FORCING ABSOLUTENESS AND REGULARITY
PROPERTIES

DAISUKE IKEGAMI

ABSTRACT. For a large natural class of forcing notions, we prove
general equivalence theorems between forcing absoluteness state-
ments, regularity properties, and transcendence properties over L
and the core model K. We use our results to answer open questions
from set theory of the reals.

1. INTRODUCTION & BACKGROUND

Forcing absoluteness statements have been investigated by Judah,
Brendle, Halbeisen, Amir, Bagaria and others [18, 6, 12, 1, 3]. These
statements of the form “Every I'-statement is absolute between the
ground model and its forcing extensions with P” are typically indepen-
dent of the axioms of ZFC, and can often be proved to be equivalent to
statements about reqularity properties. Typical equivalence theorems
are:

Theorem 1.1 (Bagaria, Woodin, [2, 29]). Every ¥j-statement is ab-
solute between the ground model and its Cohen forcing extensions if
and only if every Aj set has the Baire property.

Theorem 1.2 (Ikegami, [14]). Every Xi-statement is absolute between
the ground model and its Sacks forcing extensions if and only if every
Aj-set either contains a perfect subset or is disjoint from a perfect set.

The mentioned regularity properties are in turn equivalent to tran-
scendence properties over L. For instance, Judah and Shelah proved
that the Baire property of all Al-sets is equivalent to the transcen-
dence statement “for all reals z, there is a Cohen real over L[z]” [19];
similarly, Brendle and Léwe showed that the statement “every Aj set
either contains a perfect subset or is disjoint from a perfect set” is
equivalent to “for all reals x, there is a real not in L[z]” [8].
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In this paper, we shall prove a general abstract result underlying
both Theorems 1.1 and 1.2, by connecting (for a large class of forc-
ings IP) Zé—P—absoluteness, a regularity property at the A%—level, and a
transcendence property related to P. The case of Cohen forcing might
suggest that the right transcendence property is the existence of P-
generics, but this already fails in the case of Sacks forcing.! In order
to deal with this situation, Brendle, Halbeisen and Lowe introduced
the notion of quasi-generic reals [7]. In many cases of c.c.c. forcings
(such as Cohen forcing), the notions of quasi-genericity and genericity
coincide; in general, the existence of quasi-generics gives us the right
transcendence property for our general theorem. We prove:

Theorem 1.3. For any forcing P in a large class of forcing notions?,
the following are equivalent:

(1) Xi-P-absoluteness holds,

(2) every Al-set of reals is P-measurable, and

(3) for any real @ and T € P, there is a quasi-P-generic real z € [T
over L[a].

We shall start by defining and investigating the basic concepts in
§2 and §3. We then state and prove the main result of the paper
(the precise version of Theorem 1.3) and its immediate consequences in
§4. Among the consequences is a general Solovay-style characterization
theorem (in the tradition of [26]). In § 5, we move on to Xj-absoluteness
and prove the analogues of the results from §4 under the assumption
of appropriate large cardinal axioms. These proofs use some basic facts
of inner model theory. In §6, we give applications of our main results,
answering an open question from [7]; finally, in § 7, we list a number of
interesting open questions.

2. BASIC CONCEPTS

From now on, we will work in ZFC. We assume that readers are
familiar with the elementary theories of forcing and descriptive set
theory. (For basic definitions not given in this paper, see [15, 22].)
When we are talking about “reals”, we mean elements of the Baire
space or of the Cantor space.

In this section, we introduce the notions we will need for the rest.
We start with introducing the forcing absoluteness we will focus on:

'In the model after adding w; many Cohen reals to L, every projective set either
contains or is disjoint from a perfect set, but there is no Sacks real over L.

2We will give the precise class of forcings in Theorem 4.3. Also we will give
precise definitions of the notions used here in §2
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Definition 2.1 (X)-P-absoluteness). Let P be a forcing notion and
n be a natural number with n > 1. Then X -P-absoluteness is the
following statement:

“for any X!-formula ¢, real r in V, and P-generic filter
G over V, V E p(r) ifft V]G] E ¢(r)”.

Definition 2.2 (Projective forcings). Let n be a natural number with
n > 1. A partial order P is X! (resp. II., Al) if the sets P, <p,
and lp are 3! (resp. TIL, Al), where P = (P,<p) and Lp is the
incompatibility relation in P. We say P is projective if it is 3! for
some n > 1.

Let n be a natural number with n > 1. A partial order P is provably
A} if there are ¥)-formula ¢ and IT)-formula ¢ such that the state-
ment “¢ and 1 define the same partial order with the incompatibility
relation” is provable in ZFC.

All typical forcings related to the regularity properties are provably
Al Tn this paper, we are only interested in projective forcings.

In some of our main results, we shall need a strengthening of the
standard notion of properness for projective forcings:

Definition 2.3. A projective forcing P is strongly proper if for any
countable transitive model M of a finite fragment of ZFC containing
the real parameter in the formula defining P, if PM <M 127 are sub-
sets of P,<p, Lp respectively, then for any condition p in PM, there
is an (M, P)-generic condition ¢ below p, i.e., if M F “A is a maximal
antichain in P”, then A N M is predense below ¢.?

Here (M, P)-generic conditions are the same as (X, P)-generic condi-
tions for countable elementary substructure X of Hy: if P is projective,
X is a countable elementary substructure of Hy for some enough large
regular @ and M is the transitive collapse of X, then a condition p is
(M, P)-generic iff it is (X, P)-generic in the usual sense. In particular,
if P is projective and strongly proper, then P is proper.

All the typical examples of proper, Al-forcings are strongly proper.
But there is a proper, provably Al-forcing which is not strongly proper
(for the details, see the papers [5, 4] by Bagaria and Bosch).

3Although we will not explicitly mention the finite fragment of ZFC we will use
for the definition of strong properness, it will be enough large so that we can proceed
all the arguments in this paper as usual. From now on, we say “countable transitive
models of ZFC” instead of “countable transitive models of a finite fragment of ZFC”
for simplicity.
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We use strong properness instead of properness, as it allows us to
leave out the quantification “€ Hy” which would increase the complex-
ity of our statements in the relevant results (Proposition 2.17, Theo-
rem 5.3, Theorem 5.6) beyond projective.

Next, we introduce a class of forcings containing all the tree-type
forcings. A partial order P is arboreal if its conditions are perfect trees
on w (resp. 2) ordered by inclusion. But this class of forcings contains
some trivial forcings such as P = {<“w}. We need the following stronger
notion:

Definition 2.4. A partial order P is strongly arboreal if it is arboreal
and the following holds:

VI eP) (VteT) T, €P,
where T; = {s € T' | either s C ¢ or s D t}.

With strongly arboreal forcings, we can code generic objects by reals
in the standard way: let P be strongly arboreal and G be P-generic over
V. Let g = J{stem(T) | T € G}, where stem(T) is the longest t € T
such that T, = T. Then zg isareal and G = {T € P | x5 € [T}, where
[T] is the set of all infinite paths through 7. Hence V|[zg| = V[G]. We
call such real x5 a P-generic real over V.

Almost all typical forcings related to regularity properties are strongly
arboreal:

Example 2.5. (1) Cohen forcing (C): let Ty be <“w. Consider the
partial order ({(7), | s € <“w},C). Then this is strongly arboreal
and equivalent to Cohen forcing.

(2) random forcing (B): consider the set of all perfect trees T on 2
such that for any ¢ € T, [T;] has a positive Lebesgue measure, ordered
by inclusion. Then this forcing is strongly arboreal and equivalent to

random forcing.
(3) Hechler forcing (D): for (n, f) € D, let

Tin,p) = {t € ““w | either t C f [ nor

(t O f [ nand (¥m € dom(t)) t(m) > f(m)) }

Then the partial order ({T(,. s | (n, f) € D}, C) is strongly arboreal
and equivalent to Hechler forcing.
(4) Mathias forcing: for a condition (s, A) of Mathias forcing, let
T(s,a) = {t € ““w | t is strictly increasing and s C ran(t) C s U A}.

Then {7, 4) | (s,A) is a condition of Mathias forcing} is a strongly
arboreal forcing equivalent to Mathias forcing.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 5

(5) Sacks forcing, Silver forcing, Miller forcing, Laver forcing (S, V,
M, L, respectively): these forcings can be naturally seen as strongly
arboreal forcings.

