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Abstract

Coalgebra develops a general theory of transition systems, parametric in a functor T ; the functor T specifies the possible
one-step behaviours of the system. A fundamental question in this area is how to obtain, for an arbitrary functor T , a logic
for T -coalgebras. We compare two existing proposals, Moss’s coalgebraic logic and the logic of all predicate liftings, by
providing one-step translations between them, extending the results in [21] by making systematic use of Stone duality. Our
main contribution then is a novel coalgebraic logic, which can be seen as an equational axiomatization of Moss’s logic. The
three logics are equivalent for a natural but restricted class of functors. We give examples showing that the logics fall apart
in general. Finally, we argue that the quest for a generic logic for T -coalgebras is still open in the general case.
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1 Introduction

When Aczel [1] introduced the idea of coalgebras for a functor T as a generalization of
transition systems, he made three crucial observations: (1) coalgebras come with a canon-
ical notion of observational or behavioural equivalence (induced by the functor T ); (2)
this notion of behavioural equivalence generalizes the notion of bisimilarity from computer
science and modal logic; (3) any ‘domain equation’ X ∼= TX has a canonical solution,
namely the final coalgebra, which is fully abstract wrt behavioural equivalence.

This idea of a type of dynamic systems being represented by a functor T and an individ-
ual system being a T -coalgebra, led Rutten [26] to the theory of universal coalgebra which,
parametrized by T , applies in a uniform way to a large class of different types of systems.
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In particular, final semantics and the associated proof principle of coinduction (which are
dual to initial algebra semantics and induction) find their natural place here.

These ideas have been proved very successful. Coalgebras encompass such diverse
systems as, for example, labelled transition systems [1], deterministic automata [25], π-
calculus processes [8], HD-automata [7], stochastic systems [6], neighborhood frames [9].

Very early on in this endeavour the following question arose. If universal coalgebra can
cover a wide range of models of computation uniformly and parametric in the type-functor
T , can the same be done for logics for coalgebras? The first positive answer was given by
Moss [22]. His fascinating idea was, roughly, to take T itself as a modality. More precisely,
ifM is the set of formulas of his language and α ∈ TM then ∇α ∈M.

In the case of the power-set functor P , this modality, denoted as ∇, can be defined
using the standard box and diamond: With α ∈ PM a set of formulas, the formula∇α can
be seen as an abbreviation∇α = 2

∨
α ∧

∧
3α, where 3α denotes the set {3a | a ∈ α}.

Independently of Moss’s work, Janin and Walukiewicz [11] already observed that the
connectives ∇ and ∨ may replace the connectives 2,3,∧,∨. This observation, which
is closely linked to fundamental automata-theoretic constructions, lies at the heart of the
theory of the modal µ-calculus, and has many applications, see for instance [5,27]. Gen-
eralizing the link between fix-point logics and automata theory to the coalgebraic level
of generality, Kupke & Venema [15] generalized some of these observations to show that
many fundamental results in automata theory are really theorems of universal coalgebra.

A shortcoming of Moss’s logic is that the connective ∇ is un-intuitive for writing out
specifications. [16] was the first paper to propose a standard modal logic for coalgebras.
Pattinson [23] discovered how to describe such modal logics for coalgebras in general via
predicate liftings. The logic L of all predicate liftings was first investigated by Schröder
[28] and Klin [12].

The second author’s [21] started a systematic investigation of the relationship of Moss’s
logicM and the logic L of all predicate liftings. In particular, [21] introduced a special no-
tion of predicate liftings, the singleton liftings, and observed that 1) they generate all other
predicate liftings and 2) they can be translated into Moss’s logic for all Kripke Polynomial
functors.

We continue this line of research and summarize our contributions as follows:

• Coalgebraic logics can extend different underlying propositional logics. We investigate
how this choice influences translations between Moss’s logic and logic with predicate
liftings.

• If the underlying logic is classical, i.e. based on Boolean algebras, we
· improve on the result of [21] by showing that all singleton liftings for any functor T

can be translated into Moss’s logic, establishing a one-step translation L −→M,
· give a simple description of a one-step translation ofM to L,
· show that all expressive coalgebraic logics for a finitary functor that preserves finite

sets are mutually translatable.
• We show that Moss’s logic can be given a more standard equational (or modal) logic

style by replacing the modal operator ∇ by a set of conventional modal operators. This
is based on the well-known fact that any set-functor T has a presentation by operations
and equations [2].
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2 Notation and Preliminaries

We useQ : Set −→ Setop for the contra-variant power set functor 5 . P denotes the covariant
power set functor and BN the finite multiset functor: BNX consists of all maps (also known
as ‘bags’) B : X −→ N with finite support; for f : X −→ Y , the function BN(f) maps
a bag B : X −→ N to BN(f)(B) : Y −→ N given by y 7→ Σx∈f−1({y})B(x). The finite
distribution functor D follows the same idea: DX is the set of probability distributions
X −→ [0, 1] with finite support; similarly, D≤ denotes the subdistribution functor, which
maps X to {µ : X −→ [0, 1] | µ has finite support and Σx∈Xµ(x) ≤ 1}; on functions, both
functors act in the same way as BN.

BA denotes the category of Boolean algebras and Boolean homomorphisms, BAω the
category of finite Boolean algebras and all Boolean homomorphisms between them, and
Setω the category of finite sets and all functions between them.

Two properties of Boolean algebras will play an important role in our approach: First,
(Stone duality) the contra variant power set functor can be seen as a functor into Boolean
algebras P : Set −→ BAop and it has a right adjoint S : BAop −→ Set, which maps a
Boolean algebra to the set of ultrafilters (an ultrafilter is a maximal consistent propositional
theory). On maps, both functors map a function to its inverse image. Moreover, the restric-
tion of P and S to BAω and Setω is a dual equivalence. Second, every Boolean algebra is
the directed union of finite Boolean algebras, or, more formally, the finite Boolean algebras
are precisely the finitely presentable ones.

Other relevant categories for this paper are: the category of distributive lattices and
lattice homomorphisms, denoted DL; the category of frames and frame homomorphisms,
denoted Frm; the category of κ-complete Boolean algebras, denoted BAκ.

2.1 Coalgebras

Definition 2.1 The category Coalg(T ) of coalgebras for a functor T on a category X has
as objects arrows ξ : X −→ TX in X and morphisms f : (X, ξ) −→ (X ′, ξ′) are arrows
f : X −→ X ′ such that Tf ◦ ξ = ξ′ ◦ f .

Examples are provided by

Definition 2.2 Let Γ be a collection of set endofunctors. A Γ-Kripke polynomial functor,
or Γ-KPF for short, is a functor T : Set −→ Set built according to

T ::= Id | KC | G | T + T | T × T | PT

where Id is the identity functor, KC is the constant functor that maps all sets to the set
C, G ∈ Γ, and P is covariant powerset functor. If Γ is empty, we just talk about Kripke
polynomial functors 6 or KPFs.

