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Formal learning theory constitutes an attempt to describe and explain the phenomenon of language
acquisition. The considerations in this domain are also applicable in philosophy of science, where it
can be interpreted as a theory of empirical inquiry. The main issue within this theory is to determine
which classes of languages are learnable and how learnability is affected by e.g. restricting the learning
functions, modifying the informativeness of the incoming data and changing the conditions of success
of the learning process. All those directions focus on various properties of the process of conjecture-
change over time. Treating “conjectures” as beliefs, we link the process of conjecture-change to doxastic
update. Using this approach, we reconstruct and analyze the temporal aspect of learning in the context
of temporal and dynamic logics of belief change.

The aim of connecting Learning Theory (LT) and modal logics of belief change is two-fold. By
analyzing the temporal doxastic structure underlying formal learning theory, we provide additional insight
into the semantics of inductive learning. By importing the ideas, problems and methodology from
Learning Theory, logics of epistemic and doxastic change get enriched by new learning scenarios, i.e.
those based not only on incorporation of new data but also on generalization, but they also gain new
concepts and new problematic perspectives.

We will proceed as follows. In Sections 1 and 2 we introduce the basic formal notions of learning
theory and modal logics of belief change. In Section 3 we propose a reduction of the learnability task to
a generalized problem of DETL model checking. Furthermore, we prove a DETL representation result
corresponding to an important theorem from Learning Theory, that characterizes learnability, namely
Angluin’s theorem. Then we step back and place notions of learning theory and doxastic temporal
logic in a common perspective in order to compare them (Section 4). We focus both on the properties
of agents and fine-grained notions of belief and knowledge. In Section 5 we consider an extension of
the classical learning theoretic framework by introducing more agents and extending the protocols to
include a possibility of communication between the agents. In the end we discuss consequences, possible
extensions and profits that our work brings.

1 Learning Theory
Let us now introduce a framework that allows discussing the inductive inference scenarios. In the usual
grammar inference the basis is what we call a “grammatical system”. We will work with a slightly
modified notion of “learning background”, in order to get a generalized view, abstracting away from a
particular learning model.

Definition 1.1. A learning background Lrn is a triple 〈H,Σ, Name〉, where:

• H is a set of Turing Machines (hypotheses);

• Name : H → ℘(Σ) is a naming function.

Naming functions assign names to sets of numbers. Formally, if M ∈ H, then Name(M) is a set
generated from M . To explicate what we mean by learning situation we need a learning function.
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Definition 1.2. Let 〈H,Σ, Name〉 be a learning background. A learning function is a function L : Σ∗ ⇀
H.

In the next steps we define what it means for a learning function to successfully learn a class of sets.
We will define three inequivalent conditions for learning: identification in the limit, finite identification
and learning by erasing. Having them, we can define the “learning problem” to be:

• Is there a learning function L that successfully learns (wrt the appropriate learning condition) on
a given learning background?

To get a more fine-grained picture, before we define the conditions for a learning function to be
successful, we will focus on the data that learning functions learn from: environments.

Let us consider E, the set of all computably enumerable sets. Let C ⊆ E be some class of c.e. sets.
For each S in C we consider Turing machines hn which generate S and in such a case we say that n is an
index of S. The Turing machines will function as the conjectures that Learner makes. It is well-known
that each S has infinitely many indices. Let us take IS to be the set of all indices of the set S, i.e,
IS = {n|hn generates S}.
Definition 1.3 (Environment). An environment of S is a surjective ω-sequence from Sω

Definition 1.4 (Notation). Let ε be an environment. We will use the following notation:

• εn is the n-th element of ε;

• ε|n is the sequence (ε1, ε2, . . . , εn−1);

• content(ε) is a set of elements that occur in ε;

• hn will refer to a hypothesis, i.e., a finite description of a set, a Turing machine generating S;

• L is a learning function — a map from finite data sequences to indexes of hypotheses, L : Σ∗ → N.

Now we can provide definitions of different kinds of learnability. In each case, the structure of identi-
fiability in the limit can be formulated by a chain of definitions that describe three levels of identification.

Definition 1.5 (Identification in the limit, LIM [9]). We say that a learning function L:

1. identifies S ∈ C in the limit on ε iff there is a number k, such that for co-finitely many m,
L(ε|m) = k and k ∈ IS;

2. identifies S ∈ C in the limit iff it identifies S in the limit on every ε for S;

3. identifies C in the limit iff it identifies in the limit every S ∈ C.
The notion of identifiability can be strengthened in various ways. One radical case is to introduce a

finite condition for identification.

Definition 1.6 (Finite identification, FIN). We say that a learning function L:

1. finitely identifies S ∈ C on ε iff, when successively fed ε, at some point L outputs a single k, such
that k ∈ IS, and stops;

2. finitely identifies S ∈ C iff it finitely identifies S on every ε for S;

3. finitely identifies C iff it finitely identifies every S ∈ C.
Another, epistemically plausible, way to learn is learning by elimination of hypotheses that are

implausible, e.g. hypotheses that are inconsistent with the incoming data. This paradigm is formalized
in the framework of learning by erasing.

Definition 1.7 (Function stabilization). In learning by erasing we say that a function stabilizes to
number k on environment ε iff for co-finitely many n ∈ N∗:

k = min{N− {L(ε|1), . . . , L(ε|n)}}.
Definition 1.8 (Learning by erasing, e-learning [10]). We say that a learning function L:

1. learns S ∈ C by erasing on ε iff L stabilizes to k on ε and k ∈ IS;

2. learns S ∈ C by erasing iff it learns by erasing S from every ε for S;

3. learns C by erasing iff it learns by erasing every S ∈ C.
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2 Modal Logics of Multi-agent Belief Change
In this paper we will be interested in two logical approaches to multi-agent belief change: the temporal
approach [11, 7] and the dynamic approach [3].

2.1 The temporal approach
Temporal logics can be used to study the evolution of a system over time. Doxastic Epistemic Temporal
Logics offer a global view of the evolution of a multi-agent system as events take place, focusing on the
information that agents possess and what they believe.

2.1.1 Models

We interpret these logics on doxastic epistemic temporal forests [11]. Such logics could as well be
interpreted on Interpreted Systems ([7], see [8] for a doxastic counterpart).

Definition 2.1 (DETL Forests). A doxastic epistemic temporal forest (DETL forest for short) H is
of the form 〈W,Σ, H, (≤i)i∈N , (∼i)i∈N , V 〉, where W is a countable set of initial states, Σ is a countable
set of events, H ⊆W (Σ∗ ∪Σω) is closed under non-empty finite prefixes, for each i ∈ N , ≤i⊆ H ×H is
a well-founded pre-order on H, ∼i⊆ H ×H is an equivalence relation and V : Prop→ ℘(H). We write
wh or w~e (resp. wε) to denote some finite (respectively ω-) history starting in the state w.

