
FORCING ABSOLUTENESS AND REGULARITYPROPERTIESDAISUKE IKEGAMIAbstrat. For a large natural lass of foring notions, we provegeneral equivalene theorems between foring absoluteness state-ments, regularity properties, and transendene properties over Land the ore model K. We use our results to answer open questionsfrom set theory of the reals.1. Introdution & BakgroundForing absoluteness statements have been investigated by Judah,Brendle, Halbeisen, Amir, Bagaria and others [18, 6, 12, 1, 3℄. Thesestatements of the form \Every �-statement is absolute between theground model and its foring extensions with P" are typially indepen-dent of the axioms of ZFC, and an often be proved to be equivalent tostatements about regularity properties. Typial equivalene theoremsare:Theorem 1.1 (Bagaria, Woodin, [2, 29℄). Every �13-statement is ab-solute between the ground model and its Cohen foring extensions ifand only if every �12 set has the Baire property.Theorem 1.2 (Ikegami, [14℄). Every �13-statement is absolute betweenthe ground model and its Saks foring extensions if and only if every�12-set either ontains a perfet subset or is disjoint from a perfet set.The mentioned regularity properties are in turn equivalent to tran-sendene properties over L. For instane, Judah and Shelah provedthat the Baire property of all �12-sets is equivalent to the transen-dene statement \for all reals x, there is a Cohen real over L[x℄" [19℄;similarly, Brendle and L�owe showed that the statement \every �12 seteither ontains a perfet subset or is disjoint from a perfet set" isequivalent to \for all reals x, there is a real not in L[x℄" [8℄.2000 Mathematis Subjet Classi�ation. 03E15, 28A05, 54H05.Key words and phrases. foring absoluteness; regularity properties.1



2 D. IKEGAMIIn this paper, we shall prove a general abstrat result underlyingboth Theorems 1.1 and 1.2, by onneting (for a large lass of for-ings P) �13-P-absoluteness, a regularity property at the �12-level, and atransendene property related to P. The ase of Cohen foring mightsuggest that the right transendene property is the existene of P-generis, but this already fails in the ase of Saks foring.1 In orderto deal with this situation, Brendle, Halbeisen and L�owe introduedthe notion of quasi-generi reals [7℄. In many ases of ... forings(suh as Cohen foring), the notions of quasi-generiity and generiityoinide; in general, the existene of quasi-generis gives us the righttransendene property for our general theorem. We prove:Theorem 1.3. For any foring P in a large lass of foring notions2,the following are equivalent:(1) �13-P-absoluteness holds,(2) every �12-set of reals is P-measurable, and(3) for any real a and T 2 P, there is a quasi-P-generi real x 2 [T ℄over L[a℄.We shall start by de�ning and investigating the basi onepts inx 2 and x 3. We then state and prove the main result of the paper(the preise version of Theorem 1.3) and its immediate onsequenes inx 4. Among the onsequenes is a general Solovay-style haraterizationtheorem (in the tradition of [26℄). In x 5, we move on to�14-absolutenessand prove the analogues of the results from x 4 under the assumptionof appropriate large ardinal axioms. These proofs use some basi fatsof inner model theory. In x 6, we give appliations of our main results,answering an open question from [7℄; �nally, in x 7, we list a number ofinteresting open questions.2. Basi oneptsFrom now on, we will work in ZFC. We assume that readers arefamiliar with the elementary theories of foring and desriptive settheory. (For basi de�nitions not given in this paper, see [15, 22℄.)When we are talking about \reals", we mean elements of the Bairespae or of the Cantor spae.In this setion, we introdue the notions we will need for the rest.We start with introduing the foring absoluteness we will fous on:1In the model after adding !1 many Cohen reals to L, every projetive set eitherontains or is disjoint from a perfet set, but there is no Saks real over L.2We will give the preise lass of forings in Theorem 4.3. Also we will givepreise de�nitions of the notions used here in x 2