Example 2.3 Coalgebras for the covariant power set functor are Kripke frames, also known
as non-deterministic transitions systems [1]. Slight variations allow to add labels to tran-
sitions or states. Coalgebras for the finite multiset functor are directed graphs with N-
weighted edges, often referred as multigraphs [30]. Coalgebras for the finite distribution

5 Q is intended to remind of 2, because of QX = 2X .
6 The term Kripke polynomial functor was coined in Rößiger [24].

3



Kurz-Leal

functor are finitely branching discrete time Markov chains [3]. QQ-coalgebras are known
as neighborhood frames in modal logic [9].

As shown in the references above, the traditional notion of bisimilarity can be captured
coalgebraically as follows.

Definition 2.4 Two states xi in two coalgebras Xi are T -bisimilar, or T -behaviourally
equivalent, if there is a coalgebra (Z, ζ) and there are coalgebra morphisms fi : (Xi, ξi)
−→ (Z, ζ) such that f1(x1) = f2(x2).

2.2 Coalgebraic Logic

The Stone duality approach to coalgebraic logic associates, in a systematic way, to a given
category of coalgebras a suitable category of modal algebras. This category of modal alge-
bras then embodies a suitable modal logic for coalgebras. The basic example is to consider
coalgebras over Set and logics which extend Boolean propositional logic, that is, we are in
the following situation:

BAL
''

S
44 Set

Ptt
T

xx
(1)

A coalgebraic logic is a functor L together with a natural transformation δ : LP −→ PT.

Using δ we can associate to a T -coalgebra ξ : X −→ TX its dual L-algebra

P̂ (ξ) = LPX
δX−−→ PTX

P (ξ)−−−→ PX. (2)

The logic is given by the initial L-algebra LI −→ I , the semantics by the unique arrow
[[·]](X,ξ) : I −→ P̂ (ξ), mapping a formula ϕ ∈ I to the set of states [[ϕ]] = {x ∈ X | x 
 ϕ}.

Remark 2.5 It is important to understand that L only describes how to add one layer of
modalities: If A consists of Boolean formulas, then LA consists of modal formulas in
which each formula a ∈ A is under the scope of precisely one modal operator. The initialL-
algebra is obtained by iterating this construction and contains modal formulas of arbitrary
depth. Moreover, L can take into account not only the syntax, but also the axiomatisation of
the logic, as revealed in (3) below. To capture these by a functor, it is essential to consider
L on BA and not simply on Set.

One advantage of this functorial approach to modal logic is that (L, δ) gives us a syntax-
free description of the logic. Properties of the logic can be expressed by abstract properties
of (L, δ), for example, (L, δ) is complete iff δ is injective [13,18]. It is also possible,
without any consideration of syntax, to generalize from Kripke frames to all KPFs (and
beyond) the Jónsson-Tarski theorem [20] and the Goldblatt-Thomason theorem [19].

Concrete descriptions of logics (L, δ) are usually obtained by presenting the functor L.
Presentations of functors are analogous to presentations of algebras and studied in detail in
[4,20]. For our purposes, the following example should suffice.

Example 2.6 Consider T = P , i.e., coalgebras are Kripke frames (unlabelled transition
systems). So we expect to have standard modal logic, given by one finite-meet preserving
modal operator 2. Accordingly, we define LP : BA −→ BA to map an algebra A to the
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algebra LP(A) generated by 2a, a ∈ A, and quotiented by the relation stipulating that 2

preserves finite meets, that is,

2> = > 2(a ∧ b) = 2a ∧2b (3)

(δP)X : LPPX −→ PPX is defined by

2a 7→ {b ∈ PX | b ⊆ a}, (4)

so that we obtain the usual semantics of 2 stating that a set b of successors satisfies 2a iff
b ⊆ a.

The previous example shows how modal operators correspond to generators, and how
modal axioms correspond to quotienting freely generated algebras. It is not difficult to
check that with δP and the semantics of (2) we obtain the usual semantics of modal logic.
The details of how the example can be inductively extended to obtain a logic (LT , δT ) for
each KPF T can be found in [19]. Although these logics are defined by syntax and axioms,
all the good properties they enjoy flow from the following syntax-free characterisation.

Proposition 2.7 Let T be a KPF. Then (δT )X : LTPX −→ PTX is an isomorphism for
all finite sets X .

As a consequence one obtains for example:

Corollary 2.8 For any KPF T the logic (LT , δT ) is sound and complete.

3 Two Coalgebraic Languages

The Stone duality approach, presented in the previous section, can be generalized to any
concrete category A equipped with a functor P : Set −→ Aop such that UP = Q. Intu-
itively this means that power-sets are algebras inA and the inverse image of a function is a
morphism of A-algebras.

AopL
&&

U !!B
BB

BB
BB

B Set
Prr

T
xx

Q~~}}
}}

}}
}}

Setop

(5)

Definition 3.1 A category A is said to be a category with power-set algebras if (1) it is
a concrete category over Set. (2) The forgetful functor UA : A −→ Set has a left adjoint
FA : Set −→ A. (3) There exists a functor P : Set −→ Aop such that UAP = Q. (We will
often drop the subscripts.)

Examples of categories with power-set algebras are: sets, semi-lattices, distributive
lattices, frames, κ-complete Boolean algebras, completely distributive lattices, complete
atomic Boolean algebras. This general perspective on coalgebraic languages will help us
to illustrate the importance of the underlying logic to define translations.
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3.1 Moss’s Logic

Moss’s logic can be given for an arbitrary functor T : Set −→ Set preserving weak pull-
backs. Examples of such functors are all (BN,D)-KPFs, but not the functor QQ.

In the original version [22], Moss showed that his coalgebraic logic characterizes bisim-
ilarity of T -coalgebras. Because T may permit unbounded branching, this purpose needs
infinitary conjunctions in the logic. Here our interests are slightly different: To specify
properties of coalgebras we want all Boolean connectives, but only finitary ones. Accord-
ingly, we will work with the finitary version Tω of T .

For convenience, and without loss of generality [2], we assume that T is standard, that is
T preserves inclusions and the equalizer 0 −→ 1 ⇒ 2. Under these assumptions we can
define the finitary version of T by TωX =

⋃
{TY | Y ⊆ X,Y finite }. A functor is said

to be finitary iff T = Tω. For example, PωX is the set of finite subsets of X .

Definition 3.2 Moss’s languageMT is the smallest set closed under Boolean operations
and under the formation rule ‘if α ∈ Tω(MT ) then ∇α ∈ MT ’ (we will often drop the
subscript T ).

Following Diagram (1), we now cast this definition in terms of a functor on BA. More-
over, we generalise from BA to a category A with power-set algebras.

Definition 3.3 Let A be a category with power set algebras, and let T : Set −→ Set be a
weak pullback preserving functor. Moss’s logic for T in A is given by the functor

FTωU = MT : A −→ A.

Following Diagram (2), to define the semantics MTP −→ PT , it is enough to give
a natural transformation TωUPX −→ UPTX , or TQ −→ QT . To this end, we let 7

∇ : TωQ −→ QT be the natural transformation with the following components: an element
Φ ∈ TωQX is mapped to

∇(Φ) = {α ∈ TX |α T (∈X) Φ}, (6)

where T (∈X) is the relation TX ← T (∈X) → TQX obtained from applying T to the
membership relation X ←∈X→ QX .

