
FORCING ABSOLUTENESS AND REGULARITYPROPERTIESDAISUKE IKEGAMIAbstra
t. For a large natural 
lass of for
ing notions, we provegeneral equivalen
e theorems between for
ing absoluteness state-ments, regularity properties, and trans
enden
e properties over Land the 
ore model K. We use our results to answer open questionsfrom set theory of the reals.1. Introdu
tion & Ba
kgroundFor
ing absoluteness statements have been investigated by Judah,Brendle, Halbeisen, Amir, Bagaria and others [18, 6, 12, 1, 3℄. Thesestatements of the form \Every �-statement is absolute between theground model and its for
ing extensions with P" are typi
ally indepen-dent of the axioms of ZFC, and 
an often be proved to be equivalent tostatements about regularity properties. Typi
al equivalen
e theoremsare:Theorem 1.1 (Bagaria, Woodin, [2, 29℄). Every �13-statement is ab-solute between the ground model and its Cohen for
ing extensions ifand only if every �12 set has the Baire property.Theorem 1.2 (Ikegami, [14℄). Every �13-statement is absolute betweenthe ground model and its Sa
ks for
ing extensions if and only if every�12-set either 
ontains a perfe
t subset or is disjoint from a perfe
t set.The mentioned regularity properties are in turn equivalent to tran-s
enden
e properties over L. For instan
e, Judah and Shelah provedthat the Baire property of all �12-sets is equivalent to the trans
en-den
e statement \for all reals x, there is a Cohen real over L[x℄" [19℄;similarly, Brendle and L�owe showed that the statement \every �12 seteither 
ontains a perfe
t subset or is disjoint from a perfe
t set" isequivalent to \for all reals x, there is a real not in L[x℄" [8℄.2000 Mathemati
s Subje
t Classi�
ation. 03E15, 28A05, 54H05.Key words and phrases. for
ing absoluteness; regularity properties.1



2 D. IKEGAMIIn this paper, we shall prove a general abstra
t result underlyingboth Theorems 1.1 and 1.2, by 
onne
ting (for a large 
lass of for
-ings P) �13-P-absoluteness, a regularity property at the �12-level, and atrans
enden
e property related to P. The 
ase of Cohen for
ing mightsuggest that the right trans
enden
e property is the existen
e of P-generi
s, but this already fails in the 
ase of Sa
ks for
ing.1 In orderto deal with this situation, Brendle, Halbeisen and L�owe introdu
edthe notion of quasi-generi
 reals [7℄. In many 
ases of 
.
.
. for
ings(su
h as Cohen for
ing), the notions of quasi-generi
ity and generi
ity
oin
ide; in general, the existen
e of quasi-generi
s gives us the righttrans
enden
e property for our general theorem. We prove:Theorem 1.3. For any for
ing P in a large 
lass of for
ing notions2,the following are equivalent:(1) �13-P-absoluteness holds,(2) every �12-set of reals is P-measurable, and(3) for any real a and T 2 P, there is a quasi-P-generi
 real x 2 [T ℄over L[a℄.We shall start by de�ning and investigating the basi
 
on
epts inx 2 and x 3. We then state and prove the main result of the paper(the pre
ise version of Theorem 1.3) and its immediate 
onsequen
es inx 4. Among the 
onsequen
es is a general Solovay-style 
hara
terizationtheorem (in the tradition of [26℄). In x 5, we move on to�14-absolutenessand prove the analogues of the results from x 4 under the assumptionof appropriate large 
ardinal axioms. These proofs use some basi
 fa
tsof inner model theory. In x 6, we give appli
ations of our main results,answering an open question from [7℄; �nally, in x 7, we list a number ofinteresting open questions.2. Basi
 
on
eptsFrom now on, we will work in ZFC. We assume that readers arefamiliar with the elementary theories of for
ing and des
riptive settheory. (For basi
 de�nitions not given in this paper, see [15, 22℄.)When we are talking about \reals", we mean elements of the Bairespa
e or of the Cantor spa
e.In this se
tion, we introdu
e the notions we will need for the rest.We start with introdu
ing the for
ing absoluteness we will fo
us on:1In the model after adding !1 many Cohen reals to L, every proje
tive set either
ontains or is disjoint from a perfe
t set, but there is no Sa
ks real over L.2We will give the pre
ise 
lass of for
ings in Theorem 4.3. Also we will givepre
ise de�nitions of the notions used here in x 2



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 3De�nition 2.1 (�1n-P-absoluteness). Let P be a for
ing notion andn be a natural number with n � 1. Then �1n-P-absoluteness is thefollowing statement:\for any �1n-formula ', real r in V , and P-generi
 �lterG over V , V � '(r) i� V [G℄ � '(r)".De�nition 2.2 (Proje
tive for
ings). Let n be a natural number withn � 1. A partial order P is �1n (resp. �1n, �1n) if the sets P , �P,and ?P are �1n (resp. �1n, �1n), where P = (P;�P) and ?P is thein
ompatibility relation in P. We say P is proje
tive if it is �1n forsome n � 1.Let n be a natural number with n � 1. A partial order P is provably�1n if there are �1n-formula � and �1n-formula  su
h that the state-ment \� and  de�ne the same partial order with the in
ompatibilityrelation" is provable in ZFC.All typi
al for
ings related to the regularity properties are provably�12. In this paper, we are only interested in proje
tive for
ings.In some of our main results, we shall need a strengthening of thestandard notion of properness for proje
tive for
ings:De�nition 2.3. A proje
tive for
ing P is strongly proper if for any
ountable transitive model M of a �nite fragment of ZFC 
ontainingthe real parameter in the formula de�ning P, if PM ;�MP ;?MP are sub-sets of P;�P;?P respe
tively, then for any 
ondition p in PM , thereis an (M;P)-generi
 
ondition q below p, i.e., if M � \A is a maximalanti
hain in P", then A \M is predense below q.3Here (M;P)-generi
 
onditions are the same as (X;P)-generi
 
ondi-tions for 
ountable elementary substru
ture X of H�: if P is proje
tive,X is a 
ountable elementary substru
ture of H� for some enough largeregular � and M is the transitive 
ollapse of X, then a 
ondition p is(M;P)-generi
 i� it is (X;P)-generi
 in the usual sense. In parti
ular,if P is proje
tive and strongly proper, then P is proper.All the typi
al examples of proper, �12-for
ings are strongly proper.But there is a proper, provably �13-for
ing whi
h is not strongly proper(for the details, see the papers [5, 4℄ by Bagaria and Bos
h).3Although we will not expli
itly mention the �nite fragment of ZFC we will usefor the de�nition of strong properness, it will be enough large so that we 
an pro
eedall the arguments in this paper as usual. From now on, we say \
ountable transitivemodels of ZFC" instead of \
ountable transitive models of a �nite fragment of ZFC"for simpli
ity.



4 D. IKEGAMIWe use strong properness instead of properness, as it allows us toleave out the quanti�
ation \2 H�" whi
h would in
rease the 
omplex-ity of our statements in the relevant results (Proposition 2.17, Theo-rem 5.3, Theorem 5.6) beyond proje
tive.Next, we introdu
e a 
lass of for
ings 
ontaining all the tree-typefor
ings. A partial order P is arboreal if its 
onditions are perfe
t treeson ! (resp. 2) ordered by in
lusion. But this 
lass of for
ings 
ontainssome trivial for
ings su
h as P = f<!!g. We need the following strongernotion:De�nition 2.4. A partial order P is strongly arboreal if it is arborealand the following holds:(8T 2 P) (8t 2 T ) Tt 2 P;where Tt = fs 2 T j either s � t or s � tg.With strongly arboreal for
ings, we 
an 
ode generi
 obje
ts by realsin the standard way: let P be strongly arboreal and G be P-generi
 overV . Let xG = Sfstem(T ) j T 2 Gg, where stem(T ) is the longest t 2 Tsu
h that Tt = T . Then xG is a real and G = fT 2 P j xG 2 [T ℄g, where[T ℄ is the set of all in�nite paths through T . Hen
e V [xG℄ = V [G℄. We
all su
h real xG a P-generi
 real over V .Almost all typi
al for
ings related to regularity properties are stronglyarboreal:Example 2.5. (1) Cohen for
ing (C ): let T0 be <!!. Consider thepartial order �f(T0)s j s 2 <!!g;��. Then this is strongly arborealand equivalent to Cohen for
ing.(2) random for
ing (B ): 
onsider the set of all perfe
t trees T on 2su
h that for any t 2 T , [Tt℄ has a positive Lebesgue measure, orderedby in
lusion. Then this for
ing is strongly arboreal and equivalent torandom for
ing.(3) He
hler for
ing (D ): for (n; f) 2 D , letT(n;f) = nt 2 <!! j either t � f � n or�t � f � n and �8m 2 dom(t)� t(m) � f(m)�o:Then the partial order (fT(n;f) j (n; f) 2 D g;�) is strongly arborealand equivalent to He
hler for
ing.(4) Mathias for
ing: for a 
ondition (s; A) of Mathias for
ing, letT(s;A) = ft 2 <!! j t is stri
tly in
reasing and s � ran(t) � s [ Ag:Then fT(s;A) j (s; A) is a 
ondition of Mathias for
ingg is a stronglyarboreal for
ing equivalent to Mathias for
ing.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 5(5) Sa
ks for
ing, Silver for
ing, Miller for
ing, Laver for
ing (S, V,M , L, respe
tively): these for
ings 
an be naturally seen as stronglyarboreal for
ings.We now introdu
e a general de�nition of a regularity property asso-
iated with an arbitrary arboreal for
ing. Sets of reals with a regularityproperty should be approximated by some simple sets (e.g., Borel sets)modulo some \smallness" as Baire property and Lebesgue measurabil-ity. Therefore we �rst introdu
e \smallness" for ea
h arboreal for
ingby de
iding a �-ideal as follows:De�nition 2.6. Let P be an arboreal for
ing. A set of reals A is P-nullif for any T in P there is a T 0 � T su
h that [T 0℄ \ A = ;. NP denotesthe set of all P-null sets and IP denotes the �-ideal generated by P-nullsets.Example 2.7. (1) Cohen for
ing C : C -null sets are the same asnowhere dense sets and IC is the meager ideal.(2) random for
ing B : B -null sets are the same as Lebesgue null setsand IB is the Lebesgue null ideal.(3) He
hler for
ing D : D -null sets are the same as nowhere densesets in the dominating topology, i.e., the topology generated by f[s; f ℄ j(s; f) 2 D g where[s; f ℄ = fx 2 !! j s � x and (8n � dom(s)) x(n) � f(n)g:Hen
e ID is the meager ideal in the dominating topology.(4) Mathias for
ing: a set of reals A is Mathias-null i� fran(x) j x 2A\A0g is Ramsey null or meager in the Ellentu
k topology, where A0is the set of stri
tly in
reasing in�nite sequen
es of natural numbers.Also, Mathias-null sets form a �-ideal by a standard fusion argument.(5) Sa
ks for
ing S: in this 
ase, IS = NS by a standard fusionargument. The ideal IS is 
alled the Mar
zewski ideal and often denotedby s0.As with Sa
ks for
ing, all the typi
al non-


