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Abstract

We investigate the comprehension of simple quantifiers in nat-
ural language as described in a computational model posited
by many linguists and logicians. In particular, we compare
time needed for understanding different types of quantifiers.
We show that the computational distinction between quanti-
fiers recognized by finite-automata and push-down automata is
psychologically relevant. Our research improves upon hypoth-
esis and explanatory power of recent neuroimaging studies as
well as provides evidence for the claim that human linguistic
abilities are constrained by computational complexity.
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Introduction

We investigate the comprehension of simple quantifiers in
natural language as described in a computational model
posited by many linguists and logicians (see e.g. van Ben-
them (1986)). We refer to a recent neuropsychological in-
vestigation of the same problem by McMillan, Clark, Moore,
Devita, and Grossman (2005) and account for some troubles
with the interpretation of its results (see Szymanik (2007)).
Moreover, we give some direct empirical evidence linking the
computational complexity predictions with cognitive reality.
Therefore, we provide an argument in the recent debate on the
role of computational complexity in the cognitive science (see
e.g. van Rooij (2008)). In particular, we compare time needed
for understanding different types of quantifiers. We show that
the computational distinction between quantifiers recognized
by finite-automata (simple devices without internal memory)
and push-down automata (finite-automata with data storage)
is psychologically relevant. For more extensive discussion
and additional experiments see the manuscript (Szymanik &
Zajenkowski, 2008).

Computability and Cognition

One of the primary objectives of cognitive psychology is to
explain human cognitive performance. Taking a very abstract
perspective we can say that a cognitive task is a computa-
tional task. Namely, the aim of a cognitive task is to trans-
form the initial given state of the world into some desired
final state. Therefore, cognitive tasks can be identified with
functions from possible initial states of the world into possi-
ble final states of the world. Notice, that this understanding of
cognitive tasks is very closely related to psychological prac-
tice. For instance, experimental psychology is naturally task

oriented, because subjects are typically studied in the context
of specific experimental tasks (see e.g.van Rooij (2008)).

David Marr (1983) proposed a commonly accepted general
framework for analyzing levels of explanation in cognitive
sciences. In order to focus on the understanding of specific
problems, he identified three levels (ordered according to de-
creasing abstraction):

1. computational level (problems that cognitive ability has to
overcome);

2. algorithmic level (the algorithms that may be used to

achieve a solution);

3. implementation level (how it is actually done in neural ac-

tivity).

Cognitive science has put a lot of effort into investigating
the computational level of linguistic competence and today
computational restrictions are taken very seriously when dis-
cussing cognitive capacities. For instance, a psychological
version of the Church-Turing thesis (Turing, 1936) (Church,
1936) — stating that the human mind can only deal with com-
putable problems — is widely accepted. Moreover, complex-
ity restrictions on cognitive tasks have already been noted
in the philosophy of language and mind (see e.g. Cherniak
(1981), Hofstadter (2007)), the theory of language (see e.g.
Levesque (1988)) and psychology of vision (see e.g. Tsot-
sos (1990)) leading to many variants of the Tractable Cogni-
tion Thesis stating that human cognitive (linguistic) capac-
ities are constrained by computational resources, like time
and memory (see e.g. Frixione (2001), Mostowski and Wo-
jtyniak (2004), van Rooij (2008)). Unfortunately, there are
not many empirical studies directly linking complexity pre-
dictions of computational models with psychological reality.
One reason might be that the current debate is shaped around
the question which computable tasks are feasible for human
(bounded) agents. As a result the discussion involves refer-
ences to very abstract problems of high computational com-
plexity (NP-hard and beyond). These problems are very dif-
ficult to empirically confront with cognitive reality. Our idea
in this paper is to track the links between cognitive tasks and
computational complexity using simpler, less theoretically in-
volved problems. As a result the present research increases
our empirical evidence in favor of this connection.



Computability and Comprehension

In the paper we are concerned with a very basic linguis-
tic ability of understanding quantifier sentences. In partic-
ular, we deal with the capacity of recognizing the truth-value
of sentences with simple quantifiers (like “some”, “an even
number of”, “more than 7”, “less than half”) in finite situa-
tions illustrated by pictures. We show that a simple compu-
tational model describing the processing of such sentences is
psychologically plausible with respect to reaction time pre-
dictions.

