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Abstract. In the theory of infinite games with slightly imperfect
information, the main question (whether the axiom of determi-
nacy and the axiom of Blackwell determinacy are equivalent) is
still open. In this paper, we shift the discussion to games with
uncountably many possible moves, introducing the axiom of real
Blackwell determinacy Bl-ADR (as an analogue of the axiom of
real determinacy ADR). We prove that the consistency strength of
Bl-ADR is strictly greater than that of AD.

1. Introduction & Background

Infinite perfect information games (called Gale-Stewart games after
[GS53]) play a central rôle in the foundations of mathematics via the
investigation of so-called determinacy axioms, among them the Axiom
of Determinacy AD and the Axiom of Real Determinacy ADR. In spite
of the fact that these two axioms contradict the axiom of choice, their
foundational significance can hardly be overestimated.

Blackwell games are the analogue of Gale-Stewart games without
perfect information. Full imperfect information games have so far
proved intractable, so in these games, we are restricting the lack of per-
fect information to an infinite sequence of simultaneously made moves.
They were introduced by Blackwell in 1969 [Bla69], and dubbed “games
with slightly imperfect information” by him in his [Bla97]. These games
allowed new proofs of known consequences of determinacy (e.g., Ver-
voort’s alternative proof of Lebesgue measurability from determinacy
[Ver96, Theorem 4.3] inspired Martin’s derived proof in [Mar03]). Due
to the fact that perfect information games can be seen as one of the
extreme cases of games of partial information, it was natural to assume
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that Blackwell determinacy axioms would be stronger than regular de-
terminacy axioms. However, this was not the case: in [Mar98], Martin
proved that in most cases, Blackwell determinacy axioms follow from
the corresponding determinacy axiom. Martin conjectured that they
are equivalent, and many instances of equivalence have been shown
(e.g., [Löw04, Corollary 3.9] and [MNV03]). However, the general ques-
tion, and in particular the most intriguing instance, viz. whether AD
and the axiom of Blackwell determinacy Bl-AD are equivalent, remain
open.

In this paper, we turn to the other mentioned determinacy axiom, the
stronger ADR and its Blackwell analogue. We shall introduce the Axiom
of Real Blackwell Determinacy Bl-ADR and investigate its relationship
to ADR. The axiom of real determinacy has been studied by Solovay in
his masterful analysis [Sol78]. Its Blackwell analogue was introduced in
[dK05] in two variants, the countable support variant and the Euclidean
variant. While we give the definition of the Euclidean variant below,
we will only be concerned with the countable support variant here, and
denote it by Bl-ADR. We follow Solovay’s lead and provide the results
analogous to [Sol78] for Bl-ADR. Our main result is:

Main Theorem 1. Assume Bl-ADR. Then there is a fine normal
measure on ℘ω1(R), and hence ℵ1 is <Θ-supercompact and R# exists.
In particular, the consistency strength of Bl-ADR is strictly greater than
that of AD.

We would like to point the reader interested in more background to
the survey paper [Löw05] written by the third author. It contains a
more detailed discussion of the various versions of Blackwell determi-
nacy axioms. It also contains a discussion of Bl-ADR, a proof of the
fact that Bl-ADR does not follow from Bl-AD, and a cautious mention
of the main result of this paper.

In the following three sections, we first give all necessary definitions
to make the proof of the Main Theorem self-contained (§ 2) and then
discuss Solovay’s analysis of ADR and reduce the Main Theorem to the
existence of a fine normal measure (§ 3), and finally (§ 4) prove the
existence of a fine normal measure.

2. Definitions

2.1. Blackwell Determinacy. We are using standard notation from
set theory and assume familiarity with descriptive set theory through-
out the paper. As usual in set theory, we shall be working on Baire
space ωω instead of the ordinary real numbers. Throughout we shall
work in the theory ZF + ACω(R). This small fragment of the axiom of
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choice is necessary for the definition of axioms of Blackwell determi-
nacy. Using ACω(R), we can develop the basics of measure theory. If
we need more than ZF + ACω(R) for some definitions and statements,
we explicitly mention the additional axioms.