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 3De�nition 2.1 (�1n-P-absoluteness). Let P be a foring notion andn be a natural number with n � 1. Then �1n-P-absoluteness is thefollowing statement:\for any �1n-formula ', real r in V , and P-generi �lterG over V , V � '(r) i� V [G℄ � '(r)".De�nition 2.2 (Projetive forings). Let n be a natural number withn � 1. A partial order P is �1n (resp. �1n, �1n) if the sets P , �P,and ?P are �1n (resp. �1n, �1n), where P = (P;�P) and ?P is theinompatibility relation in P. We say P is projetive if it is �1n forsome n � 1.Let n be a natural number with n � 1. A partial order P is provably�1n if there are �1n-formula � and �1n-formula  suh that the state-ment \� and  de�ne the same partial order with the inompatibilityrelation" is provable in ZFC.All typial forings related to the regularity properties are provably�12. In this paper, we are only interested in projetive forings.In some of our main results, we shall need a strengthening of thestandard notion of properness for projetive forings:De�nition 2.3. A projetive foring P is strongly proper if for anyountable transitive model M of a �nite fragment of ZFC ontainingthe real parameter in the formula de�ning P, if PM ;�MP ;?MP are sub-sets of P;�P;?P respetively, then for any ondition p in PM , thereis an (M;P)-generi ondition q below p, i.e., if M � \A is a maximalantihain in P", then A \M is predense below q.3Here (M;P)-generi onditions are the same as (X;P)-generi ondi-tions for ountable elementary substruture X of H�: if P is projetive,X is a ountable elementary substruture of H� for some enough largeregular � and M is the transitive ollapse of X, then a ondition p is(M;P)-generi i� it is (X;P)-generi in the usual sense. In partiular,if P is projetive and strongly proper, then P is proper.All the typial examples of proper, �12-forings are strongly proper.But there is a proper, provably �13-foring whih is not strongly proper(for the details, see the papers [5, 4℄ by Bagaria and Bosh).3Although we will not expliitly mention the �nite fragment of ZFC we will usefor the de�nition of strong properness, it will be enough large so that we an proeedall the arguments in this paper as usual. From now on, we say \ountable transitivemodels of ZFC" instead of \ountable transitive models of a �nite fragment of ZFC"for simpliity.



4 D. IKEGAMIWe use strong properness instead of properness, as it allows us toleave out the quanti�ation \2 H�" whih would inrease the omplex-ity of our statements in the relevant results (Proposition 2.17, Theo-rem 5.3, Theorem 5.6) beyond projetive.Next, we introdue a lass of forings ontaining all the tree-typeforings. A partial order P is arboreal if its onditions are perfet treeson ! (resp. 2) ordered by inlusion. But this lass of forings ontainssome trivial forings suh as P = f<!!g. We need the following strongernotion:De�nition 2.4. A partial order P is strongly arboreal if it is arborealand the following holds:(8T 2 P) (8t 2 T ) Tt 2 P;where Tt = fs 2 T j either s � t or s � tg.With strongly arboreal forings, we an ode generi objets by realsin the standard way: let P be strongly arboreal and G be P-generi overV . Let xG = Sfstem(T ) j T 2 Gg, where stem(T ) is the longest t 2 Tsuh that Tt = T . Then xG is a real and G = fT 2 P j xG 2 [T ℄g, where[T ℄ is the set of all in�nite paths through T . Hene V [xG℄ = V [G℄. Weall suh real xG a P-generi real over V .Almost all typial forings related to regularity properties are stronglyarboreal:Example 2.5. (1) Cohen foring (C ): let T0 be <!!. Consider thepartial order �f(T0)s j s 2 <!!g;��. Then this is strongly arborealand equivalent to Cohen foring.(2) random foring (B ): onsider the set of all perfet trees T on 2suh that for any t 2 T , [Tt℄ has a positive Lebesgue measure, orderedby inlusion. Then this foring is strongly arboreal and equivalent torandom foring.(3) Hehler foring (D ): for (n; f) 2 D , letT(n;f) = nt 2 <!! j either t � f � n or�t � f � n and �8m 2 dom(t)� t(m) � f(m)�o:Then the partial order (fT(n;f) j (n; f) 2 D g;�) is strongly arborealand equivalent to Hehler foring.(4) Mathias foring: for a ondition (s; A) of Mathias foring, letT(s;A) = ft 2 <!! j t is stritly inreasing and s � ran(t) � s [ Ag:Then fT(s;A) j (s; A) is a ondition of Mathias foringg is a stronglyarboreal foring equivalent to Mathias foring.