle R and a resource r such that v1(R∪
{r}) − v1(R) 6∈ {0, αr, βr}. Let λ = v1(R ∪ {r}) − v1(R). We define v3 =∑

x∈R∪{r} βx.x +
∑

x∈R\(R∪{r}) αx.x and give all of R \ (R ∪ {r}) to agent 3.
That is, agent 3 gets its single most preferred bundle and will not be willing
to participate in any deals. We also allocate all of R to agent 1. It remains
to define v2 and to determine the location of r in the initial allocation A0.
Let v′2 =

∑
x∈R βx.x. An agent equipped with the valuation function v′2 would

dislike all the items in R and be indifferent towards all others. We will define
v2 of agent 2 in terms of v′2, by additionally specifying that agent’s attitude
towards r. The location of r and the value agent 2 places on r depend on λ:

(1) If λ > αr, then we give r to agent 2 and define v2 = v′2 + αr.r.
(2) If αr > λ > 0, then we give r to agent 1 and define v2 = v′2 + αr.r.
(3) If 0 > λ > βr, then we give r to agent 2 and define v2 = v′2 + βr.r.
(4) If βr > λ, then we give r to agent 1 and define v2 = v′2 + βr.r.

In case (1), for example, social welfare would increase by λ− αr if we were to
give r to agent 1, but this deal is not CR. Indeed, there is no CR deal starting
from A0. In case (2), social welfare would increase by αr − λ if agent 1 were
to give r to agent 2, but while this is the only rational 1-deal for agent 2, it is
not rational for agent 1. The situation for the other two cases is similar. This
concludes the proof for the first case.
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(2nd case) Now suppose that v1(R∪{r})−v1(R) ∈ {0, αr, βr} for all bundles
R and resources r. Given that v1 6∈ Mα,β , this means that v1 cannot be
modular. Hence, by equation (3), there exist a bundle R and resources r1, r2 6∈
R such that v1(R ∪ {r1, r2}) 6= v1(R ∪ {r1}) + v1(R ∪ {r2})− v1(R).

We will again use agent 3 to allow us to focus on an interesting subset
of resources: give all of R \ (R ∪ {r1, r2}) to agent 3 and define v3 such that
agent 3 perceives this as the best possible situation and will not participate in
any deals. So below we only need to specify allocations and v2 with respect to
R ∪ {r1, r2}. We will refer to the following four (partial) allocations:

A A1 A2 A12

Agent 1 R R ∪ {r1} R ∪ {r2} R ∪ {r1, r2}
Agent 2 {r1, r2} {r2} {r1} ∅

The marginal valuation of receiving {r1, r2} will be either more or less than
the sum of the marginal valuations of the two individual items:

(1) Suppose v1(R ∪ {r1, r2}) > v1(R ∪ {r1}) + v1(R ∪ {r2}) − v1(R). Define
v2 = [v1(R ∪ {r1}) − v1(R)].r1 + [v1(R ∪ {r2}) − v1(R)].r2 +

∑
x∈R βx.x.

Clearly, v2 ∈ Mα,β . We have v1(A) + v2(A) = v1(R) + v1(R ∪ {r1}) +
v1(R ∪ {r2}) − 2 · v1(R) = v1(R ∪ {r1}) + v1(R ∪ {r2}) − v1(R). Also,
v1(A1)+v2(A1) = v1(R∪{r1})+v1(R∪{r2})−v1(R) = v1(A2)+v2(A2) and
v1(A12) + v2(A12) = v1(R ∪ {r1, r2}). Now, if A is made initial allocation,
then there is no CR 1-deal available, despite A12 being socially preferable.

(2) Suppose v1(R∪{r1, r2}) < v1(R∪{r1})+v1(R∪{r2})−v1(R). Define v2 =
[v1(R∪{r1})−v1(R)].r1 +[v1(R∪{r1, r2})−v1(R∪{r1})].r2 +

∑
x∈R βx.x.

Clearly, v2 ∈Mα,β . We have v1(A)+v2(A) = v1(A1)+v2(A1) = v1(A12)+
v2(A12) = v1(R ∪ {r1, r2}) and v1(A2) + v2(A2) = v1(R ∪ {r1}) + v1(R ∪
{r2}) − v1(R). Hence, if the initial allocation is A1, then moving to A2

would increase social welfare, but there is no possible CR 1-deal.