Our interest in computational models of language compre-
hension is natural from a theoretical point of view. There is a
tradition in the philosophy of language, going back to Gottlob
Frege (1892), of thinking about the meaning of a sentence as
the mode of presenting its truth-value. In modern terms we
can try to explicate this idea by saying that the meaning of a
sentence is an algorithm for finding its truth-value. This ap-
proach has been adopted by many theoreticians, to different
degrees of explicitness, very often with a psychological mo-
tivations (see e.g. Suppes (1982) and Lambalgen and Hamm
(2005)).

Previous Investigations in the Area

Quantifiers have been widely treated from the perspective of
cognitive psychology (see e.g. Sanford, Moxey, and Pater-
son (1994)). But only recently cognitive science research de-
voted to computational model of quantifier comprehension
has been published for the first time. Research presented
by McMillan et al. (2005) was the first attempt to inves-
tigate the neural basis of natural language quantifiers (see
also (McMillan, Clark, Moore, & Grossman, 2006) for evi-
dence on quantifier comprehension in patients with focal neu-
rodegenerative disease, (Troiani, Peelle, Clark, & Grossman,
2009) for comparison between logical (Aristotelian) and nu-
merical (cardinal) quantifiers, and (Clark & Grossman, 2007)
for more general discussion). It was devoted to study brain
activity during comprehension of sentences with quantifiers.
Using neuroimaging methods (BOLD fMRI) the authors ex-
amined the pattern of neuroanatomical recruitment while sub-
jects were judging the truth-value of statements containing
natural language quantifiers. According to the authors their
results verify a particular computational model of natural lan-
guage quantifier comprehension posited by several linguists
and logicians. One of the authors of the present paper has
challenged this statement by invoking the computational dif-
ference between elementary quantifiers and parity quantifiers
(Szymanik, 2007). The starting point of this research is this
very criticism. Let us have a closer look at it.

McMillan et al. (2005) were considering the following
two standard types of quantifiers: first-order and higher-order
quantifiers. First-order quantifiers are those expressible in
first-order predicate calculus, which is the logic containing
only quantifiers 3 and V binding individual variables. In
the research, the following first-order quantifiers were used:
“all”, “some”, and “at least 3”. Higher-order quantifiers are

those not expressible in first-order logic, for example “most”,
“every other”. The subjects taking part in the experiment
were presented with the following higher-order quantifiers:
“less than half of”’, “an even number of”, “an odd number
of”.

To recognize first-order quantifiers we only need com-
putability models which do not use any form of internal mem-
ory (data storage). Intuitively, to check whether sentence (1)
is true we do not have to involve short-term memory (working
memory capacity) (for a psychological model see e.g. (Bad-
deley, 2007)).

1. Every sentence in this paper is correct.

It suffices to read the sentences from this article one by one.
If we find an incorrect one, then we know that the statement
is false. Otherwise, if we read the entire paper without find-
ing any incorrect sentence, then statement (1) is true. We can
proceed in a similar way for other first-order quantifiers. For-
mally, it was proven by Johan van Benthem (1986) that first-
order quantifiers can be computed by such simple devices as
finite automata without cycles (loops of length > 1).

Theorem 1 A quantifier Q is first-order definable if and only
if it can be recognized by an finite automaton without cycles.

For example, have a look at the automata in Figures 1, 2.

correct, incorrect

Figure 1: This finite automaton checks whether every sen-
tence in the text is correct. It inspects the text sentence by
sentence starting in the accepting state (double circled), g,.
As long as it does not find incorrect sentence it stays in the
accepting state. If it finds such sentence, then it already
“knows” that the sentence is false and move to the rejecting
state, g1, where it stays no matter what sentence is next.

correct
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Figure 2: This finite automaton recognizes whether at least 3
sentences in the text are false. This automata needs 4 states.
It starts in the rejecting state, g, and eventually, if the condi-
tion is satisfied, moves to the accepting state, g3. Furtermore,
notice that to recognize “at least 8” we would need 9 states
and so on.

However, for recognizing some higher-order quantifiers,
like “less than half” or “most”, we need computability models
making use of internal memory. Intuitively, to check whether



sentence (2) is true we must identify the number of correct
sentences and hold it in working memory to compare with
the number of incorrect sentences.