Let X be a set with more than one elements and assume ACω(ωX).
The case most interesting for us is X = R. Since there is a bijection
between ωR and R, the axioms ACω(ωR) and ACω(R) are equivalent.
By Prob(X), we denote the set of all Borel probability measures on X
with a countable support, i.e., the set of all Borel probability measures
p such that there is a countable set C ⊆ X with p(C) = 1.1 From now
on, we regard X as a discrete topological space and topologize ωX as
the product space. For any finite sequence s of elements in X, let [s]
be the basic open set generated by s, i.e. [s] = {x ∈ ωX ; s ⊆ x}.

Let XEven (XOdd) be the set of finite sequences in X with even (odd)
length. We call a function σ : XEven → Prob(X) a mixed strategy for
player I and a function τ : XOdd → Prob(X) a mixed strategy for player
II. Given mixed strategies σ, τ for players I and II, respectively, let
ν(σ, τ) : <ωX → Prob(X) as follows: for each finite sequence s of ele-
ments in X,

ν(σ, τ)(s) =

{
σ(s) if lh(s) is even,

τ(s) if lh(s) is odd,

where lh(s) is the length of s. Since some of the calculations in this
paper require a lot of parentheses, let us reduce their number by con-
vention. If (x0, ..., xn) is a finite sequence, we write [x0, ..., xn] for the
basic open set [(x0, ..., xn)]. Similarly, if x ∈ X and µ ∈ Prob(X), we
write µ(x) for µ({x}). Now, for each finite sequence s of elements in
X, define

µσ,τ ([s]) =

lh(s)−1∏
i=0

ν(σ, τ)(s�i)(s(i)).

By using ACω(R×ωX) (which follows from ACω(ωX)), we can uniquely
extend µσ,τ to a Borel probability measure on ωX, i.e., the probability
measure whose domain is the set of all Borel sets in ωX. Let us also
use µσ,τ for denoting this Borel probability measure.

Let A be a subset of ωX. A mixed strategy σ for player I is optimal
in A if for any mixed strategy τ for player II, A is µσ,τ -measurable and
µσ,τ (A) = 1. Similarly, a mixed strategy τ for player II is optimal in

1We are going to amalgamate a sequence of such measures to produce a product
measure on ωX as we construct the Lebesgue measure on ωω. For this purpose,
the condition of having a countable support is essential.
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A if for any mixed strategy σ for player I, A is µσ,τ -measurable and
µσ,τ (A) = 0. We say that A is Blackwell determined if either player I
or II has an optimal strategy in A. Finally, Bl-ADX is the statement
“for any subset A of ωX, A is Blackwell determined.”2

Remark 2. For any X, ADX implies Bl-ADX . In particular, ADR im-
plies Bl-ADR. If there is an injective map from X to Y , then Bl-ADY

implies Bl-ADX . In particular, Bl-ADR implies Bl-AD := Bl-ADω. Fur-
thermore, if DC holds and Bl-AD implies AD, then Bl-ADR implies ADR.

2.2. Blackwell Determinacy and Choice. The third author proved
in 2005 that Bl-ADR proves fragments of the axiom of choice that al-
low us to separate it (in terms of implication, not yet in consistency
strength) from Bl-AD.

Theorem 3. If X := Y ∪ Z is linearly ordered and ACω(ωX) and
Bl-ADX hold, then ACY (Z) holds.

Proof. [Löw05, Theorem 9.3]. �

Corollary 4. Therefore, Bl-ADR implies ACR(R), and Bl-AD cannot
prove Bl-ADR.