Remark 3.4 The above procedure can be applied to any binary relation R ⊆ X × Y ,
yielding a new relation T (R) ⊆ TX × TY , which is called the relation lifting of R.

Definition 3.3 and (6) give us syntax and semantics of Moss’s logic over various propo-
sitional base logics. We would like to make the following

Remark 3.5 (i) In the case A is the category of Boolean algebras, the carrier of the
initialMT algebra is the quotient ofMT under Boolean equivalence, so bothMT and
MT give us essentially the same information.

(ii) As indicated in the introduction (see also the example below), in case of T = P and
A = BA, we obtain a logic which is equivalent to the standard modal logic of 2

and 3. It is well-known that this finitary logic does not characterise bisimilarity for

7 ∇ is the semantics of ∇.
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infinitely branching transition systems. But the following version of Moss’s result still
holds: If the functor T is finitary, thenMT characterizes T -bisimilarity (behavioural
equivalence). This result remains true if we instantiate A with DL or meet-semi-
lattices.

Example 3.6 (i) In the case of the identity functor Id, the operator ∇ : IdQ −→ QId
is the identity and Moss’s logic is just that of deterministic transition systems (∇ϕ ≡
2ϕ ≡ 3ϕ). Explicitly, a state x in a coalgebra ξ satisfies ∇ϕ iff ξ(x) ∈ [[ϕ]].

(ii) In the case of a constant functor KC , the operator ∇ : KCQ −→ QKC maps an
element d ∈ C to the set {d}. A state x in a coalgebra ξ satisfies ∇d iff ξ(x) = d.

(iii) In the case of the covariant power set functor ∇ is given by

α ∈∇(Φ) iff (∀ϕ ∈ Φ . ∃x ∈ α . x ∈ ϕ) and (∀x ∈ α . ∃ϕ ∈ Φ . x ∈ ϕ).

It is well-known (and not difficult to check) that in this case Moss’s logic (over BA)
is equivalent to classical modal logic, that is, there are translations in both directions:
∇α = 2

∨
α ∧

∧
3α and 2ϕ = ∇{ϕ} ∨ ∇∅, 3ϕ = ∇{ϕ,>}.

(iv) In the case of the finite distribution functor, we can describe the operator ∇ noticing
that for b ∈ D(X) and B ∈ D(QX) the relation bD(∈X)B can be described as
follows. First note that b = (xi, pi)1≤i≤n for some xi ∈ X, pi ∈ [0, 1], pi > 0, n ∈ N;
similarly B = (ϕj , qj)1≤j≤m for ϕj ∈ QX, qj ∈ [0, 1], qj > 0,m ∈ N. Then
bD(∈X)B iff there are (rij)1≤i≤n,1≤j≤m, rij ∈ [0, 1] such that xi 6∈ ϕj ⇒ rij = 0
and

∑
i rij = qj and

∑
j rij = pi.

For example, a state x in a coalgebra ξ satisfies ∇{(ϕ, q), (>, 1− q)} iff the prob-
ability of going to a successor satisfying ϕ is larger or equal to q. That is,∇ (together
with Boolean operators) can express the usual modal operators of probability logic
[10].

In the case of the finite multiset functor we have the same description, just replacing
[0, 1] by N. For example, a state x in a coalgebra ξ satisfies
• ∇{(>, n)} iff x has exactly n successors;
• ∇{(ϕ,m), (>, n)} iff x has at least m successors satisfying ϕ and exactly m + n

successors in total;
In fact, each ∇-formula specifies the total number of successors. The usual graded
modalities can therefore not be expressed.

As mentioned in the introduction, there are at least two motivations for a∇-based approach
towards modal logic: (1) In applications to automata theory, ∇-based modal logic works
better because one may almost eliminate conjunctions from the language. This observation,
which is closely linked to fundamental automata-theoretic constructions, lies at the heart of
the theory of the modal µ-calculus, and has many applications, see for instance [5,11,27].
(2) Moreover, as we saw, ∇ allows coalgebraic generalizations. This has been used, see
[15,29], to show that many fundamental results in automata theory are really theorems of
universal coalgebra.

3.2 The Logic of All Predicate Liftings

For any endofunctor T on Set, we define an endofunctor LT on the category BA of Boolean
algebras. The idea is the following. Going back to Example 2.6, we defined δ and then
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proved that, on finite X , δ : LP −→ PL is an iso (Proposition 2.7). We now turn this
around and essentially use it as a definition.

Definition 3.7 LT : BA −→ BA is defined, on finite A, as LTA = PTSA. Since every
Boolean algebraA is the directed union of finite subalgebrasAi we let LTA be the directed
union of the LTAi. δ is given by LTP = PTSP ∼= PT on finiteX and extended uniquely
to arbitrary X .

Example 3.8 For P the functor L has been described explicitly in Example 2.6

As shown in [20], L can be represented by operations, where we take ULFn as the set
of operations of arity n (identifying the number n with a set of n-elements). Calculating
ULFn = UPTSFn = QT (Qn), which, by the Yoneda Lemma, is the set of natural
transformations QnX −→ QTX , or, in more familiar notation, (2n)X −→ 2TX . Explicitly
this is:

Proposition 3.9 There is a natural isomorphism (natural in n and QT )

Y(n,T ) : QTQ(n) −→ Nat(Qn,QT ).

Proof. Recall that QnX = Hom(X,Qn). We define a bijection between QT (Qn) and
natural transformations QnX −→ QTX as follows: any p ∈ QT (Qn) gives a predicate
lifting that maps v : X −→ Qn to QTv(p). Conversely, for each λX : QnX −→ QTX we
have λQn(id) ∈ QT (Qn). 2

The proposition holds for any contravariant functor F and not just for for the functor
QT ; this fact is known as Yoneda Lemma. It shows that our operations of arity n are
precisely the predicate liftings of arity n in Schröder [28]:

Definition 3.10 Given a functor T : Set −→ Set, an n-ary predicate lifting is a natural
transformation QnX −→ QTX .

Proposition 3.9 tells us that predicate liftings of arity n can be identified with subsets
of T (2n); this is particularly useful to present examples of predicate liftings.

Example 3.11 (i) Let T be the covariant power set functor and let 2 = {⊥,>}. The
existential modality 3 can be presented using an homonymous predicate lifting 3 : Q
−→ QP , with the followings components 3X(A) = {U ⊆ X |A ∩ U 6= ∅}. Using
Proposition 3.9, we can see that this corresponds to the set {{>}, {>,⊥}}. Similarly,
the universal modality 2 can be presented as a predicate lifting 2X(A) = {B ⊆
X | B ⊆ A} (compare this with (4)). By Proposition 3.9, this predicate lifting is
associated to the set {∅, {>}}.