Let P : s 7→ ({s}(Σ∗ ∪ Σω)) ∩H for s ∈ W . Intuitively P(w) is the protocol or bundle of sequences
of events associated with w. We refer to the information of agent i at w by Ki[h] = {h′ ∈ H | h ∼i h′}.
We also write Bi[h] = Min≤i

Ki[h], i.e the histories that i considers the most plausible at history h.

2.1.2 Assumptions about the agents

Further assumptions about these structures will be considered in this paper.1

Definition 2.2 (Perfect Recall). We say that all agents in a group G ⊆ N satisfy Perfect Recall iff
∀i ∈ G ∀he, h′f ∈ H if Ki[he] = Kj [h′f ], then Ki[h] = Kj [h′]. We write PR(G).

Definition 2.3 (Synchronicity). We say that all agents in a group G ⊆ N satisfy Synchronicity iff
∀i ∈ G ∀h, h′ ∈ H if Ki[h] = Kj [h′], then len[h] = len[h′]. We write SY N(G).

Definition 2.4 (E-Uniform No Miracles). Let E ⊆ Σ. We say that all agents in a group G ⊆ N satisfies
E-Uniform No Miracles iff ∀i ∈ G ∀e1, e2 ∈ E if ∃he1, h

′e2 such that he1 ∼i h′e2 then ∀je1, j
′e2 ∈W

if j ∼i j′ then je1 ∼i j′e2. We write E − UNM(G).

Definition 2.5 (Perfect Observation). We say that all agents in a group G ⊆ N satisfy Perfect Obser-
vation iff ∀i ∈ G ∀he, h′f ∈ H if Ki[he] = Kj [h′f ], then e = f . We write PO(G).

Definition 2.6 (Preference Stability). We say that all agents in a group G ⊆ N satisfies Perfect Recall
iff ∀i ∈ G∀he, h′f ∈ H we have he ≤i h′f iff h ≤i h′. We write PS(G).

2.1.3 A natural doxastic epistemic temporal language

Syntax Our dynamic epistemic temporal language of LDET is defined by the following inductive syntax.

φ := p | ¬φ | φ ∨ φ | Kiφ | Biφ | Aφ | ©−1φ | Fφ | Pφ | ∀φ |

where i ranges over N , a over Σ, and p over proposition letters prop. Kiφ (Biφ) reads i knows (resp.
believes) that φ. F and P stand for future and past. ∀φ means: in all continuations φ. Hφ := ¬P¬φ.

1For these properties we often drop the label G when G = N and we drop E whenever E = Σ.
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Semantics LDET is interpreted over pairs of nodes w~e, i.e. initial state together with a finite sequence
of events and maximal histories wε in our trees, such that ~e is a finite prefix of ε (cf. [12, 11]).

Definition 2.7 (Truth definition). We only give the interesting clauses.

H, wε, w~e 
 Kiφ iff ∀v ~f if v ~f v vε′ & v ~f ∈ Ki[w~e] then H, vε′, v ~f 
 φ
H, wε, w~e 
 Biφ iff ∀v ~f if v ~f v vε′ & v ~f ∈ Bi[w~e] we have H, vε′, v ~f 
 φ
H, wε, w~e 
 Aφ iff ∀v ~f if v ~f v vε′ & v ~f ∈ H then H, vε′, v ~f 
 φ
H, wε, w~e 
©−1φ iff ∃a ∈ Σ ∃~f v ε such that ~f.a = ~e and H, wε, w ~f 
 φ
H, wε, w~e 
 Fφ iff ∃~g ∈ Σ∗ ∃~f v ε such that ~f = ~e~g and H, wε, w ~f 
 φ
H, wε, w~e 
 Pφ iff ∃~g ∈ Σ∗ ∃~f v ε such that ~f~g = ~e and H, wε, w ~f 
 φ
H, wε, w~e 
 ∀φ iff ∀h ′ ∈ P(w) s.t. ~e v h we have H, wh′, w~e 
 φ

2.2 The dynamic approach
The dynamic approach of Dynamic Doxastic and Dynamic Epistemic Logics (DDL and DEL for short)
considers belief change as a step by step operation on models.

Definition 2.8 (Epistemic-Plausibility and Event Models, Product Update).

• An epistemic plausibility model (EP for short) M is of the form 〈W, (∼i)i∈N , (≤i)i∈N , V 〉 where
W 6= ∅, for each i ∈ N , ∼i is a binary reflexive and euclidean relation on W , ≤i is a pre-order on
W and V : Prop→ ℘(W ). We let Ki[w] = {v ∈W | w ∼i v} and Bi[w] = Min≤iKi[w].

• An event model ε = 〈E, (∼i)i∈N , pre〉 has E 6= ∅, and for each i ∈ N , ∼i is a relation on W .
Finally, there is a precondition map pre : E → LDL, where LDL is some doxastic language.2.

• The product updateM⊗ε of an epistemic modelM = 〈W, (∼′i)i∈N , V 〉 with an event model ε is the
model 〈E, (∼i)i∈N , pre〉, whose worlds are pairs (w, e) with the world w satisfying the precondition
of the event e, and accessibilities defined as:

(w, e) ∼′i (w′, e′) iff e ∼i e′, w ∼i w′

An EP model describes what agents currently believe and know, while product update creates the
new doxastic epistemic situation after some information event has taken place.3

Recently DEL borrowed the crucial idea of protocol from the temporal approach. A protocol P maps
states in an EP model to sets of finite sequences of pointed event models closed under taking prefixes.
This defines the admissible runs of some informational process: not every observation may be available,
or appropriate. We let E be the class of all pointed plausibility event models. Let Prot(E) = {P ⊆
(E∗ ∪ Eω) | P is closed under finite prefixes } be the co-domain of protocols, it is the class of all sets
of sequences (infinite and finite) of pointed plausibility event models closed under taking finite prefixes.
Given some ε ∈ Eω we often refer the generated EP model Mε|m to meanM⊗ ε1 ⊗ . . . εm.

Definition 2.9. Given an EP modelM. A local protocol forM is a function P : |M| → Prot(E).

2.3 Dynamic doxastic language
We first look at a core language that matches dynamic belief update.

Syntax Our dynamic doxastic language LDDE is defined as follows:

φ := p | ¬φ | φ ∨ φ | 〈≤i〉φ | 〈i〉φ | Eφ | 〈ε, e〉φ

where i ranges over over N , p over a countable set of proposition letters Prop, and (ε, e) ranges over a
suitable set of symbols for event models.

2In our case the 〈ε, e〉-free fragment of the dynamic doxastic language LDDE defined in the next subsection
3Illustrations of the strength of this simple mechanism are in [2].
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Semantics Here is how we interpret the DDE(L) language. A pointed event model is an event model
plus some distinguished element of its domain. To economize on notation we use event symbols in the
semantic clause. Also, we write pre(e) for preε(e) when it is clear from context.

Definition 2.10 (Truth definition). We only give the interesting clauses.