 tree-type for
ings ad-mitting a fusion argument satisfy the equation IP = NP. Sin
e IP isBorel generated for any 


 arboreal for
ing, the 
ondition (��) in The-orem 4.4 (whi
h we will state in x 4) holds for all the typi
al tree-typestrongly arboreal for
ings.Now we introdu
e the regularity property for ea
h arboreal for
ing:De�nition 2.8. Let P be arboreal. A set of reals A is P-measurableif for any T in P there is a T 0 � T su
h that either [T 0℄ \ A 2 IP or[T 0℄ n A 2 IP.



6 D. IKEGAMIAs we expe
t, P-measurability 
oin
ides with the known regularityproperty for P when P is 


:Proposition 2.9. Let P be a strongly arboreal, 


 for
ing and let Pbe a set of reals. Then P is P-measurable i� there is a Borel set B su
hthat P4B 2 IP.Proof. The dire
tion from right to left follows from the fa
t that everyBorel set of reals is P-measurable whi
h will be proved in Lemma 3.5.For the other dire
tion, suppose P is P-measurable and we will �nd aBorel set approximating P modulo IP. Sin
e P is P-measurable, the setD = fT 2 P j either [T ℄ \ P 2 IP or [T ℄ n P 2 IPg is dense. We take amaximal anti
hain A in D and de�ne B = Sf[T ℄ j T 2 A and [T ℄nP 2IPg. Then sin
e A is 
ountable, B is Borel and P4B 2 IP be
ause Dis dense. �This argument does not work for non-


 for
ings su
h as Sa
ksfor
ing.4 But P-measurability is almost the same as the regularityproperties for non-


 for
ings P, e.g., for Mathias for
ing, a set ofreals A is Mathias-measurable i� fran(x) j x 2 A \ A0g is 
ompletelyRamsey (or has the Baire property in the Ellentu
k topology), where A0is the set of all stri
tly in
reasing in�nite sequen
es of natural numbers.Also, for Sa
ks for
ing, the following holds:Proposition 2.10 (Brendle-L�owe). Let � be a topologi
ally reason-able point
lass, i.e., it is 
losed under 
ontinuous preimages and anyinterse
tion between a set in � and a 
losed set. Then every set in �is S-measurable i� every set in � has the Bernstein property.5Proof. See [8, Lemma 2.1℄. �Next we introdu
e a te
hni
al ideal IP� whi
h we need later:De�nition 2.11. Let P be an arboreal for
ing. A set of reals A is inIP� if for any T in P there is a T 0 � T su
h that [T 0℄ \ A is in IP.Question 2.12. Let P be a strongly arboreal, proper for
ing. Can weprove IP = IP�?4For example, assuming every �11-set has the perfe
t set property, every �11-setof reals has the Bernstein property (i.e., either it 
ontains a perfe
t or there is aperfe
t set disjoint from the set) but for a �11-set of reals A, A is approximated bya Borel set modulo IS i� A is Borel. This is be
ause IS restri
ted to analyti
 sets(or 
o-analyti
 sets) is the set of all 
ountable sets of reals.5In general, the Bernstein property does not imply S-measurability while the
onverse is true. By using the axiom of 
hoi
e, we 
an 
onstru
t a set of realswhi
h is not S-measurable and has the Bernstein property.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 7We give some easy observations 
on
erning to Question 2.12:Lemma 2.13. Let P be strongly arboreal for
ing.(1) The ideal IP is a subset of IP�.(2) A set of reals A is P-measurable i� for any T in P there is aT 0 � T su
h that either [T 0℄ \ A 2 IP� or [T 0℄ n A 2 IP� holds. Hen
ewe get the same notion of measurability even if we repla
e IP by IP� inthe de�nition of P-measurability.(3) If P is 


, then IP = IP�.(4) If IP = NP, then IP = IP�. Hen
e IP = IP� for any typi
altree-type strongly arboreal for
ing admitting a fusion argument.(5) (Brendle) Suppose P satis�es the following 
ondition: for anymaximal anti
hain A in P, there is a maximal anti
hain A0 su
h thatfor any two elements T; T 0 of A0, [T ℄ and [T 0℄ are disjoint and A0 re�nesA, i.e., for any T 0 in A0 there is a T in A with T 0 � T . Then IP = IP�.Sa
ks for
ing is a typi
al example of the 
ondition in (5). But we donot know of any strongly arboreal P satisfying the 
ondition but whi
hare neither 


 nor satisfy IP = NP.Proof. We will prove only (5). The rest are straightforward. SupposeP satis�es the above 
ondition and let A be in IP�. We prove A is inIP. Sin
e A is in IP�, the set of all Ts in P su
h that [T ℄ \ A 2 IPis dense in P. Hen
e we 
an take a maximal anti
hain A 
ontainedin this set. By the 
ondition, we may assume for any two distin
telements T1, T2 of A, [T1℄, [T2℄ are pairwise disjoint. For ea
h T in A,[T ℄ \ A 2 IP. So we 
an pi
k fNn;T j n 2 !g su
h that ea
h Nn;T isP-null and Sn2!Nn;T = [T ℄ \ A. Let Nn = ST2ANn;T for ea
h n 2 !.Sin
e A = Sn2!Nn, the proof is 
omplete if we prove the followingClaim 2.14. For ea
h n 2 !, Nn is P-null.Proof of Claim 2.14. Take any T 0 in P. Sin
eA is a maximal anti
hain,we 
an take a T 2 A su
h that T and T 0 are 
ompatible. Take a
ommon extension T 00. Then [T 00℄ \ Nn = [T 00℄ \ Nn;T be
ause of theproperty of A. But we know that Nn;T is P-null. Hen
e we 
an take afurther extension of T 00 disjoint from Nn. ��Next, we introdu
e quasi-P-generi
ity for arboreal for
ings P and
ompare it with P-generi
ity. Quasi-generi
 reals are obvious general-ization of Cohen reals and random reals:De�nition 2.15. Let P be arboreal and M be a transitive model ofZFC. A real x is quasi-P-generi
 over M if for any Borel 
ode 
 in M



8 D. IKEGAMIwith B
 2 IP�, x is not in B
, where B
 is the de
oded Borel set from
.Example 2.16. (1) Cohen for
ing (C ): quasi-C -generi
 reals are thesame as Cohen reals by de�nition. Hen
e quasi-C -generi
ity 
oin
ideswith C -generi
ity.(2) random for
ing (B ): quasi-B -generi
 reals are the same as ran-dom reals by de�nition. Hen
e quasi-B -generi
ity 
oin
ides with B -generi
ity.(3) He
hler for
ing (D ): quasi-D -generi
 reals are the same as He
hlerreals. Hen
e quasi-D -generi
ity 
oin
ides with D -generi
ity.(4) Sa
ks for
ing (S): ifM is an inner model of ZFC, quasi-S-generi
reals over M are the reals whi
h are not in M be
ause any Borel setin IS� = NS is 
ountable and this is also true in M if the 
ode is inM by Shoen�eld absoluteness. Therefore, quasi-S-generi
ity does not
oin
ide with S-generi
ity.The last example explains the di�eren
e between generi
ity andquasi-generi
ity and shows that the equivalen
e for Sa
ks for
ing wementioned in the introdu
tion is a spe
ial 
ase of Theorem 4.3 whi
hwe will prove later.6As is expe
ted, generi
ity implies quasi-generi
ity for all the typi
alstrongly arboreal for
ings and the 
onverse is true for most 


 for
ings:Proposition 2.17. Let P be a strongly arboreal, strongly proper, prov-ably �12 for
ing. Then(1) The set f
 j B
 2 IP�g is �12. Hen
e the statement \
 
odes aBorel set in IP�" is absolute between inner models of ZFC.(2) If M is a transitive model of ZFC and a real x is P-generi
 overM , then x is quasi-P-generi
 over M .(3) Suppose P is also provably 