We now introduce a general definition of a regularity property asso-
ciated with an arbitrary arboreal forcing. Sets of reals with a regularity
property should be approximated by some simple sets (e.g., Borel sets)
modulo some “smallness” as Baire property and Lebesgue measurabil-
ity. Therefore we first introduce “smallness” for each arboreal forcing
by deciding a o-ideal as follows:

Definition 2.6. Let P be an arboreal forcing. A set of reals A is P-null
if for any T in P there is a 7" < T such that [T'] N A = (). Np denotes
the set of all P-null sets and Ip denotes the o-ideal generated by P-null
sets.

Example 2.7. (1) Cohen forcing C: C-null sets are the same as
nowhere dense sets and I¢ is the meager ideal.

(2) random forcing B: B-null sets are the same as Lebesgue null sets
and [y is the Lebesgue null ideal.

(3) Hechler forcing D: D-null sets are the same as nowhere dense
sets in the dominating topology, i.e., the topology generated by {[s, f] |
(s, f) € D} where

[s,f]={z € “w| s Cxand (VYn > dom(s)) z(n) > f(n)}.

Hence I is the meager ideal in the dominating topology.

(4) Mathias forcing: a set of reals A is Mathias-null iff {ran(z) | z €
AN Ap} is Ramsey null or meager in the Ellentuck topology, where Aj
is the set of strictly increasing infinite sequences of natural numbers.
Also, Mathias-null sets form a o-ideal by a standard fusion argument.

(5) Sacks forcing S: in this case, Is = Ng by a standard fusion
argument. The ideal Ig is called the Marczewski ideal and often denoted
by so.

As with Sacks forcing, all the typical non-ccc tree-type forcings ad-
mitting a fusion argument satisfy the equation Ip = Np. Since Ip is
Borel generated for any ccc arboreal forcing, the condition (xx) in The-
orem 4.4 (which we will state in §4) holds for all the typical tree-type
strongly arboreal forcings.

Now we introduce the regularity property for each arboreal forcing:

Definition 2.8. Let P be arboreal. A set of reals A is P-measurable
if for any T in P there is a 7" < T such that either [T']N A € Ip or
[T\ A € Ip.



6 D. IKEGAMI

As we expect, P-measurability coincides with the known regularity
property for P when P is ccc:

Proposition 2.9. Let P be a strongly arboreal, ccc forcing and let P
be a set of reals. Then P is P-measurable iff there is a Borel set B such
that PAB € Ip.

Proof. The direction from right to left follows from the fact that every
Borel set of reals is P-measurable which will be proved in Lemma 3.5.

For the other direction, suppose P is P-measurable and we will find a
Borel set approximating P modulo Ip. Since P is P-measurable, the set
D ={T €P| either [T|NP € Ipor [T]\ P € Ip} is dense. We take a
maximal antichain A in D and define B = |J{[T] | T € A and [T]\ P €
Ip}. Then since A is countable, B is Borel and PAB € Ip because D
is dense. |

This argument does not work for non-ccc forcings such as Sacks
forcing. But P-measurability is almost the same as the regularity
properties for non-ccc forcings P, e.g., for Mathias forcing, a set of
reals A is Mathias-measurable iff {ran(z) | x € AN Ay} is completely
Ramsey (or has the Baire property in the Ellentuck topology), where A
is the set of all strictly increasing infinite sequences of natural numbers.
Also, for Sacks forcing, the following holds:

Proposition 2.10 (Brendle-Lowe). Let T' be a topologically reason-
able pointclass, i.e., it is closed under continuous preimages and any
intersection between a set in I' and a closed set. Then every set in I'
is S-measurable iff every set in I' has the Bernstein property.®

Proof. See [8, Lemma 2.1]. O
Next we introduce a technical ideal Ip* which we need later:

Definition 2.11. Let P be an arboreal forcing. A set of reals A is in
Ip* if for any T in P there is a 7" < T such that [T'] N A is in Ip.

Question 2.12. Let P be a strongly arboreal, proper forcing. Can we
prove Ip = Ip*?

4For example, assuming every ITi-set has the perfect set property, every i-set
of reals has the Bernstein property (i.e., either it contains a perfect or there is a
perfect set disjoint from the set) but for a ¥1-set of reals A, A is approximated by
a Borel set modulo Ig iff A is Borel. This is because Ig restricted to analytic sets
(or co-analytic sets) is the set of all countable sets of reals.

In general, the Bernstein property does not imply S-measurability while the
converse is true. By using the axiom of choice, we can construct a set of reals
which is not S-measurable and has the Bernstein property.
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We give some easy observations concerning to Question 2.12:

Lemma 2.13. Let P be strongly arboreal forcing.

(1) The ideal Ip is a subset of Ip*.

(2) A set of reals A is P-measurable iff for any T in P there is a
T'" < T such that either [T']| N A € Ip" or [T'] \ A € Ip* holds. Hence
we get the same notion of measurability even if we replace Ip by Ip* in
the definition of P-measurability.

(3) If P is ccc, then Ip = Ip*.

(4) If Ip = Np, then Ip = Ip*. Hence Ip = Ip* for any typical
tree-type strongly arboreal forcing admitting a fusion argument.

(5) (Brendle) Suppose P satisfies the following condition: for any
maximal antichain A in P, there is a maximal antichain A’ such that
for any two elements 7', 7" of A", [T] and [T"] are disjoint and A’ refines
A, ie., for any T" in A’ thereis a T in A with 7" C T. Then Ip = Ip".

Sacks forcing is a typical example of the condition in (5). But we do
not know of any strongly arboreal P satisfying the condition but which
are neither ccc nor satisfy Ip = Np.

Proof. We will prove only (5). The rest are straightforward. Suppose
P satisfies the above condition and let A be in Ip*. We prove A is in
Ip. Since A is in Ip*, the set of all T's in P such that [T|N A € Ip
is dense in P. Hence we can take a maximal antichain A contained
in this set. By the condition, we may assume for any two distinct
elements Ty, Ty of A, [T1], [T»] are pairwise disjoint. For each T in A,
[T]NA € Ip. So we can pick {N,r | n € w} such that each N, r is
P-null and {J,,., o7 = [T] N A. Let N, = Upeq Noyr for each n € w.
Since A =, .., Ny, the proof is complete if we prove the following

Claim 2.14. For each n € w, N,, is P-null.

new

Proof of Claim 2.14. Take any 7" in P. Since A is a maximal antichain,
we can take a T € A such that T and T" are compatible. Take a
common extension 7"”. Then [T"] N N,, = [T"] N N, because of the
property of A. But we know that N, is P-null. Hence we can take a
further extension of 7" disjoint from N,,. OJ

Next, we introduce quasi-P-genericity for arboreal forcings P and
compare it with P-genericity. Quasi-generic reals are obvious general-
ization of Cohen reals and random reals:

Definition 2.15. Let P be arboreal and M be a transitive model of
ZFC. A real x is quasi-P-generic over M if for any Borel code ¢ in M
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with B, € Ip*, x is not in B., where B, is the decoded Borel set from
c.

Example 2.16. (1) Cohen forcing (C): quasi-C-generic reals are the
same as Cohen reals by definition. Hence quasi-C-genericity coincides
with C-genericity.

(2) random forcing (B): quasi-B-generic reals are the same as ran-
dom reals by definition. Hence quasi-B-genericity coincides with B-
genericity.

(3) Hechler forcing (D): quasi-D-generic reals are the same as Hechler
reals. Hence quasi-D-genericity coincides with D-genericity.

(4) Sacks forcing (S): if M is an inner model of ZFC, quasi-S-generic
reals over M are the reals which are not in M because any Borel set
in Is* = Ng is countable and this is also true in M if the code is in
M by Shoenfield absoluteness. Therefore, quasi-S-genericity does not
coincide with S-genericity.

The last example explains the difference between genericity and
quasi-genericity and shows that the equivalence for Sacks forcing we
mentioned in the introduction is a special case of Theorem 4.3 which
we will prove later.®

As is expected, genericity implies quasi-genericity for all the typical
strongly arboreal forcings and the converse is true for most ccc forcings:

Proposition 2.17. Let P be a strongly arboreal, strongly proper, prov-
ably Al forcing. Then

(1) The set {c | B. € Ip*} is TI.. Hence the statement “c codes a
Borel set in Ip*” is absolute between inner models of ZFC.

(2) If M is a transitive model of ZFC and a real z is P-generic over
M, then z is quasi-P-generic over M.