Proof. The first claim is an immediate consequence of Theorem 3. It is
well-known that if R is not wellordered, then ACR(R) is false in L(R).
But if Bl-ADR is true in V, then L(R) |= Bl-AD and thus we have a
model of Bl-AD ∧ ¬Bl-ADR. �

2.3. Measures and Supercompactness. As usual, Θ := sup{α ;
there is a surjection from R onto α}. Let X be a set and κ be an
uncountable cardinal. As usual, we denote by ℘κ(X) the set of all
subsets of X with cardinality less than κ, i.e., subsets A such that
there is an α < κ and a surjection from α to A. Let U be a set of
subsets of ℘κ(X). We say that U is κ-complete if U is closed under
intersections with < κ-many elements; we say it is fine if for any x ∈ X,
{a ∈ ℘κ(X) ; x ∈ a} ∈ U ; we say that U is normal if for any family
{Ax ∈ U ; x ∈ X}, the diagonal intersection 4x∈XAx is in U (where
4x∈XAx = {a ∈ ℘κ(X) ; (∀x ∈ a) a ∈ Ax}). We say that U is a fine
measure if it is a fine κ-complete ultrafilter, and we say that it is fine

2This formulation of Blackwell determinacy axioms will make it rather difficult
for the reader to see why these games should be considered imperfect information
games. The (somewhat surprising) answer is: they should not. The original formu-
lation due to Blackwell involved imperfect information games, but in a surprising
development connected to Martin’s theorem [Mar98], these axioms turned out to
be equivalent to the version we defined here which could be described as “perfect
information determinacy with mixed strategies”. For more details, cf. [Löw05, § 5].
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normal measure if it is a fine normal κ-complete ultrafilter. It is easy
to check that if there is a surjection from X to Y , and there is a fine
(normal) measure on ℘κ(X), then there is one on ℘κ(Y ).

In the choice-less context, we can define a cardinal κ to be λ-super-
compact if there is a fine normal measure on ℘κ(λ) and to be λ-strongly
compact if there is a fine measure on ℘κ(λ). In the ZFC-context, this
is equivalent to the usual definition (cf. [Kan94, Theorem 22.7]). It is
well-known that AD implies that ℵ1 is ℵ2-supercompact [Bec81].

2.4. An alternative definition of the axiom of real Blackwell
determinacy. In [dK05], the second author started the investigation
of the axiom of real Blackwell determinacy, and gave two alternative
definitions of Bl-ADR. The second definition was the source of the
definitions of long Blackwell games in [Löw05, § 9.2]. For the sake of
completeness, we give this definition here.

Instead of considering R as discretely topologized, we use the usual
topology on R. In this setting, we do not require strategies to have
countable support. A function assigning an arbitrary Borel probability
measure on R to each finite sequence s of reals is called an E-mixed
strategy. If σ and τ are E-mixed strategies for players I and II, respec-
tively, we define

ν(σ, τ)(s) =

{
σ(s) if lh(s) is even,

τ(s) if lh(s) is odd,

as before. If B is a k + 1-dimensional Borel set and s ∈ Rk, we let
Bs := {x ; sa〈x〉}. For k ∈ ω, we define a Borel probability measure
on Rk+1. Define

µ0
σ,τ (B) := ν(σ, τ)(∅)(B), and

µk+1
σ,τ (B) :=

∫
s∈Rk

ν(σ, τ)(s)(Bs) dµ
k
σ,τ .

Clearly, the sequence of measures 〈µkσ,τ ; k ∈ ω〉 coheres, i.e.,

µk+1
σ,τ (B × R) = µkσ,τ (B),

and thus generate a Borel measure µE
σ,τ on ωR by the Kolmogorov

consistency theorem.
For a subset A ⊆ ωR, we define the other notions as before: An

E-mixed strategy σ for player I is E-optimal in A if for any E-mixed
strategy τ for player II, A is µE

σ,τ -measurable and µE
σ,τ (A) = 1. Simi-

larly, an E-mixed strategy τ for player II is E-optimal in A if for any
E-mixed strategy σ for player I, A is µE

σ,τ -measurable and µE
σ,τ (A) = 0.