, i.e., there is a formula � de�ningP and the statement \� is 


" is provable in ZFC. Then if M is aninner model of ZFC and a real x is quasi-P-generi
 over M , then x isP-generi
 over M .Proof. See x 3. �In [31℄, Zapletal starts from a �-ideal I on a Polish spa
e X and
onsiders the quotient of the set of all Borel sets in X modulo I anddevelops the general theory of this for
ing as a Boolean algebra. Letus 
ompare his setting with our setting:6It is easy to 
he
k the 
ondition (�) in Theorem 4.3 for Sa
ks for
ing by notingthat the ideal ISrestri
ted to Borel sets is the ideal of 
ountable sets as we mentionedin the last example.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 9Proposition 2.18. Suppose P is a strongly arboreal, proper for
ing.Then the map i : P! �B=IP�� n f0g de�ned byi(T ) = the equivalen
e 
lass represented by [T ℄;is a dense embedding, where B denotes the set of all Borel sets of thereals and B=IP� is the quotient Boolean algebra via IP�.Hen
e, our situation is a spe
ial 
ase of Zapletal's.7Proof. See x 3. �3. P-measurability and P-BairenessIn this se
tion, we shall prove the propositions listed in x 2. In orderto do so, we �rst 
onsider the 
onne
tion between P-measurability and aproperty 
alled P-Baireness (whi
h was impli
itly introdu
ed by Feng-Magidor-Woodin [11℄). This 
onne
tion will allow us to 
hara
terizeIP� in terms of Bana
h-Mazur games, whi
h plays an essential role inthe proof of Proposition 2.17.Let P be a partial order. The Stone spa
e of P (denoted by St(P))is the set of ultra�lters of P equipped with the topology generated byfOp j p 2 Pg, where Op = fu 2 St(P) j u 3 pg.For example, if P is Cohen for
ing (C ), then St(C ) is homeomorphi
to the Baire spa
e !!.Dense sets in P are the same as open dense subsets in St(P): if Dis a dense subset of P, then the set SfOp j p 2 Dg is open dense inSt(P). Conversely, if U is an open dense subset of St(P), then fp 2 P jOp � Ug is a dense open subset of P.Next, we will talk about meagerness and the Baire property in St(P).The �rst observation we should make is that this is not nonsense:Lemma 3.1. Let P be a partial order. Then for any p 2 St(P), Op isnot meager.Proof. Take any p 2 P and let fUn j n 2 !g be a 
ountable set of opendense subsets of St(P). We would like to prove that the interse
tionTn2! Un with Op is nonempty. But this is just the Rasiowa-SikorskyTheorem or �nding a generi
 obje
t G over a 
ountable stru
ture 
on-taining P with p 2 G. �7In [31, Corollary 2.1.5℄, Zapletal proved a more general result. His I is essentiallythe same as our IP� and if we use bn = j _xgen(�n) = 1j (n 2 !) instead of bt (t 2 <!2)for the generators of C, then Zapletal's I is exa
tly the same as our IP� on Borelsets.



10 D. IKEGAMIBefore de�ning P-Baireness, let us see the 
onne
tion between Bairemeasurable fun
tions from St(P) to the reals and P-names for a real.Let X; Y be topologi
al spa
es. Then a fun
tion f : X ! Y is Bairemeasurable if for any open set U in Y , f�1(U) has the Baire propertyin X. Baire measurable fun
tions are the same as 
ontinuous fun
tionsmodulo meager sets: let X; Y be topologi
al spa
es and assume Y isse
ond 
ountable. Then it is fairly easy to see that a fun
tion f : X !Y is Baire measurable i� there is a 
omeager set D in X su
h thatf � D is 
ontinuous.There is a natural 
orresponden
e between Baire measurable fun
-tions from St(P) to the reals and P-names for a real:Lemma 3.2 (Feng-Magidor-Woodin). Let P be a partial order.(1) If f : St(P) ! !! is a Baire measurable fun
tion, then�f = �(m;n)�; p) j Op n fu 2 St(P) j f(u)(m) = ng is meager	is a P-name for a real.(2) Let � be a P-name for a real. De�ne f� as follows. For u 2 St(P)and m;n 2 !,f� (u)(m) = n () (9p 2 u) p 
 �( �m) = �n:Then the domain of f� is 
omeager in St(P) and f� is 
ontinuous onthe domain. Hen
e it 
an be uniquely extended to a Baire measurablefun
tion from St(P) to the reals modulo meager sets.(3) If f : St(P) ! !! is a Baire measurable fun
tion, then f�f andf agree on a 
omeager set in St(P). Also, if � is a P-name for a real,then 
 �f� = � .Proof. See [11, Theorem 3.2℄. �Re
all that we have de�ned a generi
 real xG from a generi
 obje
tG for any strongly arboreal for
ing P. Let _xG be a 
anoni
al P-namefor xG.Example 3.3. Let P be strongly arboreal. Then f _xG(u)(m) = ni� there is a T in u su
h that stem(T )(m) = n. Hen
e f _xG(u) =Sfstem(T ) j T 2 ug for u 2 dom(�) as we expe
t.Now we de�ne the property P-Baireness. Let P be a partial orderand A be a set of reals. Then A is P-Baire if for any Baire measurablefun
tion f : St(P) ! !!, f�1(A) has the Baire property in St(P). Itis easy to see that every Borel set of reals is P-Baire for any P by thesame argument as for the Baire property.Example 3.4. Let C be Cohen for
ing. A set of reals A is C -Baire i�f�1(A) has the Baire property for any 
ontinuous fun
tion f : !! ! !!.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 11Proof. As we have seen in the beginning of this se
tion, St(C ) is home-omorphi
 to the Baire spa
e !!. In the Baire spa
e, any GÆ 
omeagerset is homeomorphi
 to the whole spa
e. Hen
e we 
an repla
e Bairemeasurable fun
tions by 
ontinuous fun
tions in the de�nition of C -Baireness. �Before talking about the relation between P-measurability and P-Baireness, let us mention the 
onne
tion between P-Baireness and uni-versally Baireness. A set of reals A is universally Baire if for any
ompa
t Hausdor� spa
e X and any 
ontinuous fun
tion f : X ! !!,f�1(A) has the Baire property inX. A set of reals A is universally Bairei� A is P-Baire for any partial order P. (This is essentially proved in[11℄.)Re
all that IP� is a te
hni
al ideal introdu
ed in De�nition 2.11 whi
his the same as IP for most 
ases.Lemma 3.5 (P-measurability vs. P-Baireness). Let P be a stronglyarboreal, proper for
ing and A be a set of reals. Then(1) A is in IP� i� f�1_xG (A) is meager in St(P), and(2) A is P-measurable i� f�1_xG (A) has the Baire property in St(P). Inparti
ular, if A is P-Baire, then A is P-measurable. Hen
e every Borelset if P-measurable.Note that P-measurability does not imply P-Baireness in general.8Proof of Lemma 3.5. Let � = f _xG for abuse of notation.The following are useful for the proof:Claim 3.6. (a) For T in P and u 2 dom(�), if T 2 u, then �(u) 2 [T ℄.(b) For T in P, the 
onverse of (a) holds for 
omeager many u indom(�).Proof of Claim 3.6. (a) Suppose T 2 u. We prove �(u) � n 2 T forea
h n 2 !. Fix a natural number n. Then by Example 3.3, there is aT 0 in u su
h that stem(T 0) � �(u) � n. Sin
e both T and T 0 are in u,they are 
ompatible, espe
ially stem(T 0) 2 T (otherwise [T ℄\ [T 0℄ = ;).Hen
e �(u) � n 2 T .(b) Take any T in P. Then the set D = fT 0 2 P j T 0 � T or [T 0℄ \[T ℄ = ;g is dense in P. (Take any T 0. If T 0 * T , then there is at0 2 T 0 n T . By strong arborealness of P, T 0t0 2 P and [T 0t0 ℄ \ [T ℄ = ;.)Sin
e D is dense, the set fu j u\D 6= ;g is dense open in St(P). Hen
e8For example, if A is a �12 (lightfa
e) set of reals universal for �12 (boldfa
e) setsof reals and if every �12 (lightfa
e) set of reals has the Baire property but there isa �12 (boldfa
e) set of reals without the Baire property, then A is C -measurable byProposition 2.9, but A is not C -Baire by Example 3.4.