M, w 
 〈≤i〉φ iff ∃v such that w �i v andM, v 
 φ
M, w 
 Kiφ iff ∀v such that v ∈ Ki[w] we haveM, v 
 φ
M, w 
 Biφ iff ∀v such that v ∈ Bi[w] we haveM, v 
 φ
M, w 
 Eφ iff ∃v ∈W such thatM, v 
 φ
M, w 
 〈ε, e〉φ iff M, w 
 pre(e) andM× ε, (w, e) 
 φ

We make use of the usual abbreviations.

2.4 Connection between the temporal and the dynamic approach
There is a connection between the two approaches. In fact the Product Updaters of the dynamic approach
are just one interesting type of doxastic (temporal) agents. Indeed Iterated Product Update of an
epistemic plausibility model according to a uniform line protocol P generates doxastic epistemic temporal
forests that validate particular doxastic temporal properties. We use the following construction:

Definition 2.11 (DETL forest generated by a DDL protocol). Each initial epistemic plausibility model
M = 〈W, (∼Mi )i∈N , (≤Mi )i∈N , VM〉 and each local protocol P yields a generated DETL forest H is of
the form 〈WH,Σ, H, (≤i)i∈N , (∼i)i∈N , V 〉 as follows:

• Let Σ :=
⋃
w∈W

⋃
n∈ω P (w)(n).

• Let WH := |M|, H1 = WH and for each 1 < n < ω, let Hn+1 := {(we1 . . . en+1) |
(we1 . . . en) ∈ Hn,M⊗ ε1 ⊗ . . .⊗ εn 
 pren(en+1) and e1 . . . en+1 ∈ P (w)}.
Finally let H =

⋃
1≤k<ωHk.

• If h, h′ ∈WH, then h ∼i h′ iff h ∼Mi h′.

• If h, h′ ∈WH, then h ≤i h′ iff h ≤Mi h′.
Finally information partitions and plausibility are defined according to Product Update.

• For 1 < k ≤ m, he ∼i h′e′ iff he, h′e′ ∈ Hk, h ∼i h′, e and e′ are pointed event-model from the
same event model and e ∼i e′ in their event model.

• For 1 < k ≤ m, he ≤i h′e′ iff he, h′e′ ∈ Hk and h ≤i h′

• Finally, set wh ∈ V (p) iff w ∈ VM(p).

We conclude by mentioning an important representation theorem that we will later make use of. First
we introduce the following notion:

Definition 2.12 (Propositional Stability). We say that a forest satisfies propositional stability iff for all
h, he ∈ H we have p ∈ V (he) iff p ∈ V (h).

Theorem 2.13 (van Benthem et al. [5]). An ETL-model H is isomorphic to the forest generated by the
sequential product update of an epistemic model according to some state-dependent DEL-protocol iff it
satisfies PR(N), UNM(N), SY N(G) and Propositional Stability.

A simple way to update doxastic epistemic model in a DEL style is to actually update the epistemic
relation according to Product Update while leaving the plausibility relation unmodified.4

Let us know mention an important corollary:

Corollary 2.14. A DETL-model is isomorphic to the forest generated by the sequential product update
of a doxastic epistemic model according to some state-dependent DEL-protocol iff it satisfies PR(N),
UNM(N), SY N(G), Propositional Stability and PS(N).

A final piece of notation: given a DETL (resp. EP ) model H (resp. M) we write F (H) (resp.
F (M)) to denote the frame of the model, i.e. the model without the valuation function.

4More subtle policy exists, see e.g. [4].
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3 DETL reductions and representation theorems for learnability.
The aim of this section is to give a first result bridging Learning Theory and Dynamic Epistemic Temporal
Logics. In particular we prove that the problem of checking whether a class of sets is finitely identifiable
can be reduced to the model-checking problem of LDET on Doxastic Epistemic Temporal Forests.

In general Learning Situations will be captured by doxastic epistemic temporal structures. In the case
of Set Learning, they can be more specifically and accurately captured by a doxastic epistemic model
and a local protocol. We start by giving a formal definition of such a construction.

3.1 Protocols that correspond to set learning
Given a countable class of countable sets Ω = {S1, . . . , Sn, . . .} a Set Learning Situation is a triple
SitΩ := 〈Ω,S, L〉 where S =

⋃
S∈Ω S and L is the identity map. In words environments will enumerate

elements from the sets in Ω (see Section 1). Given the Set Learning Situation SitΩ = 〈Ω,S, L〉 we can
construct an initial epistemic modelMΩ and a local protocol PΩ.

Initial epistemic model. Our initial epistemic model MSit
Ω = 〈WΩ,∼, V 〉 where WΩ = Ω, ∼=

W ×W and for each set Sn ∈ Ω, we set V (in) = {Sn}. In words, we identify states of the model with
sets. We also assume that our agent does not have any particular initial information and for each state
Sn, in is some nominal for Sn.

Class of event models. For each e ∈ S, we have a corresponding event model e = 〈{e},∼e〉 where
∼e= (e, e). In words we assume that our agent has perfect observational powers.

Given a set S, we write E(S) = {(e, e) | e ∈ S}. We are now ready to define our local protocol.
Local protocol. Given a state s ∈ W , our protocol PΩ will authorize at s any ω-sequence that

enumerate s. Formally: for every s ∈ W , PΩ(s) is the smallest subset of ((E(S))∗ ∪ (E(S))ω) that
contains {f : ω → E(s) | f is surjective } and that is closed under non-empty finite prefixes.

3.2 DETL Reduction of Learning Problems
Definition 3.1 (Stabilization). j’s belief (resp. knowledge) about the initial state stabilizes to w on the
history vε iff there is a finite prefix e∗ @ ε such that for any finite sequence e′ such that e∗ v e′ @ ε we
have for all histories sh if sh ∈ Bj [ve′] then s = w (resp. for Kj [ve′]).

Given a collection of sets Ω = {S1, . . . , Sn, . . .} we let propΩ = {in | Sn ∈ Ω}. In what follows we
indicate one of the possible logical reductions of the problem of finite identifiability. We reduce it to the
model checking of an hybrid extension of LDET that we lack the space to introduce (see Appendix for
details). The following holds:

Proposition 3.2. The following are equivalent:

1. Ω is finitely identifiable.

2. For all s ∈WΩ and ε ∈ PΩ the learner’s knowledge about the initial state stabilizes to s on sε.5

3. For(F (MSit
Ω ), VΩ, PΩ) 
 A(©−1⊥ →↓x.∀FKH(©−1⊥ → x) ).

One can thus reduce Finite Identifiability to Model Checking of an hybrid doxastic epistemic temporal
language. But there are other interesting directions. Below we use another approach that gives more
intuitive DETL reduction. We let nom be a set of propositionally stable nominals, i.e. for each i ∈ nom,
and for each valuation V , V (i) ∈ W and whose truth conditions is given by H, wε, w~e 
 i iff V (i) = w.
We can now reduce various Learnability problems to the (extended) validity problem of some DETL
formulas, i.e. we specify DETL conditions that must be validated by a protocol to guarantee learnability.

