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Abstract

The present paper applies well-investigated modal logics to provide
formal foundations to specific fragments of argumentation theory. This
logic-driven analysis of argumentation allows: first, to systematize several
results of argumentation theory reformulating them within suitable formal
languages; second, to import several techniques (calculi, model-checking,
evaluation games, bisimulation games); third, to import results (eminently
completeness of axiomatizations, and complexity of model-checking) from
modal logic to argumentation theory.

1 Introduction

The present paper analyzes argumentation theory by means of logical tools
developed in modal logic. It shows how standard results in argumentation
theory obtain elegant reformulations within well-investigated modal logics.
This allows to import a number of techniques (e.g., calculi, logical games) as well
as results (e.g. completeness, complexity) from modal logic to argumentation
theory, essentially for free. Also, as it is often the case in the cross-fertilization
of different formalism, such perspective opens up interesting lines of research
which were thus far hidden to the attention of argumentation theorists. As
such, the present study can be regarded as a study in logic applied to the
formal foundations of argumentation theory.

Let us start off with the basic notion of argumentation theory. An abstract
argumentation framework is a relational structure A = (A,�) where A is a
non-empty set, and �⊆ A2 is a relation on A [9]. This paper investigates the
simple but yet unexplored idea which consists in viewing Dung’s abstract argu-
mentation frameworks as Kripke frames (W,R) [1]. Modal languages are logical
languages which are particularly suitable for talking about relational structures
[2] so, from the point of view of this paper, Dung’s argumentation frameworks
are nothing but Kripke relational frames where the set of arguments A is the
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set of modal states W, and the attack relation � is the accessibility relation R.
The entire content of the paper hinges on this simple observation.

The paper is structured as follows. Section 2 introduces a well-known
modal logic—logic K with converse relation—as a logic for talking about ar-
gumentation frameworks. Section 3 uses this logic to formalize a first set of
argumentation-theoretic notions such as acceptability, complete and stable ex-
tensions. The exposition of such notion will as much as possible stick to [9], in
order to emphasize the easiness of modal languages in capturing the natural
intuitions backing argumentation theory. As we will see, however, the formal-
ization of such notions can be done only in the meta-language. Section 4 moves
on by introducing the further expressivity needed to express argumentation
theory in the object language. This enables the possibility of using calculi to
derive argumentation-theoretic results such as the Fundamental Lemma [9],
and import complexity results concerning, for instance, checking whether an
argument belongs to the stable extension of a framework under a given label-
ing. Along the same line, Section 5 tackles the formalization of the notion of
grounded extension within µ-calculus. In Section 6 semantic games are studied
for the logic introduced in Section 4 which provide a systematization of dialogue
games as model-checking games. Finally, Section 7 tackles the question—not
yet addressed in the literature on argumentation theory—of when two argu-
ments, or two argumentation frameworks, are “the same”. In order to shed
light on this question the model-theoretic notion of bisimulation is deployed
and bisimulation games are introduced as a procedural method to check the
“behavioral equivalence” of two argumentation frameworks. Conclusions fol-
low in Section 8 where future research lines are also sketched. Appendix B
recapitulates the basic notions of argumentation theory dealt with in the paper.

2 A modal toolkit for argumentation

This section introduces the modal view of argumentation theory investigated
in the paper.

2.1 Argumentation models

Doing argumentation theory à la Dung means, essentially, to study specific
properties of sets of arguments (e.g., conflict-freeness, acceptability, etc.) within
a given argumentation framework A. Once an argumentation framework is
viewed as a Kripke frame we can directly import the simple machinery de-
ployed by Modal Logic to talk about sets, that is, valuation functions. Modal
languages talk about sets by assigning them names, i.e., the atoms of a propo-
sitional language, and then by inductively extending such assignments.

Definition 1 (Argumentation models). Let P be a set of propositional atoms. An
argumentation modelM = (A,I) is a structure such that:

␐ A = (A,�) is an argumentation framework;

␐ I : P −→ 2A is an assignment from P to subsets of A.

The set of all argumentation models is called A. A pointed argumentation model is a
pair (M, a) whereM is an argumentation model and a an argument.
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Argumentation models are nothing but argumentation frames together with
a way of “naming” sets of arguments or, to put it otherwise, of “labeling”
arguments. In other words, they make explicit the language which is used for
talking about sets of arguments. The fact that an argument a belongs to I(p) in
a given modelM, which in logical notation reads:

(A,I), a |= p (1)

can be interpreted as stating that “argument a has property p” , or that “p is
true of a”.

By substituting atom p in Formula 1 with a Boolean compound ϕ (i.e.,
ϕ := p ∧ q) we can say that “a belongs to both the sets called p and q”, and the
same can be done for all other Boolean connectives. However, what is typically
interesting in argumentation theory, are statements of the sort: “argument a
attacks (or is attacked by) an argument in a set called ϕ”. These are modal
statements, and the next section introduces the formal language needed for
expressing them.

Example 1. (Argument labelings as argumentation models) If argumentation
frameworks can be viewed as Kripke frames, then an argumentation frame-
work together with a labelling function—in the sense of [4]—from the set
{1, 0, ?} is nothing but an argumentation modelM = (A,I) (Definition 1) where
I interprets the alphabet {1, 0, ?} on the set of arguments A. That is:

␐ A = (A,�) is an argumentation framework;

␐ I is a valuation function from the set of atoms P = {1, 0, ?} to the set 2A;

␐ M |= Fct, where Fct := (1∧¬0∧¬?)∨ (¬1∧ 0∧¬?)∨ (¬1∧¬0∧ ?). That
is, I is forced to simulate a function from A to {1, 0, ?}.

We will come back later to the sort of labeling used in argumentation theory
to characterize extensions, and show that they can be expressed by modal
formulae.

2.2 A basic modal logic for argumentation

We here introduce a first stadard modal logic for talking about the sort of
structures introduced in Definition 1.

2.2.1 Language.

Let us now formally introduce the modal language we are going to work with,
which we call LK−1

. It consists of a countable set P of propositional atoms, the
set of Boolean connectives {⊥,¬,∧}, and the set of modal operators {〈�〉, 〈�〉}.
The set of well-formed formulae ϕ is defined by the following BNF:

L
K−1

: ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | 〈�〉ϕ | 〈�〉ϕ

where p ranges over P. The other standard boolean connectives {>,∨,→}, and
the modal duals {[�], [�]} are defined as usual.

We can now express that “a attacks an argument belonging to a set called
ϕ” (Formula 2), that “a is attacked by an argument in a set called ϕ” (Formula
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3), or that “a reinstates an argument in ϕ” (Formula 3) in the sense that it attacks
an attacker of a ϕ argument, or that “a is defended by the set ϕ” (Formula 3):

(A,I), a |= 〈�〉ϕ (2)
(A,I), a |= 〈�〉ϕ (3)
(A,I), a |= 〈�〉〈�〉ϕ (4)

The next section makes these intuitive readings exact by defining the formal
semantics of LK−1

in terms of argumentation models.

2.2.2 Semantics.

The formal semantics of LK−1
is defined as usual via the notion of satisfaction

of a formula in a model.

Definition 2 (Satisfaction forLK−1
in argumentation models). Let ϕ ∈ LK−1 . The

satisfaction of ϕ by a pointed argumentation model (M, a) is inductively defined as
follows:

M, a 6|= ⊥
M, a |= p iff a ∈ I(p), for p ∈ P
M, a |= ¬ϕ iff M, a 6|= ϕ

M, a |= ϕ1 ∧ ϕ2 iff M, a |= ϕ1 andM, a |= ϕ2

M, a |= 〈�〉ϕ iff ∃b ∈ A : (a, b) ∈ � andM, b |= ϕ

M, a |= 〈�〉ϕ iff ∃b ∈ A : (a, b) ∈ �−1 andM, b |= ϕ

As usual, the truth-set of ϕ in modelM is denoted ||ϕ||M.1 We say that: ϕ is valid in
an argumentation modelM iff it is satisfied in all pointed models ofM, i.e.,M |= ϕ;
ϕ is valid in a class M of argumentation models iff it is valid in all its models, i.e.,
M |= ϕ. All definitions are naturally generalizable to sets of formulae Φ.

Let us comment upon the two modal clauses. A formula 〈�〉ϕ is satisfied
by argument a in modelM if and only if there exists an argument b such that a
attacks b and b belongs to the set ||ϕ||M. Conversely, a formula 〈�〉ϕ is satisfied
by argument a in modelM if and only if there exists an argument b such that a
is attacked by b and b belongs to the set ||ϕ||M. In other words 〈�〉 is interpreted
on the inverse �−1 of the attack relation �.