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 5(5) Saks foring, Silver foring, Miller foring, Laver foring (S, V,M , L, respetively): these forings an be naturally seen as stronglyarboreal forings.We now introdue a general de�nition of a regularity property asso-iated with an arbitrary arboreal foring. Sets of reals with a regularityproperty should be approximated by some simple sets (e.g., Borel sets)modulo some \smallness" as Baire property and Lebesgue measurabil-ity. Therefore we �rst introdue \smallness" for eah arboreal foringby deiding a �-ideal as follows:De�nition 2.6. Let P be an arboreal foring. A set of reals A is P-nullif for any T in P there is a T 0 � T suh that [T 0℄ \ A = ;. NP denotesthe set of all P-null sets and IP denotes the �-ideal generated by P-nullsets.Example 2.7. (1) Cohen foring C : C -null sets are the same asnowhere dense sets and IC is the meager ideal.(2) random foring B : B -null sets are the same as Lebesgue null setsand IB is the Lebesgue null ideal.(3) Hehler foring D : D -null sets are the same as nowhere densesets in the dominating topology, i.e., the topology generated by f[s; f ℄ j(s; f) 2 D g where[s; f ℄ = fx 2 !! j s � x and (8n � dom(s)) x(n) � f(n)g:Hene ID is the meager ideal in the dominating topology.(4) Mathias foring: a set of reals A is Mathias-null i� fran(x) j x 2A\A0g is Ramsey null or meager in the Ellentuk topology, where A0is the set of stritly inreasing in�nite sequenes of natural numbers.Also, Mathias-null sets form a �-ideal by a standard fusion argument.(5) Saks foring S: in this ase, IS = NS by a standard fusionargument. The ideal IS is alled the Marzewski ideal and often denotedby s0.As with Saks foring, all the typial non- tree-type forings ad-mitting a fusion argument satisfy the equation IP = NP. Sine IP isBorel generated for any  arboreal foring, the ondition (��) in The-orem 4.4 (whih we will state in x 4) holds for all the typial tree-typestrongly arboreal forings.Now we introdue the regularity property for eah arboreal foring:De�nition 2.8. Let P be arboreal. A set of reals A is P-measurableif for any T in P there is a T 0 � T suh that either [T 0℄ \ A 2 IP or[T 0℄ n A 2 IP.



6 D. IKEGAMIAs we expet, P-measurability oinides with the known regularityproperty for P when P is :Proposition 2.9. Let P be a strongly arboreal,  foring and let Pbe a set of reals. Then P is P-measurable i� there is a Borel set B suhthat P4B 2 IP.Proof. The diretion from right to left follows from the fat that everyBorel set of reals is P-measurable whih will be proved in Lemma 3.5.For the other diretion, suppose P is P-measurable and we will �nd aBorel set approximating P modulo IP. Sine P is P-measurable, the setD = fT 2 P j either [T ℄ \ P 2 IP or [T ℄ n P 2 IPg is dense. We take amaximal antihain A in D and de�ne B = Sf[T ℄ j T 2 A and [T ℄nP 2IPg. Then sine A is ountable, B is Borel and P4B 2 IP beause Dis dense. �This argument does not work for non- forings suh as Saksforing.4 But P-measurability is almost the same as the regularityproperties for non- forings P, e.g., for Mathias foring, a set ofreals A is Mathias-measurable i� fran(x) j x 2 A \ A0g is ompletelyRamsey (or has the Baire property in the Ellentuk topology), where A0is the set of all stritly inreasing in�nite sequenes of natural numbers.Also, for Saks foring, the following holds:Proposition 2.10 (Brendle-L�owe). Let � be a topologially reason-able pointlass, i.e., it is losed under ontinuous preimages and anyintersetion between a set in � and a losed set. Then every set in �is S-measurable i� every set in � has the Bernstein property.5Proof. See [8, Lemma 2.1℄. �Next we introdue a tehnial ideal IP� whih we need later:De�nition 2.11. Let P be an arboreal foring. A set of reals A is inIP� if for any T in P there is a T 0 � T suh that [T 0℄ \ A is in IP.Question 2.12. Let P be a strongly arboreal, proper foring. Can weprove IP = IP�?4For example, assuming every �11-set has the perfet set property, every �11-setof reals has the Bernstein property (i.e., either it ontains a perfet or there is aperfet set disjoint from the set) but for a �11-set of reals A, A is approximated bya Borel set modulo IS i� A is Borel. This is beause IS restrited to analyti sets(or o-analyti sets) is the set of all ountable sets of reals.5In general, the Bernstein property does not imply S-measurability while theonverse is true. By using the axiom of hoie, we an onstrut a set of realswhih is not S-measurable and has the Bernstein property.