We say that A is Euclidean Blackwell determined if either player I or
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II has an E-optimal strategy in A. Finally, EBl-ADR is the statement
“for any subset A of ωR, A is Euclidean Blackwell determined.”

It is easy to see that EBl-ADR implies Bl-AD. The proofs of § 2.2 all
go through under the assumption of EBl-ADR, so it is strictly stronger
that Bl-AD. We do not know what the exact relationship between
EBl-ADR and Bl-ADR is.

3. Solovay’s Analysis of ADR

In [Sol78], Solovay provided the foundations of the theory of ADR
while at the same time gaining some understanding of the relationship
between determinacy axioms and fragments of the axiom of choice.
The set R# encodes a truth definition of L(R) in the same sense that
0# encodes a truth definition of L (for details, cf. [Sol78, § 4]). In
particular, if L(R) |= T , then the existence of R# implies Cons(T ),
and thus by Gödel’s incompleteness theorem, T 6`“R# exists”. The
following two theorems are the core of Solovay’s analysis:

Theorem 5 (Solovay). The axiom ADR implies that there is a fine
normal measure on ℘ω1(R), where ℘ω1(R) is the set of all countable
subsets of R.

Proof. [Sol78, Lemma 3.1]. �

Theorem 6 (Solovay). Suppose there is a fine normal measure on
℘ω1(R) and every real has its sharp. Then R# exists.

Proof. [Sol78, Lemma 4.1 & Theorem 4.4]. �

From Theorems 5 and 6, he can deduce that ADR is strictly stronger
(in terms of consistency strength) than AD (as L(R) |= AD). In the § 4,
we shall prove the conclusion of Theorem 5 from Bl-ADR, i.e., we prove
that there is a fine normal measure on ℘ω1(R). We’ll now explain how
this implies all claims listed in the Main Theorem.

If κ < Θ, then there is a surjection from R onto κ witnessing this.
This surjection allows us to pull back the fine normal measure on ℘ω1(R)
to ℘ω1(κ), and so ω1 is κ-supercompact for every κ < Θ.

Theorem 7 (Martin, Neeman, Vervoort). If V=L(R) and Bl-AD holds,
then AD holds.

Assume that Bl-ADR holds. By Remark 2, we also have Bl-AD which
pulls back to L(R), so L(R) |= Bl-AD, and hence L(R) |= AD by
Theorem 7. But by Theorem 6, we get R#, and thus Cons(AD).

Let us close this section by raising questions raised by the results
in Solovay’s paper. Note that Solovay’s proof of the existence of a
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fine normal measure on ℘ω1(R) under ADR can be modified to work
under AD by a simple coding argument (cf. [Kie06, § 4.5]) if you give
up normality, thus giving a proof of the following theorem:

Theorem 8. If AD holds, then ω1 is κ-strongly compact for every
κ < Θ.

Our proof in § 4 does not seem to allow us to prove the Blackwell
analogue of Theorem 8.

Furthermore, Solovay proved that the consistency strength of ADR +
cf(Θ) > ω is strictly bigger than that of ADR. This proof uses model
constructions based on the Wadge hierarchy (cf. [Sol78, Theorems 2.5
& 5.7]). In order to prove the appropriate analogues in the Blackwell
context, we would need to make use of the Blackwell analogue of the
Wadge hierarchy, the Blackwell Wadge hierarchy (cf. [Löw05, § 7.3]).
Unfortunately, we do not know how to prove that this hierarchy is
wellfounded (not even under the assumption of Bl-ADR).