(3) Suppose P is also provably ccc, i.e., there is a formula ¢ defining
P and the statement “¢ is ccc” is provable in ZFC. Then if M is an
inner model of ZFC and a real x is quasi-P-generic over M, then z is
P-generic over M.

Proof. See § 3. U

In [31], Zapletal starts from a o-ideal I on a Polish space X and
considers the quotient of the set of all Borel sets in X modulo I and
develops the general theory of this forcing as a Boolean algebra. Let
us compare his setting with our setting:

6Tt is easy to check the condition () in Theorem 4.3 for Sacks forcing by noting
that the ideal Is restricted to Borel sets is the ideal of countable sets as we mentioned
in the last example.
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Proposition 2.18. Suppose P is a strongly arboreal, proper forcing.
Then the map i: P — (B/Ip*) \ {0} defined by

i(T) = the equivalence class represented by [T,

is a dense embedding, where B denotes the set of all Borel sets of the
reals and B/Ip" is the quotient Boolean algebra via Ip*.

Hence, our situation is a special case of Zapletal’s.”

Proof. See § 3. U

3. P-MEASURABILITY AND P-BAIRENESS

In this section, we shall prove the propositions listed in § 2. In order
to do so, we first consider the connection between P-measurability and a
property called P-Baireness (which was implicitly introduced by Feng-
Magidor-Woodin [11]). This connection will allow us to characterize
Ip* in terms of Banach-Mazur games, which plays an essential role in
the proof of Proposition 2.17.

Let P be a partial order. The Stone space of P (denoted by St(P))
is the set of ultrafilters of P equipped with the topology generated by
{O, | p € P}, where O, = {u € St(P) | u > p}.

For example, if P is Cohen forcing (C), then St(C) is homeomorphic
to the Baire space “w.

Dense sets in P are the same as open dense subsets in St(P): if D
is a dense subset of P, then the set (J{O, | p € D} is open dense in
St(P). Conversely, if U is an open dense subset of St(IP), then {p € PP |
O, C U} is a dense open subset of P.

Next, we will talk about meagerness and the Baire property in St(P).
The first observation we should make is that this is not nonsense:

Lemma 3.1. Let P be a partial order. Then for any p € St(P), O, is
not meager.

Proof. Take any p € P and let {U,, | n € w} be a countable set of open
dense subsets of St(P). We would like to prove that the intersection
Mhew Un with O, is nonempty. But this is just the Rasiowa-Sikorsky
Theorem or finding a generic object GG over a countable structure con-
taining P with p € G. [ |

Tn [31, Corollary 2.1.5], Zapletal proved a more general result. His I is essentially
the same as our Ip* and if we use b, = |Z4en(72) = 1| (n € w) instead of b, (t € <¥2)
for the generators of C, then Zapletal’s T is exactly the same as our Ip™ on Borel
sets.
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Before defining P-Baireness, let us see the connection between Baire
measurable functions from St(P) to the reals and P-names for a real.

Let X, Y be topological spaces. Then a function f: X — Y is Baire
measurable if for any open set U in Y, f~1(U) has the Baire property
in X. Baire measurable functions are the same as continuous functions
modulo meager sets: let X,Y be topological spaces and assume Y is
second countable. Then it is fairly easy to see that a function f: X —
Y is Baire measurable iff there is a comeager set D in X such that
f I D is continuous.

There is a natural correspondence between Baire measurable func-
tions from St(PP) to the reals and P-names for a real:

Lemma 3.2 (Feng-Magidor-Woodin). Let P be a partial order.
(1) If f: St(P) — “w is a Baire measurable function, then

T = {(m, n),p) | Op \ {u € St(P) | f(u)(m) =n}is meager}
is a P-name for a real.
(2) Let 7 be a P-name for a real. Define f, as follows. For u € St(P)
and m,n € w,

fr(w)(m)=n <= (Ip€u) plk7(m) =n.

Then the domain of f, is comeager in St(P) and f, is continuous on
the domain. Hence it can be uniquely extended to a Baire measurable
function from St(P) to the reals modulo meager sets.

(3) If f: St(P) — “w is a Baire measurable function, then f., and
f agree on a comeager set in St(P). Also, if 7 is a P-name for a real,
then IF 7 = 7.

Proof. See [11, Theorem 3.2]. O

Recall that we have defined a generic real x; from a generic object
G for any strongly arboreal forcing P. Let x; be a canonical P-name
for zq.

Example 3.3. Let P be strongly arboreal. Then f, (u)(m) =
iff there is a 7' in w such that stem(7)(m) = n. Hence f,(u)
U{stem(T") | T € u} for u € dom(m) as we expect.

n

Now we define the property P-Baireness. Let P be a partial order
and A be a set of reals. Then A is P-Baire if for any Baire measurable
function f: St(P) — “w, f~'(A) has the Baire property in St(P). Tt
is easy to see that every Borel set of reals is P-Baire for any P by the
same argument as for the Baire property.

Example 3.4. Let C be Cohen forcing. A set of reals A is C-Baire iff
f7(A) has the Baire property for any continuous function f: “w — “w.
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Proof. As we have seen in the beginning of this section, St(C) is home-
omorphic to the Baire space “w. In the Baire space, any G5 comeager
set is homeomorphic to the whole space. Hence we can replace Baire
measurable functions by continuous functions in the definition of C-
Baireness. |

Before talking about the relation between P-measurability and P-
Baireness, let us mention the connection between P-Baireness and uni-
versally Baireness. A set of reals A is universally Baire if for any
compact Hausdorff space X and any continuous function f: X — “w,
f7'(A) has the Baire property in X. A set of reals A is universally Baire
iff A is P-Baire for any partial order P. (This is essentially proved in
[11].)

Recall that Ip* is a technical ideal introduced in Definition 2.11 which
is the same as Ip for most cases.

Lemma 3.5 (P-measurability vs. P-Baireness). Let P be a strongly
arboreal, proper forcing and A be a set of reals. Then

(1) Ais in Ip* iff f;'(A) is meager in St(P), and

(2) A is P-measurable iff f,.'(A) has the Baire property in St(P). In
particular, if A is P-Baire, then A is P-measurable. Hence every Borel
set, if P-measurable.

Note that P-measurability does not imply P-Baireness in general.®

Proof of Lemma 3.5. Let m = f,,, for abuse of notation.
The following are useful for the proof:

Claim 3.6. (a) For T'in P and u € dom(n), if T € u, then 7(u) € [T].
(b) For T in P, the converse of (a) holds for comeager many u in
dom().

Proof of Claim 3.6. (a) Suppose T € u. We prove w(u) [ n € T for
each n € w. Fix a natural number n. Then by Example 3.3, there is a
T" in u such that stem(7”) D m(u) [ n. Since both T and T" are in u,
they are compatible, especially stem(7") € T (otherwise [T]N[T'] = 0).
Hence 7(u) [n € T.

(b) Take any T in P. Then the set D ={T" € P | T" C T or [T'] N
[T] = 0} is dense in P. (Take any T'. If 7" ¢ T, then there is a
t' € T"\ T. By strong arborealness of P, T), € P and [T, ] N[T] = 0.)
Since D is dense, the set {u | uN D # 0} is dense open in St(P). Hence

8For example, if A is a X} (lightface) set of reals universal for £} (boldface) sets
of reals and if every 33 (lightface) set of reals has the Baire property but there is
a X1 (boldface) set of reals without the Baire property, then A is C-measurable by
Proposition 2.9, but A is not C-Baire by Example 3.4.
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it suffices to show that if u is in dom(7), u N D # 0 and 7w (u) € [T],
then T € u. Suppose T ¢ w. Then since u N D # (), there is a T" € u
such that [T'] N [T] = 0. By (a), m(u) € [T'], hence 7(u) ¢ [T], a
contradiction. O

(1) We prove the direction from left to right.

We first show that 7='(A) is meager if A is in Np. If A is in Np,
then the set D = {T | [T]N A = 0} is dense in P. Hence the set of all
u € dom(w) with w N D # () is comeager. But if u is in the comeager
set, then there is a T € uN D and by Claim 3.6 (a), 7(u) € [T] and
[T)N A =0, in particular 7(u) ¢ A. Therefore 7 *(A) is meager.

We have seen that 7—1(A) is meager assuming A is in Np. Since Ip
is the o-ideal generated by sets in Np, 7 '(A) is meager for all A in Ip.