We are going to proceed with an attempt to find a uniform representation of learning types. Here is
the general scheme of our uniform representation of learning types:

A DETL frame F (H) satisfies Learning Condition iff
[Specification of a procedure of choosing the current belief]

F (H) 
 i → [Quantifier] F [Epistemic Temporal Condition]i.
5in the generated forest For(F (MSit

Ω ), VΩ, PΩ).
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The most straight-forward is the characteristics of finite identifiability.

A DETL frame F (H) satisfies FIN iff F (H) 
 i → ∀FKi

Learner can finitely identify a class iff for all elements i of the class if i holds, then in the future Learner
will know that i.

Further extension of the validity approach demands more expressive power, namely we need to ex-
press the existence of an appropriate belief-choosing procedure, which leads to Dyadic Second Order
quantification. If we skip the certainty condition, we get the characteristics of learning by erasing.

A DETL frame F(H) satisfies ERASE iff ∃ ≤ F (H[≤]) 
 i → ∀FGBi .

The effectiveness of this procedure, in the presence of uncertainty, is guaranteed by the existence of an
underlying preference ordering. The temporal condition is weakened, since Learner can not be guaranteed
certainty. The success is defined as a stabilization to a correct hypothesis.

In general if we allow some freedom in defining beliefs, we can make an attempt to formalize com-
putable identification in the limit.

A DETL frame F(H) satisfies Comp-LIM iff ∃ B-Algorithm F (H[B]) 
 i → ∀FGBi .

In this expression the B-Algorithm is an effective procedure that at each step of the procedure computes
the current belief. If we do not pose the restriction to computable functions we get the general identi-
fication in the limit. In general we can make further substitution to our general scheme and see what
happens. Let us consider the following example.

Property of F(H) iff ∃ ≤ F (H[≤])i → ∃FGBi

Here, we again take a preference ordering to determine the current belief, but we only require that
the convergence happens only for some environments. We can immediately see that this is an overuse
of the scheme. To guarantee an “honest” convergence, we have to require that it happens for all al-
lowed sequences of events. Otherwise we have to deal with a situation in which the correct answer is
“communicated” to the learner by a particular sequence encoding the answer.

3.3 Characterizing protocols that guarantee learnability
We now prove representation theorems that characterize classes of DETL models in which learnability
is guaranteed. We start by giving two intuitive results and then we move to give a DETL counterpart
of Angluin’s Theorem.

Proposition 3.3. A synchronous, perfect recall, perfect observation DETL model 〈W,Σ, H,∼,≤, V 〉
satisfies finite identifiability whenever for all w ∈ W and history wh ∈ H ∩ Σω, there is some natural
number n ∈ ω such that for every v 6= w such that v ∈ W and for every wh′ ∈ H ∩ Σω we have
(h|n) 6= (h′|n)

Proposition 3.4. A permutation closed, synchronous, perfect recall, perfect obervation DETL model
〈W,Σ, H,∼,≤, V 〉 based on a finite state space satisfies finite identifiability whenever for all w ∈W for
all v 6= w there is some event a ∈ (Σ ∩P(w)−P(v)).

We now turn to a DETL counterpart to one of the most important results in learning theory: Angluin’s
theorem. This theorem characterizes learnable classes of sets.

Theorem 3.5 (Angluin [1]). A class of sets C is identifiable in the limit iff for all S ∈ C there is a
finite DS ⊆ S such that for all S′ ∈ C, if S 6= S′ and DS ∈ S′, then S′ 6⊆ S.

The next result is proved using once more the concept of a DEL-generated forest. Before we state
the result, let us introduce the following definitions:

Set-driven A local protocol P forM is set-driven iff ∀w∃Sw ⊆ N such that ∀ε ∈ P (w) content(ε) = Sw.
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A-condition for protocols A local protocol P satisfies the A-condition iff

∀w∃e ∈ P (w) ∩ Σ∗∀w 6= v(e ∈ P (v) =⇒ P (v) 6⊂ P (w)).

Finite identifiability of the incomparable A local protocol P satisfies the condition of finite iden-
tifiability of the incomparable sets iff states whose image under P are ⊆-incomparable constitute
finitely identifiable classes.

Let us assume that a local protocol P satisfies finite identifiability of the incomparable. The we can
show the following equivalence.

Theorem 3.6. A state space W together with a set-driven local protocol P satisfies A-condition iff there
is a preference ordering ≤ on W and an epistemic plausibility frame M = (W,∼,≤), where ∼= W ×W
such that

(#) for all w ∈ W and for all ε ∈ P (w) there is some n ∈ ω such that for every m > n, w ∈ |Mε|m|
and w is the ≤-minimum of |Mε|m| in the generated doxastic model Mε|m.

4 Notions from LT vs Notions from DTL
Learners vs Doxastic Agents. In Learning Theory the agent is usually assumed to be an arbitrary
computably enumerable function that transforms finite sequences of data into conjectures about the
underlying rules. This setting is very general and allows for analyzing learning settings that are in fact
epistemically quite improbable. Various restrictions has been put on the learners to see how different
“impairments” affect learning. Let us briefly discuss some of them.

Consistency Learner’s answers are always consistent with the up-to-now given data.

Conservatism Learner changes his conjecture only when it is necessary, i.e. only when the last piece
of data contradicts the previous conjecture.

Set-drivenness Let L be a learning function. L is set driven iff for all t, s ∈ SEQ, if set(t) = set(s),
then L(t) = L(s).

The correspondence between Learners and doxastic agents can be established via different epistemic
interpretations of the learning situation. We present our conjectures in Table 1.

DETL notions LT properties
hard incoming information consistent learning

preference stability conservative learning
uniform no miracles set-driven learning

Table 1: DETL Notions vs Properties of Learners

Non-introspective knowledge. Notions of knowledge and belief are not explicitly involved in Formal
Learning Theory. However they are a by-product of its analysis of inductive inference. In a successful
identification in the limit the learner stabilizes to a correct hypothesis (belief). But, the process leads
to something more than belief. LT shows that for some classes of problems there are procedures of belief
change that guarantee success. After converging Learner’s beliefs are safe, they will not change under
any true information. LT thus stress the operational aspect of a successful belief-change. The process
results therefore in a state of “non-introspective knowledge”. In DETL terms 6
 ∀FGBφ → K∀FGBφ .

5 Multi-agent learning
Let us now have a look at learning from the perspective of multi-agents logics of belief change. What if
more than one agents are learning together? In some epistemic scenarios, like Muddy Children [7], the
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fact that the agents are publicly sharing something about their doxastic state is crucial. To illustrate
this let us take a pointed epistemic model that specifies the Muddy Children scenario with at least two
muddy children. Imagine that for every child we have an atomic formula pi, indicating that child i is
muddy. Let us compare two protocols.