4. Existence of a fine normal measure

Finally, we prove the main claim of our Main Theorem: assum-
ing Bl-ADR, we construct a fine normal measure on ℘ω1(R). We shall
be closely following Solovay’s original idea. We define a family U ⊆
℘(℘ω1(R)) as follows: Fix A ⊆ ℘ω1(R) and consider the following game
GA: players alternately play finite subsets of the reals; say that they
produce an infinite sequence ~a = (ai ; i ∈ ω). Then player II wins the
game GA if

⋃
{an ; n ∈ ω} ∈ A, otherwise player I wins. We also write⋃

~a :=
⋃
{an ; n ∈ ω}. We say that A ∈ U if and only if player II

has an optimal strategy in GA. The Solovay object U is the obvious
Blackwell analogue of Solovay’s normal measure from [Sol78], and we
shall show that it is also a fine normal measure under the assumption
of Bl-ADR, thus finishing the proof.

A few properties of U are obvious: for instance, we see readily that
∅ /∈ U and that ℘ω1(R) ∈ U , as well as the fact that U is closed under
taking supersets. In order to see that U is a fine family, fix a real x,
and let player II play {x} with probability 1 in her first move: this is
an optimal strategy for G{a ;x∈a}. Note that by Remark 2, all of the
games GA are Blackwell determined.

In order to prove the other required properties of a normal measure,
we need to develop the appropriate transfer technique (as discussed
and applied in [Löw02]) for the present context. Let π ⊆ ω be an
infinite and co-infinite set. We think of π as the set of rounds in which
player I moves. We identify π with the increasing enumeration of its
members, i.e., π = {πi ; i ∈ ω}. Similarly, we write π̄ for the increasing
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enumeration of ω\π, i.e., ω\π = {π̄i ; i ∈ ω}. For notational ease,
we call π a I-coding if no two consecutive numbers are in π and a
II-coding if no two consecutive numbers are in ω\π.

Fix A ⊆ ℘ω1(R) and define two variants of GA with alternative orders

of play as determined by π. If π is a I-coding, the game Gπ,IA is played
as follows:

I aπ0 aπ1 · · ·
II a0, · · · , aπ0−1 aπ0+1, · · · , aπ1−1 · · ·

If π is a II-coding, then we play the game Gπ,IIA as follows:

I a0, · · · , aπ̄0−1 aπ̄0+1, · · · , aπ̄1−1 · · ·
II aπ̄0 aπ̄1 · · ·

In both cases, player II wins the game if
⋃
n∈ω an ∈ A. Obviously, we

have
GA = GEven,II

A

where Even is the set of even numbers.

Lemma 9. Let A be a subset of ℘ω1(R) and π be a I-coding. Then
there is a translation σ 7→ σπ of mixed strategies for player I such that
if σ is an optimal strategy for player I in GA, then σπ is an optimal
strategy for player I in Gπ,IA .

Similarly, if π is a II-coding, there is a translation τ 7→ τπ of mixed
strategies for player II such that if τ is an optimal strategy for player
II in GA, then τπ is an optimal strategy for player II in Gπ,IIA .

Proof. We prove only the claim for the games Gπ,IA , the other proof
being similar. If ~a = 〈ai ; i ∈ ω〉 is an infinite sequence of finite sets of
reals, we define

b~ai =

{
a0 ∪ · · · ∪ aπ0−1 ∪ aπ0+1 ∪ · · · ∪ aπ1−1 if i = 0,
aπi+1 ∪ · · · ∪ aπi+1−1 otherwise.

Note that in order to compute b~ai , you only need the first πi+1 bits of
~a. The idea is that now the GA-run

I aπ0 aπ1 aπ2 · · ·
II b~a0 b~a1 b~a2 · · ·

(*)

yields the same output in terms of the union of all played finite sets
as the run ~a in the game Gπ,IA . We can define a map π∗ on infinite
sequences of finite sets of reals by

(π∗(~a))i :=

{
aπk if i = 2k,
b~ak if i = 2k + 1,

and see that
⋃
{ai ; i ∈ ω} =

⋃
{(π∗(~a))i ; i ∈ ω}.
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Now, given a mixed strategy σ for player I in GA and a run ~a of the
game GA, we define σπ via π∗ as follows:

σπ(a0, · · · , aπ0−1) := σ(∅),

σπ(a0, · · · , aπm−1) := σ(aπ0 , b
~a
0, · · · , aπi , b~ai , · · · , aπm−1 , b

~a
m−1).