We show that 77'(A) is meager if A is in Ip*. Since A is in Ip*,
the set D' = {T | [T] N A € Ip} is dense in P. We use the following
well-known fact:

Fact 3.7. Let X be a topological space and A be a subset of X. Then
(U{U | U is open and U N A is meager }) N A is meager.

Proof of Fact 3.7. See [20, Theorem 8.29]. O

Since D' is dense, | J{Or | T € D'} is open dense. By the above fact,
it suffices to prove that Oy N7~ 1(A) is meager for any T in D'

Take any 7" in D’. By the definition of D', we know that [T] N A is
in Ip. Hence 7 '([T] N A) is meager in St(P). But by Claim 3.6 (a),
OrNa 1 (A) C o 1([T] N A). Therefore, Or N7 '(A) is meager as we
desired.

Next, we see the direction from right to left. Suppose m~'(A) is
meager. Take any 7T in P and we will find an extension 7" of T such
that [T'] N A is in Ip. Since 7' (A) is meager, then there is a sequence
(Un | n € w) of open dense sets in St(IP) such that (), ., Un N7 '(A) =
(). Foreachn € w,let D,, = {S € P | Os C U,}. Since U, is open dense
in St(P), D, is dense open in P. We choose a sequence (A, | n € w) of
maximal antichains such that A, C D,,, for each element S of A,,, the
length of stem(S) is greater than n, and A, refines A,, i.e., every
element of A, is below some element in A,,.

Now we use the properness of P to treat each A, as “countable”.
Let 6 be a sufficiently large regular cardinal and X be a countable
elementary substructure of H,y such that P, T, (A, | n € w) are in X.
By properness, there is an (X, P)-generic condition 7" below T. We
show that [T'] N A is in Ip, which will complete the proof of (1).

Consider the set B =, o, U{[S] | S € A, N X} \ U, e {[S]N[S] |
S,8"e A,NX and S # S'}. So B is the set of all xs uniquely deciding
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which condition from 4, contains it for each n. By the property of
(A, | n € w), it will generate a filter coming from elements in A,;s. The
point is that any ultrafilter v extending that filter satisfies 7(u) = z,
the given element, and that w is in U, for each n. This will play a role
for the argument.

Now we claim [T']\ B € Ip and BN A = (). We will be done if
we prove them. The fact that [T"] \ B € Ip follows from the fact that
{S ]S € A,n X} is predense below [T"] for each n because T' is
(X, P)-generic and from that [S] N [S] € Ip for each S,S" € A, N X
with S # S’ because A, is an antichain, and from that A, N X is
countable for each n.

To prove BN A = (), take any element x from B. As we mentioned
above, for each n € w, there is a unique element S, in A, N X with
x € [Sp]. Since A, refines A,, S, < S, for each n. Hence the
set {S, | n € w} generate a filter F,. Take any ultrafilter u extending
F,. We claim that 7(u) = x and u € U, for each n. By the property
of (4, | n € w), the length of stem(S,,) is greater than n. Hence, by
Example 3.3, 7(u) is already decided to be x by S,s. The fact that
u € U, for each n follows from the fact that S, € A, C D, and the
definition of D,,.

Since we have assumed that (), U,N7 ' (A) = 0,  does not belong
to A because x = m(u) € U, for each n by Claim 3.6. Hence we have
seen BN A = () as we desired.

(2) For left to right, we assume A is P-measurable. Then the set
D ={T € P| either TN A€ Ipor[T]\ A€ Ip} is dense. Then the
set U = J{O7 | T € D} is open dense in St(P). Let U; = [J{Or |
[T] \A € I]p}, U, = U{OT | [T] NAEe [[p} Then U = U; U U,. By
Lemma 2.13 (1), Lemma 3.1, Claim 3.6 (a), and (1) in this lemma,
Uy NUy = ). Hence, it suffices to show that U; \ 7' (A4), Uy N~ (A)
are meager because that will imply U; Ar—1(A) is meager.

We will only see that Uy~ 1(A) is meager. The case for U; \ 7 1(A)
being meager is similar. By Fact 3.7, it suffices to see that OrN7—(A)
is meager when [T]N A € Ip. But if [T]N A € Ip, then Or N7 1(A) C
7 ([T]N A) and 7='([T] N A) is meager by Claim 3.6 (a), Lemma 2.13
(1), and (1) in this lemma. Hence we are done.

Now we see the direction from right to left. Assume 77'(A) has the
Baire property in St(P). Then there are open sets U;, U, such that
UiAr Y A), UyAr 1 (“w )\ A) are meager. By Lemma 3.1, Uy NU; = ()
and Uy U U, is open dense in St(P). Let D; = {T € P | Oy C U;}
for i« = 1,2. Then Dy U D, is dense in P. Hence by Lemma 2.13
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(2), it suffices to prove that [T]\ A € Ip* for each T in D; and that
[T] N A € Ip* for each T in Ds.

We only prove [T]\ A € Ip* for each T in D;. By (1) in this Lemma, it
is enough to see that 71 ([T]\ A) is meager in St(P). But by Claim 3.6
(b), 7 Y([T] \ A) is almost the same as Oz \ 7 1(A). Since T is in D,
by the definition of Uy, Or \ 7 *(A) is meager. This completes the
proof of (2). |

Note that if P satisfies the condition in Lemma 2.13 (5), then we do
not need the properness of P for the proofs of Lemma 3.5.

Now we are ready to prove Proposition 2.17 and Proposition 2.18.
We first see the proof of Proposition 2.18:

Proof of Proposition 2.18. First we see that the map 7 is well-defined,
i.e., [T]isnot in Ip* for each T in P. If it were in Ip*, then by Lemma 3.5
(1), #='([T]) would be meager and Or C 7~ '([T]) by Claim 3.6 (a).
Hence Or must be meager, which contradicts Lemma 3.1. Therefore
[T] is not in Ip*.

It is clear that if Ty < Ty, then i(T7) < i(T3). To show the converse,
assume T} £ T, and we prove that i(77) £ i(T3). Since T} £ T3, there
is a t € Ty which is not in T5. By strong arborealness of P, (T7); € P
and [(T1)]] N [Tz] = 0. Hence i((Th);) % i(T). Since (T1), < Ti,
Z((Tl)t) S Z(Tl) Therefore, Z(Tl) ﬁ Z(TQ)

So it suffices to see that i“P is dense in (B/Ip*) \ {0}. Let B be a
Borel set which is not in Ip*. We will find a T in P with [T]\ B € Ip".

Since every Borel set is P-Baire, by Lemma 3.5 (2), B is P-measurable.
Since B is not in Ip*, there is a T such that [T]\ B € Ip, hence
[T]\ B € Ip* by Lemma 2.13 (1), as we desired. |

Proof of Proposition 2.17. (1) Let m = f,;, asin the proof of Lemma 3.5.
By Lemma 3.5, a set of reals A is in Ip*, iff 77! (A) is meager in St(P).
Hence, it suffices to show that {c | 7~'(B,.) is meager} € TIJ.

We will prove the following:

(x) 7 *(B.) is meager <> (VM 3 ¢) (M: a c.t.m. of ZFC
—> M FE “n~'(B,) is meager”).

First note that the right hand side makes sense because the statement
“P is a strongly arboreal forcing” is I3 by the assumption that P is
provably Al so by downward absoluteness, this is also true in M. Since
the right hand side is 1}, it suffices to show the above equivalence.

The following claim is the key-point:
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Claim 3.8. Let M be a countable transitive model of ZFC with ¢ € M.
If M & “r='(B,) is meager”, then for any T' € PM (or PN M), there is
a T" < T such that Op N 7' (B,) is meager in V.

Proof of Claim 3.8. Take any T in P”. Since P is provably A}, PV,
<M and LM are subsets of P, < and L respectively. Hence, by strong
properness, there is a 7" < T such that T" is (M, P)-generic.

We will show that 7" satisfies the desired property. For that, we
will use the unfolded Banach-Mazur game. Let U be a tree on w X w,
recursive in ¢ such that B, = p[U] holds in any transitive model of ZFC
N with ¢ € N. Consider the following game G': player I and IT produce
a decreasing sequence (S,’ < T’ | n € w) one by one and in addition,
player IT produces a real (y, | n € w). Player II wins if (7 (u),y) € [U]
for any u € ), ., Os,’. Note that we may assume that 7 is defined for
any u € [),e, Os,’ and the value of 7 only depends on the sequence
(S, | n € w) because we can arrange 7(u) = |J, o, stem(S,") by strong
arborealness of P and Example 3.3.