This covers all cases, and we are done. ut

Next we analyse the situation where we aim for a Pareto optimal outcome
rather than an outcome maximising social welfare. As any allocation with
maximal social welfare is also Pareto optimal, Theorem 3 shows that CR 1-
deals will always lead to a Pareto optimal allocation if all valuation functions
are drawn from the sameMα,β . Our next theorem shows that theMα,β classes
are not maximal, however. We give a constructive proof by showing how Mα,β

can be extended without jeopardising convergence.8

Theorem 7 (Lack of maximality) Let Mα,β be a class of modular valu-
ation functions with fixed α, β-values. Then there exists a class of valuation

8 We label this theorem as a negative result (on the lack of a maximality property) rather
than as a positive result (on the sufficiency of a superclass of Mα,β), because we believe that
this highlights what is most interesting about it: The superclass used in the proof is hardly
of practical interest, but the lack of maximality is insightful, given the strong affirmative
maximality results proved earlier.



24

functions F with Mα,β ⊂ F , such that any sequence of CR 1-deals will even-
tually result in a Pareto optimal allocation, whenever all valuation functions
are drawn from F .

Proof (sketch) Fix some r ∈ R. Define F := Mα,β ∪ {v} with v(R) = a
whenever r ∈ R and v(R) = 0 otherwise, where a is chosen to be any positive
number different from αr. (So we have v 6∈ Mα,β , as required.) Suppose all
valuation functions are drawn from F . Then it is not hard to show that any
sequence of CR 1-deals will converge to a Pareto optimal allocation. The proof
is similar to that of Theorem 3. Note that an agent with valuation function
v is only interested in obtaining r, will never give away r (whatever is being
offered in return), and will give away any other resources without expecting
anything in return. ut

7 Conclusion

This paper makes a contribution to the theoretical analysis of a negotiation
framework where rational but myopic agents agree on a sequence of deals re-
garding the reallocation of a number of indivisible resources. We have shown
that the use of modular valuation functions to model agent preferences is a
sufficient condition, if side payments are allowed, to guarantee final allocations
with maximal social welfare in case agents only negotiate 1-deals (involving
one resource each). When no side payments are permitted, any class of Mα,β

functions would be sufficient. We have then seen, however, that this is not a
necessary condition for optimal outcomes and, indeed, there can be no con-
dition on (individual) valuation functions that would be both necessary and
sufficient in this sense. Furthermore, we have shown that, while a necessary
and sufficient condition on profiles of valuation functions obviously does ex-
ist, checking such a condition is intractable for many representation languages
used for encoding agent preferences. We have therefore concentrated on estab-
lishing maximality results. In the framework with money, there is no superclass
of the class of modular valuation functions that would still ensure convergence
by means of either 1-deals or the much larger class of bilateral deals. For the
framework without money we have also proved maximality with respect to
1-deals. On the other hand, if we only require Pareto optimal outcomes, this
kind of maximality property ceases to hold.

To summarise the main results more formally, let us introduce the
Conv(.,.) problem, a generalisation of the 1-convergence problem presented in
Section 5.3. Given a negotiation problem where all valuation functions of the
agents belong to some class F , the convergence problem Conv(F , T ) is the
problem of checking whether any sequence of deals of type T (originating from
any initial allocation) will result in an allocation with maximal social welfare.
When the valuation functions are encoded using a particular representation
language REP, this problem is referred to as Conv(REP, T ). Regarding types
of deals, we have considered 1-deals, bilateral deals, and arbitrary deals as far
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as their structure is concerned, and we have distinguished IR deals (individu-
ally rational deals with side payments) from CR deals (cooperatively rational
deals without side payments). Let M be the class of modular functions, and
let Mα,β be the class of modular functions with fixed α, β-values for some
given vectors α and β. Using this notation, the main results reported in this
paper may be summarised as follows. We first give the results pertaining to
the framework with money:

– Theorem 1: For any class F , Conv(F , IR deals) always answers YES.
(This result is due to Sandholm [30].)

– Theorem 2: Conv(M,IR 1-deals) always answers YES.
– Section 5.1: There exist classes F 6⊆ M such that Conv(F , IR 1-deals)

always answers YES.
– Section 5.2: There exists no class F such that for all classes F ′ we have

that F ′ ⊆ F if and only if Conv(F ′, IR 1-deals) always answers YES.
– Theorem 4: Conv(REP, IR 1-deals) is NP-hard (under Turing reduction)

for many representation languages REP.
– Theorem 5: There exists no class F ⊃M such that Conv(F , IR bilateral

deals) always answers YES.

In addition, the proof of Corollary 1 shows that the maximality result of The-
orem 5 continues to hold even for the case of just two agents when we replace
“bilateral deals” by the weaker “1-deals”. For the setting without money, we
have obtained these results:

– Theorem 3: Conv(Mα,β , CR 1-deals) always answers YES, for any vec-
tors α and β.

– Theorem 6: There exists no class F ⊃ Mα,β (for any vectors α and β)
such that Conv(F , CR 1-deals) always answers YES.

Finally, Theorem 7 demonstrates that maximality is not as pervasive a notion
as our other results may suggest: for the framework without money, it fails to
apply when we aim for Pareto optimality rather than maximal social welfare.