1. The father keeps announcing
∨
i pi. The protocol maps each state in which at least one of the

children is muddy to the prefix-closure of {!
∨
i pi}ω and to the empty set otherwise.

2. Similarly, the father keeps announcing
∨
i pi in muddy state, but before each announcement the

children publicly announce their belief.

To define formally the second type of protocol we introduce an abstract, model-independent concept
of belief announcement. We thus start by extending our set of events so that it includes the event !B
which intuitively corresponds the fact that the agents are making their beliefs public. !B is treated as a
special kind of event-model for which Product Update is defined as follows.

Definition 5.1. LetM = 〈W, (∼i)i∈N , (≤i)i∈N , V 〉 be a doxastic epistemic model. The result of updating
M by !B is the modelM⊗!B := 〈W{!B}, (∼i)!B

i∈N , (≤i)!B
i∈N , V

!B〉 where W{!B} = {w!B|w ∈W} and

• w!B ∼!B
j w′!B iff (w ∼j w′ ∧ ∀i ∈ N Bi[w] = Bi[w′])

• w!B ≤!B
j w′!B iff w ≤j w′. And finally w!B ∈ V !B(p) iff w ∈ V (p).

This special event has a natural counterpart in DETL style frameworks.

Definition 5.2. !B is the Belief Announcement event iff for all h, h′ we have h!B ∼j h′!B iff (h ∼j
h′ ∧ ∀i ∈ N Bi[h] = Bi[h′]).

It is now possible to define the transformation of protocol we have mentioned at the beginning of
this section. We leave the definition to the appendix and rather go on to present our findings. Simply
note that P !B stand transformation of P as explained in our starting example. The following proposition
extends the representations results of Section 2 to include Belief Announcement and will be useful to
prove our next result.

Proposition 5.3. Let H be an DETL-model. The following are equivalent:

1. H is isomorphic to the forest generated by the sequential product update of some epistemic plausi-
bility model according to the !B transformation of some state-dependent DEL-protocol

2. H satisfies {!B}/Σ-alternation, PR(N), Σ−UNM(N), SY N(N), Propositional Stability, BI(N)
PS(N) and !B is the Belief Announcement event.6

This representation result will be useful since it allows to talk of such DEL-generated forests as
particular of DETL models. The next theorem proves that in typical DEL situations if agents starts
with the same background information and have the same observational powers then allowing the agents
to announce their beliefs does not allow them to learn anything more.

Theorem 5.4. Whenever agents have the same background information and the same observational
powers, then there is no knowledge gain by forcing announcement of beliefs between each step. Formally,
let M be a doxastic epistemic model that satisfies SII(N) and P a local protocol for M such that P
satisfies SOC(N). Let For(M, P )[(∼i)i∈N ] be the doxastic epistemic forest generated byM and P and
For(M, !B(p))[(∼!B

i )i∈N ] be the doxastic epistemic forest generated byM and !B(p).
We have h ∼i h′ iff !B(h) ∼!B

i !B(h′) for all i ∈ N .

The following corollary is of interest from the perspective of learning theory

Corollary 5.5. Given some EP model M in which the agents have the same background information
and a protocol P for M in which agents have same observational powers. ∀j ∈ N , ∀w ∈ |M| and
∀ε ∈ P (w) , j’s belief stabilizes on the same initial state of the world in the model without announcement
of beliefs (For(M, p)) and in the model with announcement of beliefs (For(M, !B(p))).

6The missing notions are defined in the appendix.
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6 Conclusion
This work provides a comparison of the notions of learning theory, doxastic temporal logic and dynamic
doxastic logic. We show than the problem of learnability can either be reduced to the model checking
problem or to the validity problem of some doxastic temporal language. We provide a main theorem
characterizing identifiability in the limit in terms of properties of temporal protocols. We also introduce
multi-agent identification, and give conditions under which the possibility of communication between the
agents does not influence their individual learning process.

We have shown that the two prominent approaches, learning theory and doxastic temporal logic,
can be joined in order to describe the notions of belief and knowledge involved in inductive inference.
Also, our representation of hypothesis space and environments gives an additional interesting application
for the theory of protocols. We believe that bridging the two approaches together benefits both sides.
For formal learning theory, to create a logic for it is to provide additional insight into the semantics
of inductive learning. For logics of epistemic and doxastic change, it enriches their present scope with
different learning scenarios, i.e. those based not only on the incorporation of new data but also on
generalization. Further issues that we are interested in are: extending our approach to other types of
identification, e.g. identification of functions; finding modal framework for learning from both positive
and negative information; studying systematically the effects of different constraints on protocols.
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Appendix: Proofs
Proof of Corollary 2.14

Proof. Since the epistemic part Theorem 2.13 of is unchanged we have only have to do two things.

1. Prove soundness of PS(N)

2. Fix the construction for the plausibility ordering

For soundness of PS(N). Assume that in a DETL forest generated by a protocol we have whe, vh′e′ ∈
and wh ≤i vh′. It follows by Definition 2.11 that whe ≤i vh′e′.

For the construction we prove that whe ≤i vh′e′ iff whe ≤Fi vh′e′. The base follows from Definition
2.11. Now for the inductive step. From left to right assume that whe ≤i vh′e′ in the ETL model. It
follows by PS(i) that wh ≤i vh′. But by IH this means that wh ≤Fi vh′. But then by Product Update
(cf. Definition 2.8) we have whe ≤Fi vh′e′. From right to left assume that whe ≤Fi vh′e′. We have then
by definition of Product Update wh ≤Fi vh′ but then by IH, wh ≤i vh′ in the ETL model and thus by
PS(i), whe ≤i vh′e′.

Proof of Proposition 3.2 In this paper it will be useful to work with an hybrid extension of the LDET
language. In which cases the language, which gains two more clauses φ := p|x| . . . | ↓x.φ (where x ranges
over a countable set of node variables svar), is interpreted as before but together with an assignment
function g : svar→ H. The intuition is that x can be used to name some node in the tree that can be
refer to as a propositional letter and that ↓x is the action of setting the variable x to name the current
node. More details in [6]. We only give the clauses for which the addition of g matters:

H, wε, w~e, g 
 x iff g(x) = w~e
H, wε, w~e, g 
↓x.φ iff H, wε, w~e, g[g(x) := w~e] 
 φ

Proof. We sketch the proof of 1⇒ 2. We prove the contrapositive. Assume that there is a state s ∈WΩ

and ω-sequence ε ∈ PΩ(s) such that agent’s knowledge does not stabilize to s on ε. There are two cases.
Case 1: The learner stabilizes to another state, but by construction of PΩ(s) and definition of a generated
DEL-forest for every finite prefix ~e @ ε, s~e ∈ K[s~e], contradiction. So we are in the other case. Case 2:
After each finite prefix ~e @ ε, there is at least a state different from s that remains epistemically possible.
Since generated DEL forest satisfies Perfect Recall (Theorem 2.13), it follows that there is some state
s 6= t that remains epistemically possible after each finite prefix ~e @ ε. But by construction of PΩ(s) this
is only possible if s ⊂ t. Now assume for contradiction that Ω is Finitely Identifiable. It follows that the
learner stops after some finite prefix e∗ @ ε. There are two possibilities. Case 1: Learner select s after
e∗. But since s ⊂ t, e∗ is the finite prefix of some environment εt for t. So assume that Nature chooses
t and εt, then learner will stop after e∗ and select s. But this contradicts the fact that Ω is Finitely
Identifiable. Case 2: Learner select another state than s. But then the learner fails to identify s on ε.
Contradiction.