Definition 2 provides a structured way to define sets of arguments by means
of expressions ofLK−1

. If an argument belongs to a set specified by ϕ inM, that
is a ∈ ||ϕ||M, then we writeM, a |= ϕ and we say that a satisfies ϕ or that a is a
ϕ-argument.

The set of formulae ϕ of LK−1
such that A |= ϕ, defines logic K−1. Such

logic contains all the truths concerning argumentation frameworks which can
be expressed in LK−1

. The next section introduces a Hilbert calculus for this
logic.

1SubscriptMwill often be dropped when no confusion arises.
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2.2.3 Axiomatics.

Logic K−1 is axiomatized by the following set of schemata and rules:

(Prop) propositional schemata
(K) [i](ϕ1 → ϕ2)→ ([i]ϕ1 → [i]ϕ2)

(Conv) ϕ→ [i]¬[ j]¬ϕ
(Dual) 〈i〉 ↔ ¬[i]¬ϕ

(MP) if ` ϕ1 → ϕ2 and ` ϕ1 then ϕ2

(N) if ` ϕ then ` [i]ϕ

with i , j ∈ {�,�}. We have the following result.

2.2.4 Meta-theoretical results.

We have the following results:

␐ Logic K−1 is sound and strongly complete with respect to the class A of
all argumentation models under the semantics given in Definition 2 (see
Appendix for a sketch of the proof).

␐ The satisfiability problem of K−1 is P-reducible to the one of K in the
presence of a background theory [11], which is known to be EXP-complete
[19].

In the next section the logic just introduced is used to start off with a formal-
ization of some basic argumentation-theoretic notions.

3 Doing argumentation in K−1: basic notions

How much of abstract argumentation can be done within K−1? The present
section answers this question. Surprisingly, almost all the key notions intro-
duced by Dung in [9] can be expressed and study resorting to this a simple
logic, although only at the level of the meta-language.

3.1 Acceptability, conflict-freeness and admissibility

Given an argumentation model M, an argument is said to be acceptable with
respect to a set ||ϕ|| inM if and only if for all arguments b attacking a there exists
one ϕ-argument c s.t. c attacks b. That is:

M, a |= [�]〈�〉ϕ (5)

In other words, formula [�]〈�〉ϕ states that for any attack on a there exists a
reinstatement from a ||ϕ||-argument.

Similarly, we can express that a set of arguments ||ϕ|| is acceptable with
respect to a set of arguments ||ψ|| in model M. This holds if and only if all
arguments a in ||ϕ|| are acceptable with respect to ||ψ||. That is to say, ||ϕ|| ⊆
||[�]〈�〉ψ||, which in modal logic corresponds to the statement of the following
global property:

M |= ϕ→ [�]〈�〉ψ (6)
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To put it otherwise, formulaϕ→ [�]〈�〉ψ states that the set of arguments ||ϕ|| is
able to defend all its members from the attack of other arguments (which are also
possibly in ||ϕ||). The notion of self-acceptability is therefore straightforwardly
defined:

M |= ϕ→ [�]〈�〉ϕ (7)

Global properties of models such as Formulae 6 and 7 are typical example of
the type of notions playing a central role in argumentation theory.

Other global properties of argumentation models which play a key role in
Dung’s theory are conflict-freeness and admissibility. A set of arguments ||ϕ|| is
said to be conflict free inM iff no argument in ||ϕ|| attacks any argument in ||ϕ||:

M |= ϕ→ ¬〈�〉ϕ (8)

That is to say, ||ϕ|| is conflict-free if and only if either an argument does not
satisfy ϕ or, if it is a ϕ-argument, then it does not attack any ϕ-argument. It is
a matter of direct application of the semantics to prove the following fact.

Fact 1 (Equivalence of� and� for conflict-freeness). LetM be an argumentation
model. It holds that:

M |= ϕ→ ¬〈�〉ϕ ⇐⇒ M |= ϕ→ ¬〈�〉ϕ

Proof. [Left to right] We proceed per absurdum.Take M |= ϕ → ¬〈�〉ϕ and
supposeM 6|= ϕ → ¬〈�〉ϕ. It follows that there exist arguments a and b such
that b � a and M, a |= ϕ. However, from the assumption we have that if
M, a |= ϕ, then for all arguments b such that a � b,M, b |= ¬ϕ. We thus obtain
a contradiction. [Right to left] An analogous argument per absurdum can be
used. �

So, as we might expect, conflict-freeness can be equivalently described either
by thinking in terms of arguments attacking other arguments, or by thinking
in terms of arguments being attacked by other arguments.

Acceptability and conflict-freeness together determine the admissibility of a
set of arguments. A set ||ϕ|| is admissible inM if and only if it is acceptable in
Mwith respect to itself, that is, if and only if the following validity holds:

M |= (ϕ→ ¬〈�〉ϕ) ∧ (ϕ→ [�]〈�〉ϕ) (9)

which, by propositional logic, is equivalent to the following slicker formulation:

M |= ϕ→ ([�]¬ϕ ∧ [�]〈�〉ϕ) (10)

Formulae 9 and 10 state that the set ofϕ-arguments is such that all its arguments
attack arguments that do not belong to ||ϕ||, and all arguments attacking its
arguments are reinstated by other ϕ-arguments. If this holds for a ϕ in , in an
argumentation modelM, then ||ϕ|| is admissible inM.

Table 1 recapitulates the formalization in K−1 of self-acceptability, conflict-
freenes and admissibility. All such notions can be captured as validities ofLK−1

formulae in the argumentation model at issue.
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Acc(ϕ,ψ,M) ⇐⇒ M |= ϕ→ [�]〈�〉ψ

CFree(ϕ,M) ⇐⇒ M |= ϕ→ ¬〈�〉ϕ

Adm(ϕ,M) ⇐⇒ M |= ϕ→ ([�]¬ϕ ∧ [�]〈�〉ϕ)

Table 1: Acceptability, conflict-freeness and admissibility in LK−1

3.2 Complete and stable extensions

In [9], the “solution” of an argumentation framework is a set of arguments
which can be considered as a “rational position” to be held according to some
kind of precisely defined notion of rationality. Two of such solution concepts
are the so-called complete and stable extensions.

Given an argumentation modelM, a complete extension ofM is a set ||ϕ||
which is admissible inM and is such that any argument which is acceptable
for ||ϕ|| inM belongs to ||ϕ||. In LK−1

this becomes:

M |= ϕ→ ([�]¬ϕ ∧ [�]〈�〉ϕ) ∧ ([�]〈�〉ϕ→ ϕ) (11)

which, by propositional logic, is equivalent to:

M |= (ϕ→ [�]¬ϕ) ∧ (ϕ↔ [�]〈�〉ϕ) (12)

So, a set of ϕ-arguments is a complete extension of an argumentation modelM
iff such set is conflict-free inM (first conjunct of Formula 12) and it is equivalent
to the set of arguments it defends (second conjunct of Formula 12).

We can similarly capture the notion of stable extension for a given argu-
mentation modelM. According to Dung, ||ϕ|| is a stable extension if and only
if ||ϕ|| is the set of arguments which is not attacked by ||ϕ||, that is:

M |= ϕ↔ ¬〈�〉ϕ (13)

Table 2 recapitulates the semantic definitions of completeness and stability in
K−1. The following fact can be proven by model-theoretic considerations.

Fact 2 (Stability implies admissibility). LetM = (A,I) be an argumentation model.
It holds that:

Stable(ϕ,M) =⇒ Adm(ϕ,M).