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 7We give some easy observations onerning to Question 2.12:Lemma 2.13. Let P be strongly arboreal foring.(1) The ideal IP is a subset of IP�.(2) A set of reals A is P-measurable i� for any T in P there is aT 0 � T suh that either [T 0℄ \ A 2 IP� or [T 0℄ n A 2 IP� holds. Henewe get the same notion of measurability even if we replae IP by IP� inthe de�nition of P-measurability.(3) If P is , then IP = IP�.(4) If IP = NP, then IP = IP�. Hene IP = IP� for any typialtree-type strongly arboreal foring admitting a fusion argument.(5) (Brendle) Suppose P satis�es the following ondition: for anymaximal antihain A in P, there is a maximal antihain A0 suh thatfor any two elements T; T 0 of A0, [T ℄ and [T 0℄ are disjoint and A0 re�nesA, i.e., for any T 0 in A0 there is a T in A with T 0 � T . Then IP = IP�.Saks foring is a typial example of the ondition in (5). But we donot know of any strongly arboreal P satisfying the ondition but whihare neither  nor satisfy IP = NP.Proof. We will prove only (5). The rest are straightforward. SupposeP satis�es the above ondition and let A be in IP�. We prove A is inIP. Sine A is in IP�, the set of all Ts in P suh that [T ℄ \ A 2 IPis dense in P. Hene we an take a maximal antihain A ontainedin this set. By the ondition, we may assume for any two distintelements T1, T2 of A, [T1℄, [T2℄ are pairwise disjoint. For eah T in A,[T ℄ \ A 2 IP. So we an pik fNn;T j n 2 !g suh that eah Nn;T isP-null and Sn2!Nn;T = [T ℄ \ A. Let Nn = ST2ANn;T for eah n 2 !.Sine A = Sn2!Nn, the proof is omplete if we prove the followingClaim 2.14. For eah n 2 !, Nn is P-null.Proof of Claim 2.14. Take any T 0 in P. SineA is a maximal antihain,we an take a T 2 A suh that T and T 0 are ompatible. Take aommon extension T 00. Then [T 00℄ \ Nn = [T 00℄ \ Nn;T beause of theproperty of A. But we know that Nn;T is P-null. Hene we an take afurther extension of T 00 disjoint from Nn. ��Next, we introdue quasi-P-generiity for arboreal forings P andompare it with P-generiity. Quasi-generi reals are obvious general-ization of Cohen reals and random reals:De�nition 2.15. Let P be arboreal and M be a transitive model ofZFC. A real x is quasi-P-generi over M if for any Borel ode  in M



8 D. IKEGAMIwith B 2 IP�, x is not in B, where B is the deoded Borel set from.Example 2.16. (1) Cohen foring (C ): quasi-C -generi reals are thesame as Cohen reals by de�nition. Hene quasi-C -generiity oinideswith C -generiity.(2) random foring (B ): quasi-B -generi reals are the same as ran-dom reals by de�nition. Hene quasi-B -generiity oinides with B -generiity.(3) Hehler foring (D ): quasi-D -generi reals are the same as Hehlerreals. Hene quasi-D -generiity oinides with D -generiity.(4) Saks foring (S): ifM is an inner model of ZFC, quasi-S-generireals over M are the reals whih are not in M beause any Borel setin IS� = NS is ountable and this is also true in M if the ode is inM by Shoen�eld absoluteness. Therefore, quasi-S-generiity does notoinide with S-generiity.The last example explains the di�erene between generiity andquasi-generiity and shows that the equivalene for Saks foring wementioned in the introdution is a speial ase of Theorem 4.3 whihwe will prove later.6As is expeted, generiity implies quasi-generiity for all the typialstrongly arboreal forings and the onverse is true for most  forings:Proposition 2.17. Let P be a strongly arboreal, strongly proper, prov-ably �12 foring. Then(1) The set f j B 2 IP�g is �12. Hene the statement \ odes aBorel set in IP�" is absolute between inner models of ZFC.(2) If M is a transitive model of ZFC and a real x is P-generi overM , then x is quasi-P-generi over M .