(ii) Let T be the finite distribution functor. The modality 3pϕ specifies a probability of
at least p for the event of going to a successor satsifying ϕ. It can be described by
the predicate lifting QX −→ QTX , a 7→ {d ∈ DX | µd(a) ≥ p}, where µd(a) =∑

x∈a d(x) is the measure associated with d. By Proposition 3.9, this predicate lifting
corresponds to a subset of D(2). If we describe a probability distribution d : 2 −→
[0, 1] by its value on > (d(⊥) = 1 − d(>)), we find that 3p corresponds to the
set {q ∈ [0, 1] | q ≥ p}. Similarly, the predicate lifting associated to an interval
(q, q′) ⊆ [0, 1] maps a set a ⊆ X to the set of probability distributions over X that
assign a probability between q and q′ to the set a.
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We can also define a logic for any set of predicate liftings Λ as follows:

Definition 3.12 Let Λ be a set of predicate liftings. The functor L̄Λ : A −→ A maps A
to the free A-algebra generated by all λ(a1, . . . , an) where λ ∈ Λ, n is the arity of λ, and
ai ∈ UA. We write L̄T , or just L̄, if Λ is the set of all predicate liftings.

More explicitly, we can describe the functor L̄λ, for a single predicate lifting λ, to be
Lλ = FUnλ , where nλ is the arity of λ. In general we have L̄Λ =

∐
λ∈Λ L̄λ. We can

also define the language of all predicate liftings LT based on Boolean logic as follows (in
future, we will usually drop the subscript T ).

Definition 3.13 LT is the smallest set closed under Boolean operations and under the rule
if n < ω, 1 ≤ i ≤ n, ϕi ∈ LT , λ ∈ QTQn ⇒ λ(ϕ1, . . . ϕn) ∈ LT .

This perspective of languages with predicate liftings will prove to be useful to general-
ize the results in [21].

4 Translators and A-Translators

In this section we will investigate under what circumstances we can find translation from
the∇-logicM into the logic of all predicate liftings L and vice versa. Let us note first that
we are not interested in showing only that every formula in L has an equivalent formula
inM (and v.v.). Rather we want an inductive definition of the translation, which respects
the one-step nature (see Remark 2.5). This stronger property of one-step translations is
captured by natural transformations L̄ −→M and M −→ L.

4.1 One-step translations

We start by defining translations between coalgebraic logics. Our notion of coalgebraic
logic assumes a category A of power-set algebras as in Definition 3.1, a functor L : A
−→ A and a natural transformation δ : LP −→ PL, as explained in Section 2.2.

Definition 4.1 Given two coalgebraic logics (L1, δ2) and (L2, δ2), a natural transformation
ν : L1 −→ L2 is a one-step translation if it commutes with the semantics:

L1P L2P-νP

PT

δ1
@

@
@R

δ2
�

�
�	

A one-step translation can be understood as an inductive definition of a translation
between the associated logics. Indeed, given any L2-algebra L2A −→ A we obtain an L1-
algebra L1A

νA−→ L2A −→ A; moreover, since ν is a natural transformation any morphism
f : A −→ A′ of L2 algebras is also a morphism between the corresponding L1-algebras.
Denote by LiIi −→ Ii the initial Li-algebras. Using this observation, we find, by initially
of I1, an inductively defined morphism of L1-algebras I1 −→ I2 which translates formulas
in I1 to formulas in I2. Notice that it is important that ν is a natural because this allows to
map a morphism of L2-algebras I2 −→ A to a morphism of L1-algebras.
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4.2 Translating Predicate Liftings

We are looking for a natural transformation L̄ −→ M (see Definitions 3.12 and 3.3). To
do this, we need to translate predicate liftings λ into ∇. Note that every predicate lifting
λ : Qn −→ QT and the natural transformation ∇ : TωQ −→ QT share the codomain but
have different domains (the subscript ω below corresponds to the one in Definition 3.3).
This motivates the following definition [21].

Definition 4.2 A translator for a predicate lifting λ is a natural transformation τ : (Q)n

−→ TQ such that
Qn TωQ-τ

QT

λ
@

@
@R

∇
�

�
�	

Example 4.3 Consider the predicate lifting associated with the existential modality 3 of
the covariant power set functor (Example 3.11). It has the translator τX : QX −→ PωQX
mapping an element a ⊆ X to τX(a) = {a,X}. Compare with the equivalence 3ϕ =
∇{ϕ,>} discussed in Example 3.6.

For more see Example 4.6 below. The idea of a translator is to define a one-step trans-
lation tr via

tr(λϕ) = ∇τ(tr(ϕ)). (7)

Unfortunately not all predicate liftings have translators.

Example 4.4 Let KC be a constant functor where C has at least two distinct elements
c1, c2. Using Proposition 3.9 (see also Example 3.11), predicate liftings correspond to
subsets of C. The predicate lifting λE corresponding to E = {c1, c2} does not have a
translator. This is because the components of a natural transformation τ : Q −→ KC are
constant functions, hence the cardinality of ∇τ(X) is always 1, but λEX = E. Neverthe-
less, notice that the formula∇c1 ∨∇c2 translates the predicate lifting λE .

If we look back at Equation (7), we can see that translators produce “simple” transla-
tions not involving operators such as ∨. Accordingly, translations will involve translators
as well as propositional operators. First, we need to know a big enough class of predicate
liftings that do have translators.

Definition 4.5 ([21]) An n-ary predicate lifting λ is called a singleton predicate lifting, or
a singleton lifting for short, if it is associated (via Proposition 3.9) with a single element
p ∈ T (2n), i.e,, if the following holds: Given ϕ : n −→ 2X

λX(ϕ) = {t ∈ TX |T (χϕ)(t) = p}, (8)

where χϕ : X −→ 2n is the transpose of ϕ. If λ is a singleton lifting, we write it λp or just
p, where p is the associated element of T (2n).

Example 4.6 (i) If T is a constant functor with value C, then the singleton liftings for T
are associated with elements c ∈ C. The X-component of a singleton lifting λc is the
function λc : QX −→ QKC with constant value {c}.

10
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(ii) If T is the identity functor and we assume 2 = {>,⊥}, then there are two singleton
liftings of arity 1 for Id. The X-component of λ> is the identity. Similarly, the X-
component of λ⊥ is the function (λ⊥)X : QX −→ QX mapping a set ϕ ⊆ X to
λ⊥(ϕ) = ¬Xϕ to its complement.

(iii) The covariant power set functor has four singleton liftings of arity 1, explicitly these
are associated with P(2) = {∅, {>}, {⊥}, {>,⊥}}. Given a set ϕ ⊆ X , the action
of these predicate liftings is (we drop the subscripts X):

λ{>}(ϕ) = {U ∈ PX | ∅ 6= U ⊆ ϕ}; λ{⊥}(ϕ) = {U ∈ PX | ∅ 6= U ⊆ ¬Xϕ};
λ∅(ϕ) = {∅}; λ{>,⊥}(ϕ) = {U ∈ PX |U ∩ ¬Xϕ 6= ∅ 6= U ∩ ϕ};

Note that they all have translators, corresponding to∇{ϕ},∇{¬Xϕ},∇∅,∇{ϕ,¬Xϕ},
respectively.

(iv) If T is the finite multiset functor, a singleton lifting is given by a pair of natural
numbers (n,m). Its X component, (n,m) : QX −→ QBNX , maps a set ϕ ⊆ X

to the set of bags over X with n + m elements, n of which are in ϕ and m are in
the complement of ϕ. Such a predicate lifting has a translator as it corresponds to
∇{(ϕ, n), (¬Xϕ,m)}, in the notation of Example 3.6.