Complete(ϕ,M) ⇐⇒ M |= (ϕ→ [�]¬ϕ) ∧ (ϕ↔ [�]〈�〉ϕ)

Stable(ϕ,M) ⇐⇒ M |= ϕ↔ ¬〈�〉ϕ

Table 2: Complete and stable extensions in LK−1
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Proof. [Stable(ϕ,M) =⇒ CFree(ϕ,M)] We proceed per absurdum. Consider
M |= ϕ ↔ ¬〈�〉ϕ and suppose there exists a ∈ A such thatM, a |= ϕ ∧ 〈�〉ϕ.
Then there exists b ∈ A such that a � b andM, b |= ϕ, which is impossible since
M, b |= ¬〈�〉ϕ by assumption. [Stable(ϕ,M) =⇒ Acc(ϕ,ϕ,M)] We proceed
again per absurdum. Consider the contrapositive of Formula 13, i.e., M |=
¬ϕ ↔ 〈�〉ϕ, and suppose there exists a ∈ A such that M, a |= ϕ ∧ ¬[�]〈�〉ϕ.
It follows that there exists ab ∈ A such that a � b and M, b |= ¬ϕ ∧ [�]¬ϕ.
From this, by our assumption, it follows thatM, b |= 〈�〉ϕ ∧ [�]¬ϕ, which is
impossible. �

Fact 2 shows how model-theoretic properties of K−1 reflect basic theorems of
abstract argumentation. It is worth noticing that the proof of this fact cannot be
carried out as a derivation within K−1 since it lacks the necessary expressivity
to represent validity within a model as a formula in the object language (e.g.,
the universal modality [1]). A more expressive logic where this can be done is
exposed in Appendix. Here we have opted for a simpler formalism which can
better illustrate the methodology behind our work.

3.3 Characteristic functions and K−1

Each argumentation frameworkA = (A,�) determines a characteristic function
cA : 2A

−→ 2A such that for any set of arguments X, cA(X) yields the set of
arguments in A which are acceptable with respect to X, i.e., {a ∈ A | ∀b ∈ A :
[b � a⇒ ∃c ∈ X : c � b]}.

Now, consider language L[�]〈�〉 defined by the following BNF:

L
[�]〈�〉 : ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | [�]〈�〉ϕ

where p belongs to the set of atoms P. Notice that L[�]〈�〉 is the fragment
of LK−1

containing only the compounded modal operator [�]〈�〉. Let A+ =
(2A,∩,−, ∅, cA) be the power set algebra on 2A extended with operator cA, and
consider the term algebra terL[�]〈�〉 = (L[�]〈�〉,∧,¬,⊥, [�]〈�〉). We can prove
the following interesting fact.

Theorem 1 (cA vs. [�]〈�〉). Let M = (A,I) be an argumentation model. The
restrictionIdL[�]〈�〉 of the interpretation functionI is a homomorphism from terL[�]〈�〉

toA+.

Proof. The case of Boolean connectives is trivial. It remains to be proven that for
any ϕ: ||[�]〈�〉ϕ||M = cA(||ϕ||M). It suffices to spell out the semantics of [�]〈�〉
recalling that � = �−1:

||[�]〈�〉ϕ||M = {a ∈ A | ∀b : a � b,∃c : b � c and c ∈ ||ϕ||M}
= {a ∈ A | ∀b : b � a,∃c : c � b and c ∈ ||ϕ||M}
= cA(||ϕ||M).

This completes the proof. �

In other words, Fact 1 shows that the complex modal operator [�]〈�〉, under
the semantics provided in Definition 2, behaves exactly like the characteristic
function of the argumentation frameworks on which the argumentation models
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are built. To put it yet otherwise, formulae of the form [�]〈�〉ϕdenote the value
of the characteristic function applied to the set of ϕ-arguments.

From Theorem 1 it becomes thus clear that: a self-acceptable set of argu-
ments ||ϕ|| is a set for which [�]〈�〉 increases, i.e., ||ϕ|| ⊆ ||[�]〈�〉ϕ|| (Formula
5); an admissible set of arguments ||ϕ|| is a conflict-free set for which [�]〈�〉
is increasing (Formula 9); a complete extension ||ϕ|| is a fixpoint of [�]〈�〉,
i.e., ||ϕ|| = ||[�]〈�〉ϕ|| (Formula 11). All such statements are counterparts of
statements to be found in [9]. We can now study the properties of [�]〈�〉ϕ by
resorting to the semantics of K−1.

Fact 3 (Model-theoretic properties of [�]〈�〉). LetM = (A,I) be an argumenta-
tion model andMs = (As,I) a serial argumentation model, that is, such that �−1 in
A

s is serial. It holds that:

Monotonicity: M |= ϕ1 → ϕ2 =⇒M |= [�]〈�〉ϕ1 → [�]〈�〉ϕ2

Normality: M
s
|= ϕ→ ⊥ =⇒Ms

|= [�]〈�〉ϕ→ ⊥

Proof. [Monotonicity] Let us proceed per absurdum, assuming thatM |= ϕ1 →

ϕ2 andM 6|= [�]〈�〉ϕ1 → [�]〈�〉ϕ2. This latter means that there exists a ∈ A
such that M, a |= [�]〈�〉ϕ1 ∧ 〈�〉[�]¬ϕ2 which in turn implies the existence
of b ∈ A such that M, b |= 〈�〉ϕ1 ∧ [�]¬ϕ2. Given the assumption this is
impossible. [Normality] It can be proven directly. AssumeMs

|= ϕ → ⊥ and
M

s
|= [�]〈�〉ϕ. It follows thatMs

|= [�]〈�〉⊥ which is impossible since �−1 is
serial inMs. HenceMs

|= [�]〈�〉ϕ→ ⊥. �

Monotonicity guarantees that the set of arguments reinstating arguments in
a given set ||ϕ|| grows if ||ϕ|| grows. Normality states that in a serial argumenta-
tion model the set of arguments which is acceptable with respect to the empty
set, i.e., ||⊥||, is empty.2

4 Argumentation in KU: universal modality

The previous section has introduced a modal logic for talking about the rela-
tions of “attacking” and “being attacked by”. However, as shown in Table 1
and 2, and on the ground of Fact 1, the only relation occurring in the formal-
ization of the argumentation theoretic notions considered is the relation �, i.e.,
“being attacked by”. In this section, we restrict K−1 to its “being attacked by”
fragment—thus allowing only the 〈�〉 and [�] modal operators—and extend it
with the universal modality [1]. The resulting system is nothing but KU, that is,
the minimal normal modal logic K extended with the universal modality.

4.1 Logic KU

Logic KU is a well-investigated system. In this section we recapitulate its
semantics, axiomatics and some of its meta-logical properties.

2It might be instructive to notice that seriality implies non well-foundedness since if �−1 is
serial, every argument has a �−1-successor.
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4.1.1 Language.

As anticipated above, the language of KU is a standard modal language built
on the set of atoms P by the following BNF:

L
KU

: ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | 〈�〉ϕ | 〈U〉ϕ

where p ranges over P. The other standard boolean connectives {>,∨,→}, and
the modal duals {[�], [U]} are defined as usual.

Logic KU is therefore endowed with modal operators of the type “there exists
an argument attacking the current one such that”—〈�〉—and “there exists an
argument such that”—〈U〉—together with their duals.

4.1.2 Semantics.

The semantics of KU extends the one of K−1 (Definition 2) with the clause for
the universal modality.

Definition 3 (Satisfaction for LKU
in argumentation models). Let ϕ ∈ LKU . The

satisfaction of ϕ by a pointed argumentation model (M, a) is inductively defined as
follows (Boolean clauses are omitted):

M, a |= 〈�〉ϕ iff ∃b ∈ A : (a, b) ∈ �−1 andM, b |= ϕ

M, a |= 〈U〉ϕ iff ∃b ∈ A :M, b |= ϕ

We say that: ϕ is valid in an argumentation modelM iff it is satisfied in all pointed
models of M, i.e., M |= ϕ; ϕ is valid in a class M of argumentation models iff it is
valid in all its models, i.e.,M |= ϕ. All definitions are naturally generalizable to sets of
formulae Φ.

In words, what KU adds to K−1 is existential and universal quantification via
the universal modalities 〈U〉 and [U].

4.1.3 Axiomatics.

The logic KU is axiomatized as follows:

(Prop) propositional tautologies
(K) [i](ϕ1 → ϕ2)→ ([i]ϕ1 → [i]ϕ2)
(T) [U]ϕ→ ϕ

(4) [U]ϕ→ [U][U]ϕ
(5) ¬[U]ϕ→ [U]¬[U]ϕ

(Incl) [U]ϕ→ [i]ϕ
(Dual) 〈i〉ϕ↔ ¬[i]¬ϕ

with i ∈ {�,U}.

4.1.4 Meta-theoretical results.

We list the following known results, which are relevant for our purposes.
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␐ Logic KU is sound and strongly complete for the class A of argumentation
frames [1, Ch. 7].

␐ The complexity of deciding whether a formula of LKU
is satisfiable is

EXP-complete [14].

␐ The complexity of checking whether a formula of LKU
is satisfied by a

pointed modelM is P-complete [13].