(3) Suppose P is also provably , i.e., there is a formula � de�ningP and the statement \� is " is provable in ZFC. Then if M is aninner model of ZFC and a real x is quasi-P-generi over M , then x isP-generi over M .Proof. See x 3. �In [31℄, Zapletal starts from a �-ideal I on a Polish spae X andonsiders the quotient of the set of all Borel sets in X modulo I anddevelops the general theory of this foring as a Boolean algebra. Letus ompare his setting with our setting:6It is easy to hek the ondition (�) in Theorem 4.3 for Saks foring by notingthat the ideal ISrestrited to Borel sets is the ideal of ountable sets as we mentionedin the last example.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 9Proposition 2.18. Suppose P is a strongly arboreal, proper foring.Then the map i : P! �B=IP�� n f0g de�ned byi(T ) = the equivalene lass represented by [T ℄;is a dense embedding, where B denotes the set of all Borel sets of thereals and B=IP� is the quotient Boolean algebra via IP�.Hene, our situation is a speial ase of Zapletal's.7Proof. See x 3. �3. P-measurability and P-BairenessIn this setion, we shall prove the propositions listed in x 2. In orderto do so, we �rst onsider the onnetion between P-measurability and aproperty alled P-Baireness (whih was impliitly introdued by Feng-Magidor-Woodin [11℄). This onnetion will allow us to haraterizeIP� in terms of Banah-Mazur games, whih plays an essential role inthe proof of Proposition 2.17.Let P be a partial order. The Stone spae of P (denoted by St(P))is the set of ultra�lters of P equipped with the topology generated byfOp j p 2 Pg, where Op = fu 2 St(P) j u 3 pg.For example, if P is Cohen foring (C ), then St(C ) is homeomorphito the Baire spae !!.Dense sets in P are the same as open dense subsets in St(P): if Dis a dense subset of P, then the set SfOp j p 2 Dg is open dense inSt(P). Conversely, if U is an open dense subset of St(P), then fp 2 P jOp � Ug is a dense open subset of P.Next, we will talk about meagerness and the Baire property in St(P).The �rst observation we should make is that this is not nonsense:Lemma 3.1. Let P be a partial order. Then for any p 2 St(P), Op isnot meager.Proof. Take any p 2 P and let fUn j n 2 !g be a ountable set of opendense subsets of St(P). We would like to prove that the intersetionTn2! Un with Op is nonempty. But this is just the Rasiowa-SikorskyTheorem or �nding a generi objet G over a ountable struture on-taining P with p 2 G. �7In [31, Corollary 2.1.5℄, Zapletal proved a more general result. His I is essentiallythe same as our IP� and if we use bn = j _xgen(�n) = 1j (n 2 !) instead of bt (t 2 <!2)for the generators of C, then Zapletal's I is exatly the same as our IP� on Borelsets.



10 D. IKEGAMIBefore de�ning P-Baireness, let us see the onnetion between Bairemeasurable funtions from St(P) to the reals and P-names for a real.Let X; Y be topologial spaes. Then a funtion f : X ! Y is Bairemeasurable if for any open set U in Y , f�1(U) has the Baire propertyin X. Baire measurable funtions are the same as ontinuous funtionsmodulo meager sets: let X; Y be topologial spaes and assume Y isseond ountable. Then it is fairly easy to see that a funtion f : X !Y is Baire measurable i� there is a omeager set D in X suh thatf � D is ontinuous.There is a natural orrespondene between Baire measurable fun-tions from St(P) to the reals and P-names for a real:Lemma 3.2 (Feng-Magidor-Woodin). Let P be a partial order.(1) If f : St(P) ! !! is a Baire measurable funtion, then�f = �(m;n)�; p) j Op n fu 2 St(P) j f(u)(m) = ng is meager	is a P-name for a real.(2) Let � be a P-name for a real. De�ne f� as follows. For u 2 St(P)and m;n 2 !,f� (u)(m) = n () (9p 2 u) p  �( �m) = �n:Then the domain of f� is omeager in St(P) and f� is ontinuous onthe domain. Hene it an be uniquely extended to a Baire measurablefuntion from St(P) to the reals modulo meager sets.