2. Most of the sentences in this paper are correct.

Mathematically speaking, such an algorithm can be realized
by a push-down automaton, PDA, (see e.g. Hopcroft, Mot-
wani, and Ullman (2000)).

From the perspective of those computational differences,
McMillan et al. (2005) have hypothesized that all quantifiers
recruit the right inferior parietal cortex, which is associated
with numerosity. Taking the distinction between the com-
plexity of first-order and higher-order quantifiers for granted,
they also predicted that only higher-order quantifiers recruit
the prefrontal cortex, which is associated with executive re-
sources, like working memory. In other words, they believe
that the logical differences between first-order and higher-
order quantifiers are also reflected in brain activity during
processing quantifier sentences. This prediction was con-
firmed.

In our view the authors’ interpretation of their results is
not convincing. Their experimental design may not provide
the best means of differentiating between the neural bases of
the various kinds of quantifiers. The main point of criticism is
that the distinction between first-order and higher-order quan-
tifiers does not coincide with the computational resources re-
quired to compute the meaning of quantifiers. There is a
proper subclass of higher-order quantifiers, namely divisibil-
ity (parity) quantifiers, which corresponds — with respect to
memory resources — to the same computational model as
first-order quantifiers. In fact, most of the quantifiers iden-
tified in the research as higher-order quantifiers can be rec-
ognized by finite automata. Both “an even number” and “an
odd number” are quantifiers recognized by two-state finite au-
tomata with a transition from the first state to the second and
vice versa. In general, exactly the quantifiers definable in di-
visibility logic, FO(D,) (i.e. first-order logic enriched by all
quantifiers “divisible by n”, for n > 2), are recognized by fi-
nite automata (FA) (Mostowski, 1998).

Theorem 2 A monadic quantifier Q is definable in the divis-
ibility logic iff it can be recognized by a finite automaton.

Let us consider a relevant example. In the case of the au-
tomaton corresponding to “even” the initial state is also the
accepting state. In the automaton for “odd” the other state
is the accepting one. Intuitively, to check whether sentence
(3) is true you do not need to count the number of incorrect
sentences and then compare it with that of the set of even in-
tegers.

3. An even number of the sentences in this paper is incorrect.

You need only remember parity. For example when you find
an incorrect sentence you write “1” at the blackboard, if you
find another one you erase “1” and put “0” again, then if you
see another incorrect sentence you put “1” in place of “0”,

and so on. At every moment you have only one digit at the
blackboard no matter how long is the paper. Compare with
the automaton from Figure 3.

Figure 3: Finite automaton checking whether the number of
“1”s is even.

To sum up, first-order and higher-order quantifiers do not
always differ with respect to the memory requirements. For
example, “an even number of” is a higher-order quantifier
that can still be recognized by a finite automaton. Therefore,
differences in processing cannot be explained based solely
on logical properties, as those are not enough fine grained.
A more careful computational perspective — taking into ac-
count all mentioned results summed up in Table 1 — have to
be applied to investigate quantifier comprehension. In what
follows we present research exploring the subject empirically
with respect to the computational model outlined in this sec-
tion.

expressibility examples recognized by
FO “all cars”, “at least 3 balls”  acyclic FA
parity “an even number of balls”  FA
proportional ~ “most lawyers” PDA

Table 1: Quantifiers, logics, and complexity of automata.

The Experiment

The study compares reaction times needed for the compre-
hension of different types of quantifiers. In particular, it im-
proves upon the hypothesis of McMillan et al. (2005) by
taking directly into account predictions of the computational
model of quantifier comprehension and not only expressibil-
ity differences among quantifiers. Additionally, we compare
two classes of quantifiers inside the first-order group: Aris-
totelian and cardinal quantifiers, relating to the very recent
research of Troiani et al. (2009).

Procedure

General Idea First, we compared reaction time with re-
spect to the following classes of quantifiers: those recognized
by acyclic FA (first-order), those recognized by FA (parity),
and those recognized by PDA (proportional). McMillan et al.
(2005) did not report any data on differences between first-
order and parity quantifiers.

We predict that reaction time will increase along with the
computational power needed to recognize quantifiers. Hence,



parity quantifiers (even, odd) will take more time than first
order-quantifiers (all, some) but not as long as proportional
quantifiers (less than half, more than half).