Now it suffices to show that player II has a winning strategy in this
game. Since M F “r~1(B,) is meager”, in M, player II has a winning
strategy o in the game G which is the same as G’ except that player
I can start from any condition in P. The idea is to transfer o to a
winning strategy for player II in G’ in V. Instead of writing down a
winning strategy for player II in G’, we will describe how to win the
game G’ for player II as follows:

I S/ <T Sy’
v
II (51,,3/0) (53,,3/1)
I So S
M
II (Sl,yo) (S?nyl)

We will construct sequences (S, | n € w), (S, | n € w), (Yo | n € w)
with the following properties:
e ((S'|n€w),(ys | n €w)) is arun in the game G’ in V,
e ((Sp|n€w),(ys| nE€w))is arun in the game GM in V,
e S5, is arbitrarily chosen by player I for each n,
e player II follows o in GM, and
® Sonii’ < So,4q for each n.
Assuming we have constructed the above sequences, we prove that
player II wins in the game G’. First note that GM is a closed game
for player II, hence the strategy o remains winning in V. Therefore,
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(m(u),y) € [U] for any u € (., Os, in V. But since Spp1" < Sopiq
for each n, (w(u),y) € [U] for any u € (., Os, ', hence player IT wins
the game G'.

We describe how to construct the above sequences. Suppose we have
got ((Si', Si,y:) | i < 2n) for some n. We will decide Sy, Sonii’, Son,
Sont1 and y,. By the above properties, So,’ is arbitrarily chosen by
player I and Ss,.1, y, will be decided by the rest and o. So let’s decide
Sgn and 52n+1,-

Let D be the set of all possible candidates for S, by o and the
previous play (S; | i < 2n), (y; | i < n). Then in M, D is dense below
Son 1 (if it exists). Since Sy, < So, 1 < Sy, and T" is (M, P)-
generic, D N M = D is predense below S,,’. Take an element from D
which is compatible with Ss," and choose Ss, so that the element we
have taken becomes Sy, by ¢ and let Ss,.;" be a common extension
(in V) of Sy,," and S, 1. This finishes the construction of the sequences.

new

DClaim 3.8

Now let us prove the equivalence (x):

Suppose 7' (B,) is meager and assume there is a countable transitive
model M of ZFC with ¢ € M such that M E “7~'(B,) is not meager”.
We will derive a contradiction. Since every Borel set is P-Baire, 7' (B,)
has the Baire property. Hence there is a T € PM such that in M,
7 1(B,) is comeager in Or. By Claim 3.6 (a), 7 *([T] \ B.) is almost
included in Or \ 7 1(B,), hence, in M, 7= }([T] \ B,) is meager in
St(P). Now apply the claim for [T]\ B.. Then we get a 7" < T such
that O N7~ ([T] \ B.) is meager. But this means that Oz is almost
included in 77'(B,). Since O is not meager by Lemma 3.1, 7='(B,) is
not meager, which contradicts the assumption that 7—'(B,) is meager.

For the other direction, by Fact 3.7, it suffices to show that for any
T in P, there is a T' < T such that O N7~ !(B,.) is meager. So fix any
T. Then pick a countable transitive model M with ¢, T € M. Then by
Claim 3.8, there is a 7' < T such that Op N7 !(B,.) is meager, as we
desired.

(2) Let © be P-generic over M. Then the set G, = {T € PM | z €
[T]} is a PM-generic filter over M. We show that z ¢ B, when c is a
Borel code in M with B, € Ip".

Let ¢ be such a Borel code. By (1) and the downward absoluteness
for TI}-formulas, M E “B, € Ip*". Let i be the dense embedding

M
from PM to <(B/I]p*) \{0}) defined in Proposition 2.18 and i (G,)

be the (B/Ip*)—generic filter over M induced by i and G,. Using
the fact that Ip* is a o-ideal, it is routine to check that B € i¥(G,)
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iff + € B for any Borel set B with a code in M. But the left hand
side of the above equivalence implies M E “B ¢ Ip*”, hence by upward
absoluteness for Yi-formulas, B ¢ Ip*. Since B, € Ip*, x ¢ B, as we
desired.

(3) Let z be a quasi-P-generic real over M and put G, = {T" € PM |
x € [T]}. We show that G, is a PM-generic filter over M.

We first see that G, meets every maximal antichain of PM in M.
Take any maximal antichain A of PM in M. Since P is provably ccc,
A is countable in M. Now consider B = |J{[T] | T € A}. Then B is a
Borel set with a code in M and M F “w\ B € Ip*”. By (1), this is
also true in V. Since x is quasi-P-generic over M, = ¢ B¢, i.e., x is in
B. So G, meets A.

Now we see that G, is a filter. Take any two elements 77,75 in G.
We will find a common extension of T}, T in G,. Consider D = {S €
P | ([S]N[T] = 0 and [S]N[T3] = 0) or (S < Ty and [S] N [T3] =
0)or (S < Ty and [S]N[T3] = 0) or (S < T1,T3)} in M. Then by
strong arborealness of P, D is dense in M. Hence G, meets D. Take
a condition S from G, N D. Then only the last case in D happens
because S € G, <= x € [S]. Hence S < T}, T. Therefore, G, is a
PM_generic filter over M. |

There is a close connection between forcing absoluteness for P and
P-Baireness:

Theorem 3.9 (Castells). Let P be a partial order. Then the following
are equivalent:

(1) Xi-P-absoluteness holds, and

(2) every Al-set of reals is P-Baire.

Proof. The argument is essentially the same as in [11, Theorem 3.1].
0]

4. ¥i-ABSOLUTENESS

Now we give a precise statement of Theorem 1.3 and prove it. Also
we will prove related results.

Theorem 4.1. Let P be a strongly arboreal, proper forcing. Then the
following are equivalent:

(1) Xi-P-absoluteness holds, and

(2) every Al-set of reals is P-measurable.

Proof. By Theorem 3.9, it suffices to show that every Al-set of reals
is P-measurable iff every Al-set of reals is P-Baire. By Lemma 3.5, it
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is enough to see that every Al-set of reals is P-Baire assuming every
Al-set of reals is P-measurable.
The following claim is the key point:

Claim 4.2. Let P be a strongly arboreal, proper forcing and 7 be a
P-name for a real. Then for any 7" in P, there is a 7" < T and a Borel
function g: [T'] — R such that T" I+ 7 = g(xg).

Proof of Claim 4.2. This is a combination of Proposition 2.18 in this
paper and [30, Proposition 2.3.1]. O

Now take any Al-set A and a Baire measurable function f from St(P)
to the reals. We show that f~!(A) has the Baire property. Tt suffices
to show that {T' | Or N f~'(A) is meager or O \ f~'(A) is meager} is
dense in P.

So take any T in P and we will find an extension S of T"with the above
property. By the above claim, there is a 7" < T and a Borel function
g: [T'] = R such that 7" IF 7 = g(«z), where 7 is the P-name for a
real defined in Lemma 3.2 (1). Hence, by Lemma 3.2 (3), f = go fu.
almost everywhere in Op. Since g~ '(A) is Al, it is P-measurable by
the assumption. By Lemma 3.5 (2), f,.'(97'(A)) = (g0 faz) "' (A) has
the Baire property. Hence f~1(A) has the Baire property in O7. In
particular, there is an S < T" such that either Og N f~1(A) is meager
or Og \ f'(A) is meager as we desired. |

Theorem 4.3. Let P be a strongly arboreal, proper forcing. Assume
the following:

{c| cis a Borel code and B, € Ip*} € X.. (*)

Then the following are equivalent:

(1) 3i-P-absoluteness holds,

(2) every Al-set of reals is P-measurable, and

(3) for any real @ and T € P, there is a quasi-P-generic real z € [T
over L[a).

Proof. We have seen the equivalence between (1) and (2). We will show
the direction from (1) to (3) and the direction from (3) to (2).