(3) If f : St(P) ! !! is a Baire measurable funtion, then f�f andf agree on a omeager set in St(P). Also, if � is a P-name for a real,then  �f� = � .Proof. See [11, Theorem 3.2℄. �Reall that we have de�ned a generi real xG from a generi objetG for any strongly arboreal foring P. Let _xG be a anonial P-namefor xG.Example 3.3. Let P be strongly arboreal. Then f _xG(u)(m) = ni� there is a T in u suh that stem(T )(m) = n. Hene f _xG(u) =Sfstem(T ) j T 2 ug for u 2 dom(�) as we expet.Now we de�ne the property P-Baireness. Let P be a partial orderand A be a set of reals. Then A is P-Baire if for any Baire measurablefuntion f : St(P) ! !!, f�1(A) has the Baire property in St(P). Itis easy to see that every Borel set of reals is P-Baire for any P by thesame argument as for the Baire property.Example 3.4. Let C be Cohen foring. A set of reals A is C -Baire i�f�1(A) has the Baire property for any ontinuous funtion f : !! ! !!.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 11Proof. As we have seen in the beginning of this setion, St(C ) is home-omorphi to the Baire spae !!. In the Baire spae, any GÆ omeagerset is homeomorphi to the whole spae. Hene we an replae Bairemeasurable funtions by ontinuous funtions in the de�nition of C -Baireness. �Before talking about the relation between P-measurability and P-Baireness, let us mention the onnetion between P-Baireness and uni-versally Baireness. A set of reals A is universally Baire if for anyompat Hausdor� spae X and any ontinuous funtion f : X ! !!,f�1(A) has the Baire property inX. A set of reals A is universally Bairei� A is P-Baire for any partial order P. (This is essentially proved in[11℄.)Reall that IP� is a tehnial ideal introdued in De�nition 2.11 whihis the same as IP for most ases.Lemma 3.5 (P-measurability vs. P-Baireness). Let P be a stronglyarboreal, proper foring and A be a set of reals. Then(1) A is in IP� i� f�1_xG (A) is meager in St(P), and(2) A is P-measurable i� f�1_xG (A) has the Baire property in St(P). Inpartiular, if A is P-Baire, then A is P-measurable. Hene every Borelset if P-measurable.Note that P-measurability does not imply P-Baireness in general.8Proof of Lemma 3.5. Let � = f _xG for abuse of notation.The following are useful for the proof:Claim 3.6. (a) For T in P and u 2 dom(�), if T 2 u, then �(u) 2 [T ℄.(b) For T in P, the onverse of (a) holds for omeager many u indom(�).Proof of Claim 3.6. (a) Suppose T 2 u. We prove �(u) � n 2 T foreah n 2 !. Fix a natural number n. Then by Example 3.3, there is aT 0 in u suh that stem(T 0) � �(u) � n. Sine both T and T 0 are in u,they are ompatible, espeially stem(T 0) 2 T (otherwise [T ℄\ [T 0℄ = ;).Hene �(u) � n 2 T .(b) Take any T in P. Then the set D = fT 0 2 P j T 0 � T or [T 0℄ \[T ℄ = ;g is dense in P. (Take any T 0. If T 0 * T , then there is at0 2 T 0 n T . By strong arborealness of P, T 0t0 2 P and [T 0t0 ℄ \ [T ℄ = ;.)Sine D is dense, the set fu j u\D 6= ;g is dense open in St(P). Hene8For example, if A is a �12 (lightfae) set of reals universal for �12 (boldfae) setsof reals and if every �12 (lightfae) set of reals has the Baire property but there isa �12 (boldfae) set of reals without the Baire property, then A is C -measurable byProposition 2.9, but A is not C -Baire by Example 3.4.



12 D. IKEGAMIit suÆes to show that if u is in dom(�), u \ D 6= ; and �(u) 2 [T ℄,then T 2 u. Suppose T =2 u. Then sine u \D 6= ;, there is a T 0 2 usuh that [T 0℄ \ [T ℄ = ;. By (a), �(u) 2 [T 0℄, hene �(u) =2 [T ℄, aontradition. �(1) We prove the diretion from left to right.We �rst show that ��1(A) is meager if A is in NP. If A is in NP,then the set D = fT j [T ℄ \ A = ;g is dense in P. Hene the set of allu 2 dom(�) with u \D 6= ; is omeager. But if u is in the omeagerset, then there is a T 2 u \ D and by Claim 3.6 (a), �(u) 2 [T ℄ and[T ℄ \ A = ;, in partiular �(u) =2 A. Therefore ��1(A) is meager.We have seen that ��1(A) is meager assuming A is in NP. Sine IPis the �-ideal generated by sets in NP, ��1(A) is meager for all A in IP.We show that ��1(A) is meager if A is in IP�. Sine A is in IP�,the set D0 = fT j [T ℄ \ A 2 IPg is dense in P. We use the followingwell-known fat:Fat 3.7. Let X be a topologial spae and A be a subset of X. Then�SfU j U is open and U \ A is meager g� \ A is meager.Proof of Fat 3.7. See [20, Theorem 8.29℄. �Sine D0 is dense, SfOT j T 2 D0g is open dense. By the above fat,it suÆes to prove that OT \ ��1(A) is meager for any T in D0.Take any T in D0. By the de�nition of D0, we know that [T ℄ \ A isin IP. Hene ��1([T ℄ \ A) is meager in St(P). But by Claim 3.6 (a),OT \ ��1(A) � ��1([T ℄ \ A). Therefore, OT \ ��1(A) is meager as wedesired.Next, we see the diretion from right to left. Suppose ��1(A) ismeager. Take any T in P and we will �nd an extension T 0 of T suhthat [T 0℄\A is in IP. Sine ��1(A) is meager, then there is a sequenehUn j n 2 !i of open dense sets in St(P) suh that Tn2! Un \��1(A) =;. For eah n 2 !, letDn = fS 2 P j OS � Ung. Sine Un is open densein St(P), Dn is dense open in P. We hoose a sequene hAn j n 2 !i ofmaximal antihains suh that An � Dn, for eah element S of An, thelength of stem(S) is greater than n, and An+1 re�nes An, i.e., everyelement of An+1 is below some element in An.Now we use the properness of P to treat eah An as \ountable".Let � be a suÆiently large regular ardinal and X be a ountableelementary substruture of H� suh that P; T; hAn j n 2 !i are in X.By properness, there is an (X;P)-generi ondition T 0 below T . Weshow that [T 0℄ \ A is in IP, whih will omplete the proof of (1).Consider the set B = Tn2!Sf[S℄ j S 2 An \Xg nSn2!f[S℄ \ [S 0℄ jS; S 0 2 An\X and S 6= S 0g. So B is the set of all xs uniquely deiding



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 13whih ondition from An ontains it for eah n. By the property ofhAn j n 2 !i, it will generate a �lter oming from elements in Ans. Thepoint is that any ultra�lter u extending that �lter satis�es �(u) = x,the given element, and that u is in Un for eah n. This will play a rolefor the argument.Now we laim [T 0℄ n B 2 IP and B \ A = ;. We will be done ifwe prove them. The fat that [T 0℄ n B 2 IP follows from the fat thatfS j S 2 An \ Xg is predense below [T 0℄ for eah n beause T 0 is(X;P)-generi and from that [S℄ \ [S 0℄ 2 IP for eah S; S 0 2 An \ Xwith S 6= S 0 beause An is an antihain, and from that An \ X isountable for eah n.To prove B \ A = ;, take any element x from B. As we mentionedabove, for eah n 2 !, there is a unique element Sn in An \ X withx 2 [Sn℄. Sine An+1 re�nes An, Sn+1 � Sn for eah n. Hene theset fSn j n 2 !g generate a �lter Fx. Take any ultra�lter u extendingFx. We laim that �(u) = x and u 2 Un for eah n. By the propertyof hAn j n 2 !i, the length of stem(Sn) is greater than n. Hene, byExample 3.3, �(u) is already deided to be x by Sns. The fat thatu 2 Un for eah n follows from the fat that Sn 2 An � Dn and thede�nition of Dn.Sine we have assumed that Tn2! Un\��1(A) = ;, x does not belongto A beause x = �(u) 2 Un for eah n by Claim 3.6. Hene we haveseen B \ A = ; as we desired.(2) For left to right, we assume A is P-measurable. Then the setD = fT 2 P j either [T ℄ \ A 2 IP or [T ℄ n A 2 IPg is dense. Then theset U = SfOT j T 2 Dg is open dense in St(P). Let U1 = SfOT j[T ℄ n A 2 IPg, U2 = SfOT j [T ℄ \ A 2 IPg. Then U = U1 [ U2. ByLemma 2.13 (1), Lemma 3.1, Claim 3.6 (a), and (1) in this lemma,U1 \ U2 = ;. Hene, it suÆes to show that U1 n ��1(A), U2 \ ��1(A)are meager beause that will imply U14��1(A) is meager.We will only see that U2\��1(A) is meager. The ase for U1n��1(A)being meager is similar. By Fat 3.7, it suÆes to see that OT \��1(A)is meager when [T ℄ \A 2 IP. But if [T ℄ \A 2 IP, then OT \ ��1(A) ���1([T ℄\A) and ��1([T ℄\A) is meager by Claim 3.6 (a), Lemma 2.13(1), and (1) in this lemma. Hene we are done.Now we see the diretion from right to left. Assume ��1(A) has theBaire property in St(P). Then there are open sets U1, U2 suh thatU14��1(A), U24��1(!! nA) are meager. By Lemma 3.1, U1 \U2 = ;and U1 [ U2 is open dense in St(P). Let Di = fT 2 P j OT � Uigfor i = 1; 2. Then D1 [ D2 is dense in P. Hene by Lemma 2.13



14 D. IKEGAMI(2), it suÆes to prove that [T ℄ n A 2 IP� for eah T in D1 and that[T ℄ \ A 2 IP� for eah T in D2.We only prove [T ℄nA 2 IP� for eah T inD1. By (1) in this Lemma, itis enough to see that ��1([T ℄nA) is meager in St(P). But by Claim 3.6(b), ��1([T ℄ nA) is almost the same as OT n ��1(A). Sine T is in D1,by the de�nition of U1, OT n ��1(A) is meager. This ompletes theproof of (2). �Note that if P satis�es the ondition in Lemma 2.13 (5), then we donot need the properness of P for the proofs of Lemma 3.5.Now we are ready to prove Proposition 2.17 and Proposition 2.18.We �rst see the proof of Proposition 2.18:Proof of Proposition 2.18. First we