Assume that σ is an optimal strategy for player I in GA and fix an
arbitrary mixed strategy τ in the game Gπ,IA . We show that the payoff
set for A is µσπ ,τ -measurable and of µσπ ,τ -measure one. In order to do
so, we construct a mixed strategy τπ−1 for player II in GA so that the
game played by σπ, τ is essentially the same as the game played by
σ, τπ−1 .

Given a sequence ~b of moves in Gπ,IA , we need to unravel it into a
sequence of moves in GA in an inverse of the maps ~a 7→ b~ai according to
(*), i.e., b2i+1 = b~ai . Thus, we define

A
~b
2i+1 := {~a ; b~ai = b2i+1},

A
~b
≤2i+1 :=

⋂
j≤i

A
~b
2j+1.

Note that only a finite fragment of ~a is needed to check whether b~ai =

b2i+1, and thus we think of A
~b
≤2i+1 as a set of (πi+1 − (i + 1))-tuples

of finite sets of reals. In the following, when we quantify over all “~a ∈
A
~b
≤i”, we think of this as a collection of finite strings of finite sets of

reals. In order to pad the moves made in Gπ,IA , we define the following

notation: for infinite sequences ~a and ~b, we write

x~a,
~b

0 := (a0, ..., aπ0−1, b0, aπ0+1, ..., aπ1−1),

x~a,
~b

i := (b2i, aπi+1, ..., aπi+1−1) (if i > 0).

Compare (*) to see that if ~a corresponds to moves in Gπ,IA and ~b to the
moves in GA, then these are exactly the finite sequences that player II
will have to respond to. Moreover, for a given sequence ~z of finite sets
of reals, we let

Pτ (z0, ..., zn) :=
∏

i≤n,i/∈π

τ(z0, ..., zi−1)(zi).
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Fix a sequence ~b of finite sets of reals as moves for player I and define
τπ−1 as follows:

τπ−1(b0)(b1) :=
∑
~a∈A~b1

Pτ (x
~a,~b
0 ), and

τπ−1(b0, · · · , b2m)(b2m+1) :=

∑
~a∈A~b≤2m+1

Pτ (x
~a,~b
0

a · · ·a x~a,~bm )∏m
i=1 τπ−1(b0, · · · , b2i−2)(b2i−1)

.

Using the two operations σ 7→ σπ und τ 7→ τπ−1 , since the payoff
set for GA is invariant under π∗, it now suffices to prove for all basic
open sets [s] induced by a finite sequence s = (b0, ..., blh(s)−1) that
µσ,τπ−1 ([s]) = µσπ ,τ ((π

∗)−1([s])). We prove this by induction on the
length of s, and have to consider five different cases:

Case 1. lh(s) = 0: This is immediate.

Case 2. lh(s) = 1. Then µσ,τπ−1 ([b0]) = σ(∅)(b0) = µσπ ,τ ((π
∗)−1([b0])).

Case 3. lh(s) = 2.

µσ,τπ−1 ([b0, b1]) = σ(∅)(b0) · τπ−1(b0)(b1)

= σ(∅)(b0) ·
∑
~a∈A~b1

Pτ (x
~a,~b
0 )

=
∑
~a∈A~b1

µσπ ,τ ([x
~a,~b
0 ])

= µσπ ,τ ((π
∗)−1([b0, b1])).