12 D. IKEGAMIit suÆ
es to show that if u is in dom(�), u \ D 6= ; and �(u) 2 [T ℄,then T 2 u. Suppose T =2 u. Then sin
e u \D 6= ;, there is a T 0 2 usu
h that [T 0℄ \ [T ℄ = ;. By (a), �(u) 2 [T 0℄, hen
e �(u) =2 [T ℄, a
ontradi
tion. �(1) We prove the dire
tion from left to right.We �rst show that ��1(A) is meager if A is in NP. If A is in NP,then the set D = fT j [T ℄ \ A = ;g is dense in P. Hen
e the set of allu 2 dom(�) with u \D 6= ; is 
omeager. But if u is in the 
omeagerset, then there is a T 2 u \ D and by Claim 3.6 (a), �(u) 2 [T ℄ and[T ℄ \ A = ;, in parti
ular �(u) =2 A. Therefore ��1(A) is meager.We have seen that ��1(A) is meager assuming A is in NP. Sin
e IPis the �-ideal generated by sets in NP, ��1(A) is meager for all A in IP.We show that ��1(A) is meager if A is in IP�. Sin
e A is in IP�,the set D0 = fT j [T ℄ \ A 2 IPg is dense in P. We use the followingwell-known fa
t:Fa
t 3.7. Let X be a topologi
al spa
e and A be a subset of X. Then�SfU j U is open and U \ A is meager g� \ A is meager.Proof of Fa
t 3.7. See [20, Theorem 8.29℄. �Sin
e D0 is dense, SfOT j T 2 D0g is open dense. By the above fa
t,it suÆ
es to prove that OT \ ��1(A) is meager for any T in D0.Take any T in D0. By the de�nition of D0, we know that [T ℄ \ A isin IP. Hen
e ��1([T ℄ \ A) is meager in St(P). But by Claim 3.6 (a),OT \ ��1(A) � ��1([T ℄ \ A). Therefore, OT \ ��1(A) is meager as wedesired.Next, we see the dire
tion from right to left. Suppose ��1(A) ismeager. Take any T in P and we will �nd an extension T 0 of T su
hthat [T 0℄\A is in IP. Sin
e ��1(A) is meager, then there is a sequen
ehUn j n 2 !i of open dense sets in St(P) su
h that Tn2! Un \��1(A) =;. For ea
h n 2 !, letDn = fS 2 P j OS � Ung. Sin
e Un is open densein St(P), Dn is dense open in P. We 
hoose a sequen
e hAn j n 2 !i ofmaximal anti
hains su
h that An � Dn, for ea
h element S of An, thelength of stem(S) is greater than n, and An+1 re�nes An, i.e., everyelement of An+1 is below some element in An.Now we use the properness of P to treat ea
h An as \
ountable".Let � be a suÆ
iently large regular 
ardinal and X be a 
ountableelementary substru
ture of H� su
h that P; T; hAn j n 2 !i are in X.By properness, there is an (X;P)-generi
 
ondition T 0 below T . Weshow that [T 0℄ \ A is in IP, whi
h will 
omplete the proof of (1).Consider the set B = Tn2!Sf[S℄ j S 2 An \Xg nSn2!f[S℄ \ [S 0℄ jS; S 0 2 An\X and S 6= S 0g. So B is the set of all xs uniquely de
iding
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h 
ondition from An 
ontains it for ea
h n. By the property ofhAn j n 2 !i, it will generate a �lter 
oming from elements in Ans. Thepoint is that any ultra�lter u extending that �lter satis�es �(u) = x,the given element, and that u is in Un for ea
h n. This will play a rolefor the argument.Now we 
laim [T 0℄ n B 2 IP and B \ A = ;. We will be done ifwe prove them. The fa
t that [T 0℄ n B 2 IP follows from the fa
t thatfS j S 2 An \ Xg is predense below [T 0℄ for ea
h n be
ause T 0 is(X;P)-generi
 and from that [S℄ \ [S 0℄ 2 IP for ea
h S; S 0 2 An \ Xwith S 6= S 0 be
ause An is an anti
hain, and from that An \ X is
ountable for ea
h n.To prove B \ A = ;, take any element x from B. As we mentionedabove, for ea
h n 2 !, there is a unique element Sn in An \ X withx 2 [Sn℄. Sin
e An+1 re�nes An, Sn+1 � Sn for ea
h n. Hen
e theset fSn j n 2 !g generate a �lter Fx. Take any ultra�lter u extendingFx. We 
laim that �(u) = x and u 2 Un for ea
h n. By the propertyof hAn j n 2 !i, the length of stem(Sn) is greater than n. Hen
e, byExample 3.3, �(u) is already de
ided to be x by Sns. The fa
t thatu 2 Un for ea
h n follows from the fa
t that Sn 2 An � Dn and thede�nition of Dn.Sin
e we have assumed that Tn2! Un\��1(A) = ;, x does not belongto A be
ause x = �(u) 2 Un for ea
h n by Claim 3.6. Hen
e we haveseen B \ A = ; as we desired.(2) For left to right, we assume A is P-measurable. Then the setD = fT 2 P j either [T ℄ \ A 2 IP or [T ℄ n A 2 IPg is dense. Then theset U = SfOT j T 2 Dg is open dense in St(P). Let U1 = SfOT j[T ℄ n A 2 IPg, U2 = SfOT j [T ℄ \ A 2 IPg. Then U = U1 [ U2. ByLemma 2.13 (1), Lemma 3.1, Claim 3.6 (a), and (1) in this lemma,U1 \ U2 = ;. Hen
e, it suÆ
es to show that U1 n ��1(A), U2 \ ��1(A)are meager be
ause that will imply U14��1(A) is meager.We will only see that U2\��1(A) is meager. The 
ase for U1n��1(A)being meager is similar. By Fa
t 3.7, it suÆ
es to see that OT \��1(A)is meager when [T ℄ \A 2 IP. But if [T ℄ \A 2 IP, then OT \ ��1(A) ���1([T ℄\A) and ��1([T ℄\A) is meager by Claim 3.6 (a), Lemma 2.13(1), and (1) in this lemma. Hen
e we are done.Now we see the dire
tion from right to left. Assume ��1(A) has theBaire property in St(P). Then there are open sets U1, U2 su
h thatU14��1(A), U24��1(!! nA) are meager. By Lemma 3.1, U1 \U2 = ;and U1 [ U2 is open dense in St(P). Let Di = fT 2 P j OT � Uigfor i = 1; 2. Then D1 [ D2 is dense in P. Hen
e by Lemma 2.13



14 D. IKEGAMI(2), it suÆ
es to prove that [T ℄ n A 2 IP� for ea
h T in D1 and that[T ℄ \ A 2 IP� for ea
h T in D2.We only prove [T ℄nA 2 IP� for ea
h T inD1. By (1) in this Lemma, itis enough to see that ��1([T ℄nA) is meager in St(P). But by Claim 3.6(b), ��1([T ℄ nA) is almost the same as OT n ��1(A). Sin
e T is in D1,by the de�nition of U1, OT n ��1(A) is meager. This 
ompletes theproof of (2). �Note that if P satis�es the 
ondition in Lemma 2.13 (5), then we donot need the properness of P for the proofs of Lemma 3.5.Now we are ready to prove Proposition 2.17 and Proposition 2.18.We �rst see the proof of Proposition 2.18:Proof of Proposition 2.18. First we see that the map i is well-de�ned,i.e., [T ℄ is not in IP� for ea
h T in P. If it were in IP�, then by Lemma 3.5(1), ��1([T ℄) would be meager and OT � ��1([T ℄) by Claim 3.6 (a).Hen
e OT must be meager, whi
h 
ontradi
ts Lemma 3.1. Therefore[T ℄ is not in IP�.It is 
lear that if T1 � T2, then i(T1) � i(T2). To show the 
onverse,assume T1 � T2 and we prove that i(T1) � i(T2). Sin
e T1 � T2, thereis a t 2 T1 whi
h is not in T2. By strong arborealness of P, (T1)t 2 Pand [(T1)t℄ \ [T2℄ = ;. Hen
e i((T1)t) � i(T2). Sin
e (T1)t � T1,i((T1)t) � i(T1). Therefore, i(T1) � i(T2).So it suÆ
es to see that i\P is dense in �B=IP�� n f0g. Let B be aBorel set whi
h is not in IP�. We will �nd a T in P with [T ℄ nB 2 IP�.Sin
e every Borel set is P-Baire, by Lemma 3.5 (2), B is P-measurable.Sin
e B is not in IP�, there is a T su
h that [T ℄ n B 2 IP, hen
e[T ℄ nB 2 IP� by Lemma 2.13 (1), as we desired. �Proof of Proposition 2.17. (1) Let � = f _xG as in the proof of Lemma 3.5.By Lemma 3.5, a set of reals A is in IP�, i� ��1(A) is meager in St(P).Hen
e, it suÆ
es to show that f
 j ��1(B
) is meagerg 2 �12.We will prove the following:(?) ��1(B
) is meager () (8M 3 
) �M : a 
.t.m. of ZFC=) M � \��1(B
) is meager"�:First note that the right hand side makes sense be
ause the statement\P is a strongly arboreal for
ing" is �12 by the assumption that P isprovably �12, so by downward absoluteness, this is also true inM . Sin
ethe right hand side is �12, it suÆ
es to show the above equivalen
e.The following 
laim is the key-point:
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ountable transitive model of ZFC with 
 2 M .If M � \��1(B
) is meager", then for any T 2 PM (or P \M), there isa T 0 � T su
h that OT 0 \ ��1(B
) is meager in V .Proof of Claim 3.8. Take any T in PM . Sin
e P is provably �12, PM ,�M and ?M are subsets of P, � and ? respe
tively. Hen
e, by strongproperness, there is a T 0 � T su
h that T 0 is (M;P)-generi
.We will show that T 0 satis�es the desired property. For that, wewill use the unfolded Bana
h-Mazur game. Let U be a tree on ! � !,re
ursive in 
 su
h that B
 = p[U ℄ holds in any transitive model of ZFCN with 
 2 N . Consider the following game G0: player I and II produ
ea de
reasing sequen
e hSn0 � T 0 j n 2 !i one by one and in addition,player II produ
es a real hyn j n 2 !i. Player II wins if (�(u); y) 2 [U ℄for any u 2 Tn2! OSn0 . Note that we may assume that � is de�ned forany u 2 Tn2!OSn0 and the value of � only depends on the sequen
ehSn0 j n 2 !i be
ause we 
an arrange �(u) = Sn2! stem(Sn0) by strongarborealness of P and Example 3.3.Now it suÆ
es to show that player II has a winning strategy in thisgame. Sin
e M � \��1(B
) is meager", in M , player II has a winningstrategy � in the game G whi
h is the same as G0 ex
ept that playerI 
an start from any 
ondition in P. The idea is to transfer � to awinning strategy for player II in G0 in V . Instead of writing down awinning strategy for player II in G0, we will des
ribe how to win thegame G0 for player II as follows:I S00 � T 0 S20 � � �V II (S10; y0) (S30; y1) � � �I S0 S2 � � �M II (S1; y0) (S3; y1) � � �We will 
onstru
t sequen
es hSn j n 2 !i, hSn0 j n 2 !i, hyn j n 2 !iwith the following properties:� �hSn0 j n 2 !i; hyn j n 2 !i� is a run in the game G0 in V ,� �hSn j n 2 !i; hyn j n 2 !i� is a run in the game GM in V ,� S2n0 is arbitrarily 
hosen by player I for ea
h n,� player II follows � in GM , and� S2n+10 � S2n+1 for ea
h n.Assuming we have 
onstru
ted the above sequen
es, we prove thatplayer II wins in the game G0. First note that GM is a 
losed gamefor player II, hen
e the strategy � remains winning in V . Therefore,