4.2 Doing argumentation in KU

We have now a calculus which fits very well with argumentation models. The
present section shows how such calculus, and its semantics, can be concretely
deployed to express basic notion of argumentation theory in a formal language,
and consequently obtain formal proofs of theorems of argumentation theory.

Logic KU is expressive enough to capture the following notions in the object-
language.

Acc(ϕ,ψ) := [U](ϕ→ [�]〈�〉ψ) (14)
CFree(ϕ) := [U](ϕ→ ¬〈�〉ϕ) (15)
Adm(ϕ) := [U](ϕ→ ([�]¬ϕ ∧ [�]〈�〉ϕ)) (16)

Complete(ϕ) := [U]((ϕ→ [�]¬ϕ) ∧ (ϕ↔ [�]〈�〉ϕ)) (17)
Stable(ϕ) := [U](ϕ↔ ¬〈�〉ϕ) (18)

Notice that these definitions restate the meta-language definitions summarized
in Tables 1 and 2.

Example 2. (Argumentation labelings in KU) According to [4], an argumentation
labelingM = (A,I) is a complete labeling if and only if for each a ∈ A:

1. M, a |= 1 if and only if for all b s.t. a � b,M, b |= 0;

2. M, a |= 0 if and only if there exists b s.t. a � b andM, b |= 1

3. M |= Fct (see Example 1).

It is striking how such conditions—in particular 1 and 2—exhibit a natural
modal flavor. Here it is their reformulation in KU:

Complete(M) := M |= [U]((1↔ [�]0) ∧ (0↔ 〈�〉1) ∧ Fct) (19)

We have the following fact.

Fact 4. LetM be an argumentation model for P = {1, 0, ?}. It holds that:

Complete(M) ⇐⇒ M |= Complete(1) ∧ [U]Fct
∧[U](?↔ (〈�〉¬0 ∧ ¬〈�〉1))

Proof. From left to right. Follows directly from Formula 19. From right to
left. It also follows directly from Formula 19 by considering that if M, a |= 1
then M, a |= [�]0 since otherwise M, a |= ? which is incompatible with the
validity of Fct. Similarly, if M, a |= 〈�〉1 then M, a |= 0 by the validity of
?↔ (〈�〉¬0 ∧ ¬〈�〉1). �

11
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In other words, the characterization of complete extensions in terms of
labellings coincides with the characterization of complete extensions in terms
of truth-sets. Notice also that, as a corollary, we obtain that the existence of a
complete labeling implies the existence of a complete extension and vice versa,
the existence of a model where ||ϕ|| is a complete extension implies the existence
of a complete labeling, since any model can be extended to the vocabulary
{1, 0, ?} and constrained in order to satisfy Fct and ?↔ (〈�〉¬0∧¬〈�〉1). Similar
characterizations, which are a typical asset of the labelling-based approach to
argumentation, can be obtained for all the notions formalized in Formulae
14-18.

Logic KU has therefore sufficient expressive power to capture a number of
central results of argumentation theory. In this section we provide a sample of
such results taken from [9], formalized and proved within KU.

Theorem 2 (Fundamental Lemma). The following formula is a theorem of KU:

Adm(ϕ) ∧ Acc(ψ ∨ ξ, ϕ)→ Adm(ϕ ∨ ψ) ∧ Acc(ξ, ϕ ∨ ψ) (20)

Sketch. The desired validity can be proven syntactically by then resorting to
soundness. We provide, as an example, the derivation of a sub-result, namely,
Acc(ϕ,ϕ) ∧ Acc(ψ,ϕ) → Acc(ϕ ∨ ψ,ϕ ∨ ψ). Notice that the antecedent and
consequent of this implication are implied by the antecedent and, respectively,
the consequent of Formula 20.

1. ((α→ γ) ∧ (β→ γ))→ (α ∨ β→ γ) Prop

2. ([U](α→ γ) ∧ [U](β→ γ))→ [U](α ∨ β→ γ) 2,N,K,MP

3. ([U](ϕ→ [�]〈�〉ϕ) ∧ [U](ψ→ [�]〈�〉ϕ))→

[U](ϕ ∨ ψ→ [�]〈�〉ϕ) Instance of 3

4. [�]〈�〉ϕ→ [�]〈�〉(ϕ ∨ ψ) Prop,K,N

5. ([U](ϕ→ [�]〈�〉ϕ) ∧ [U](ψ→ [�]〈�〉ϕ))→

[U](ϕ ∨ ψ→ [�]〈�〉ϕ ∨ ψ) 4,Prop,K,N

6. Acc(ϕ,ϕ) ∧ Acc(ψ,ϕ)→ Acc(ϕ ∨ ψ,ϕ ∨ ψ) 5,definition

The proof is completed by proving that Adm(ϕ) ∧ Acc(ψ ∨ ξ, ϕ) → CF(ϕ ∨ ψ)
and that Adm(ϕ) ∧ Acc(ψ ∨ ξ, ϕ)→ Acc(ξ, ϕ ∨ ψ). �

Notice that Theorem 2 is, in fact, a generalized version of the Fundamental
Lemma proven in [9]. We provide one more example of theorems of abstract
argumentation which can be obtained as formal theorems of KU.

Theorem 3 (Stable implies admissible and complete). The following formulae are
theorems of KU:

Stable(ϕ)→ Adm(ϕ) (21)
Stable(ϕ)→ Complete(ϕ) (22)

12
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Proof. Formula 21 follows from Fact 2 and the completeness of KU. Formula 22
is a direct corollary of Formula 21, the definition of Stable(ϕ), the definition of
Complete(ϕ) and the completeness of KU. �

Other results can be formalized along the same lines. What this section
aimed at showing is that, already within a rather standard modal systems
such as KU, quite many notions and results of abstract argumentation can
be accommodated. The next section shows what kind of modal machinery
is needed to capture the notion of grounded extension which we have not yet
discussed.

5 Argumentation in Kµ: least fixpoints

Let us go back for a moment to logic K−1, and to the way its [�]〈�〉-formulae for-
malizing the notion of characteristic function of a given argumentation model
(Section 3.3). Carrying on with the analogy, we have that a formulaϕ is a [�]〈�〉-
fixpoint for an argumentation modelM if and only ifM |= ϕ ↔ [�]〈�〉ϕ. We
have the following.

Corollary 1 (Existence of [�]〈�〉-fixpoints). For every argumentation model M,
there exist a greatest and a least [�]〈�〉-fixpoint.

Proof. The result follows from Theorem 1 and Fact 3 via a direct application of
the Knaster-Tarski fixpoint theorem3 on terL[�]〈�〉 = (L[�]〈�〉,∧,¬,⊥, [�]〈�〉). �

Logic K−1 does not have the necessary expressive power to talk about great-
est and least fixpoints for [�]〈�〉. In the next section, we enhance K−1 with
fixpoint operators, thus moving into the realm of the so-called µ-calculi [3].

5.1 A µ-calculus for argumentation

The present section introduces the µ-calculus in the context of argumentation
theory.

5.1.1 Language.

As already noticed at the beginning of Section 4, we can profitably restrictLK−1

to its “being attacked” part when it comes to expressing traditional notions,
that is, operators 〈�〉 and [�]. We introduce the least fixpoint operator µ on the
top of this language, and define language LKµ via the following BNF:

L
Kµ : ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ϕ | 〈�〉ϕ | µp.ϕ(p)

where p ranges over P and ϕ(p) indicates that p occurs free in ϕ (i.e., it is
not bounded by fixpoint operators) and under an even number of negations.4

In general, the notation ϕ(ψ) stands for ψ occurs in ϕ. The usual definitions

3We refer the interested reader to [7] for a neat formulation of this result.
4This syntactic restriction guarantees that every formulaϕ(p) defines a set transformation which

preserves ⊆, which in turn guarantees the existence of least and greatest fixpoints by the Knaster-
Tarski fixpoint theorem.
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for Boolean and modal operators can be applied. Also, the greatest fixpoint
operator ν can be defined from µ as follows: νx.ϕ(x) := ¬µx.¬ϕ(¬x).