Case 4. lh(s) = 2m+1 with m ≥ 1. By induction hypothesis, we have
thatX := µσ,τπ−1 ([b0, · · · , b2m−1]) = µσπ ,τ ((π

∗)−1([b0, · · · , b2m−1])). Thus,

µσ,τπ−1 ([b0, · · · , b2m]) = X · σ(b0, · · · , b2m−1)(b2m)

= µσπ ,τ ((π
∗)−1([b0, · · · , b2m])).

Case 5. lh(s) = 2m+ 2 with m ≥ 1.

µσ,τπ−1 (s) =
m∏
i=0

σ(b0, · · · , b2i+1) ·
∑

~a∈A~b≤2m+1

Pτ (x
~a,~b
0

a · · ·a x~a,~bm )

= µσπ ,τ ((π
∗)−1([b0, · · · , b2m+1])).

This calculation finishes the proof of our key lemma. �

Based on Lemma 9, we can now finish the proof of the main theorem.

Claim 10. If A /∈ U , then ℘ω1(R)\A ∈ U .
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Proof. If player II does not have an optimal strategy in GA, then player
I does. Let π := Odd, the set of odd numbers. Then in Gπ,IA , the rôles
of players I and II are switched. By Lemma 9, there is an optimal
strategy σπ for player I in the game Gπ,IA , but this is optimal for player
II in G℘ω1 (R)\A. �

Claim 11. If A1, A2 ∈ U , then A1 ∩ A2 ∈ U .

Proof. Since A1, A2 ∈ U , there are optimal strategies τ1 and τ2 for
player II in GA1 and GA2 , respectively. Let π1 := {n ; n 6≡ 1 mod 4}
and π2 := {n ; n 6≡ 3 mod 4}. Both of these sets are II-codings and
correspond to the following game diagrams:

I a0 a2, a3, a4 a6, a7, a8 · · ·
Gπ1,II

II a1 a5 a9 · · ·

I a0, a1, a2 a4, a5, a6 a8, a9, a10 · · ·
Gπ2,II

II a3 a7 a11 · · ·
By Lemma 9, there are optimal strategies (τ1)π1 , (τ2)π2 for player II in

Gπ1,II
A1

and Gπ2,II
A2

, respectively. To reduce notation, we write τ ∗1 := (τ1)π1

and τ ∗2 := (τ2)π2 . We combine these strategies into an optimal strategy
τ in GA1∩A2 by

τ(a0, · · · , a4n) := τ ∗1 (a0, · · · , a4n),

τ(a0, · · · , a4n+2) := τ ∗2 (a0, · · · , a4n+2).

We show that τ is optimal, by letting σ be arbitrary for player I in
GA1∩A2 , and define strategies σ1 and σ2 in Gπ1,II

A1
and Gπ2,II

A2
, respectively:

σ1(∅) := σ(∅),

σ1(a0, · · · , a2n+1) := σ(a0, · · · , a2n+1),

σ1(a0, · · · , a4n+2) := τ ∗2 (a0, · · · , a4n+2),

σ2(a0, · · · , a2n+1) := σ(a0, · · · , a2n+1),

σ2(a0, · · · , a4n) := τ ∗1 (a0, · · · , a4n),

Then it is easy to check that µσ,τ = µσ1,τ∗1
= µσ2,τ∗2

and thus

µσ,τ ({~a ;
⋃
~a ∈ A1}) = µσ1,τ∗1

({~a ;
⋃
~a ∈ A1}) = 1,

and similarly for A2, and thus τ is optimal. �
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Claim 12. For a family {Ax ∈ U ; x ∈ R}, we have that the diagonal
intersection 4x∈RAx is in U .

Proof. As in [Sol78], this is the most intricate part of the proof. For
each finite set of reals a, let Aa =

⋂
x∈aAx (if a = ∅, then we let

Aa := ℘ω1(R)). By Claim 11, player II has an optimal strategy in each
game GAa .

Subclaim 13. There is a choice function a 7→ τa picking an optimal
strategy for GAa .