(v) If T is the finite distribution functor, a singleton lifting is given by a real number
q ∈ [0, 1]. The X-component of q maps a set ϕ ⊆ X to the set of probability
distributions over X that assign probability q to the set ϕ. Such predicate liftings
have translators as they correspond to ∇{(ϕ, q), (¬Xϕ, 1 − q)}, in the notation of
Example 3.6.

The second author’s [21] started the study of singleton liftings because: (1) In the case
of KPFs they can be presented inductively over the complexity of the functor, and (2) by
Proposition 3.9 they generate all the other predicate liftings:

Proposition 4.7 ([21]) If λ is an n-ary predicate lifting associated with a set P ⊆ T (2n),
then for every setX and every n-sequenceϕ : n −→ QX we have: λX(ϕ) =

⋃
p∈P (λp)X(ϕ).

In other words, every n-ary predicate lifting can be obtained as a (possibly infinite) join of
singleton predicate liftings.

Example 4.8 Going back to Example 3.11, the predicate lifting for 2 is λ{∅,{>}}. It does
not have a translator but is the union λ∅ ∪ λ{>} of two singleton liftings, which have a
translator by Example 4.6. Similarly, the predicate lifting for 3 is λ{{>,⊥},{⊥}} = λ{>,⊥}∪
λ{⊥}. Incidentally, 3 does have a translator, see Example 4.3.

The starting point of the present paper was the discovery that singleton liftings always
have translators. The proof is based on the following lemma, which also plays a crucial
role in [14]. The proof of the lemma is immediate from the fact that the composition

X
{−}−→ QX 3−→ X of relations is the identity.

Lemma 4.9 Consider {−}A : A −→ QA, to be the singleton function i.e. a 7→ {a}. Then
∇Q ◦ T ({−}Q) = {−}TQ.

Using this we can prove the following result.

Proposition 4.10 Let T be a weak pullback preserving functor. Then each singleton lifting
λp has a translator. Moreover, the translator is associated with T ({−}Q)(p).

11



Kurz-Leal

Proof. Consider the following diagram

QTQ(n) TQ(n)�
{−}TQ(n)

TQQ(n)

∇Q(n)

@
@

@
@

@@I

T ({−}Q(n))

�
�

�
�

��	
Nat(Qn, TQ) �

Y(Q(n),TQ)

Nat(Qn,QT) �
Y(Q(n),QT)

∇ ◦ (−)

@
@

@
@

@@I

The parallelogram on the left expresses the naturality of Yoneda Lemma 3.9, hence com-
mutes, the triangle on the right commutes by Lemma 4.9. The upper edge maps an element
in p ∈ TQ(n) to the associated singleton lifting λp. The commutativity of the diagram
implies that the natural transformation associated with T ({−}Q(n))(p), which is a natural
transformation Qn −→ TQ, is a natural translator for λp. 2

Notice that translators almost define one-step translators. However, we have to make
sure that τ in Equation (7) is definable in the logic. This is not always possible as the
following example shows.

Example 4.11 Suppose we replace, in Definition 3.3,A by the category DL of distributive
lattices, that is, we work with a positive Moss logic without negation. Consider T to be
the identity functor and the predicate lifting λ⊥ : Q −→ Q given by complementation.
In this example, ∇ is the identity and complementation ¬ : Q −→ Q is a translator for
λ. However, all the operators inMId are monotone, therefore all the definable terms are
monotone, which implies that negation is not definable. In other words, we cannot translate
λ⊥ intoMId .

The example shows that the underlying category plays a role to whether translations are
possible: λ⊥ϕ can be translated into a ∇-formula over BA but not over DL. This leads us
to refine the notion of translator to that of an A-translator. Intuitively, an A-translator is a
translator that is natural wrt to A-morphisms. We will show later that all translators can be
extended to BA-translators.

Definition 4.12 Let λ be an n-ary predicate lifting, A a category with power-set algebras,
and U : A −→ Set the forgetful functor. AnA-translator τ for λ is a natural transformation
τ : Un −→ TωU such that τP is a translator for λ (recall that UP = Q).

If the category A is clear from the context, we often call an A-translator a logical
translator. We say that the logical translator τ extends the translator τP . If there exists an
A-translator for λ, we say that the predicate lifting λ is A-translatable.

Example 4.13 (i) In Example 4.11, τ = ¬ extends to a BA-translator, but not to a
DL-translator.

(ii) Consider the predicate lifting associated with the existential modality 3 as in Exam-
ple 4.3. We define a BA-translator τ : Given a Boolean algebra A, with carrier A, the
function τA : A −→ PA maps an element x ∈ A to τA(x) = {x,>}. Notice that this
BA-translator is also an A-for any category A of power-set algebras and induces the
following translation tr(3ϕ) = ∇{tr(ϕ),>}.

12
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(iii) We can ask which predicate liftings have A-translators for all categories A of power-
set algebras. These are precisely what we call the Moss liftings, see Remark 6.7.

The main property of logical translators, as suggested by the previous examples, is that
they produce translations:

Proposition 4.14 Let Λ be a set of predicate liftings, each of which has a logical translator.
Then can we find a one-step translation L̄Λ −→M .

Proof. For each λ ∈ Λ let τλ : Unλ −→ TωU be a logical translator. Combining those we
obtain a map

∐
λ∈Λ U

nλ −→ TωU , the image of this map under the left adjoint of U is the
required translation L̄Λ −→M . 2

5 Translating with Classical Logic

In this section, we will produce one-step translations (Definition 4.1) between Moss’s logic
MT (Definition 3.2) and the logic LT (Definition 3.13) of all predicate liftings. The
main technical result is that that translators (Definition 4.2) can always be extended to
BA-translators (Definition 4.12).

The translations rely on some conditions on the type functor T and on the propositional
logic being Boolean. Accordingly, in this section we always assume our logic is based on
BA. If we would like to extend the results to DL, we should modify the notion of predicate
lifting by working with endofunctors T over the category of ordered sets and replace the
functor Q by the down-set functor. We do not pursue this issue here.

5.1 From L toM

Lemma 5.1 Every translator τ : Qn −→ TωQ can be extended to a BA-translator, i.e. a
natural transformation Un −→ TωU , where U : BA −→ Set is the forgetful functor.

Proof. (Sketch.) Recall that (1) every Boolean algebra is the directed colimit of finite
Boolean algebras and (2) every Boolean algebra morphism between finite BAs arises from
the inverse image of a function between sets. Because of (2) we have that τ : Un

ω −→ TωUω

is natural where Uω : BAω −→ Set is the restriction of U to finite Boolean algebras.
Because of (1), we can extend τ from Uω to U . This makes the translator τ into a BA-
translator. 2

The lemma does not hold for other categories of power-set algebras. But for BA, we
obtain

Theorem 5.2 If T preserves finite sets and weak pullbacks, there is a one-step translation
L̄T −→MT .