Intuitively, µx.ϕ(x) denotes the smallest formula x such that x ↔ ϕ(x). To
immediately appreciate the usefulness of such operator in our context, take
ϕ(x) := [�]〈�〉x, that is, take ϕ(x) to be the modal version [�]〈�〉 of the charac-
teristic function, and apply it to formula x. What we obtain is a modal formula
expressing the least fixpoint of a characteristic function:

µp.[�]〈�〉p (23)

Language LKµ can therefore express the least complete extension as a modal
formula. We further investigate the expressivity of this language for argu-
mentation theoretic purposes in Section 5.2. First, however, we spell out the
semantics ofLKµ , and provide a sound and complete axiomatization of the logic
thus obtained.

5.1.2 Semantics.

The semantics of µ-calculi is most perspicuously given in an algebraic fashion,
which is what we do in the next definition.

Definition 4 (Satisfaction for LKµ in argumentation models). Let ϕ ∈ LKµ . The
satisfaction of ϕ by a pointed argumentation model (M, a) is inductively defined as
follows:

M, a 6|= ⊥
M, a |= p iff a ∈ I(p), for p ∈ P
M, a |= ¬ϕ iff a < ||ϕ||M

M, a |= ϕ1 ∧ ϕ2 iff a ∈ ||ϕ1||M ∩ ||ϕ2||M

M, a |= 〈�〉ϕ iff a ∈ {b | ∃c : b � c & c ∈ ||ϕ||M}

M, a |= µp.ϕ(p) iff a ∈
⋂
{X ∈ 2A

| ||ϕ||M[p:=X] ⊆ X}

where ||ϕ||M[p:=X] denotes the truth-set of ϕ once I(p) is set to be X. As usual, we say
that: ϕ is valid in an argumentation modelM iff it is satisfied in all pointed models of
M, i.e.,M |= ϕ; ϕ is valid in a classM of argumentation models iff it is valid in all its
models, i.e.,M |= ϕ. All definitions are naturally generalizable to sets of formulae Φ.

5.1.3 Axiomatics.

The standard axiomatics for the µ-calculus built on modal system K suffices
for our purposes. Logic Kµ is axiomatized by the following rules and axiom
schemata.

(Prop) propositional schemata
(K) [�](ϕ1 → ϕ2)→ ([�]ϕ1 → [�]ϕ2)

(Fixpoint) ϕ(µp.ϕ(p))↔ µp.ϕ(p)
(MP) if ` ϕ1 → ϕ2 and ` ϕ1 then ϕ2

(N) if ` ϕ then ` [�]ϕ
(Least) if ` ϕ1(ϕ2)→ ϕ2 then ` µp.ϕ1(p)→ ϕ2

14
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So, the axiomatics of Kµ consists of the axiom system K axiomatizing 〈�〉 plus
schema Fixpoint and rule Least. Let us have a closer look at what they
state. Axiom Fixpoint just states that µp.ϕ(p) is indeed a fixpoint since a
further application of ϕ still yields µp.ϕ(p) and vice versa. Instead, rule Least
guarantees that µp.ϕ(p) is in fact the least fixpoint by imposing that if ϕ2 is
provably a pre-fixpoint of ϕ1, then µp.ϕ1(p) provably implies ϕ2.

5.1.4 Meta-theoretical results.

We list some relevant known results.

␐ Logic Kµ is sound and complete for the class A of all argumentation
models under the semantics given in Definition 4 [23]. Notice however
that, unlike K−1 and KU, the given axiomatics of Kµ is not strongly complete
since it is obviously not compact.

␐ The satisfiability problem of Kµ is decidable [20].

␐ The complexity of the model-checking problem for Kµ is known to be in
NP ∩ co-NP [13], however, it is still an open question whether it is in P.

The next result deserves some highlighting. First define the alternation depth of
a formula ofLKµ as the maximum number of µ/ν in a chain of nested fixpoints.

Fact 5 (Model-checking Kµ). The complexity of the model-checking problem for a
formula of size m and alternation depth d on a system of size n is O(m · nd+1).

Proof. The result is proven in [10]. �

Such result will be used to establish the complexity of model-checking
grounded extensions.

5.2 Grounded extensions in Kµ

The notion of grounded extension can be given a modal formulation within
L

Kµ . According to [9], the grounded extension of an argumentation framework
A is the smallest complete extension. In an argumentation model M, it is
therefore a formula ϕ such that M |= (ϕ → [�]¬ϕ) ∧ (ϕ ↔ [�]〈�〉ϕ) and its
truth-set ||ϕ|| is the smallest among all other such formulae. In other words,
ϕ is a formula whose truth-set is smallest among all the formulae which are
conflict-free and which are a [�]〈�〉-fixpoint. However, being the smallest
[�]〈�〉-fixpoint—which exists by Corollary 1—implies being conflict-free.

Theorem 4 (The least [�]〈�〉-fixpoint is conflict-free). The following formula is a
validity of Kµ:

µp.[�]〈�〉p→ [�]¬(µp.[�]〈�〉p) (24)

Proof. We proceed per absurdum. Take an argumentation modelM such that
M |= µp.[�]〈�〉p ∧ ¬[�]¬(µp.[�]〈�〉p). By the Definition 4 we obtain that
M |= µp.[�]〈�〉p and that there exist a arguments a, b such that a � b and
M, b |= µp.[�]〈�〉p while also M, a |= µp.[�]〈�〉p. We distinguish two cases:
1) there exists a finite chain (a � b � b1 � . . . � bn) of successors starting
from a; 2) there exists an infinite such chain. If 1) is the case, then M, bn |=

15



Davide Grossi Doing Argumentation Theory in ML

[�]ϕ for any ϕ. Since both M, a |= µp.[�]〈�〉p and M, b |= µp.[�]〈�〉p, then
M, bn−1 |= µp.[�]〈�〉p which, by Definition 4, means that for any p such that
||[�]〈�〉p||M ⊆ ||p||M,M, bn−1 |= [�]〈�〉p, which is impossible given that for any
ϕM, bn |= [�]ϕ and hence thatM, bn−1 |= 〈�〉[�]¬p. If 2) is the case, then we
show that ||µp.[�]〈�〉p||M = ∅. This is the case since the two following sets
are both pre-fixpoints but they have empty intersection: {c ∈ A |a �2m c} and
{c ∈ A |b �2m c} where �2m denotes reachability via � in an even number of
steps. We thus obtain a contradiction. �

Just like Formulae 20 and 21 are theorems/validities of KU (Theorems 2
and 3), so is Formula 24 a theorem/validity of Kµ. Again, we thus obtain a
formalization of basic results of argumentation theory in a modal logic.

From Theorem 4 it follows that Formula 23 is a modal logic formulation of
the notion of grounded extension. A grounded extension is the least [�]〈�〉-
fixpoint and, by Fact 4, it denotes a conflict-free set of arguments. We have the
following result.

Theorem 5 (Model-checking grounded extensions). Given an argumentation
model M, it can be decided in polynomial time whether an argument a belongs to
the grounded extension ofM, that is, whetherM, a |= µp.[�]〈�〉p.

Proof. Since µp.[�]〈�〉p has alternation depth 0, by Fact 5, it follows that model-
checking µp.[�]〈�〉p can be done in O(m · n) where m is the size of µp.[�]〈�〉p
and n the size ofM. �

5.3 Preferred extensions in Kµ?

At the other extreme of grounded extensions, are preferred extensions. In
[9], preferred extensions are defined as maximal, with respect to set-inclusion,
complete extensions. In this case, LKµ is not able to express such a notion since
the greatest [�]〈�〉-fixpoint is not necessarily conflict-free. In other words,
and not unsurprisingly, we do not have the equivalent of Fact 4 for ν. To
appreciate this, consider the 2 arguments cycleA = ({a, b}, {(a, b), (b, a)}). In this
case ||νp.[�]〈�〉p||M = {a, b} which is obviously not conflict-free for any model
M. The point is that preferred extensions maximize acceptability, i.e., [�]〈�〉,
together with conflict-freeness, i.e. ¬〈�〉.

So, given an argumentation modelM, a formula ϕ is a preferred extension
forM if and only if:

1. M |= Adm(ϕ), and

2. ∀X ⊆ A ifM |= Adm(X) andM |= ϕ→ X thenM |= X→ ϕ.

Clearly, item 2 involves a monadic second-order quantification. Abusing no-
tation, if we had to put it into an extension of KU with Π1

1 quantification, we
would obtain a formula like this:

∀X((Adm(X) ∧ [U](ϕ→ X))→ [U](X→ ϕ)) (25)

with X not occurring in ϕ. That is, for any set X, if X is an admissible set and
it contains ||ϕ||, then ||ϕ|| contains X. In other words, ||ϕ|| is maximal among the
admissible sets. Notice that Formula 25 denotes, like in the case of complete and
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stable extensions, a global property. Had Formula 25 to be properly formulated
in Monadic Second Order Logic (MSO), we would obtain a much less succint
formula.