16 D. IKEGAMI(�(u); y) 2 [U ℄ for any u 2 Tn2! OSn in V . But sin
e S2n+10 � S2n+1for ea
h n, (�(u); y) 2 [U ℄ for any u 2 Tn2! OSn0, hen
e player II winsthe game G0.We des
ribe how to 
onstru
t the above sequen
es. Suppose we havegot h(Si0; Si; yi) j i < 2ni for some n. We will de
ide S2n0, S2n+10, S2n,S2n+1 and yn. By the above properties, S2n0 is arbitrarily 
hosen byplayer I and S2n+1, yn will be de
ided by the rest and �. So let's de
ideS2n and S2n+10.Let D be the set of all possible 
andidates for S2n+1 by � and theprevious play hSi j i < 2ni; hyi j i < ni. Then in M , D is dense belowS2n�1 (if it exists). Sin
e S2n0 � S2n�10 � S2n�1 and T 0 is (M;P)-generi
, D \M = D is predense below S2n0. Take an element from Dwhi
h is 
ompatible with S2n0 and 
hoose S2n so that the element wehave taken be
omes S2n+1 by � and let S2n+10 be a 
ommon extension(in V ) of S2n0 and S2n+1. This �nishes the 
onstru
tion of the sequen
es.�Claim 3.8Now let us prove the equivalen
e (?):Suppose ��1(B
) is meager and assume there is a 
ountable transitivemodelM of ZFC with 
 2M su
h that M � \��1(B
) is not meager".We will derive a 
ontradi
tion. Sin
e every Borel set is P-Baire, ��1(B
)has the Baire property. Hen
e there is a T 2 PM su
h that in M ,��1(B
) is 
omeager in OT . By Claim 3.6 (a), ��1([T ℄ n B
) is almostin
luded in OT n ��1(B
), hen
e, in M , ��1([T ℄ n B
) is meager inSt(P). Now apply the 
laim for [T ℄ n B
. Then we get a T 0 � T su
hthat OT 0 \ ��1([T ℄ nB
) is meager. But this means that OT 0 is almostin
luded in ��1(B
). Sin
e OT 0 is not meager by Lemma 3.1, ��1(B
) isnot meager, whi
h 
ontradi
ts the assumption that ��1(B
) is meager.For the other dire
tion, by Fa
t 3.7, it suÆ
es to show that for anyT in P, there is a T 0 � T su
h that OT 0 \��1(B
) is meager. So �x anyT . Then pi
k a 
ountable transitive modelM with 
; T 2M . Then byClaim 3.8, there is a T 0 � T su
h that OT 0 \ ��1(B
) is meager, as wedesired.(2) Let x be P-generi
 over M . Then the set Gx = fT 2 PM j x 2[T ℄g is a PM -generi
 �lter over M . We show that x =2 B
 when 
 is aBorel 
ode in M with B
 2 IP�.Let 
 be su
h a Borel 
ode. By (1) and the downward absolutenessfor �12-formulas, M � \B
 2 IP�". Let iM be the dense embeddingfrom PM to ��B=IP�� n f0g�M de�ned in Proposition 2.18 and iM� (Gx)be the �B=IP��-generi
 �lter over M indu
ed by iM and Gx. Usingthe fa
t that IP� is a �-ideal, it is routine to 
he
k that B 2 iM� (Gx)
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ode in M . But the left handside of the above equivalen
e impliesM � \B =2 IP�", hen
e by upwardabsoluteness for �12-formulas, B =2 IP�. Sin
e B
 2 IP�, x =2 B
 as wedesired.(3) Let x be a quasi-P-generi
 real over M and put Gx = fT 2 PM jx 2 [T ℄g. We show that Gx is a PM -generi
 �lter over M .We �rst see that Gx meets every maximal anti
hain of PM in M .Take any maximal anti
hain A of PM in M . Sin
e P is provably 


,A is 
ountable in M . Now 
onsider B = Sf[T ℄ j T 2 Ag. Then B is aBorel set with a 
ode in M and M � \!! n B 2 IP�". By (1), this isalso true in V . Sin
e x is quasi-P-generi
 over M , x =2 B
, i.e., x is inB. So Gx meets A.Now we see that Gx is a �lter. Take any two elements T1; T2 in Gx.We will �nd a 
ommon extension of T1, T2 in Gx. Consider D = fS 2P j ([S℄ \ [T1℄ = ; and [S℄ \ [T2℄ = ;) or (S � T1 and [S℄ \ [T2℄ =;) or (S � T2 and [S℄ \ [T2℄ = ;) or (S � T1; T2)g in M . Then bystrong arborealness of P, D is dense in M . Hen
e Gx meets D. Takea 
ondition S from Gx \ D. Then only the last 
ase in D happensbe
ause S 2 Gx () x 2 [S℄. Hen
e S � T1; T2. Therefore, Gx is aPM -generi
 �lter over M . �There is a 
lose 
onne
tion between for
ing absoluteness for P andP-Baireness:Theorem 3.9 (Castells). Let P be a partial order. Then the followingare equivalent:(1) �13-P-absoluteness holds, and(2) every �12-set of reals is P-Baire.Proof. The argument is essentially the same as in [11, Theorem 3.1℄.�4. �13-absolutenessNow we give a pre
ise statement of Theorem 1.3 and prove it. Alsowe will prove related results.Theorem 4.1. Let P be a strongly arboreal, proper for
ing. Then thefollowing are equivalent:(1) �13-P-absoluteness holds, and(2) every �12-set of reals is P-measurable.Proof. By Theorem 3.9, it suÆ
es to show that every �12-set of realsis P-measurable i� every �12-set of reals is P-Baire. By Lemma 3.5, it



18 D. IKEGAMIis enough to see that every �12-set of reals is P-Baire assuming every�12-set of reals is P-measurable.The following 
laim is the key point:Claim 4.2. Let P be a strongly arboreal, proper for
ing and � be aP-name for a real. Then for any T in P, there is a T 0 � T and a Borelfun
tion g : [T 0℄! R su
h that T 0 
 � = g( _xG).Proof of Claim 4.2. This is a 
ombination of Proposition 2.18 in thispaper and [30, Proposition 2.3.1℄. �Now take any�12-set A and a Baire measurable fun
tion f from St(P)to the reals. We show that f�1(A) has the Baire property. It suÆ
esto show that fT j OT \ f�1(A) is meager or OT n f�1(A) is meagerg isdense in P.So take any T in P and we will �nd an extension S of T with the aboveproperty. By the above 
laim, there is a T 0 � T and a Borel fun
tiong : [T 0℄ ! R su
h that T 0 
 �f = g( _xG), where �f is the P-name for areal de�ned in Lemma 3.2 (1). Hen
e, by Lemma 3.2 (3), f = g Æ f _xGalmost everywhere in OT 0. Sin
e g�1(A) is �12, it is P-measurable bythe assumption. By Lemma 3.5 (2), f�1_xG (g�1(A)) = (g Æ f _xG)�1(A) hasthe Baire property. Hen
e f�1(A) has the Baire property in OT 0. Inparti
ular, there is an S � T 0 su
h that either OS \ f�1(A) is meageror OS n f�1(A) is meager as we desired. �Theorem 4.3. Let P be a strongly arboreal, proper for
ing. Assumethe following:f
 j 
 is a Borel 
ode and B
 2 IP�g 2 �12: (�)Then the following are equivalent:(1) �13-P-absoluteness holds,(2) every �12-set of reals is P-measurable, and(3) for any real a and T 2 P, there is a quasi-P-generi
 real x 2 [T ℄over L[a℄.Proof. We have seen the equivalen
e between (1) and (2). We will showthe dire
tion from (1) to (3) and the dire
tion from (3) to (2).For (1) to (3), take a real a and T in P. We will �nd a quasi-P-generi
real x over L[a℄ with x 2 [T ℄. But by the assumption (�), the statement\There is a quasi-P-generi
 real x over L[a℄ with x 2 [T ℄" is �13 and thisis true in a generi
 extension V [G℄ with T 2 G by the same argumentas in Proposition 2.17. (Although P might not be provably �12 as weassumed in Proposition 2.17, we used it only to seeM � B
 2 IP� whenB
 2 IP� in V and this is ensured by the assumption (�) and Shoen�eld