Proof. Consider the following game G∗: player I plays a finite set of
reals a and player II passes once; after that, they play GAa . By Bl-ADR,
either player I or II has an optimal strategy for G∗. But if σ is any
strategy for player I such that σ(∅)(a) > 0, then σ cannot be optimal
(as σ will lose with non-zero probability against an optimal strategy
for player II in GAa). Thus player II has an optimal strategy τ in G∗.
Now define τa(x0, ..., xn) := τ(a,∅, x0, ..., xn). Clearly, τa is optimal in
GAa .

q.e.d. (Subclaim 13)

Fix a bookkeeping bijection ρ from ω × ω to ω such that ρ(n,m) <
ρ(n,m+1) and ρ(n, 0) ≥ n. We are playing infinitely many games in a
diagram where the first coordinate is for the index of the game we are
playing, and the second coordinate is for the number of moves. Hence
the pair (n,m) stands for “m-th move in the n-th game”. Define a
II-coding πn := ω\{2ρ(n, i) + 1 ; i ∈ ω} corresponding to the following
game diagram:

I a0, · · · , a2ρ(n,0) a2ρ(n,0)+2, · · · , a2ρ(n,1) · · ·
II a2ρ(n,0)+1 a2ρ(n,1)+1 · · ·

By Lemma 9 and Subclaim 13, we know that for each a, we get an
optimal strategy (τa)πn for the game Gπn,IIAa

. Let τ be the following
mixed strategy

τ(a0, · · · , a2ρ(n,m)) := (τan)πn(a0, · · · , a2ρ(n,m)).

The properties of ρ make sure that this strategy is well-defined; we
shall now prove that τ is an optimal strategy for player II in G4x∈RAx .

Pick any mixed strategy σ for player I in G4x∈RAx , and define strate-
gies σn for Gπn,II. Let m = ρ(k, `), then

σn(a0, · · · , a2m−1) := σ(a0, · · · , a2m−1), and

σn(a0, · · · , a2m) := (τak)πk(a0, · · · , a2m) (if k 6= n).
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Note that for each n ∈ ω and s ∈ n+1([R]<ω), µσ,τ and µσn,(τs(n))πn agree

below [s], i.e., for any set A ⊆ [s], µσ,τ (A) = µσn,(τs(n))πn (A).

The payoff set (for player II) for G4x∈RAx is A := {~a ;
⋃
~a ∈ 4Ax}.

We show that µσ,τ (A) = 1. Since

{~a ; ∀x ∈
⋃
~a (
⋃
~a ∈ Ax)} = {~a ; ∀n ∈ ω (∀x ∈ an (

⋃
~a ∈ Ax))}

=
⋂
n∈ω

{~a ;
⋃
~a ∈ Aan} ,

it suffices to check that the sets An := {~a ;
⋃
~a ∈ Aan} has µσ,τ -

measure 1. But
An =

⋃
s∈n+1([R]<ω)

([s] ∩ An)

and for all s, we have µσn,(τs(n))πn ([s] ∩ An) = µσn,(τs(n))πn ([s]). Then,
using the fact that the measures have countable support, we get

µσ,τ (An) =
∑

s∈n+1([R]<ω)

µσ,τ ([s] ∩ An)

=
∑

s∈n+1([R]<ω)

µσn,(τs(n))πn ([s] ∩ An)

=
∑

s∈n+1([R]<ω)

µσn,(τs(n))πn ([s])

=
∑

s∈n+1([R]<ω)

µσ,τ ([s])

= 1.

q.e.d. (Claim 12)

Note that together with the trivial properties of U mentioned at the
beginning of this section, Claims 10, 11, and 12 are all we need to
show: the non-principality of U follows from the fineness of U , and the
σ-completeness follows from the fact that every set of reals is Lebesgue
measurable (an ultrafilter failing σ-completeness defines a non-principal
ultrafilter on ω and hence a non-Lebesgue measurable set). Thus, we
have proved the main theorem.
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