For (1) to (3), take a real @ and T in P. We will find a quasi-P-generic
real x over L[a] with « € [T]. But by the assumption (x), the statement
“There is a quasi-P-generic real = over L[a] with 2 € [T]” is 3} and this
is true in a generic extension V[G] with T' € G by the same argument
as in Proposition 2.17. (Although P might not be provably Al as we
assumed in Proposition 2.17, we used it only to see M F B, € Ip* when
B, € Ip" in V and this is ensured by the assumption (x) and Shoenfield
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absoluteness without using P being provably Al.) Hence by X}-forcing
absoluteness, the statement is also true in V' as we desired.

For (3) to (2), take any Al-set A and we will show that A is P-
measurable. Take any T in P.

[a]

Case 1: w'” < WY for any real a.

Pick a real a with T' € L[a]. By the assumption, the set of all dense
sets of P in L[a] is countable in V. Hence the set of all P-generic reals
over L[a] is of measure one w.r.t. Ip, (i.e., the complement of that set
is in Ip). The rest is a standard Solovay argument to prove regularity
properties in Solovay models. (Actually, every 3l-set of reals is P-
measurable in this case.)

L
Case 2: w = WY for some real a.

The argument is basically the same as in [7, Proposition 2.1]. Pick

a real a with T € L[a] and such that wi'” = w) and A4 is Al(a). The
idea is to decompose [T] N A and [T] \ A into Borel sets in an absolute
way between L[a] and V', and a Borel set containing a quasi-P-generic
real over L[a] must be Ip*-positive and below that Borel set we will
find an extension of T" as a witness for P-measurability of A.

Since [T] N A and [T]\ A are 23(a) sets, there are Shoenfield trees
U; and U, in La] for [T] N A and [T] \ A respectively. From these
trees, we can naturally decompose [T] N A and [T] \ A into w;-many
Borel sets as in [22, 2F.1-2F.3], i.e., there are sequences (¢, | @ < wy),
(do | @ < wi) of Borel codes in L[a] such that [T]NA = {,.,, Be.
and [T]\ A = J,.,, Ba.- The point is that the above equations are
absolute between L[a] and V' because those two sequences only depend
on U, Us and w; and wlL[a] = w! as we assumed.

By assumption, there is a quasi-P-generic real = over L[a] with = €
[T]. Hence there is an a < wy such that either z € B, or z € By,.
Without loss of generality, we may assume = € B,_. Since ¢, is in L]al,
by the definition of quasi-P-genericity, B., is not in Ip*. Since every
Borel set is P-Baire, it is P-measurable by Lemma 3.5 (2). Hence there
is a condition 7" such that [T']\ B, € Ip. Since B., C [T|NA, T"<T

and [T'] \ A € Ip, as we desired. |
Theorem 4.4. Let P be a strongly arboreal, proper forcing. Assume
{c| cis a Borel code and B, € Ip*} € XJ, (%)

and
Ip is Borel generated or Ip = Np. (xx)

Then the following are equivalent:
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(1) every Xi-set of reals is P-measurable, and
(2) for any real a, R\ {z | z is quasi-P-generic over L[a]} € Ip*.

Proof. For (1) to (2), take any real a and we show that A = {z |
x is quasi-P-generic over L[a]} is of measure one w.r.t. Ip*. Suppose
not. Then “w\ A ¢ Ip*. By the assumption (*), “w\ A is 1. So by (1),
it is P-measurable. Hence there is a T in P such that [T]\ (“w\ A) =
[T] N A € Ip. We show that this cannot happen.

Case 1: Ip is Borel generated, i.e., for any N in Ip there is a Borel set
B € Ip such that N C B.

Since [T] N A € Ip, there is a Borel set B C [T] in Ip such that
[T] N A C B. Let ¢ be a Borel code for B. By Theorem 4.3, there is a
quasi-P-generic real x over La, ¢] with x € [T]. Since B € Ip, © ¢ B.
But this is impossible because z is also quasi-P-generic over L[a] and
hence x € [T|N A C B.

Case 2: Ip = Np.

In this case, [T] N A is P-null, hence there is a 7" < T such that
[T']N A = (. By Theorem 4.3, there is a quasi-P-generic real = over
L[a] with z € [T"]. Hence x € [T'] N A, a contradiction.

For (2) to (1), take any 3J-set A. We show that A is P-measurable.
Let T be in P. We will find an extension T" of T approximating A as
in the definition of P-measurability. If [T] N A € Ip*, we are done. So
we assume [T]N A ¢ Ip*.

[a]

Case 1: w% < wy for any real a.

Asin (3) to (2) in Theorem 4.3, in this case, every Xj-set of reals is
P-measurable by a standard Solovay argument.

L
Case 2: w/ = wY for some real a.

Let a be a real such that [T] N A4 is £1(a) and w'™ = wY. Then we
have a Shoenfield tree in L[a] for [T] N A and we get an w;-many Borel
decomposition of [T] N A into Borel sets {B., | @ < wy} with ¢, € L[d]
for each « as in the proof of Theorem 4.3. Since [T] N A ¢ Ip* and
the set of quasi-P-generic reals over Lla] is of measure one w.r.t. Ip*
by (2), there is a quasi-P-generic real x over L[a] with z € [T] N A, so
there is an « such that x € B, .

The rest is the same as in the proof for (3) to (2) in Theorem 4.3.
Since ¢, € L[a] and z is quasi-P-generic over Lla], B., ¢ Ip*. Since
Borel set is P-measurable, there is a 7" in P such that [177] \ B., € Ip.
Since B., C[T]NA, T" <T and [T'] \ A € Ip, as we desired. |
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5. X)-ABSOLUTENESS

It is natural to try to generalize the relationship up to the one be-
tween X}-forcing absoluteness and the regularity properties for Al-sets
of reals and Xl-sets of reals. But these analogues cannot be proved in
ZFC.? In this section, with an additional assumption (sharps for sets),
we will prove the analogues of §4.

Theorem 5.1. Let P be a strongly arboreal, proper, Al forcing. Sup-
pose every set has a sharp. Then either Al-determinacy holds or the
following are equivalent:

(1) Xj-P-absoluteness holds, and

(2) every Al-set of reals is P-measurable.

Proof. For (1) to (2), the argument is the same as for (1) to (2) in [11,
Theorem 3.1]. What we should check is that we get the absolute tree
representation for X1-sets between V and VF. The rest is exactly the
same.

For such tree representation, Feng-Magidor-Woodin used Shoenfield
trees for Xl-sets. With the help of sharps for sets, now we use Martin-
Solovay trees for Xi-sets. By [13, Theorem 2.1], it suffices to see that
uY = uY" for the absoluteness of Martin-Solovay trees between V' and
VF. But this is true assuming every set has a sharp and P being proper
by [25, Theorem 2.1.9, Example 3.2.7].

For (2) to (1), first note that we may assume that every Al-set is
P-Baire by the same argument for (2) to (1) in Theorem 4.1. The
argument is the same as for in [11, Theorem 3.1]. What we need is to
uniformize a IT}-relation by a X3-function (in [11, Theorem 3.1], Feng-
Magidor-Woodin uniformized a IT}-relation by a X}-function). The
rest is exactly the same. But such uniformization is possible assuming
the failure of A}-determinacy.

The author would like to thank Hugh Woodin for pointing out the
following fact to him:

Theorem 5.2. Suppose every real has a sharp. Then either Al-
determinacy holds or X1 has the uniformization property, i.e., any
Y i-relation can be uniformized by a X}-function.'

Proof. Tt suffices to show that every ITi-relation can be uniformized by
a Xi-function. Suppose Al-determinacy fails. Then there is a real ag

9Start from L and add w;-many Cohen reals, then in this model, >l forcing
absoluteness for Cohen forcing holds but there is a ¥i-set of reals without the
Baire property.

10Gince Al-determinacy implies that TI has the uniformization property, this
fact states the dichotomy of the uniformization property for ¥ and ITi.
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such that for each real a >t ag, Al(a)-determinacy fails, where <t is
the Turing order.

Case 1: for any real a > ag, a' exists.

In this case, by the result of Steel, K, is ¥}-correct for any a >t a,
where K, is the Mitchell-Steel core model.!!

For each a >t ay, let <, be the canonical good Al(a)-well-ordering
on the reals in K,. Given a real b and a I1}(b)-relation R, define the
uniformization f as follows:

f(z) =y <= yis the first <4, p-element with (z,y) € R,

where (z, ag, b) is the real coding x,ay and b. For each x € dom(R),
such a y always exists because K 40 i 23-correct. So f uniformizes
R and regarding the fact that <, is a good A}(a)-well-ordering in K,
for each a >7 ay, it is easy to see that f is 31.