6 Dialogue games via semantic games

The proof-theory of abstract argumentation is commonly given in terms of
dialogue games [18]. The present section shows how modal semantics supports
a general setting for the development of proof procedures based on games [15].
In particular we will focus on the so-called evaluation games or model-checking
games where a proponent or verifier (∃ve) tries to prove that a given formula ϕ
holds in a point a of a modelM, while an opponent or falsifier (∀dam) tries to
disprove it.

The present section will describe the evaluation game for KU which is a
straightforward extension of the evaluation game for K but which, to the best
of our knowledge, has not yet been investigated. For an exposition of evaluation
games for Kµ we refer the reader to [22].

6.1 Evaluation game for KU

We now introduce the game-theoretical semantics [15] of logic KU placing it in
the context of abstract argumentation. The notation is borrowed from [22].

Such a game is a graph game, that is, a game played by two agents on a
directed graph, where each node—called position—is labelled by the player
that is supposed to move next. The structure of the graph determines which
are the admissible moves at any given position. If a player has to move in a
certain position but there are no available moves, then it loses and its opponent
wins. In general, graph games might have infinite paths, but this is not the case
in the game we are going to introduce. A match of a graph game is then just the
set of positions visited during play, that is, a complete path through the graph.
Here is the formal definition of the evaluation game for KU.

Definition 5 (Evaluation game for KU). Given a formula ϕ ∈ LKU , and an ar-
gumentation model M, the evaluation game E(ϕ,M) is defined by the following
items.

Players: The set of players is {∃,∀}. An element from {∃,∀} will be denoted P and its
opponent P
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Game form: The game form of E(ϕ,M) is defined by following board game:

Position Turn Available moves

(ϕ1 ∨ ϕ2, a) ∃ {(ϕ1, a), (ϕ2, a)}

(ϕ1 ∧ ϕ2, a) ∀ {(ϕ1, a), (ϕ2, a)}

(〈�〉ϕ, a) ∃ {(ϕ, b) | (a, b) ∈�−1
}

([�]ϕ, a) ∀ {(ϕ, b) | (a, b) ∈�−1
}

(〈U〉ϕ, a) ∃ {(ϕ, b) | b ∈ A}

([U]ϕ, a) ∀ {(ϕ, b) | b ∈ A}

(⊥, a) ∃ ∅

(>, a) ∀ ∅

(p, a) & a < I(p) ∃ ∅

(p, a) & a ∈ I(p) ∀ ∅

(¬p, a) & a ∈ I(p) ∃ ∅

(¬p, a) & a < I(p) ∀ ∅

Winning conditions: Player P wins if and only if P has to play in a position with no
available moves.

Instantiation: The instance ofE(ϕ,M) with starting point (ϕ, a) is denotedE(ϕ,M)@(ϕ, a).

The important thing to notice is that positions of the game are pairs of a for-
mula and an argument, and that the type of formula in the position determines
which player has to play: ∃ if the formula is a disjunction, a box, a false atom
or ⊥, and ∀ in the remaining cases.5

We can now define the notions of winning strategies and positions.

Definition 6 (Winning strategies and positions). A strategy for player P in an
instantiated game E(ϕ,M)@(ϕ, a) is a function telling P what to do in any match
played from position (ϕ, a). Such a strategy is winning for P if and only if, in
any match played according to the strategy, P wins. A position (ϕ, a) in E(ϕ,M) is
winning for P if and only if P has a winning strategy in E(ϕ,M)@(ϕ, a). The set of
winning positions of E(ϕ,M) is denoted WinP(E(ϕ,M)).

From the point of view of game theory [17], the game described in Definition
5 and with the winning conditions introduced in Definition 6 is a two-players
zero-sum game. Such games have the property that P wins if and only if

5Notice also that the game considers only positions consisting of formulae in positive normal
form, that is, formulae where all negations are pushed inwards and occur only in front of atomic
formulae.
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P looses (zero-sum), and that they are determined, that is, each match has a
winner [24].

It now remains to be proven that the game just introduced is adequate with
respect to the semantics of KU. To put it otherwise, we have to prove that
if ∃ always wins then the formula defining the game is true at the point of
instantiation, and that if a formula is true at a point in a model, then ∃ always
wins the corresponding game instantiated at that point.

Theorem 6 (Adequacy of the evaluation game for KU). Let ϕ ∈ LKU , and let
M = (A,I) be an argumentation model. Then, for any argument a ∈ A, it holds that:

(ϕ, a) ∈Win∃(E(ϕ,M))⇐⇒M, a |= ϕ.

Proof. We proceed by induction on the length l of ϕ.
Base. l = 0. We have four cases:

␐ ϕ = >. Straightforward since (ϕ, a) is then always a winning position for
∃.

␐ ϕ = ⊥. Straightforward since (ϕ, a) is then never a winning position for
∃.

␐ ϕ = p. It follows that if a ∈ I(p) then (ϕ, a) is a winning position for ∃ and
if a < I(p) then (ϕ, a) is not a winning position for ∃.

␐ ϕ = ¬p. The converse argument applies.

Step. l > 0. The induction hypothesis is that for any subformula ψ of ϕ of
length l − 1, and for any b ∈ A, (ψ, b) ∈ Win∃(E(ψ,M))⇐⇒M, b |= ψ. We have
the following cases:

␐ ϕ = ψ1 ∧ ψ2. From left to right. Assume (ϕ, a) ∈ Win∃(E(ϕ,M)). Now, ϕ
is a conjunction, hence it is ∀’s turn to move. It follows that (ψ1, a) and
(ψ2, a) are both winning positions for ∃ in the corresponding games. By
induction hypothesis, we thus haveM, a |= ψ1 andM, a |= ψ2. From right
to left. AssumeM, a |= ϕ. It follows thatM, a |= ψ1 andM, a |= ψ2. By
induction hypothesis we obtain that both (ψ1, a) and (ψ2, a) are winning
positions for ∃, and thus so is (ϕ, a).

␐ ϕ = ψ1 ∨ ψ2. From left to right. Assume (ϕ, a) ∈ Win∃(E(ϕ,M)). It
is ∃’s turn to move, so one of (ψ1, a) and (ψ2, a) should be a winning
position in the corresponding game. Assume WLOG it to be (ψ1, a). By
induction hypothesis it follows that M, a |= ψ1 and therefore M, a |= ϕ.
From right to left. AssumeM, a |= ϕ and assume WLOG thatM, a |= ψ1.
By induction hypothesis we obtain that (ψ1, a) ∈Win∃(E(ψ1,M)). Since ϕ
is a disjunction, it is ∃’s turn to move and therefore we conclude (ϕ, a) ∈
Win∃(E(ϕ,M)).

␐ ϕ = 〈�〉ψ. From left to right. Assume (ϕ, a) ∈Win∃(E(ϕ,M)). It is ∃’s turn
to move. It follows that there is a position (ψ, b) such that a � b and such
that is a winning position for∃. By induction hypothesis we conclude that
M, b |= ψ and henceM, a |= 〈�〉ψ. From right to left. AssumeM, a |= ϕ.
It follows that there exists b such that a � b andM, b |= ψ. By induction
hypothesis we have that (ψ, b) ∈Win∃(E(ψ,M)). But it is ∃’s turn to move,
hence we conclude (ϕ, a) ∈Win∃(E(ϕ,M)).
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(1 ∧ [U](1↔ ¬〈!〉1), a)

([U](1↔ ¬〈!〉1), a)

(1↔ ¬〈!〉1, b)(1↔ ¬〈!〉1, a)

(¬1 ∨ ¬〈!〉1, a) (1 ∨ 〈!〉1, a)

(¬1, a)(¬〈!〉1, a)

(1, b)

∃ve wins

∀dam wins

(1, a)

∀

∃

1
a

∀

∀

∃

∃ve wins

∀

∀

b
0

Figure 1: Evaluation game for stable extensions in the 2-cycle.

␐ ϕ = [�]ψ. From left to right. Assume (ϕ, a) ∈Win∃(E(ϕ,M)). It is ∀’s turn
to move. It follows that for all b ∈ A such that a � b (ψ, b) ∈Win∃(E(ψ,M)).
From this, by induction hypothesis, we conclude that for all b ∈ A such
that a � b, M, b |= ψ. From right to left. Assume M, a |= ϕ. It follows
that for all b ∈ A such that a � b,M, b |= ψ. By induction hypothesis we
thus obtain that for all b ∈ A, (ψ, b) ∈ Win∃(E(ψ,M)). This proves that
(ϕ, a) ∈Win∃(E(ϕ,M)).