Proof. (Sketch.) Let L̄s be the functor given as in Definition 3.12, but using only singleton
liftings. Because T preserves finite sets, every predicate lifting can be expressed as a finite
join of singleton liftings (Proposition 4.7), hence we have an isomorphism L̄ ∼= L̄s. Now
let λ be a singleton lifting and let τ be the corresponding translator (Proposition 4.10).
Extend τ to a logical translator Un −→ TωU as in the previous lemma. This gives a natural
transformation Un −→MT . Doing this for each singleton lifting and combining all of these
logical translators we obtain a translation L̄s −→MT . 2
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Notice that Examples 4.11, and 4.4 show that to translate all predicate liftings, we need
at least classical logic. The following example shows that the condition of T preserving
finite sets can not be avoided.

Example 5.3 If the functor T does not preserve finite sets, not every predicate lifting can
be translated into Moss’s language. Let T be the constant functor with value N, let E ⊆ N
be the set of even numbers. If we are working over BA, the predicate lifting λE can not
be translated into Moss’ language. Consider the coalgebra N = (N, 1N) and the formula
λE>. On the one hand, this formula defines the set of even numbers, i.e. [[λ>]] = E.
On the other hand, we can check that using Moss’ language we can only define finite and
cofinite sets; therefore we conclude that the predicate lifting λE can not be expressed into
Moss’ language over BA.

The following translations are illustrations of the previous theorem.

Example 5.4 • Example 4.11 is a BA-translator obtained using the previous theorem.
• Let (n,m) be singleton lifting for the finite multiset functor (Example 4.6). We define

a BA-translator for (n,m) as follows: Given a Boolean algebra A, with carrier A, the
function τA : A −→ BNA maps an element x ∈ A to the following bag: B(x,n,m) : A
−→ N

B(x,n,m)(x) = n,B(x,n,m)(¬Ax) = m and B(x,n,m)(a) = 0 for any other element.

This logical translator induces the following translation t((n,m)a) = ∇B(t(a),n,m).

5.2 FromM to L

Our next step is to find a translationMT −→ LT . Note that we do not expect a natural trans-
formation MT −→ L̄T because each ∇-formula corresponds to many different formulas of
LT (see also the next section). But L (Definition 3.7) already quotients out by one-step
logical equivalence, thus identifying all equivalent formulas.

Theorem 5.5 For all weak pullback preserving functors T there exists a one-step transla-
tion MT −→ LT .

Proof. If we restrict to finite sets and finite Boolean algebras, we have an isomorphism
ι : Id −→ SP (see Diagram (1)) and then the following natural transformation

TωUP UPT-∇
UPTSP-ι,

which can be freely extended to a natural transformation θω : MTP −→ LTP . Since
every BA is a directed colimit of finite Boolean algebras of the form PX for finite X and
since MT preserves directed colimits, we can extend θω to a natural transformation θ : MT

−→ LT

MTA
θA //LTA

MTPX
(θω)X //

OO

LTPX

OO

which is a one-step translation (Definition 4.1). 2
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Again, the theorem is specific to BA. On the other hand, it is a particular instance of a more
general result. Namely, if we are working over BA, all expressive coalgebraic logics for
a finitary functor that preserves finite sets are equivalent, i.e. mutually translatable. This
Lindström like theorem is formulated in the next theorem.

Theorem 5.6 Assume that T that preserves finite sets and that L is a complete and expres-
sive coalgebraic logic. Then for all coalgebraic logics L′ there is a one-step translation
τ : L′ −→ L. Moreover, if L′ is complete and expressive as well, then τ is an isomorphism.

The proof is exactly as the one used in the case of Moss’s logic. The natural transformation

τ can be obtained as the extension of L′PX δ′−−−→ PTX
δ−1

−−→ L2PX , where δ′ and δ are
the natural transformations inducing the respective semantics. This relies on the fact that L
is complete and expressive iff δX is iso on finite X .

6 Equational Coalgebraic Logic

The aim of this section is to apply our translation. We do this by presenting Moss’s logic us-
ing only conventional operators, i.e. predicate liftings and showing how the axiomatization
of Moss’s logic from [14], gives rise to a standard modal axiomatization. One advantage of
such an equational version of Moss’s logic is that one can reuse known logical methods. For
example, in a logic given by predicate liftings, the subformulas of a formula λ(ϕ1, . . . ϕn)
are the ϕi. But what should be the subformulas of ∇α, if all we know about α is that
α ∈ Tω(MT )? Or how to state that ∇ is monotone? Or what does congruence mean? All
these questions can be answered [14], but this requires some technical work, which can be
avoided in the equational presentation.

To presentMT we use the fact that every finitary functor Tω is a quotient of a polyno-
mial functor Σ

ΣX =
∐
n<ω

Σn ×Xn EX−→ TωX. (9)

Such quotient is called a presentation 〈Σ, E〉 of Tω by operations and equations: Σn

is called the set of operations of arity n and the equations defining Tω are the kernel of
EX (for some countably infinite set of ‘variables’ X) (for more on set-functors and their
presentations see Adámek and Trnková [2]).

Example 6.1 P is a quotient of the list-functor List(X) =
∐

n<ω X
n. EX maps lists

(x0, . . . xn) to sets {x0, . . . xn}. The equations given by E are the usual equations defining
sets from lists (expressing that order and repetitions don’t matter).

Remark 6.2 Every finitary functor Tω has a canonical presentation given by Σn = Tω(n)
and EX(p, v) = T (v)(p) for p ∈ T (n) and v : n −→ X .

Using the presentation, we can compute relation liftings (Remark 3.4). The following
lemma is the key stone for our development of equational coalgebraic logic

Lemma 6.3 Let R be a relation between X and Y and T a finitary endofunctor on Set.
For every tx ∈ TX and ty ∈ TY the following conditions are equivalent:

• tx T (R) ty.
• There exists k < ω, r ∈ T (k), a : k −→ X , and b : k −→ Y such that T (a)(r) = tx,
T (b)(r) = ty, and (∀i ∈ k)(aiRbi).
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More informally, we read the lemma as

tx T (R) ty iff tx = r(a1, . . . ak) and ty = r(b1, . . . bk) and aiRbi

where ‘=’ refers to the equational theory of the presentation of T .

Proof. The proof is straightforward from contemplating the following commuting diagram

TX TR�
T (πX)

ΣX ΣR�Σ(πX)

?

EX

?

ER

TY-
T (πY )

ΣY-Σ(πY )

? ?

EY

(10)

and taking into account that ER is surjective (due to T finitary). 2

6.1 The logic KT

Given a presentation 〈Σ, E〉 of Tω, every p ∈ Σn gives rise to an n-ary predicate lifting

Qn TωQ-EQ(p,−)

QT

λp
@

@
@

@R

∇
�

�
�

�	
(11)

If 〈Σ, E〉 is the canonical presentation, we call a predicate lifting arising in this way a
Moss lifting. The set of all Moss liftings can be identified with

∐
n<ω Tω(n) (notice that if

〈Σ, E〉 is any presentation of T there is a canonical function Σn −→ Tω(n)).

Example 6.4 (i) Let T = 1 + Id (deterministic transition systems with termination).
For each arity n there is a Moss lifting λ∗n, which indicates termination; this lifting
corresponds to the unique element of 1. All other Moss liftings of arity n correspond
to the elements of n. For p ∈ n, the Moss lifting λp maps a sequence ϕ : n −→ QX
to the set ϕp. Using Moss liftings we can see that if the system is deterministic there
is no need go beyond arity 1.