We now sketch the proof of 2⇒ 3. We prove the contrapositive. Assume that For(F (MSit
Ω ), VΩ, PΩ) 6


A(©−1⊥ →↓x.∀FKH(©−1⊥ → x) ). But this means that we some history that satisfies ©−1⊥, i.e.
by truth condition, some initial state in w ∈WΩ such that for some ε ∈ PΩ and for all finite prefix e∗ @ ε
we have For(F (MSit

Ω ), VΩ, PΩ)w,wε,we∗, g[g(x) := w] 6
 KH(©−1⊥ → x)). By truth condition of K
and H(©−1⊥ → x)) this means that there is some history vh ∈ K[we∗] such that v 6= w. But this
means that Learner’s knowledge does not stabilize to w on wε in F or(F (MSit

Ω ), VΩ, PΩ). Concluding
this direction.

Proof of Proposition 3.3

Proof. From right to left. Take an arbitrary w. We have by assumption some n ∈ ω such that for
every v 6= w such that v ∈ W and for every wh′ ∈ H ∩ Σω we have (h|n) 6= (h′|n). We prove that
w(h|n) 6∼ v(h′|n) by an inductive argument. Indeed assume that they are in the same information
partition. Then by Perfect Observation the last events were the same. But PR we also have that the
nodes right before were also in the same information partition so we can iterate this argument and apply
Perfect Observation all the way down, proving that (h|n) 6= (h′|n). Contradiction.
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Proof of Proposition 3.4

Proof. From right to left. Take an arbitrary w and ε(w). For each v 6= w we have some a that occurs by
Permutation Closure on ε(w). We refer to it as aw(v). Since W is finite so is {ε−1(aw(v))|v 6= w}. We
can thus take the least upper bound of the previous set, call it m. Now assume that some state v 6= w
is still considered possible at ε(w)(m+ 1). By the argument in previous proof, it means that there is an
environment in P (v) in which also aw(v) occurs. Contradiction.

Proof of Theorem 3.6

Proof. (⇒) Let us assume that W,P satisfies A-condition, well-foundedness and finite identifiability of
the incomparable. Let us define the preference ordering ≤ in the following way:

v ≤ w iff P (v) ⊆ P (w).

Note by the fact that we deal with a doxastic epistemic model and protocol that correspond to a set
learning situation we have that v'w iff v = w, where v'w iff v ≤ w and w ≤ v (1).

We have to show that ≤ satisfies (#). Let us then take a hypothesis w ∈ W and choose one
environment for w, i.e. a particular ε ∈ P (w). We show that there is some n ∈ N such that for every
m > n, w ∈ |Mε|m| and w is the ≤-minimum of |Mε|m| in the generated doxastic model Mε|m.

To show that we have to consider all v 6= w such that v ≤ w or such that v is ≤-incomparable to
w. We show that there is a finite stage of the epistemic update at which v is eliminated, i.e. w is the
≤-minimal element of |Mε|m|.

Let us first take v ∈W such that v ≤ w. By (1), if v ≤ w then P (v) ⊂ P (w). Then there is a sequence
e ∈ Σ such that e ∈ P (w) but e /∈ P (W ). And since protocols allow environments that enumerate all
and only elements from the set Sw, e will appear at some point and at which v will be eliminated as
inconsistent with e.

The fact that all v ≤ w are going to be eliminated at some finite stage is guaranteed by the fact that
the protocol satisfies the A-condition, i.e. there is no w ∈ W such that for all e ∈ P (w) ∩ Σ∗ there is
v ∈W such that v 6= w and P (v) ⊂ P (w), which implies that for each w ∈W there is only finite number
of v ∈W , such that v ≤ w.7

If v is ≤-incomparable to w, then P (v) * P (w) and P (w) * P (v). Therefore there is an event e ∈ Σ
such that e ∈ P (w) and e /∈ P (v). And since protocols allow environments that enumerate all and only
elements from the set Sw, e will appear at some point and at which v will be eliminated as inconsistent
with e.

Moreover, all v ∈ W such that v is ≤-incomparable to w will be eliminated at some finite stage by
assumption of finite identifiability of the incomparable.8

Therefore we can conclude that at some finite stage m, all v ∈ W that are either ≤-smaller that w
or are ≤-incomparable to w will get eliminated, leaving w the smallest state in |Mε|m|.

(⇐) Assume that there is a preference ordering on W , such that it satisfies (#).
To see that the underlying protocols satisfy A-condition for each w ∈ W we take εw ∈ P (w) and,

from the assumption, for each εw there is n such that for all m ≥ n, Mεw|m = M ′ and in w is minimal
wrt ≤ in M ′. Let us take εw|m = σw. Since for each w, σw is finite it is enough to show that for all
v ∈W such that v 6= w if σw ∈ P (v) then P (v) * P (w).

For a contradiction assume that there is v ∈ W such that σw ∈ P (v) ∧ P (v) ⊂ P (w). Let τ ∈ P (v)
such that τ |length(σw) = σw (there is such because τ ∈ P (v)). From the assumption, Mτ converges to
a model that has w as minimal wrt to ≤. But v 6= w, so we have that for one environment v, namely
τ ∈ P (v), Mτ will converge to a model with w as the minimal and not v. Contradiction.

7A counterexample is the class of sets C = {{1}, {1, 2}, {1, 2, 3}, . . . ,N}. Using the chosen preference relation N cannot
be identified.

8Otherwise the class of sets C = {Even,Even− {2} ∪ {3}, Even− {4} ∪ {5}, . . .} is allowed, and it is clear we cannot
get the ’Even’ set to become the ≤-minimal after any finite number of steps.
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Definitions omitted in Section 5. In Section 5 we omitted these lengthy definition which are nec-
essary to understand the proofs to follow.

First we define the transformation of a sequence of events and then of protocol as we have mentioned
at the beginning of Section 5.

Definition 6.1. Given a finite sequence of events e1 . . . en ∈ E∗, let !B(e1 . . . en) denotes the sequence
!Be1!Be2 . . .!Ben!B. In particular !B(λ) =!B. Given an ω-sequence ε we define !B(ε) as follows:

!B(ε)(n) =

{
ε(n/2) if n is even.
!B otherwise

Definition 6.2 (!B transformation of a protocol). Given a EP model M and a local protocol P for
M, the !B transformation of P is the function P !B such that for each w, P !B(w) is the smallest set of
sequences such that !B(h) ∈ P !B(w) iff h ∈ P (w) and P !B(w) is closed under non-empty finite-prefixes.