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 19absoluteness without using P being provably �12.) Hen
e by �13-for
ingabsoluteness, the statement is also true in V as we desired.For (3) to (2), take any �12-set A and we will show that A is P-measurable. Take any T in P.Case 1: !L[a℄1 < !V1 for any real a.Pi
k a real a with T 2 L[a℄. By the assumption, the set of all densesets of P in L[a℄ is 
ountable in V . Hen
e the set of all P-generi
 realsover L[a℄ is of measure one w.r.t. IP, (i.e., the 
omplement of that setis in IP). The rest is a standard Solovay argument to prove regularityproperties in Solovay models. (A
tually, every �12-set of reals is P-measurable in this 
ase.)Case 2: !L[a℄1 = !V1 for some real a.The argument is basi
ally the same as in [7, Proposition 2.1℄. Pi
ka real a with T 2 L[a℄ and su
h that !L[a℄1 = !V1 and A is �12(a). Theidea is to de
ompose [T ℄\A and [T ℄ nA into Borel sets in an absoluteway between L[a℄ and V , and a Borel set 
ontaining a quasi-P-generi
real over L[a℄ must be IP�-positive and below that Borel set we will�nd an extension of T as a witness for P-measurability of A.Sin
e [T ℄ \ A and [T ℄ n A are �12(a) sets, there are Shoen�eld treesU1 and U2 in L[a℄ for [T ℄ \ A and [T ℄ n A respe
tively. From thesetrees, we 
an naturally de
ompose [T ℄ \ A and [T ℄ n A into !1-manyBorel sets as in [22, 2F.1-2F.3℄, i.e., there are sequen
es h
� j � < !1i,hd� j � < !1i of Borel 
odes in L[a℄ su
h that [T ℄ \ A = S�<!1 B
�and [T ℄ n A = S�<!1 Bd� . The point is that the above equations areabsolute between L[a℄ and V be
ause those two sequen
es only dependon U1; U2 and !1 and !L[a℄1 = !V1 as we assumed.By assumption, there is a quasi-P-generi
 real x over L[a℄ with x 2[T ℄. Hen
e there is an � < !1 su
h that either x 2 B
� or x 2 Bd�.Without loss of generality, we may assume x 2 B
�. Sin
e 
� is in L[a℄,by the de�nition of quasi-P-generi
ity, B
� is not in IP�. Sin
e everyBorel set is P-Baire, it is P-measurable by Lemma 3.5 (2). Hen
e thereis a 
ondition T 0 su
h that [T 0℄nB
� 2 IP. Sin
e B
� � [T ℄\A, T 0 � Tand [T 0℄ n A 2 IP, as we desired. �Theorem 4.4. Let P be a strongly arboreal, proper for
ing. Assumef
 j 
 is a Borel 
ode and B
 2 IP�g 2 �12; (�)and IP is Borel generated or IP = NP: (��)Then the following are equivalent:



20 D. IKEGAMI(1) every �12-set of reals is P-measurable, and(2) for any real a, R n fx j x is quasi-P-generi
 over L[a℄g 2 IP�.Proof. For (1) to (2), take any real a and we show that A = fx jx is quasi-P-generi
 over L[a℄g is of measure one w.r.t. IP�. Supposenot. Then !!nA =2 IP�. By the assumption (�), !!nA is �12. So by (1),it is P-measurable. Hen
e there is a T in P su
h that [T ℄ n (!! n A) =[T ℄ \ A 2 IP. We show that this 
annot happen.Case 1: IP is Borel generated, i.e., for any N in IP there is a Borel setB 2 IP su
h that N � B.Sin
e [T ℄ \ A 2 IP, there is a Borel set B � [T ℄ in IP su
h that[T ℄ \ A � B. Let 
 be a Borel 
ode for B. By Theorem 4.3, there is aquasi-P-generi
 real x over L[a; 
℄ with x 2 [T ℄. Sin
e B 2 IP, x =2 B.But this is impossible be
ause x is also quasi-P-generi
 over L[a℄ andhen
e x 2 [T ℄ \ A � B.Case 2: IP = NP.In this 
ase, [T ℄ \ A is P-null, hen
e there is a T 0 � T su
h that[T 0℄ \ A = ;. By Theorem 4.3, there is a quasi-P-generi
 real x overL[a℄ with x 2 [T 0℄. Hen
e x 2 [T 0℄ \ A, a 
ontradi
tion.For (2) to (1), take any �12-set A. We show that A is P-measurable.Let T be in P. We will �nd an extension T 0 of T approximating A asin the de�nition of P-measurability. If [T ℄ \ A 2 IP�, we are done. Sowe assume [T ℄ \ A =2 IP�.Case 1: !L[a℄1 < !V1 for any real a.As in (3) to (2) in Theorem 4.3, in this 
ase, every �12-set of reals isP-measurable by a standard Solovay argument.Case 2: !L[a℄1 = !V1 for some real a.Let a be a real su
h that [T ℄ \ A is �12(a) and !L[a℄1 = !V1 . Then wehave a Shoen�eld tree in L[a℄ for [T ℄\A and we get an !1-many Borelde
omposition of [T ℄\A into Borel sets fB
� j � < !1g with 
� 2 L[a℄for ea
h � as in the proof of Theorem 4.3. Sin
e [T ℄ \ A =2 IP� andthe set of quasi-P-generi
 reals over L[a℄ is of measure one w.r.t. IP�by (2), there is a quasi-P-generi
 real x over L[a℄ with x 2 [T ℄ \ A, sothere is an � su
h that x 2 B
�.The rest is the same as in the proof for (3) to (2) in Theorem 4.3.Sin
e 
� 2 L[a℄ and x is quasi-P-generi
 over L[a℄, B
� =2 IP�. Sin
eBorel set is P-measurable, there is a T 0 in P su
h that [T 0℄ n B
� 2 IP.Sin
e B
� � [T ℄ \ A, T 0 � T and [T 0℄ n A 2 IP, as we desired. �



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 215. �14-absolutenessIt is natural to try to generalize the relationship up to the one be-tween �14-for
ing absoluteness and the regularity properties for�13-setsof reals and �13-sets of reals. But these analogues 
annot be proved inZFC.9 In this se
tion, with an additional assumption (sharps for sets),we will prove the analogues of x 4.Theorem 5.1. Let P be a strongly arboreal, proper, �12 for
ing. Sup-pose every set has a sharp. Then either �12-determina
y holds or thefollowing are equivalent:(1) �14-P-absoluteness holds, and(2) every �13-set of reals is P-measurable.Proof. For (1) to (2), the argument is the same as for (1) to (2) in [11,Theorem 3.1℄. What we should 
he
k is that we get the absolute treerepresentation for �13-sets between V and V P. The rest is exa
tly thesame.For su
h tree representation, Feng-Magidor-Woodin used Shoen�eldtrees for �12-sets. With the help of sharps for sets, now we use Martin-Solovay trees for �13-sets. By [13, Theorem 2.1℄, it suÆ
es to see thatuV2 = uVP2 for the absoluteness of Martin-Solovay trees between V andV P. But this is true assuming every set has a sharp and P being properby [25, Theorem 2.1.9, Example 3.2.7℄.For (2) to (1), �rst note that we may assume that every �13-set isP-Baire by the same argument for (2) to (1) in Theorem 4.1. Theargument is the same as for in [11, Theorem 3.1℄. What we need is touniformize a �12-relation by a �13-fun
tion (in [11, Theorem 3.1℄, Feng-Magidor-Woodin uniformized a �11-relation by a �12-fun
tion). Therest is exa
tly the same. But su
h uniformization is possible assumingthe failure of �12-determina
y.The author would like to thank Hugh Woodin for pointing out thefollowing fa
t to him:Theorem 5.2. Suppose every real has a sharp. Then either �12-determina
y holds or �13 has the uniformization property, i.e., any�13-relation 
an be uniformized by a �13-fun
tion.10Proof. It suÆ
es to show that every �12-relation 
an be uniformized bya �13-fun
tion. Suppose �12-determina
y fails. Then there is a real a09Start from L and add !1-many Cohen reals, then in this model, �14-for
ingabsoluteness for Cohen for
ing holds but there is a �12-set of reals without theBaire property.10Sin
e �12-determina
y implies that �13 has the uniformization property, thisfa
t states the di
hotomy of the uniformization property for �13 and �13.