Moreover, we have additionally compared Aristotelian
quantifiers with cardinal quantifiers of higher rank, for in-
stance “less than 8”. In the study of McMillan et al. (2005)
only one cardinal quantifier of relatively small rank was taken
into consideration, namely “at least 3”. We predict that
complexity of the mental processing of cardinal quantifiers
depends on the number of states in the relevant automata.
Therefore, cardinal quantifiers of high rank should be more
difficult than Aristotelian quantifiers (see Figure 2 for more
explanation). Additionally, presumably the number of states
in automata (size of memory needed) influences comprehen-
sion more directly than the use of loops. Hence, we hypothe-
size that the reaction time for the comprehension of cardinal
quantifiers of higher rank is between that for parity and pro-
portional quantifiers.

Participants Forty native Polish-speaking adults took part
in this study. They were volunteers from the University of
Warsaw undergraduate population. 19 of them were male and
21 were female. The mean age was 21.42 years (SD = 3.22)
with a range of 18-30 years. Each participant was tested in-
dividually and was given a small financial reward for partici-
pation in the study.

Materials and Procedure The task consisted of eighty
grammatically simple propositions in Polish containing a
quantifier that probed a color feature of car on display. For
example:

4. Some cars are red.

5. Less than half of the cars are blue.

Eighty color pictures presenting a car park with cars were
constructed to accompany the propositions. The colors of the
cars were red, blue, green, yellow, purple and black. Each
picture contained fifteen objects in two colors (see Figure 4).

Eight different quantifiers divided into four groups were
used in the study. The first group of quantifiers was first-
order Aristotelian quantifiers (all, some); the second was par-
ity quantifiers (odd, even); the third was first-order cardinal
quantifiers of relatively high rank (less than 8, more than 7);
and the fourth was proportional quantifiers (less than half,
more than half) (see Table 2). Each quantifier was presented
in 10 trials. Hence, there were in total 80 tasks in the study.
The sentence matched the picture in half of the trials. Propo-
sitions with “less than 8”, “more than 7, “less than half”,
“more than half” were accompanied with a quantity of tar-
get items near the criterion for validating or falsifying the
proposition. Therefore, these tasks required a precise judg-
ment (e.g. seven targets in less than half”’). Debriefing fol-
lowing the experiment revealed that none of the participants
had been aware that each picture consisted of exactly fifteen
objects.

Figure 4: An example of a stimulus used in the first study.

The experiment was divided into two parts: a short prac-
tice session followed immediately by the experimental ses-
sion. Each quantifier problem was given one 15.5 s event. In
the event the proposition and a stimulus array containing 15
randomly distributed cars were presented for 15000 ms fol-
lowed by a blank screen for 500 ms. Subjects were asked
to decide if the proposition was true at the presented picture.
They responded by pressing the button with letter “P” if true
and the button with letter “F” if false. The letters refer to first
letters of Polish words for “true” and "false”.

The experiment was performed on a PC computer running
E-Prime version 1.1.

Results

Analysis of Accuracy As we expected, the tasks were quite
simple for our subjects and they made only a few mistakes.
The percentage of correct answers for each group of quanti-
fiers is presented in Table 2.

Quantifier group Examples Percent
Aristotelian FO  all, some 99
Parity odd, even 91
Cardinal FO less than 8, more than 7 92
Proportional less than half, more than half 85

Table 2: The percentage of correct answers for each group of
quantifiers.

Comparison of Reaction Times To examine the differ-
ences in means we used repeated measures analysis of vari-
ance with type of quantifier (4 levels) as the within-subject
factor. The assumption of normality was verified by the
Shapiro-Wilk test. Because the Mauchly’s test showed vi-
olation of sphericity, Greenhouse-Geiser adjustment was ap-



plied. Moreover, polynomial contrast analysis was performed
for the within-subject factor. SPSS 14 was used for the anal-
ysis.

Table 3 presents mean (M) and standard deviation (SD) of
the reaction time in milliseconds for each type of quantifier.

Group M SD
Aristotelian FO  2257.50 471.95
Parity 5751.66 1240.41
Cardinal FO 6035.55 1071.89
Proportional 7273.46 1410.48

Table 3: Mean (M) and standard deviation (SD) of the reac-
tion time in milliseconds for each type of quantifier.