Definition 6.3 (DETL model generated by !B transformation of a protocol). Due to the alternation,
we only have to add the following elements to the construction of Definition 2.11.

• For 1 < k ≤ m, h!B ∼i h′!B iff h!B, h′!B ∈ Hk, h ∼i h′ and for all j ∈ N , Bj [h] = Bj [h′].

• For 1 < k ≤ m, h!B ≤i h′!B iff h!B, h′!B ∈ Hk and h ≤i h′

Definition 6.4. We say that a DETL forest H satisfies Σ/Σ′-alternation iff for all history whe, vh′f ∈
H we have (e ∈ Σ iff f ∈ Σ′) iff len(whe) = len(vh′f) and moreover there is an history of the form
we ∈ H such that e ∈ Σ.

We get the following result as corollary of Corollary 2.14.

Proof of Proposition 5.3

Proof. Necessity (1 =⇒ 2). We show that the given conditions are satisfied by any DETL model
generated through successive Product Updates following !B-transformation of a protocol.

This direction of the proof is easy so we only give the details for the other direction.

Sufficiency (2 =⇒ 1). Given a DETL model H satisfying the stated conditions, we show how to
construct an epistemic plausibility modelM and protocol P such that F is isomorphic to For(M, !B(P )).

Construction We first construct the initial model, then we construct our protocol.
Here is the initial epistemic plausibility modelM0 = 〈W0, (∼0

i )i∈N , (≤0
i )i∈N , V̂0〉:

• W0 := {w ∈W | len(h) = 1}.

• Set w ∼0
i v iff w ∼i v.

• Set w ≤0
i v iff w ≤i v.

• For every p ∈ Prop, V̂0(p) = V (p) ∩W .

Now for the protocol. By SYN(N), Σ-UNM and {!B}/Σ-alternation we can safely construct event
models from synchronous slices of of the DETL model H. Now we construct the j-th event model
εj = 〈Ej , (�ji )i∈N , prej〉.

If j is odd, then:

• Ej := {!B ∈ {!B} | there is a history wh!B ∈ H with len(h) = j} = {!B}

If j is even, then:

• Ej := {e ∈ Σ | there is a history he ∈ H with len(h) = j}

• Set a ∼ji b iff there are ha, h′b ∈ H such that len(h) = len(h) = j and ha ∼i h′b.
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• For each e ∈ Ej , let prej(e) = >

We now define the protocol !B(P) as follows. For every w ∈ W0, every n ∈ ω and ε with len(ε) = n,
we let

1. ε|n− 1!B ∈ P (w) iff wε ∈ H, whenevern is odd

2. ε|n− 1(En, ε(n)) ∈ P (w) iff wε ∈ H, whenever n is even

Finally we let P we define inductively from !B to recover the sequences by eliminating !B events
which is possible by {!B}/Σ-alternation.

Now we show that the construction is correct in the following sense:

Claim 6.5 (Correctness). Let ∼ be the epistemic relation in the given doxastic epistemic temporal model.
Let ∼F be the epistemic relation in the forest model induced by Product Update over the just constructed
plausibility modelM0 and the constructed protocol !B(P ) we have:

h ∼ h′ iff h ∼F h′ ∧ h ≤ h′ iff h ≤ h′

Proof of the claim. The proof is by induction on the length of histories (which is possible by SY N(N).
The case for the plausibility ordering follows easily from Corollary 2.14. Now we consider the case of the
epistemic relation. The base case is obvious from the construction of our initial modelM0.

Now comes the induction step:

From DETL to For(M, !B(P )). Due to {!B}/Σ-alternation, we are in one of two cases depending
the parity of the length of the histories we are considering.

The even case if as in Theorem 2.13. Assume it is odd. Now assume that h1!B ∼j h2!B (1). It follows
from Perfect Recall that h1 ∼j h2 (2). But from IH we have then h1 ∼Fj h2 (3). From the assumption
that !B is Belief Announcement event and (1) it follows that ∀i ∈ N Bi[h1] = Bi[h2]), but by definition
of Bi and IH, it follows that ∀i ∈ N BFi [h1] = BFi [h2]) (4). But by (3), (4) and Product Update for !B
we have h1!B ∼Fj h2!B.

From For(M, !B(P )) to DETL. Again due to {!B}/Σ-alternation, we are in one of two cases de-
pending the parity of the length of the histories we are considering.

The even case if as in Theorem 2.13. Assume it is odd. Now assume that h1!B ∼Fj h2!B by
the definition of Product Update for !B we have h1 ∼Fj h2 (5) and ∀i ∈ N BFi [h1] = BFi [h2]) (6).
From (5) and IH we have h1 ∼j h2 (7). From ∀i ∈ N BFi [h1] = BFi [h2]) (8) and IH and Bi we have
∀i ∈ N Bi[h1] = Bi[h2]) (9). But (9), (6) and he assumption that !B is Belief Announcement event we
have h1!B ∼j h2!B.

Proof of Theorem 5.4 In the proof of this theorem we will need the two following Lemmas.

Lemma 6.6 (Same info Lemma). Let H=〈W,Σ, H, (≤i)i∈N , (∼i)i∈N , V 〉 be a doxastic epistemic model
satisfying SOC(i, j), PR(i, j), SY N(i, j) and SII(i, j), it follows that for all h′, h ∈ H, we have h ∼i h′
iff h ∼j h′.

Proof. The proof is by induction on the length of h, h′. The proof by induction is justified by SY N(i, j).
Base case is immediate by SII(i, j).
Induction step. Assume that ve1 . . . en+1 ∼i we′1 . . . e′n+1 (a). By PR(i) we have we have ve1 . . . en ∼i

we′1 . . . e
′
n (b). But then by IH we have ve1 . . . en ∼j we′1 . . . e′n (c). From (b), (c), (a) and SOC(i, j) it

follows that ve1 . . . en+1 ∼j we′1 . . . e′n+1. Other direction is of course identical.

Lemma 6.7 (Inter-model No Miracles Lemma). LetM be a doxastic epistemic model. Let P be local pro-
tocol for M. Let For(M, p) = 〈W,Σ, H, (≤i)i∈N , (∼i)i∈N , V 〉 be the doxastic epistemic forest generated
by M and P and For(M, !B(p)) = 〈W,Σ ∪ {!B}, H !B , (≤i)i∈N , (∼!B

i )i∈N , V 〉 be the doxastic epistemic
forest generated by M and !B(P ). If we1 . . . en+1 ∼i ve′1 . . . e′n+1 and w!B(e1 . . . en) ∼!B

i v!B(e′1 . . . e
′
n),

then w!B(e1 . . . en)en+1 ∼!B
i v!B(e′1 . . . e

′
n)en+1
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Proof. By hypothesis we1 . . . en+1 ∼i ve′1 . . . e′n+1. But then by the definition of Product Update we
have en+1 ∼i e′n+1. By definition of !B(P ) it follows that en+1 ∼!B

i e′n+1 (1). Now by hypoth-
esis we have w!B(e1 . . . en) ∼!B

i v!B(e′1 . . . e
′
n) (2). But by (1), (2) and Product Update we have

w!B(e1 . . . en)en+1 ∼!B
i v!B(e′1 . . . e

′
n)en+1.