22 D. IKEGAMIsu
h that for ea
h real a �T a0, �12(a)-determina
y fails, where �T isthe Turing order.Case 1: for any real a �T a0, ay exists.In this 
ase, by the result of Steel, Ka is �13-
orre
t for any a �T a0,where Ka is the Mit
hell-Steel 
ore model.11For ea
h a �T a0, let <a be the 
anoni
al good �13(a)-well-orderingon the reals in Ka. Given a real b and a �12(b)-relation R, de�ne theuniformization f as follows:f(x) = y () y is the �rst <hx;a0;bi-element with (x; y) 2 R,where hx; a0; bi is the real 
oding x; a0 and b. For ea
h x 2 dom(R),su
h a y always exists be
ause Khx;a0;bi is �13-
orre
t. So f uniformizesR and regarding the fa
t that <a is a good �13(a)-well-ordering in Kafor ea
h a �T a0, it is easy to see that f is �13.Case 2: there is a real a �T a0 su
h that ay does not exist.Then there is a real a1 �T a0 su
h that for any real a �T a1, ay doesnot exist. By the result of Dodd-Jensen in [10℄, Ka is �13-
orre
t forany a �T a1, where Ka is the Dodd-Jensen 
ore model. The rest is thesame as Case 1. ��Theorem 5.3. Let P be a strongly arboreal, strongly proper, prov-ably �12 for
ing. Suppose every set has a sharp. Then either �12-determina
y holds or the following are equivalent:(1) �13-P-absoluteness holds,(2) every �13-set of reals is P-measurable, and(3) for any real a and any T 2 P, there is a quasi-P-generi
 realx 2 [T ℄ over Ka, whereKa = (the Mit
hell-Steel 
ore model if ay exists,the Dodd-Jensen 
ore model otherwise.Proof. In Theorem 5.1, we have seen the equivalen
e between (1) and(2). We show the dire
tion from (1) to (3) and the one from (3) to (2).For (1) to (3), all we need is that the statement \there is a quasi-P-generi
 real x over Ka with x 2 [T ℄" is �14 for ea
h real a and ea
h11In [28, Theorem 7.9℄, Steel assumed the existen
e of two measurable 
ardinals.We 
an repla
e the lower measurable by ay and the greater measurable by ay#.(Re
ent development of inner model theory even allows one to omit this sharp.Jensen and Steel [17, 16℄ 
onstru
ted K without using measurable 
ardinals.) Forthe details, see [23℄.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 23T 2 P. But this is true by Proposition 2.17 (1) and the fa
t that theset of reals in Ka is �13(a) in V .The argument for (3) to (2) is basi
ally the same as the one in Theo-rem 4.3. For simpli
ity, we assume the failure of �12-determina
y, hen
ethere is no inner model with a Woodin 
ardinal. The 
ase for the fail-ure of �12(a)-determina
y for a real a 
an be dealt with in the sameway.Case 1. !Ka1 < !V1 for any real a.As in Theorem 4.3, we 
an 
on
lude that every �13-set of reals (even�13-set of reals) is P-measurable by using �13-
orre
tness for Ka. To see�13-
orre
tness for Ka, we need the 
ase distin
tion whether ay existsor not. If ay does not exist, this is due to Dodd-Jensen in [10℄. Whenay exists, this is due to Steel.11Case 2. !Ka1 = !V1 for some real a.We need the absolute de
omposition of �13-sets into Borel sets be-tween Ka and V for some real a. The following result is essential; itsproof was 
ommuni
ated to us by Ralf S
hindler:Theorem 5.4 (S
hindler). Suppose there is no inner model with aWoodin 
ardinal. Then if uKa2 < uV2 for any real a, then !Ka1 < !V1 forany real a.Proof. For simpli
ity, we only prove !K1 < !V1 assuming uKa2 < uV2 forea
h real a. To derive a 
ontradi
tion, we assume !K1 = !V1 . Thefollowing is the �rst point:Claim 5.5. The mouse Kj!1 is universal for 
ountable mi
e, i.e.,M ��Kj!1 for any 
ountable mouse M , where �� is the mouse order.Proof of Claim 5.5. Suppose there is a 
ountable mouseM withM >�Kj!1. Coiterate them and let T ;U be the resulting trees for M andKj!1 respe
tively.Case 1: lh(T ) is 
ountable.Sin
e M >� Kj!1, U does not have a drop. But then the last modelof U 
annot be an initial segment of the last model of T sin
e the lengthof T is 
ountable, a 
ontradi
tion.Case 2: lh(T ) is un
ountable.Sin
eM >� Kj!1, U does not have a drop. If U was non-trivial, thenthe �nal model of U would be non-sound and 
ould not be a properinitial segment of the �nal model of T . Hen
e U is trivial and Kj!1 isan initial segment of the �nal model of T . But this means !1 is a limitof 
riti
al points of embeddings via T , hen
e !1 is ina

essible in K,
ontradi
ting the assumption !K1 = !V1 . �



24 D. IKEGAMIBy the same argument, we 
an prove that Kaj!1 is universal for
ountable a-mi
e for ea
h real a. We now have two 
ases:Case 1: There is a real a su
h that a{ does not exist.This 
ase was taken 
are of by Steel and Wel
h. In [27, Lemma 3.6℄,they assumed u2 = !2, whi
h is stronger than uKa2 < uV2 for ea
h reala, and proved there is a 
ountable mouse stronger than Kj!1 w.r.t.mouse order. But assuming !K1 = !V1 and the non-existen
e of 0{, we
an run their same argument only assuming uK2 < uV2 and get the same
on
lusion. Furthermore, we 
an easily relativize this argument to Ka.Hen
e assuming !K1 = !V1 (even !Ka1 = !V1 ) and the non-existen
e ofa{, if uKa2 < uV2 , then there is an a-mouse stronger than Kaj!1 w.r.t.mouse order, whi
h 
ontradi
ts the a-relativized version of Claim 5.5.Case 2: for any real a, a{ exists.This 
ase is new. Sin
e uK2 < uV2 , there is a real a su
h that uK2 <(!+1 )L[a℄. The idea is to use ay (that exists sin
e a{ exists) and linearlyiterate it with the lower measure in ay with length !1. Then the heightof the last model is bigger than uK2 sin
e uK2 < (!+1 )L[a℄. Now we restri
tthis linear iteration map to K in ay 
onstru
ted up to the point withthe top measure. The point is this is an iteration map on it and the�nal model of this iteration has height bigger than uK2 . Sin
e it is a
ountable mouse, by Claim 5.5, we get a 
ountable mouse in K with thesame property, whi
h yields a 
ontradi
tion by a standard boundednessargument.We will dis
uss this idea in detail. Let i be the linear iteration map ofay derived from the iterated ultrapower starting from the lower measurein it with length !1. Then the target N of i has height bigger thanuK2 sin
e uK2 < (!+1 )L[a℄ and the 
riti
al point of i goes to !1 and Nhas a 
ardinal bigger than !1 and a 2 N . Let Kayj
 be the K in ay
onstru
ted up to 
, the 
riti
al point of the top measure in ay. ThenKayj
 is a mouse and we 
all it M .We 
laim that if we restri
t i to M , then it is an iteration map onM . Sin
e i is from a linear iteration of ultrapowers via measures, byapplying the result of S
hindler [24℄ in ea
h ultrapower in the iteration,we 
an prove that the restri
tion of i to M is an iteration with length!1 (whi
h itself might be quite 
ompli
ated). Moreover, the �nal modelof this iteration has height greater than uK2 be
ause i maps 
 greateror equal to (!+1 )L[a℄. Let us 
all the tree of this iteration T and let M�be the �-th iterate via T and iT�;� : M� !M� be the indu
ed maps for� � � � !1.Sin
eM is a 
ountable mouse, by Claim 5.5, there is an �0 < !1 su
hthat M �� Kj�0. We will show that Kj�0 has the same property, i.e.,



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 25there is an iteration from Kj�0 with length !1 su
h that the height ofthe �nal model is greater than uK2 . (Note that there might be a drop.)Coiterate Kj�0 and M and let � : M ! N be the resulted map. Notethat there is no drop from the M -side be
ause M �� Kj�0.We will 
onstru
t hN� j � � !1i, h�� : M� ! N� j � � !1i, andhiU�;� : N� ! N� j � � � � !1i with the following properties:(1) The diagrams below all 
ommute,(2) M� �� N� �� M�+1 for ea
h �,(3) N� is the dire
t limit of N� (� < �) for limit �, and(4) iU�;�+1 and ��+1 are the resulted maps by the 
omparison betweenN� and M�+1 for ea
h �.Kj�0 ///o/o/o N = N0 iU0;1 // N1 iU1;2 // � � � // N� iU�;�+1 // � � � // N!1M =M0�=�0OO iT0;1 // M1�1OO iT1;2 // � � � // M���OO iT�;�+1 // � � � // M!1�!1OO
The above properties uniquely spe
ify hN� j � � !1i, h�� : M� !N� j � � !1i, and hiU�;� : N� ! N� j � � � � !1i. Hen
e it suÆ
es to
he
k (1) and (2) above for this 
onstru
tion.For (1), it suÆ
es to show that iU�;�+1 Æ�� = ��+1 Æ iT�;�+1 for ea
h �.By the Dodd-Jensen Lemma (e.g., in [32, Theorem 9.2.10℄), any twosimple iteration maps from a mouse to a mouse are the same. By (2)for �, ��, ��+1, iT�;�+1, and iU�;�+1 are all simple iteration maps. Hen
ewe get the desired 
ommutativity. (2) follows from the fa
t that all themaps 
onstru
ted before are simple iteration maps.Sin
e the height of N!1 is greater than or equal to that ofM!1 , thereis an iteration from Kj�0 with length !1 whose �nal model has heightgreater than uK2 , as we desired.Sin
e Kj�0 is in K and �0 is 
ountable in K, there is a real x in K
oding Kj�0. We show that the height of N!1 is less than (!+1 )L[x℄. InL[x℄, we 
ollapse !V1 with the for
ing Coll(!; !V1 ). Let g : ! ! !V1 be ageneri
 surje
tion over L[x℄. Sin
e Kj�0 is 
oded by x and the length ofiteration is !V1 whi
h is 
ountable witnessed by g, by the boundednesslemma in L[x℄[g℄, the height of N!1 is less than !L[x℄[g℄1 = (!+1 )L[x℄, asdesired. Sin
e x is in K, (!+1 )L[x℄ < uK2 and hen
e the height of N!1 isless than uK2 . But the height was greater than uK2 . Contradi
tion! �Now by the assumption and the above fa
t, there is a real a su
hthat !Ka1 = !V1 and uKa2 = uV2 . By [13, Theorem 2.1℄, the Martin-Solovay trees for �13-sets are absolute between Ka and V . Sin
e the