We consider these not only surprising results, but also useful characterisa-
tions of negotiation domains that can be handled reliably using simple nego-
tiation protocols, catering only for Contract-Net-like deals over single items
between pairs of agents, rather than the full range of multilateral deals fore-
seen in the abstract framework. Such theoretical results affect both the design
of agents and of negotiation mechanisms. For instance, if a given mechanism
can only handle 1-deals, then it may be inappropriate to design myopic agents
with very rich preference structures to use such a mechanism.

In the introduction, we have argued for distributed approaches to resource
allocation. Of course it would be over-simplistic to merely distinguish a cen-
tralised approach, à la combinatorial auction, versus a purely distributed ap-
proach. The truth is that there exists an entire spectrum of approaches between
these two extremes. Very often, for instance, even if an auctioneer is available,
it is desirable anyway to reduce part of the burden of the computational task
usually assigned to it. One way to do so is to delegate it to the bidders instead.
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This distribution of the computation of the winner determination problem has
been studied by some authors, including Vidal and colleagues [23,35]. What
remains centralised in these approaches, however, is the fact that agents must
be aware of the bids placed by other agents during the process to compute their
new bid. That is, while the computation of the solution is indeed distributed,
the process itself remains centralised. In our approach, on the other hand, we
assume that agents agree locally on beneficial deals, without requiring any
sort of global perception of the situation. Also, while the actual allocation is
modified once and for all in the case of combinatorial auctions, our setting re-
gards negotiation as a continuously evolving process with a sequence of local
steps incrementally modifying the allocation of resources within the system.
In that sense, it is closer to combinatorial exchanges [32]. But even these are
centralised mechanisms where a central authority makes all the decisions and
has to perform all the computation.

The present paper continues recent work on convergence properties for dis-
tributed negotiation schemes [30,13]. Some related work, notably by Dunne
and colleagues [12,11], has concentrated on the computational complexity of
decision problems arising in the context of such negotiation frameworks. The
complexity of the most fundamental problem in resource allocation, namely
social welfare optimisation, has been known for some time. The underly-
ing decision problem, i.e. checking whether a given negotiation problem ad-
mits a solution where the sum of valuations exceeds a given value, is NP-
complete [28].9 This can be shown, for instance, via a reduction from the
well-known Set Packing problem [16]. Dunne et al. [12] have introduced the
1-Path problem and analysed its complexity: given two allocations A and A′

with sw(A) < sw(A′), check whether it is possible to reach A′ from A by
means of a sequence of rational 1-deals. Dunne et al. [12] have shown that
1-Path is NP-hard. Recent results have further strengthened this complex-
ity bound and established that the problem is in fact PSPACE-complete [11].
The closely related problem 1-Conv [7,11], discussed earlier in the context of
checking conditions for guaranteed convergence with respect to full valuation
profiles, asks whether any sequence of individually rational 1-deals would cul-
minate in an allocation with maximal social welfare. As we have seen, 1-Conv
is intractable. This has been a known result for the case where valuation func-
tions are represented as straight-line programs [11], which we have extended
here to a wider class of preference representation languages.

Acknowledgements. We would like to thank the reviewers of this paper and
its earlier incarnations for their very helpful feedback.

9 As explained in Section 5.3, complexity results apply to a particular decision problem
with respect to a particular representation language for the input (here, the valuation func-
tions of the agents). However, in practice, it is the case that most of the results mentioned
here have been established for several of the most common representations, so we omit giving
such details here.
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Appendix A: Direct proof of Corollary 1

We give a direct proof of Corollary 1 that demonstrates that this results applies even for
systems with just two agents.

Proof The proof is constructive. We will show that for any non-modular valuation function
v1 on m resources, it is possible to construct a modular valuation function v2 (with vi ≡ 0
for all other agents i, if any) and an initial allocation such that no optimal allocation can be
reached by means of IR 1-deals. This implies that M∪{v1} does not guarantee convergence
by means of IR 1-deals. Because v1 is non-modular, we can apply equation (3) to show that
there must exist a bundle X and distinct resources r1, r2 /∈ X such that ε, defined as follows,
is not equal to 0:

ε = v1(X ∪ {r1}) + v1(X ∪ {r2})− v1(X)− v1(X ∪ {r1, r2}) (4)

From now on, A12|, A|12, A1|2 and A2|1 will refer to allocations in which r1 and r2 belong
to one of the first two agents, resources in X are owned by 1, and resources in Y = R\(X ∪
{r1, r2}) by 2, as shown in the following table.