Case 2: there is a real a > ag such that a' does not exist.

Then there is a real a; >7 ag such that for any real ¢ > a;, a' does
not exist. By the result of Dodd-Jensen in [10], K, is 3}-correct for
any a > aq, where K, is the Dodd-Jensen core model. The rest is the
same as Case 1. |

Theorem 5.3. Let P be a strongly arboreal, strongly proper, prov-
ably Al forcing. Suppose every set has a sharp. Then either Al-
determinacy holds or the following are equivalent:

(1) 3i-P-absoluteness holds,

(2) every Al-set of reals is P-measurable, and
(3) for any real a and any T € P, there is a quasi-P-generic real
x € [T] over K,, where

a:

the Mitchell-Steel core model if af exists,
the Dodd-Jensen core model  otherwise.

Proof. In Theorem 5.1, we have seen the equivalence between (1) and
(2). We show the direction from (1) to (3) and the one from (3) to (2).

For (1) to (3), all we need is that the statement “there is a quasi-
P-generic real x over K, with z € [T]” is X} for each real a and each

UTn [28, Theorem 7.9], Steel assumed the existence of two measurable cardinals.

We can replace the lower measurable by af and the greater measurable by at?.
(Recent development of inner model theory even allows one to omit this sharp.
Jensen and Steel [17, 16] constructed K without using measurable cardinals.) For
the details, see [23].
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T € P. But this is true by Proposition 2.17 (1) and the fact that the
set of reals in K, is X3(a) in V.

The argument for (3) to (2) is basically the same as the one in Theo-
rem 4.3. For simplicity, we assume the failure of Al-determinacy, hence
there is no inner model with a Woodin cardinal. The case for the fail-
ure of Al(a)-determinacy for a real a can be dealt with in the same
way.

Case 1. w* < w; for any real a.

As in Theorem 4.3, we can conclude that every A}-set of reals (even
Y1 set of reals) is P-measurable by using X1-correctness for K,. To see
Si-correctness for K,, we need the case distinction whether a' exists
or not. If af does not exist, this is due to Dodd-Jensen in [10]. When
a! exists, this is due to Steel.!!

Case 2. wy = w/ for some real a.

We need the absolute decomposition of Xl-sets into Borel sets be-
tween K, and V' for some real a. The following result is essential; its
proof was communicated to us by Ralf Schindler:

Theorem 5.4 (Schindler). Suppose there is no inner model with a
Woodin cardinal. Then if usy* < u) for any real a, then wi* < w! for
any real a.

Proof. For simplicity, we only prove wX < w) assuming uX® < u) for
each real a. To derive a contradiction, we assume wf = w;. The
following is the first point:

Claim 5.5. The mouse K|w; is universal for countable mice, i.e., M <*
KJw, for any countable mouse M, where <* is the mouse order.

Proof of Claim 5.5. Suppose there is a countable mouse M with M >*
K|w;. Coiterate them and let 7,U be the resulting trees for M and
K|w; respectively.

Case 1: 1h(7) is countable.

Since M >* K|w;, U does not have a drop. But then the last model
of U cannot be an initial segment of the last model of 7 since the length
of T is countable, a contradiction.

Case 2: 1h(7) is uncountable.

Since M >* K|wy, U does not have a drop. If U« was non-trivial, then
the final model of &/ would be non-sound and could not be a proper
initial segment of the final model of 7. Hence U is trivial and K|w; is
an initial segment of the final model of 7. But this means wy is a limit
of critical points of embeddings via T, hence w; is inaccessible in K,

contradicting the assumption wi = w}. 0J
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By the same argument, we can prove that K,|w; is universal for
countable a-mice for each real a. We now have two cases:

Case 1: There is a real a such that a¥ does not exist.

This case was taken care of by Steel and Welch. In [27, Lemma 3.6],
they assumed uy = wy, which is stronger than uy® < uj for each real
a, and proved there is a countable mouse stronger than Klw; w.r.t.
mouse order. But assuming wX = w} and the non-existence of 09, we
can run their same argument only assuming uX < u3 and get the same
conclusion. Furthermore, we can easily relativize this argument to K,.
Hence assuming wi = w} (even wk* = w)) and the non-existence of
a¥, if uy® < ud, then there is an a-mouse stronger than K,|w;, w.r.t.

mouse order, which contradicts the a-relativized version of Claim 5.5.
Case 2: for any real a, a¥ exists.

This case is new. Since uX < ud, there is a real a such that ul <
(w9, The idea is to use a' (that exists since a¥ exists) and linearly
iterate it with the lower measure in af with length w,. Then the height
of the last model is bigger than u¥ since uX < (w;)". Now we restrict
this linear iteration map to K in a! constructed up to the point with
the top measure. The point is this is an iteration map on it and the
final model of this iteration has height bigger than uX. Since it is a
countable mouse, by Claim 5.5, we get a countable mouse in K with the
same property, which yields a contradiction by a standard boundedness
argument.

We will discuss this idea in detail. Let ¢ be the linear iteration map of
a' derived from the iterated ultrapower starting from the lower measure
in it with length w;. Then the target N of ¢ has height bigger than
u¥ since uX < (w; )M and the critical point of i goes to w; and N
has a cardinal bigger than w; and a € N. Let K“T|Q be the K in af
constructed up to 2, the critical point of the top measure in a'. Then
K®'[Q2 is a mouse and we call it M.

We claim that if we restrict ¢ to M, then it is an iteration map on
M. Since i is from a linear iteration of ultrapowers via measures, by
applying the result of Schindler [24] in each ultrapower in the iteration,
we can prove that the restriction of ¢ to M is an iteration with length
wy (which itself might be quite complicated). Moreover, the final model
of this iteration has height greater than uf because i maps  greater
or equal to (w;)™?. Let us call the tree of this iteration 7" and let M,
be the a-th iterate via 7 and iz:ﬁ: M, — Mj be the induced maps for
a<fB<w.

Since M is a countable mouse, by Claim 5.5, there is an oy < w; such
that M <* K|ag. We will show that K|ag has the same property, i.e.,
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there is an iteration from K|ag with length w; such that the height of
the final model is greater than uX. (Note that there might be a drop.)
Coiterate K| and M and let 7: M — N be the resulted map. Note
that there is no drop from the M-side because M <* K|ay.

We will construct (N, | @ < wy), (ma: My — Ny | @ < wyq), and
(i 5: No = Nz | o < f < wy) with the following properties:
(1) The diagrams below all commute,
(2) M, ~* Ny ~* My, q for each a,
(3) N, is the direct limit of Ng (5 < ) for limit «, and

(4) 4 1, and T, are the resulted maps by the comparison between
N, and M, for each a.

U U U
20,1 ) bo,at1
Klag ~~ N = N, N, N, Ny,
TW_WO Tm T?ra T”m
M = M, M, M, M,,
il il il
0,1 1,2 o411

The above properties uniquely specify (N, | o < wy), (ma: M, —
No | oo < wy), and (5 Ny = Ng | o < B < wy). Hence it suffices to
check (1) and (2) above for this construction.

For (1), it suffices to show that i , | 0Ty = a1 0i] o, for each o
By the Dodd-Jensen Lemma (e.g., in [32, Theorem 9.2.10]), any two
simple iteration maps from a mouse to a mouse are the same. By (2)
for a, 7y, a1, ioTé,aH, and ig’aﬂ are all simple iteration maps. Hence
we get the desired commutativity. (2) follows from the fact that all the
maps constructed before are simple iteration maps.

Since the height of N, is greater than or equal to that of M, , there
is an iteration from K|ag with length w; whose final model has height
greater than uX, as we desired.

Since K|y is in K and aq is countable in K, there is a real z in K
coding K|ag. We show that the height of N, is less than (w;" ). In
L[z], we collapse w]” with the forcing Coll(w,w)). Let g: w — w} be a
generic surjection over L[z]. Since K |ag is coded by z and the length of
iteration is wy which is countable witnessed by g, by the boundedness
lemma in L[z][g], the height of N,, is less than w/'™¥ = (w)Lel, as
desired. Since z is in K, (w;)"* < uX and hence the height of N, is
less than ul’. But the height was greater than u%. Contradiction! M

Now by the assumption and the above fact, there is a real a such
that wi* = w and uy® = uy. By [13, Theorem 2.1], the Martin-
Solovay trees for Xl-sets are absolute between K, and V. Since the



26 D. IKEGAMI

trees are on w X u, and wu, is absolute between K, and V', we get the
absolute decomposition of 3!-sets into Borel sets between K, and V
as we desired. The rest is exactly the same as in Theorem 4.3. |

Theorem 5.6. Let P be a strongly arboreal, strongly proper, provably
A} forcing. Suppose every set has a sharp. Assume

Ip is Borel generated or Ip = Np. (xx)

Then either Al-determinacy holds or the following are equivalent:

(1) Every Xl-set of reals is P-measurable, and

(2) for any real a, R\ {z | z is quasi-P-generic over K,} € Ip*, where
{the Mitchell-Steel core model if af exists,

™ ] the Dodd-Jensen core model  otherwise.