(ii) Let T = P (non-deterministic transition systems). Moss liftings of arity n are asso-
ciated with subsets of n. Let p be one of those subsets. The Moss lifting λp maps a
sequence ϕ : n −→ QX to the set

λp(ϕ) = {α ∈ PX | (∀x ∈ α)(∃i ∈ p)(x ∈ ϕi) ∧ (∀i ∈ p)(∃x ∈ α)(x ∈ ϕi)}.

(iii) Let T be the finite multiset functor. Moss liftings of arity n corresponds to bags p : n
−→ N. The predicate lifting associated with such a bag p maps a sequence ϕ : n
−→ QX as follows. The pair (p, ϕ) can be considered as multiset over QX (pi being
the multiplicity of ϕi). It is then mapped by ∇ according to Example 3.6.

Definition 6.5 Given a presentation 〈Σ, E〉 of Tω, the logic K〈Σ,E〉
T is the logic (Defini-

tion 3.12) given by the set of predicate liftings λp, p ∈ Σn. We simply write KT if the
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presentation is clear from the context or the canonical presentation. The corresponding
functor is denoted by KT : BA −→ BA.

In [21] the natural transformationE was used to translate Moss’s logic into the language
of predicate liftings. The translation is based on the fact for each α ∈ TωX there exists a
pair (p, v) ∈ Tω(n)×Xn such that EX(p, v) = α. Thus formulas ∇α can be replaced by
formulas λp(ϕ1, . . . ϕn). More formally we have.

Proposition 6.6 ([21]) For every formula inMT there exists an equivalent formula KT .

Remark 6.7 By definition, see (11), every Moss’ lifting can be translated into Moss’s lan-
guage, or more technically, EQX(p,−) is a translator for λp in the sense of Definition 4.2.
Moreover, it is also an A-translator (Definition 4.12) for all category A with power-set al-
gebras (Definition 5). Conversely, instantiating A with Set, we find that Moss liftings are
the only predicate liftings for which we can find A-translators for any A. Thus we may
say: The Moss liftings are precisely the totally translatable predicate liftings.

Another important property of Moss liftings is that they are monotone:

Proposition 6.8 Let λp : Qn −→ QT be a Moss lifting; let ϕ,ψ : n −→ QX be sequences
of sets. If (∀i)(ϕi ⊆ ψi) then λp(ϕ) ⊆ λp(ψ).

Proof. Let E(p,−) be the translator of λp. Using Lemma 6.3 we see that (∀i)(ϕi ⊆ ψi)
implies EQ(p, ϕ)T (⊆)EQ(p, ψ). Applying ∇ on both sides of the previous inequality
will transform T (⊆) into ⊆; we conclude λp(ϕ) ⊆ λp(ψ). 2

This has the following important corollary.

Corollary 6.9 For every weak pullbacks preserving functor T there exists a set Λ of mono-
tone predicate liftings such that the logic LΛ is expressive. The set Λ is that of Moss liftings.

Remark 6.10 Finding a monotone set of predicate liftings is important in coalgebraic
modal logic, as it opens the possibility of adding fix points operators. The previous propo-
sition solves this problem in the case of weak-pullback preserving functors. As far as we
know, the general problem for non-weak pullback preserving functors is still open.

6.2 A complete equational proof system for K
Now we will present a proof system to describe logical equivalence between formulas built
from Moss liftings. [14] presents the following complete and sound system for the∇-logic.

(∇1)
V
{∇α |α ∈ A} ≤

W
{∇T (

V
)Φ |Φ ∈ SRD(A)}.

(∇2) ∇T (
W

)Φ ≤
W
{∇α |αT (∈)Φ}. (∇3) From α≤β infer `∇ ∇α ≤ ∇β

where α ∈ TωM, A ∈ PωTωM, Φ ∈ TωPωM

Space forces us to refer to [14] for details. Intuitively, (∇1) eliminates conjunctions, (∇2)
distributes disjunctions over the ∇ and (∇3) is congruence. But note that these intuitions
are not expressed in standard logical concepts, e.g. (∇1) involves applying T to the map

∧
:

PωM −→ M and the congruence rule uses relation lifting instead of simply substituting
terms into operation symbols. This can be avoided by moving fromMT toKT , as we show
in the following.

To emphasise the equational axiomatisation of T we introduce
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Notation 6.11 Given (p, a), (q, b) ∈ Σn×Xn, we write p(a) for (p, a) and q(b) for (q, b) 8

and
p(a) ≈T q(b) iff T (a)(p) = T (b)(q) ( ie iff EX(p, a) = EX(q, b) ).

Example 6.12 In the case of the canonical presentation we have.

(i) If T = 1 + id, p(a) ≈T q(b) iff p = q = ∗ or ap = bq.

(ii) If T = P , p(a) ≈T q(b) iff {ai | i ∈ p} = {qj | j ∈ q}.
(iii) If T = BN, p(a) ≈T q(b) for p : n −→ N, q : m −→ N iff there is a matrix

(rij)1≤i≤n,1≤j≤m such that rij = ai = bj and
∑

i rij = qj and
∑

j rij = pi, see
Example 3.6.

The key concept behind (∇1) is that of a redistribution.

Definition 6.13 A redistribution of a set A ⊆ ΣX is an element (q, ψ) ∈ Tω(n)× (QX)n

such that: for each (p, a) ∈ A there exists k ≤ n, r ∈ T (k), b : k −→ X and ϕ : k −→ QX
such that

r(b) ≈T p(a) ∧ r(ϕ) ≈T q(ψ) ∧ (∀i)(bi ∈ ϕi). (12)
Let |A| = {ai | (p, a) ∈ A}. A redistribution (q, ψ) is slim if n ≤ 2|A| and

⋃
i∈n ψi ⊆ |A|.

The set of slim redistributions of A is denoted ΣRD(A).

‘Slim’ makes sure that ΣRD(A) is finite if A finite. 9 (∇1) now becomes

(Σ1)
∧
{λp(a) | (p, a) ∈ A} ≤

∨
{λq(

∧
ψ) | (q, ψ) ∈ ΣRD(A)}.

where
∧
ψ is short for (

∧
ψ1 . . .

∧
ψn).

Remark 6.14 (Σ1) simplifies some, but not all aspects of (∇1). In particular, it does
not replace the notion of a redistribution in the sense of [14] by something fundamentally
simpler: A ΣRD lives in the upper row of Diagram (10) and has been defined so that
it matches the notion from [14] living in the lower row. One way to understand our ax-
iomatisation in general, and (Σ1) and (12) in particular, is as an implementation of the
axiomatisation in [14]. Indeed, given A as in (∇1) or (Σ1), to apply the axiom we need a
join over a sufficiently large set of redistributions of A. (12) tells us how to compute this
set using the equational theory ≈T . For such computational purposes, one would not work
with the canonical representation but rather a smaller one as e.g. given for the powerset in
Example 6.1.

To translate (∇2) we make

Definition 6.15 A coredistribution of an element (q, ψ) ∈ ΣQX is an element (p, a) ∈
ΣX satisfying (12) and a injective. The set of coredistributions of (p, ψ) is denoted
CRD(p, ψ).