A12| A|12 A1|2 A2|1

Agent 1 {r1, r2} ∪X X {r1} ∪X {r2} ∪X
Agent 2 Y {r1, r2} ∪ Y {r2} ∪ Y {r1} ∪ Y
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Let us build a modular valuation function v2 defined as follows: ∀R ⊆ R,

v2(R) =
X

r∈{r1,r2}∩R

αr +
X

r∈R∩Y

ω −
X

r∈R∩X

ω (5)

with ω = 14 × max |v1| + 1. Let Ω = v2(Y ) = |Y | × ω.10 As the rest of the proof shall
reveal, the value of ω has been chosen such that the social welfare of each of these four
allocations is greater than that of any other allocation. Of course, this will imply that the
optimal allocation has to be among these four. The values of αr1 and αr2 will be chosen
later. The social welfare of each of these four allocations can then be written as follows:

sw(A|12) = Ω + αr1 + αr2 + v1(X)

sw(A12|) = Ω + v1(X ∪ {r1, r2})
sw(A1|2) = Ω + αr2 + v1(X ∪ {r1})
sw(A2|1) = Ω + αr1 + v1(X ∪ {r2})

It remains to be shown that depending on the value of ε, we can always choose an initial
allocation among these four and values of αr1 and αr2 such that (a) this initial allocation
does not have optimal social welfare, (b) there is only one rational deal from this allocation,
(c) this deal leads to the optimal allocation, but (d) this rational deal would involve more
than one resource. We will have to consider two cases for equation (4): the case of ε > 0 and
the case of ε < 0.

(1st case) Suppose ε > 0. Let us choose αr1 = v1(X ∪ {r1}) − v1(X) − ε
4

and αr2 =
v1(X ∪ {r1, r2})− v1(X ∪ {r1}) + ε

4
.

Let us first show that the four allocations have a greater social welfare than any other.
With the help of equation (4), observe that both |αr1 | and |αr2 | are less than 3×max |v1|.
Thus, all four allocations have a social welfare of at least Ω − |αr1 | − |αr2 | − max |v1| ≥
Ω − 7 ×max |v1| > Ω − ω

2
. All other allocations have a social welfare lower than Ω − ω +

|αr1 | + |αr2 | + max |v1| ≤ Ω − ω + 7 ×max |v1| < Ω − ω
2
. Thus, the social welfare of each

of the four allocations is greater than that of any other allocation.
Now let us show that A2|1 is the optimal allocation. More precisely, let us show that

sw(A|12) < sw(A1|2), that sw(A12|) < sw(A1|2) and that sw(A1|2) < sw(A2|1). By substi-
tuting the values of αr1 and αr2 and using equation (4), the social welfare of each allocation
can be written as follows:

sw(A|12) = Ω + v1(X ∪ {r1, r2})
sw(A12|) = Ω + v1(X ∪ {r1, r2})

sw(A1|2) = Ω + v1(X ∪ {r1, r2}) +
ε

4

sw(A2|1) = Ω + v1(X ∪ {r1}) + v1(X ∪ {r2})− v1(X)−
ε

4

= Ω + v1(X ∪ {r1, r2}) +
3

4
ε

Here, A2|1 is clearly the optimal allocation. If we choose A1|2 as the initial allocation, then
the only 1-deals involving resources r1 or r2 are δ(A1|2, A12|) and δ(A1|2, A|12). These deals
decrease social welfare, and thus are not IR by Lemma 1. Thus, it is not possible to reach
the optimal allocation A2|1 starting from A1|2 using only 1-deals.

(2nd case) Suppose ε < 0. Let us choose αr1 = v1(X ∪ {r1}) − v1(X) − ε
4

and αr2 =
v1(X ∪{r2})− v1(X)− ε

4
. Note that, again, both |αr1 | and |αr2 | are less than 3×max |v1|.

Thus, by the same argument as in the first case, the four allocations all have greater social
welfare than any other allocation.

10 Here, max |v1| is the maximal value that v1 may take, for any bundle of resources.
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The optimal allocation is now A12|. To see this, let us show that sw(A1|2) < sw(A|12),
that sw(A2|1) < sw(A|12), and that sw(A|12) < sw(A12|).

sw(A|12) = Ω + v1(X ∪ {r1}) + v1(X ∪ {r2})− v1(X)−
ε

2
sw(A12|) = Ω + v1(X ∪ {r1, r2})

= Ω + v1(X ∪ {r1}) + v1(X ∪ {r2})− v1(X)− ε

sw(A1|2) = Ω + v1(X ∪ {r1}) + v1(X ∪ {r2})− v1(X)−
ε

4

sw(A2|1) = Ω + v1(X ∪ {r1}) + v1(X ∪ {r2})− v1(X)−
ε

4

Here, A12| is clearly the optimal allocation. If we choose A|12 as the initial allocation, then
the only 1-deals involving r1 or r2 are δ(A|12, A1|2) and δ(A|12, A2|1). These deals decrease
social welfare, and thus are not IR by Lemma 1. Thus, it is not possible to reach the optimal
allocation A12| starting from A|12 using only 1-deals. ut