We can now start with the proof of the Theorem 5.4.

Proof. Proof is by induction on the length of the history, which is allowed Synchronicity9 We start by
the easy direction: From right to left.

Base case Assume that !B(w) ∼!B
i !B(v). It follows by PR(N) that w ∼!B

i v. But by construction
the initial models are identical, thus w ∼i v.

Induction step. Assume that w!B(e1 . . . enen+1) ∼!B
i v!B(e′1 . . . e

′
ne
′
n+1). It follows by Perfect

Recall that w!B(e1 . . . en)en+1 ∼!B
i v!B(e′1 . . . e

′
n)e′n+1 (1). By Perfect Recall, it follows from (1) that

w!B(e1 . . . en) ∼!B
i v!B(e′1 . . . e

′
n) (2). By IH and (2) we have we1 . . . en ∼i ve′1 . . . e′n (3). But then by

Lemma 6.7, (1) and (3) it follows that we1 . . . en+1 ∼i ve′1 . . . e′n+1.
Now for the more interesting direction: From left to right. We re-start counting of propositions.
Base case. Assume that v ∼i w (1). We prove that v!B ∼!B

i w!B. Take an arbitrary agent j. From
(1) we have Ki[v] = Ki[w] (2). By SII(i, j) and (2) it follows that:

Kj [w] = Ki[w] = Ki[v] = Kj [v] (3)

But then by BI(j) and (3) we have Bj [w] = Bj [v] (4). Since j was arbitrary it follows from (4), (2)
"!B is the Belief Announcement event" that w!B ∼!B

i v!B.
Induction step. Assume that ve1 . . . en+1 ∼i we′1 . . . e′n+1 (5). We prove that w!B(e1 . . . en+1) ∼!B

i

v!B(e′1 . . . e
′
n+1). First of all it follows from (5) and PR(i) that ve1 . . . en ∼i we′1 . . . e′n (6). But then by

(6) and (IH) we have w!B(e1 . . . en) ∼!B
i v!B(e′1 . . . e

′
n) (7).

Now take an arbitrary j ∈ N . By (6) and Lemma 6.6 it follows that ve1 . . . en ∼j we′1 . . . e′n (8). By
IH and (8) it follows that v!B(e1 . . . en) ∼!B

j w!B(e′1 . . . e
′
n) (9). By (5) and Lemma 6.6 it follows that

ve1 . . . en+1 ∼j we′1 . . . e′n+1 (10).
Now from (10), (9) and Σ − UNMj that v!B(e1 . . . en)en+1 ∼!B

j w!B(e′1 . . . en)e′n+1 (11). Similarly
from (5), (7) and UNMi we have v!B(e1 . . . e1)en+1 ∼!B

j w!B(e′1 . . . en)e′n+1 (12). By BI(j) and (11) it
follows that Bj [v!B(e1 . . . e1)en+1] = Bj [w!B(e′1 . . . en)e′n+1] (13). Since j was arbitrary it follows from
(13), (12) and "!B is the Belief Announcement event" that v!B(e1 . . . en+1) ∼!B

i w!B(e′1 . . . ene
′
n+1)

Proof of Corollary 5.5 We start by proving the following Corollary which will make it very easy to
prove Corollary 5.5.

Corollary 6.8. let M be a doxastic epistemic model that satisfies SII(N) and P a local protocol for
M such that P satisfies SOC(N). Let For(M, p) = 〈W,Σ, H, (≤i)i∈N , (∼i)i∈N , V 〉 be the doxastic
epistemic forest generated by M and p and For(M, !B(p)) = 〈W,Σ ∪ {!B}, H !B , (≤i)i∈N , (∼!B

i )i∈N , V 〉
be the doxastic epistemic forest generated byM and !B(p).

We have ∃h = wh′ ∈ Bi[ve1 . . . en] iff ∃h2 = wh3 ∈ B!B
i [!B(ve1 . . . en)].

Proof. The proof is by induction on the length of ve1 . . . en which is allowed by the assumption of
Synchronicity10.

Base case. We prove both direction simultaneously. By construction we have for all v, w ∈ W
w ≤i v iff w!B ≤i v!B. Since by Theorem 5.4 we have w ∼i v iff w!B ∼i v!B. It follows that for all
v, w ∈W we have w ∈ Bi[v] = Min≤i

Ki[v] iff w!B ∈ Bi[v!B] = Min≤i
Ki[v!B].

Induction step. From left to right. Assume that there is some history wh ∈ Bi[ve1 . . . ven+1] (1).
It follows that wh ∈ Ki[ve1 . . . ven+1], i.e. wh ∼i ve1 . . . ven+1 (2). But then it follows by Theorem
5.4 that w!B(h) ∼i v!B(e1 . . . ven+1) (3). No assume that for contradiction that for every h′ of the
form w!B(h2), we have h′ 6∈ Bi[!B(ve1 . . . en+1)] (4). It follows that for every such h′ we have some
history s!B(h3) ∈ Ki[!B(ve1 . . . en+1)] (5) with s 6= w (6) and s!B(h3) <i h′ (7). It is easy to check

9In the following proof the usage of properties such as Synchronicity is justified by Corollary 2.14 when talking about
For(M, p) and by Proposition 5.3 when talking about For(M, !B(p)). We drop further reference to this two results in the
proof.

10Same remark as for the previous proof.
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that len(sh3) = len(h′) (8). But then by (7), (8) and Preference Stability we have s <!B
i w (9). By

construction it follows that s < w (10). But by (5) and Theorem 5.4 we have sh3 ∈ Ki[ve1 . . . en+1]
(11). But then by Preference Stability we have sh3 < w(h2) (12). But then by definition of Bi we have
w(h2) 6∈ Bi[ve1 . . . ven+1] (13). But since h2 was arbitrary we have in particular wh 6∈ Bi[ve1 . . . ven+1]
(14). Contradicting (1). Thus by reduction there is some history h′ of the form w!B(h2) such that
h′ ∈ Bi[!B(ve1 . . . en+1)] (15).

The other direction is similar.

The proof Corollary 5.5 is now easy.

Proof. Assume that i stabilizes on v ∈W after the sequence we1 . . . en. Then for every h which extends
we1 . . . en, all histories in Bi[h] starts with v. But then for every h by the preceding corollary at !B(h),
i believes only in histories starting with v. The other direction is similar.
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