Now (∇2) can be written as follows:

(Σ2) λp(
∨
ψ) ≤

∨
{λq(a) | (q, a) ∈ CRD(p, ψ)}.

8 To emphasise that p and q denote operators acting on formulas.
9 Our notion is derived from the corresponding notion of [14]. |A| is the ‘base’ of EX [A] and the cardinality restriction
on n derives from the one in [14] plus conditions (1-3) in the proof of the theorem below. If one wants to work with a non-
canonical presentation of Tω , one has to make sure that (1-3) still hold or modify the bound for n. It may also be possible to
find better bounds for particular T .
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One advantage of our equational axiomatisation is that the rule (∇3) reduces to the standard
congruence rule of equational logic. In summary we have:

Theorem 6.16 Let 〈Σ, E〉 be the canonical presentation of Tω. The derivation system
given by the equational logic for Σ and the axioms Σ1 and Σ2 on top of a complete equa-
tional presentation for classical propositional logic is sound and complete for the logic
KT .

Proof. (Sketch) Let tr be the translation of Moss liftings into the∇-logic obtained from the
translators E(p,−). Since tr is onto, the axioms Σ1 and Σ2 are translated into instances
of the axioms ∇1 and ∇2; and vice-versa.

To see this for (Σ1), we use Lemma 6.3 as well as the following observations on
standard functors Tω. (1) For all (p, v) there is (q, w) ≈T (p, v) with w injective. (2)
Elemx = {(p, v) | E(p, v) = x, v injective } has an initial element (p, v) in the sense that
∀(q, w) ∈ Elemx . ∃f : dom(v) −→ dom(w) . T f(p) = q. (3) If (p, v) ∈ Tn ×Xn is
such an initial element, then n, or more precisely, the image of v, is the base (see [14]) of
E(p, v). 2

7 Conclusion

In this paper we have depicted a general relation between Moss’s coalgebraic logic and the
logic of all predicate liftings. Working over a Boolean base logic, the one-step translations
we discussed are summarised below:

Kpp



 �� ��
L̄

""

.. ..

Ls||aa
""
M

ppL

A solid arrow means that the translation works for all T , subject to the proviso that M is
only defined if T preserves weak pullbacks. A dotted arrow means that T has to preserve
finite sets. K is the logic given by Moss liftings, L̄ is the logic given by all predicate
liftings and L is obtained by quotienting L̄ with a complete axiomatisation, M is Moss’s
coalgebraic logic. The translations K � L̄, K � M , L̄ � L are immediate from the
respective definitions, the translations L̄ −→ M and M −→ L are Theorems 5.2 and 5.5,
respectively. Double arrowheads indicate that the translation is onto and can be reversed,
albeit not necessarily by a natural transformation as choices of representatives are involved.
Arrows with tails indicate that the translation is one-to-one.

The diagram above suggests that L is the canonical logic for T -coalgebras. L can be
defined for any T , is always complete [18] and it is expressive if T is finitary [28]. If T
preserves finite sets, then L and M are equivalent, L has only countably many formulas,
and the formulas of L correspond precisely to subsets of the final sequence of T (see [17]).
But if T does not preserve finite sets (as e.g. for the distribution or multi-set functor), it
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Base Categories

BA DL BAκ

Moss’
Modality

Translatable into
the logic of all

predicate liftings

Translatable into

the logic of Moss
liftings using

choice

Translatable into the

logic of Moss liftings

using choice

M
od

al
iti

es

Moss
liftings

BA-Translatable
into Moss’ logic

DL-Translatable
into Moss’ logic

BAκ-Translatable
into Moss’ logic

Singleton
liftings

BA-Translatable
into Moss’ logic

Not translatable
into Moss’ logic

BAκ-Translatable into

Moss’ logic for all
(D,BN)-KPF’s. Unknown

for other functors

Predicate
liftings

BA-Translatable
into Moss’ logic if
T preserves finite

sets

Not translatable
into Moss’ logic

BAκ-Translatable into Moss’

logic for all (D,BN)-KPF’s,
if κ > 2ℵ0 . Unknown for

other functors

Table 1
Comparison Table: Modalities, base categories, and translations.

is not so clear whether L is the best choice of logic for T in general: On the one hand, L
is too expressive as it may have uncountably many formulas, on the other hand it is not
maximally expressive in the sense that there may be modal predicates definable by subsets
of the final sequence of T that do not correspond to formulas in L.

We also emphasised that these theorems depend on working over BA. This suggests
that it would be worth studying coalgebraic non-classical logic. In particular, we do not
know of a general relation between Moss’s modality and predicate liftings if the underlying
logic is not classical. A summary of the relations between Moss’s modality and the three
classes of predicate liftings that we studied with respect to different base logics is presented
in Table 1.

The work of Venema on fix points logics suggests that many results on Moss’s logic
[15,29] will generalise to this new framework, at least for distributive lattices. There is
not much work on non-classical logics of predicate liftings. Notice that there is already
an issue at the basics, namely, what is the appropriate notion of predicate lifting if we
don’t work with Boolean algebras? A more technical issue is that the expressivity result in
Schröder [28] does not seem to work if we leave classical logic. It is not clear to us how
the existence of a separating set of predicate liftings implies the Hennessy-Milner property
if the underlying logic does not have negations.

At the purely mathematical level, in this paper, we have developed the concepts of

20



Kurz-Leal

translator, logical translator and singleton lifting introduced in [21]. We have shown that
every singleton lifting has a translator (Proposition 4.10). Using these and properties of the
category of Boolean algebras, we have shown that if the underlying logic is classical then
all these translators can be made into BA-translators (Lemma 5.1) and then all singleton
liftings are translatable into Moss’s logic based on Boolean algebras. We have also shown
that classical logic is a necessary requirement to be able to translate, see Examples 4.11
and 5.3. In the other direction, we have provided a compositional translation of Moss’s
language (Theorem 5.5). As an additional gain we have used our techniques to prove a
Lindström Theorem for coalgebraic logics (Theorem 5.6). In Example 5.3, we showed
that not all predicate liftings are translatable if T does not preserve finite sets, even if
the underlying logic is classical logic. However, it would be interesting to give a general
characterization of the predicate liftings that can be translated into Moss’s logic and of
those that can not be translated. Our conjecture is: A predicate lifting is translatable into
Moss’s logic iff it can be presented as a finite disjunction of singleton liftings.

Using our translation techniques, previously mentioned, we have developed a complete
and sound equational logic for coalgebras (Section 6). We have shown that for every weak
pullback preserving functor there exists a set of monotone predicate liftings, namely the set
of Moss liftings (page 11), which is as expressive as Moss’s coalgebraic logic. This opens
the possibility to add fix points to logics of predicate liftings. Notice that we developed our
equational logic using the canonical representation of a functor T (Remark 6.2). It seems
that our work can be carried out using other more economical representations of T . It might
be worth to study equational logics obtained from different representations of T .

Another issue that we have not studied is related to the computable properties of trans-
lators and logical translators. We don’t know what is the actual computational cost of a
translation using logical translators. This might be interesting in the case of an actual im-
plementation of translators.
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