We observed that the increase in reaction time was deter-
mined by the quantifier type (F (2.4, 94.3) = 341.24, p <
0.001, 12=0.90). Pairwise comparisons among means indi-
cated that all four types of quantifiers differed significantly
from one another (p < 0.05). Polynomial contrast analysis
showed the best fit for a linear trend (F(1, 39) = 580.77,
p < 0.001). The mean reaction time increased as follows:
Aristotelian quantifiers, parity quantifiers, cardinal quanti-
fiers, proportional quantifiers (see Figure 5).
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RT

4 noo-|

2 noo-|

2 ooo-|

Aristorelian Parity Cardinal Proportional
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Figure 5: Average reaction times in each type of quantifiers
in the first study.

Discussion
Conclusions

We have been studying comprehension of natural language
quantifiers from the perspective of simple, automata-theoretic
computational models. Our investigation is a continuation of
previous studies. In particular, it enriches and explains some
data obtained by McMillan et al. (2005) and Troiani et al.
(2009) with respect to reaction times. Our results support the
following conclusions:

Plausibility of the Model The automata-theoretic model
correctly predicts that quantifiers computable by finite-
automata are easier to understand than quantifiers recognized
by push-down automata. It improves results of McMillan et
al. (2005), which compared only first-order quantifiers with
higher-order quantifiers, putting in one group quantifiers rec-
ognized by finite-automata and those recognized by push-
down automata.

Aristotelian, Cardinal, and Parity Quantifiers We have
observed a significant difference in reaction time between
Aristotelian and parity quantifiers, even though they are both
recognized by finite automata. This difference may be ac-
counted for by observing that the class of Aristotelian quanti-
fiers is recognized by acyclic finite automata, whereas in the
case of parity quantifiers we need loops. Therefore, loops
are another example of computational resources having influ-
ence on the complexity of cognitive tasks. Moreover, we have
shown that processing first-order cardinal quantifiers of high
rank takes more time than comprehension of parity quanti-
fiers. This suggests that the number of states in the relevant
automaton plays an important role when judging the difficulty
of a natural language construction. Arguably, the number of
states required influences hardness more than the necessity
of using cycles in the computation. These observations shed
some light on the differences between numerical and logical
quantifiers assessed in (Troiani et al., 2009).

Cognition and Complexity Last but not least, our research
provides direct evidence for the claim that human linguistic
abilities are constrained by computational resources (internal
memory, number of states, loops).

Perspectives

There are many questions we leave for further research. Be-
low we list a few of them.

Comprehension and Brain Even though we believe that
computational properties are directly responsible for quanti-
fier difficulty in natural language we are aware that our exper-
iment does not support automata-theoretic account uniquely.
However, our experimental setting can be used for neuropsy-
chological study extending the one by McMillan et al. (2005).
On the basis of our research and findings of McMillan et al.
(2005) we predict that comprehension of parity quantifiers
— but not first-order quantifiers — depends on executive re-
sources that are mediated by dorsolateral prefrontal cortex.
This would correspond to the difference between acyclic fi-
nite automata and finite automata. Further studies would con-
tribute to extending our understanding of simple quantifier
comprehension on Marr’s implementation level.

Comprehension Strategies What about Marr’s algorith-
mic level of explanation? It would be good to describe proce-
dures actually used by our subjects to deal with comprehen-



sion. In principle it is possible to try to extract real algorithms
by letting subjects manipulate the elements, tracking their be-
havior and then drawing some conclusions about their strate-
gies. This is one of the possible future directions to enrich
our experiments.

Comprehension and Working Memory Before starting
any neuropsychological experiments it would be useful to
measure memory involvement for different types of quanti-
fiers using some classical methods known from cognitive psy-
chology, like a dual-task paradigm combining a memory span
measure with a concurrent processing task.

Comprehension Beyond Quantifiers Finally, the
automata-theoretic model can be extended for other no-
tions than simple quantifiers. For example, as it was already
suggested by van Benthem (1987), by considering richer
data structures it can account for conditionals, comparatives,
compound expressions in natural language, non-elementary
combinations of quantifiers, link to learnability theory
(Gierasimczuk, 2007) and others. Possibly such extensions
could be valuable not only from linguistic but also a cognitive
point of view.
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