26 D. IKEGAMItrees are on ! � u! and u! is absolute between Ka and V , we get theabsolute de
omposition of �13-sets into Borel sets between Ka and Vas we desired. The rest is exa
tly the same as in Theorem 4.3. �Theorem 5.6. Let P be a strongly arboreal, strongly proper, provably�12 for
ing. Suppose every set has a sharp. AssumeIP is Borel generated or IP = NP: (��)Then either �12-determina
y holds or the following are equivalent:(1) Every �13-set of reals is P-measurable, and(2) for any real a, R nfx j x is quasi-P-generi
 over Kag 2 IP�, whereKa = (the Mit
hell-Steel 
ore model if ay exists,the Dodd-Jensen 
ore model otherwise.Proof. The argument is exa
tly the same as Theorem 4.4 by repla
ingL[a℄ by Ka and using the analogous fa
ts about Ka we have alreadystated. �6. Appli
ationsIn this se
tion, we mention two appli
ations of our theorems to par-ti
ular 
ases. One will be proved here and the other is in [9℄.Brendle-Halbeisen-L�owe [7℄ proved the following:Proposition 6.1 (Brendle-Halbeisen-L�owe). Let V be Silver for
ing.Suppose for any real a there is a quasi-V-generi
 real over L[a℄. Thenevery �12-set of reals is V-measurable.12Question 6.2 (Brendle-Halbeisen-L�owe). Does the 
onverse of Propo-sition 6.1 hold?13We answer the above question positively:Proposition 6.3. Assume every�12-set of reals is V-measurable. Thenfor any real a, there is a quasi-V-generi
 real over L[a℄.Proof. Sin
e Silver for
ing is strongly arboreal and proper, by Theo-rem 4.3, it suÆ
es to show that the set of Borel 
odes with B
 2 IV� is�12. We use the following fa
t:Fa
t 6.4 (Zapletal). Let G be the graph on !2 
onne
ting two binarysequen
es if they di�er in exa
tly one pla
e. Let I be the �-idealgenerated by Borel G-invariant sets (i.e., Borel sets in !2 su
h that any12See [7, Proposition 2.1℄. Regarding IV = NV, it is easy to 
he
k that Silvermeasurability in their sense 
oin
ides with our V-measurability.13See [7, Question 4℄.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 27two distin
t elements of them are not 
onne
ted by G). Then everyanalyti
 set is either in I or 
ontains [T ℄ for some T 2 V.Proof. See [30, Lemma 2.3.37℄. �We show how to use Fa
t 6.4 to prove Proposition 6.3. We �rst showthat I � IV. It suÆ
es to see that every Borel G-invariant set is inNV. Take su
h Borel set B. Sin
e every Borel set is V-measurable andIV = NV, for ea
h T 2 V, there is a T 0 � T su
h that either [T 0℄ � B or[T 0℄\B = ;. But the former 
ase 
annot happen be
ause [T 0℄ 
ontainsmanyG-
onne
ted elements. Hen
e [T 0℄\B = ;. Therefore B is V-null.With the above fa
t, this means every Borel set is either in I or
ontains [T ℄ for some T 2 V. Hen
e B
 2 IV� i� B
 is in I, i.e., it isthe union of a 
ountable set of G-invariant Borel sets. This is easily�12, as we desired. �Regarding IV = NV, the following is a dire
t 
onsequen
e of Theo-rem 4.4 and Proposition 6.3 (or an easy 
onsequen
e of [7, Lemma 3.1℄):14Corollary 6.5. The following are equivalent:(1) Every �12-set of reals is V-measurable, and(2) for any real a, the set of quasi-V-generi
 reals over L[a℄ is ofmeasure one w.r.t NV.Another appli
ation is for eventually di�erent for
ing by Brendle-L�owe [9℄. They used Theorem 4.4 to prove that the Baire property ineventually di�erent topology for every �12-set of reals is equivalent tothe statement \!1 is ina

essible by reals". For the basi
 de�nitions andproperties for eventually di�erent for
ing and its topology, the reader
an 
onsult [21℄. 7. Questions and dis
ussionsWe 
lose this paper by raising questions and dis
ussing them.7.1. On IP and IP�. Although IP� is the same as IP for most 
ases aswe have seen in Lemma 2.13, as in Question 2.12, we still do not knowwhether this is true in general. What we 
ould wish is that this is trueat least for Borel sets:Question 7.1. Let P be a strongly arboreal, proper for
ing. Then 
anwe prove B 2 IP i� B 2 IP� for any Borel set B?If this is true, we do not have to mention IP� in our theorems.14This answers [7, Question 3℄ positively.



28 D. IKEGAMI7.2. On the 
ondition (�) in Theorem 4.3. It is interesting to givesuÆ
ient 
onditions for P satisfying (�) in Theorem 4.3, i.e., the setof all Borel 
odes with B
 2 IP� is �12. These 
onditions 
ould bede�nability 
onditions on IP� or dire
tly on P.For the �rst 
ase, we have a useful suÆ
ient 
ondition: we say thata �-ideal I on the reals is �12 on �11 if for any analyti
 set B � !2�!!,the set f
 j B
 2 Ig is �12. It is easy to 
he
k that if IP� is �12 on �11,then (�) holds. Sin
e IP is �12 on �11 and IP = IP� for most 
ases, (�)is true for most P.For the se
ond 
ase, we ask the following:Question 7.2. Let P be a strongly arboreal, strongly proper, provably�12-for
ing. Then 
an we prove (�)?7.3. �12-determina
y and �14-for
ing absoluteness. In Theorem 5.1,we use the failure of �12-determina
y to prove the equivalen
e between(1) and (2). But it 
ould be that both (1) and (2) are 
onsequen
esof �12-determina
y. Sin
e we have only used sharps for sets for thedire
tion from (1) to (2), it is enough to see whether �12-determina
yimplies �14-for
ing absoluteness:Question 7.3. Suppose�12-determina
y holds. Then 
an we prove�14-P-absoluteness for ea
h strongly arboreal, proper, provably �12-for
ingP?7.4. Sharps for sets vs sharps for reals. In Theorem 5.1, Theo-rem 5.3 and Theorem 5.6, we have assumed the existen
e of sharps forsets. It is natural to ask whether we 
an redu
e this assumption tosharps for reals. The obsta
le is whether proper for
ings preserve thestatement \every real has a sharp" and u2:Question 7.4. Suppose every real has a sharp. Let P be a stronglyarboreal, proper, provably �12-for
ing. Then 
an we prove that everyreal has a sharp in V P and uV2 = uVP2 ?Finally, we show that in the 
ase of provably 


, �11-for
ings, thingswork perfe
tly:Proposition 7.5. Let P be a strongly arboreal, provably 


, �11-for
ing. Then(1) IP = IP�.(2) IP is Borel generated.(3) The 
ondition (�) holds. Moreover, f
 j B
 2 IP�g 2 �12.(4) Let M be a transitive model of ZFC. Then a real x is P-generi
over M i� x is quasi-P-generi
 over M .



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 29(5) If �12-determina
y holds, then so does �14-P-absoluteness.(6) If every real has a sharp, then every real has a sharp also in V Pand uV2 = uVP2 .Proof. (1) is already mentioned in Lemma 2.13 (3) and (2) is immediatesin
e P is 


.For (3), it suÆ
es to see the following by Lemma 3.5 (1):��1(B
) is meager () (9M 3 
) �M : a 
ountable transitive modelof ZFC and M � \��1(B
) is meager"�() (8M 3 
) �M : a 
ountable transitive modelof ZFC =) M � \��1(B
) is meager"�;where � = f _xG as before.We only show the �rst equivalen
e. For left to right, if we take a
ountable elementary substru
ture X of H� for enough large � su
hthat X has all the essential elements, then the transitive 
ollapse of Xwill do the job for M in the right hand side.For right to left, take an M with the property in the right handside. The idea is the same as the proof of Claim 3.8 in Lemma 2.17(1). This time, we use G, the Bana
h-Mazur game with a witness for��1(B
) starting from any element of P, both inM and V and translatea winning strategy in GM to the one in G.By the assumption, in M , player II has a winning strategy �0 in G.The 
onstru
tion of a winning strategy for II inG in V from �0 is exa
tlythe same as Claim 3.8. But instead of using the (M;P)-generi
ity fora 
ondition T 0, we use the following:Claim 7.6. Let D be a dense subset of P in M . Then D is predensein P in V .Proof of Claim 7.6. Let D be a dense subset of P in M . Then sin
e Pis provably 


, in M , there is a 
ountable maximal anti
hain A � D.But sin
e P is �11, the statement \a real 
odes a maximal anti
hain" is�11 ^�11 and therefore A remains a maximal anti
hain in V . Hen
e Dis predense in P in V . �The rest is exa
tly the same as Claim 3.8. The argument for (4)is exa
tly the same as for Lemma 2.17 (2) and (3). For (5), see [25,Lemma 2.2.4℄. For (6), see [25, Lemma 2.2.2, Theorem 2.2.7, Exam-ple 3.2.7℄. �
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