␐ ϕ = 〈U〉ψ. Similar to the case for ϕ = 〈�〉ψ.

␐ ϕ = [U]ψ. Similar to the case for ϕ = [�]ψ.

This completes the proof. �

In the next section we illustrate how this type of semantic games can be
used as a general setting for games checking whether an argument of a given
framework belongs to a specific extension under a given labeling.

6.2 Games for model-checking extensions

The following example shows how the game-theoretical semantics of modal
logic can be used to provide games for abstract argumentation. We choose to
discuss in detail the game for stable semantics, which has remained an open
question among argumentation theorists for a while [6]. Such a game neatly
follows as a special case of the evaluation game for KU .

Example 3 (Game for stable extensions). Consider the simple argumentation frame-
work A = ({a, b}, {(a, b), (b, a)}) consisting of two arguments a and b attacking each
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Adm : E(ϕ ∧ [U](ϕ→ ([�]¬ϕ ∧ [�]〈�〉ϕ)),M)@(ϕ ∧ [U](ϕ→ ([�]¬ϕ ∧ [�]〈�〉ϕ), a)

Complete : E(ϕ ∧ [U](ϕ↔ [�]〈�〉ϕ)),M)@(ϕ ∧ [U](ϕ↔ [�]〈�〉ϕ), a)

Stable : E(ϕ ∧ [U](ϕ↔ ¬〈�〉ϕ)),M)@(ϕ ∧ [U](ϕ↔ ¬〈�〉ϕ), a)

Grounded : E(µp.[�]〈�〉p,M)@(µp.[�]〈�〉p, a)

Table 3: Games for admissible, complete, stable and grounded sets.

other, and consider the labeling I assigning 1 to a and 0 to b (top right corner of
Figure 6). We now want to run an evaluation game for checking whether a belongs
to a stable extension corresponding to the truth-set of 1. Such game is the game
E(1 ∧ Stable(1), (A,I)) initialized at position (1 ∧ Stable(1), a). That is, spelling out
the definition of Stable(1): E(1∧ [U](1↔ ¬〈�〉1))@(1∧ [U](1↔ ¬〈�〉1), a). Such a
game, played according to the rules in Definitions 5 and 6, gives rise to the tree partially
depicted in Figure 6.

In the previous section and in the example we have focused only on logic KU.
However, logic Kµ can also be given an analogous game-theoretical semantics,
which delivers the type of logic games necessary to check whether an argument
a in a given modelM belongs to the grounded extension µp.[�]〈�〉p. We do
not work out the details here and we refer the reader to [22].

In general, evaluation games permit us to give a systematic presentation of
games for checking membership of an argument to admissible sets, as well as
complete, stable and grounded extensions by instantiating a game E(ϕ,M) at
the given argument whereϕ expresses the to-be-checked set or extension. Such
systematization is provided in Table 3. Notice that what changes is precisely
the formula defining the game.

Now the natural question arises of what is the precise relationship between
the games just exposed and the dialogue games normally studied in the lit-
erature on argumentation theory (see, for instance, [18]). The next section is
concerned with this question.

6.3 Model-checking games vs. dialogue games

Before closing the section it is worth looking at an essential difference between
the type of games discussed here, and the dialogue, or discussion, games
typically studied in argumentation theory. The best way to highlight such
difference is by means of complexity-theoretic considerations.

We have shown, in the previous sections, that checking whether an argu-
ment belongs to a specific admissible set, or an extension (complete, stable or
grounded) can be done in P. However, it is well-known in argumentation theory
that checking whether an argument belongs to an extension (complete, stable
or grounded) is an NP-complete problem. So where is the trick?

In model-checking (or evaluation) games you are given a modelM = (A,I),
a formula ϕ and an argument a, and ∃ve is asked to prove that M, a |= ϕ.
In dialogue games, the check appointed to the proponent is inherently more
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complex since there, the input consists only of an argumentation framework
A, a formula ϕ and an argument a, and the proponent is asked to prove that
there exists a labeling I such that (A,I), a |= ϕ. In modal logic terms, this is
not a model-checking problem, but a satisfiability problem in a pointed frame
which, in turn, is essentially a model-checking problem in MSO:

A |= ∀p1, . . . , pn¬STa(ϕ) (26)

where p1, . . . , pn are the atoms occurring in ϕ and STa(ϕ) is the standard trans-
lation of ϕ realized in state a.6

To conclude, we might say that model-checking games provide a game-
theoretical approach to the “easy” part of the more difficult problem tackled
by dialogue games, that is, the tractable check that is done once a labeling is
“guessed”.

7 When are two arguments the same?

Since abstract argumentation neglects the internal structure of arguments, the
natural question arises of when two arguments can be said to be the same,
once such abstract perspective is assumed. Given that arguments are, after all,
just “points” in a structure, the only way to compare them is to consider their
“behavior” with respect to other arguments, that is, what they attack and by
what are they attacked.

Studying such notion of “sameness” of arguments and argumentation frame-
works is not just a mathematical diversion. A neat example where this is-
sue appears in all its relevance is in legal reasoning, and in particular within
common-law systems. Often, in such systems the so-called principle of stare de-
cisis [16] holds. According to such a principle, a judge should rule cases that are
“substantially the same” in the same way. However, since judicial cases can be
profitably viewed as argumentation frameworks, being the same in this context
seems to mean something like exhibiting the “same argumentative structure”.
In the present section we present a formal study of this simple intuition based
on the logics introduced thus far, i.e., KU and Kµ.

7.1 Sameness of arguments in KU

The model-theoretic analysis of abstract argumentation exposed in the previous
sections enable us with a well-investigated formalization of such a “behavioral
equivalence” between points: bisimulation [1, 12]. It is well-known that logic
Kµ is invariant under bisimulation. It is, in fact, the bisimulation-invariant
fragment of MSOL [22]. In the present section we will focus on the specific
notion of bisimulation which is tailored to KU, also called total bisimulation.

We briefly recapitulate the notion of bisimulation [1, 12] presenting it in an
argumentation-theoretic flavor.

Definition 7 (Bisimulation). Let M = (A,�,I) and M′ = (A′,�′,I′) be two
argumentation models. A bisimulation between M and M′ is a non-empty relation
Z ⊆ A × A′ such that for any aZa′:

6For a definition of the standard translation we refer the reader to [1].
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Atom: a and a′ are propositionally equivalent;

Zig: if a � b for some b ∈ A, then a′ � b′ for some b′ ∈ A′ and bZb′;

Zag: if a′ � b′ for some b′ ∈ A then a � b for some i
¯
nA and aZa′.

A total bisimulation is a bisimulation Z ⊆ A × A′ such that its left projection covers
A and its right projection covers A′. When a total bisimulation exists betweenM and
M
′ we write (M, a) - (M′, a′).

Now, since logic KU is invariant under total bisimulation [1] and logic Kµ

under bisimulation [12], we obtain a natural notion of “sameness” of arguments,
which is weaker than the notion of isomorphism of argumentation frameworks.
If two arguments are “the same” in this perspective, then they are equivalent
from the point of view of argumentation theory, as far as the notions expressible
in those logics are concerned. In particular, we obtain the following simple
theorem for free.

Theorem 7 (Bisimilar arguments). Let (M, a) and (M′, a′) be two pointed argu-
mentation models, and let Z be a total bisimulation betweenM andM′. It holds that a
belongs to the admissible set (complete extension, stable extension, grounded extension)
ϕ if and only if a′ belongs to the admissible set (complete extension, stable extension,
grounded extension) ϕ.

Proof. Follows directly from the fact that bisimulation implies Kµ-equivalence
[12], and total bisimulation implies KU-equivalence [1]. �

In other words, Theorem 7 states that if two arguments are totally bisimilar,
then they are equivalent from the point of view of Dung’s argumentation-
theoretic semantics.

7.2 Total bisimulation games

We can associate a game to Definition 7. Such game checks whether two given
pointed models (M, a) andM, a′ are bisimular or not. The game is played by
two players: Spoiler, which tries to show that the two given pointed models
are not bisimilar, and Duplicator which pursues the opposite goal. A match
is started by S, then D responds, and so on. If and only if D moves to a
position where the two pointed models are not propositionally equivalent, or if
it cannot move, S wins. The following definition describes formally the game
just sketched.