Proof. The argument is exactly the same as Theorem 4.4 by replacing
L[a] by K, and using the analogous facts about K, we have already
stated. OJ

6. APPLICATIONS

In this section, we mention two applications of our theorems to par-
ticular cases. One will be proved here and the other is in [9].
Brendle-Halbeisen-Lowe [7] proved the following:

Proposition 6.1 (Brendle-Halbeisen-Lowe). Let V be Silver forcing.
Suppose for any real a there is a quasi-V-generic real over L[a]. Then
every Al-set of reals is V-measurable.'?

Question 6.2 (Brendle-Halbeisen-Lowe). Does the converse of Propo-
sition 6.1 hold?"?

We answer the above question positively:

Proposition 6.3. Assume every Al-set of reals is V-measurable. Then
for any real a, there is a quasi-V-generic real over Lla].

Proof. Since Silver forcing is strongly arboreal and proper, by Theo-
rem 4.3, it suffices to show that the set of Borel codes with B, € Iy* is
1. We use the following fact:

Fact 6.4 (Zapletal). Let G be the graph on “2 connecting two binary
sequences if they differ in exactly one place. Let I be the o-ideal
generated by Borel G-invariant sets (i.e., Borel sets in “2 such that any

12See [7, Proposition 2.1]. Regarding Iy = Nv, it is easy to check that Silver
measurability in their sense coincides with our V-measurability.
13Gee [7, Question 4].
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two distinct elements of them are not connected by G). Then every
analytic set is either in I or contains [T] for some T € V.

Proof. See [30, Lemma 2.3.37]. O

We show how to use Fact 6.4 to prove Proposition 6.3. We first show
that I C Iy. It suffices to see that every Borel G-invariant set is in
Ny. Take such Borel set B. Since every Borel set is V-measurable and
Iy = Ny, for each T € V, there is a T" < T such that either [T'] C B or
[T']N B = (). But the former case cannot happen because [T”] contains
many G-connected elements. Hence [T']NB = (). Therefore B is V-null.

With the above fact, this means every Borel set is either in I or
contains [T'] for some T € V. Hence B, € Iy* iff B, is in I, i.e., it is
the union of a countable set of G-invariant Borel sets. This is easily
!, as we desired. |

Regarding Iy = Ny, the following is a direct consequence of Theo-
rem 4.4 and Proposition 6.3 (or an easy consequence of [7, Lemma 3.1]):'*

Corollary 6.5. The following are equivalent:

(1) Every Xl-set of reals is V-measurable, and

(2) for any real a, the set of quasi-V-generic reals over L[a] is of
measure one w.r.t Ny.

Another application is for eventually different forcing by Brendle-
Léwe [9]. They used Theorem 4.4 to prove that the Baire property in
eventually different topology for every 3i-set of reals is equivalent to
the statement “w; is inaccessible by reals”. For the basic definitions and
properties for eventually different forcing and its topology, the reader
can consult [21].

7. QUESTIONS AND DISCUSSIONS

We close this paper by raising questions and discussing them.

7.1. On Iy and Ip*. Although Ip* is the same as Ip for most cases as
we have seen in Lemma 2.13, as in Question 2.12, we still do not know
whether this is true in general. What we could wish is that this is true
at least for Borel sets:

Question 7.1. Let P be a strongly arboreal, proper forcing. Then can
we prove B € Ip iff B € Ip* for any Borel set B?

If this is true, we do not have to mention Ip* in our theorems.

14This answers [7, Question 3] positively.
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7.2. On the condition (%) in Theorem 4.3. It is interesting to give
sufficient conditions for P satisfying () in Theorem 4.3, i.e., the set
of all Borel codes with B, € Ip* is ). These conditions could be
definability conditions on Ip* or directly on P.

For the first case, we have a useful sufficient condition: we say that
a o-ideal I on the reals is X} on 31 if for any analytic set B C “2 x “w,
the set {c | B. € I'} is X1. Tt is easy to check that if Ip* is 31 on X1,
then () holds. Since Ip is 3) on X{ and Ip = Ip* for most cases, ()
is true for most P.

For the second case, we ask the following:

Question 7.2. Let P be a strongly arboreal, strongly proper, provably
Al-forcing. Then can we prove (x)?

7.3. Al-determinacy and X}-forcing absoluteness. In Theorem 5.1,
we use the failure of Al-determinacy to prove the equivalence between
(1) and (2). But it could be that both (1) and (2) are consequences
of Al-determinacy. Since we have only used sharps for sets for the
direction from (1) to (2), it is enough to see whether Al-determinacy
implies X }-forcing absoluteness:

Question 7.3. Suppose Al-determinacy holds. Then can we prove X}-

P-absoluteness for each strongly arboreal, proper, provably Al-forcing
P?

7.4. Sharps for sets vs sharps for reals. In Theorem 5.1, Theo-
rem 5.3 and Theorem 5.6, we have assumed the existence of sharps for
sets. It is natural to ask whether we can reduce this assumption to
sharps for reals. The obstacle is whether proper forcings preserve the
statement “every real has a sharp” and wus:

Question 7.4. Suppose every real has a sharp. Let P be a strongly
arboreal, proper, provably Al-forcing. Then can we prove that every
real has a sharp in VF and u} = u}"?

Finally, we show that in the case of provably cce, X1-forcings, things
work perfectly:

Proposition 7.5. Let P be a strongly arboreal, provably ccc, 3i-
forcing. Then

(1) Ip = Ip".

(2) Ip is Borel generated.
(3) The condition (*) holds. Moreover, {c | B. € Ip*} € Al.
(4) Let M be a transitive model of ZFC. Then a real x is P-generic
over M iff x is quasi-P-generic over M.
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(5) If Al-determinacy holds, then so does X}-P-absoluteness.

(6) If every real has a sharp, then every real has a sharp also in VF
and uy = uy .
Proof. (1) is already mentioned in Lemma 2.13 (3) and (2) is immediate
since PP is ccc.

For (3), it suffices to see the following by Lemma 3.5 (1):

7 '(B,) is meager <= (3M > ¢) (M : a countable transitive model
of ZFC and M F “r~'(B,) is meager”)
< (VM 3 ¢) (M: a countable transitive model
of ZFC = M E “r~'(B,) is meager”),

where ™ = f,;, as before.

We only show the first equivalence. For left to right, if we take a
countable elementary substructure X of Hy for enough large 6 such
that X has all the essential elements, then the transitive collapse of X
will do the job for M in the right hand side.

For right to left, take an M with the property in the right hand
side. The idea is the same as the proof of Claim 3.8 in Lemma 2.17
(1). This time, we use GG, the Banach-Mazur game with a witness for
7~ '(B.) starting from any element of P, both in A and V" and translate
a winning strategy in GM to the one in G.

By the assumption, in M, player II has a winning strategy o’ in G.
The construction of a winning strategy for Il in G in V' from ¢’ is exactly
the same as Claim 3.8. But instead of using the (M, P)-genericity for
a condition 7", we use the following:

Claim 7.6. Let D be a dense subset of P in M. Then D is predense
in Pin V.

Proof of Claim 7.6. Let D be a dense subset of P in M. Then since P
is provably ccc, in M, there is a countable maximal antichain A C D.
But since P is X}, the statement “a real codes a maximal antichain” is
31 ATI} and therefore A remains a maximal antichain in V. Hence D
is predense in P in V. 0

The rest is exactly the same as Claim 3.8. The argument for (4)
is exactly the same as for Lemma 2.17 (2) and (3). For (5), see [25,
Lemma 2.2.4]. For (6), see [25, Lemma 2.2.2, Theorem 2.2.7, Exam-
ple 3.2.7]. |
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