Definition 8 (Bisimulation game for KU). Given two pointed modelsM andM′,
the total bisimulation game B(M,M′) is defined by the following items.

Players: The set of players is {D,S}. An element from {D,S} will be denoted P and
its opponent P.
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Game form: The game form of B(M,M′) is defined by the following rule for avail-
able moves:

Position Available moves

((M, a)(M′, a′)) {((M, a)(M′, b′)) | ∃b′ ∈ A′ : a′ � b′}

∪{((M, b)(M′, a′)) | ∃b ∈ A : a � b}

∪{((M, a)(M′, b′)) | ∃b′ ∈ A′}

∪{((M, b)(M′, a′)) | ∃b ∈ A}

Turn function: If the round is even S plays, if it is odd D plays.

Winning conditions: S wins if and only if either D has moved to a position ((M, a)(M′, a′))
where a and a′ do not satisfy the same labels, or D has no available moves. Oth-
erwise D wins.

Instantiation: The instance of B(M,M′) with starting position ((M, a)(M′, a′)) is
denoted B(M,M′)@(a, a′).

So, as we might expect, positions in a (total) bisimulation games are pairs of
pointed models, that is, the pointed models that D tries to show are bisimilar. It
might also be instructive to notice that such a game can have infinite matches,
which, according to Definition 8 are thus won by D.

From Definition 8 we obtain the following notions of winning strategies and
winning positions.

Definition 9 (Winning strategies and positions). A strategy for player P in an
instantiated game B(M,M′)@(a, a′) is a function telling P what to do in any match
played from position (a, a′). Such a strategy is winning for P if and only if, in
any match played according to the strategy, P wins. A position ((M, a)(M′, a′)) in
B(M,M′) is winning for P if and only if P has a winning strategy inB(M,M′)@(a, a′).
The set of all winning positions of gameB(M,M′) for P is denoted by WinP(B(M,M′)).

Also in the case of (total) bisimulation games we obtain an adequacy theo-
rem.

Theorem 8 (Adequacy of total bisimulation games). Take (M, a) and (M′, a′) to
be two argumentation models. It holds that:

((M, a)(M′, a′)) ∈WinD(B(M,M′))⇐⇒ (M, a) - (M′, a′).

Proof. The proof is standard and we refer the reader to [12]. �

In words, D has a winning strategy in the (total) bisimulation gameB(M,M′)@(a, a′)
if and only ifM, a andM′, a′ are totally bisimilar. The following example illus-
trates how a total bisimulation game concretely looks like.

Example 4 (A total bisimulation game). Consider two simple legal cases con-
cerning the innocence or guiltiness of two defendants in two different trials. In
the first one, two arguments a and b claiming the defendant to be guilty defeat
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guilty

innocent

innocent

guiltyguilty

a b

c

x

y
(M, c)(M′, y)

(M, a)(M′, y) (M, b)(M′, y) (M, c)(M′, x)

(M, b)(M′, x)

Duplicator wins!

(M, c)(M′, y)

(M, a)(M′, x)

(M, b)(M′, y)

(M, b)(M′, x)

(M, c)(M′, y)

(M, a)(M′, y)

(M, a)(M′, x)

Duplicator wins!Spoiler wins!

(M, a)(M′, y)

Figure 2: Example of total bisimulation game.

an argument a claiming his/her innocence. In the second one, only one argu-
ment x claiming the defendant’s guiltiness defeats an argument y for his/her
innocence. The two argumentation models, M and M′, are depicted at the
top of Figure 2. A total bisimulation connects c with y, and a and b with x.
Part of the extensive bisimulation game B(M,M′)@(c, y) is depicted in Figure
2. Notice that D wins on those infinite path where it can always duplicate S’s
moves. On the other hand, it looses for instance when it replies to one of S’s
moves ((M, b)(M′, y)) by moving in the first model to state a which is labelled
guiltywhile y is labelled innocent.

As the example suggests, to link bisimulation games to our intuitions, they
can be viewed as an idealized version of the type of dialogues occurring in
legal trials when old relevant cases are compared with new case at hands. The
lawyer claiming their difference proceeds like the Spoiler, while the lawyer
claiming their equivalence, proceeds just like the Duplicator.

8 Conclusions and future work

The following is a non-exhaustive list of the future research lines we envision
at the interface of modal logic and argumentation theory:

␐ Develop a study of preferred extensions in MSO along the line followed
for KU and Kµ.

␐ Check whether MSO is expressive enough to study semi-stable semantics
[5].
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␐ Investigate MSO model-checking games as a more appropriate logical set-
ting for dialogue games than the modal model-checking games presented
in the paper.

␐ Develop the application of the notion of bisimulation to the study of
invariance in the context of argumentation theory, for instance by charac-
terizing the notion of accrual within graded modal logic [8].

␐ Apply sabotage modal logic [21] to study the robustness of the member-
ship of an argument to a certain set or extension denoted by a formula
ϕ?
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cA characteristic function ofA iff cA : 2A
−→ 2A s.t.

cA(X) = {a | ∀b : [b � a⇒ ∃c ∈ X : c � b]}

X conflict-free inA iff @a, b ∈ X s.t. a � b

X admissible set ofA iff X ⊆ cA(X)

iff X is a pre-fixpoint of cA

X complete extension ofA iff X is conflict-free and X = cA(X)

iff X is a conflict-free fixpoint of cA

X grounded extension ofA iff X is the minimal complete

iff X is the least fixpoint of cA

X preferred extension ofA iff X is a maximal complete

X stable extension ofA iff X is a complete and ∀b < X,∃a ∈ X : a � b

iff X = {a ∈ A | @b ∈ X : b � a}

Table 4: Basics of argumentation theory.

A Completeness of logic K−1

Theorem 9 (Soundness and strong completeness of K−1). Logic K−1 is sound and
strongly complete for the classA of all argumentation models under the semantics given
in Definition 2.

Sketch of proof. Logic K−1 extends logic K with the Conv axiom. Logic K is
defined on the sublanguage of LK−1

containing only one modality (either 〈�〉
or 〈�〉), and is sound and strongly complete with respect to A [1]. To obtain the
desired results it suffices to show that the canonical model of K−1 is such that
〈�〉 is interpreted on the converse of the relation on which 〈�〉 is interpreted,
and vice versa. LetMK−1

= (AK−1
,RK−1

,IK−1
) be the canonical model of K−1. We

want to prove that, for all a, a′ ∈ AK−1
: aRK−1 a′ if and only if a′RK−1

−1a. [Left
to right] Assume aRK−1 a′ and suppose ϕ ∈ a. For axiom Conv, it follows that
[�]〈�〉ϕ ∈ a and therefore, since aRK−1 a′, 〈�〉ϕ ∈ a′. Hence, by the definition
of the canonical accessibility relation, a′RK−1

−1a. [Right to left] An analogous
argument applies. �

B Basics of argumentation theory

LetA = (A,�) be an argumentation framework where A is a set of arguments
and �⊆ A × A. Table 8.0.1 briefly recapitulates the key notions developed in
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[9] which are considered in the paper. For an explanation of the order-theoretic
notions involved in the definitions we refer the reader to [7].

The notions in Table 8.0.1 obtain the following intuitive reading. The char-
acteristic function assigns to each set of arguments X the set of arguments cA(X)
which X defends—by attacking all the attackers of cA(X). The notion of conflict-
freeness is self-explanatory. An admissible set is a set of arguments X which
is able to defend all its attackers. By considering those admissible sets which
contain all their defenders, we obtain the notion of complete extension, which
somehow formalizes the idea of a ‘reasonable’ position in an argumentation,
that is, a position which has no conflicts, and which consists exactly of all that
it can successfully defend.

Stable, grounded and preferred extensions can all be considered to be re-
finements of this latter notion. A grounded extension, instead, represents what
all complete extensions have in common. In a way, it formalizes the notion of
what should be at least taken as ‘reasonable’ within the current argumentation.
On the contrary, preferred extensions are maximal complete extensions which
remain conflict-free and, as such, they represent somehow the most it can be
‘reasonably’ claimed within the given argumentation framework. Finally, a
stable extension is a set of arguments X which is a complete extension and
which attacks all arguments which do not belong to X itself. As such, it can be
viewed as an ‘aggressive’ position within an argumentation.
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