see that the map i is well-de�ned,i.e., [T ℄ is not in IP� for eah T in P. If it were in IP�, then by Lemma 3.5(1), ��1([T ℄) would be meager and OT � ��1([T ℄) by Claim 3.6 (a).Hene OT must be meager, whih ontradits Lemma 3.1. Therefore[T ℄ is not in IP�.It is lear that if T1 � T2, then i(T1) � i(T2). To show the onverse,assume T1 � T2 and we prove that i(T1) � i(T2). Sine T1 � T2, thereis a t 2 T1 whih is not in T2. By strong arborealness of P, (T1)t 2 Pand [(T1)t℄ \ [T2℄ = ;. Hene i((T1)t) � i(T2). Sine (T1)t � T1,i((T1)t) � i(T1). Therefore, i(T1) � i(T2).So it suÆes to see that i\P is dense in �B=IP�� n f0g. Let B be aBorel set whih is not in IP�. We will �nd a T in P with [T ℄ nB 2 IP�.Sine every Borel set is P-Baire, by Lemma 3.5 (2), B is P-measurable.Sine B is not in IP�, there is a T suh that [T ℄ n B 2 IP, hene[T ℄ nB 2 IP� by Lemma 2.13 (1), as we desired. �Proof of Proposition 2.17. (1) Let � = f _xG as in the proof of Lemma 3.5.By Lemma 3.5, a set of reals A is in IP�, i� ��1(A) is meager in St(P).Hene, it suÆes to show that f j ��1(B) is meagerg 2 �12.We will prove the following:(?) ��1(B) is meager () (8M 3 ) �M : a .t.m. of ZFC=) M � \��1(B) is meager"�:First note that the right hand side makes sense beause the statement\P is a strongly arboreal foring" is �12 by the assumption that P isprovably �12, so by downward absoluteness, this is also true inM . Sinethe right hand side is �12, it suÆes to show the above equivalene.The following laim is the key-point:



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 15Claim 3.8. LetM be a ountable transitive model of ZFC with  2 M .If M � \��1(B) is meager", then for any T 2 PM (or P \M), there isa T 0 � T suh that OT 0 \ ��1(B) is meager in V .Proof of Claim 3.8. Take any T in PM . Sine P is provably �12, PM ,�M and ?M are subsets of P, � and ? respetively. Hene, by strongproperness, there is a T 0 � T suh that T 0 is (M;P)-generi.We will show that T 0 satis�es the desired property. For that, wewill use the unfolded Banah-Mazur game. Let U be a tree on ! � !,reursive in  suh that B = p[U ℄ holds in any transitive model of ZFCN with  2 N . Consider the following game G0: player I and II produea dereasing sequene hSn0 � T 0 j n 2 !i one by one and in addition,player II produes a real hyn j n 2 !i. Player II wins if (�(u); y) 2 [U ℄for any u 2 Tn2! OSn0 . Note that we may assume that � is de�ned forany u 2 Tn2!OSn0 and the value of � only depends on the sequenehSn0 j n 2 !i beause we an arrange �(u) = Sn2! stem(Sn0) by strongarborealness of P and Example 3.3.Now it suÆes to show that player II has a winning strategy in thisgame. Sine M � \��1(B) is meager", in M , player II has a winningstrategy � in the game G whih is the same as G0 exept that playerI an start from any ondition in P. The idea is to transfer � to awinning strategy for player II in G0 in V . Instead of writing down awinning strategy for player II in G0, we will desribe how to win thegame G0 for player II as follows:I S00 � T 0 S20 � � �V II (S10; y0) (S30; y1) � � �I S0 S2 � � �M II (S1; y0) (S3; y1) � � �We will onstrut sequenes hSn j n 2 !i, hSn0 j n 2 !i, hyn j n 2 !iwith the following properties:� �hSn0 j n 2 !i; hyn j n 2 !i� is a run in the game G0 in V ,� �hSn j n 2 !i; hyn j n 2 !i� is a run in the game GM in V ,� S2n0 is arbitrarily hosen by player I for eah n,� player II follows � in GM , and� S2n+10 � S2n+1 for eah n.Assuming we have onstruted the above sequenes, we prove thatplayer II wins in the game G0. First note that GM is a losed gamefor player II, hene the strategy � remains winning in V . Therefore,



16 D. IKEGAMI(�(u); y) 2 [U ℄ for any u 2 Tn2! OSn in V . But sine S2n+10 � S2n+1for eah n, (�(u); y) 2 [U ℄ for any u 2 Tn2! OSn0, hene player II winsthe game G0.We desribe how to onstrut the above sequenes. Suppose we havegot h(Si0; Si; yi) j i < 2ni for some n. We will deide S2n0, S2n+10, S2n,S2n+1 and yn. By the above properties, S2n0 is arbitrarily hosen byplayer I and S2n+1, yn will be deided by the rest and �. So let's deideS2n and S2n+10.Let D be the set of all possible andidates for S2n+1 by � and theprevious play hSi j i < 2ni; hyi j i < ni. Then in M , D is dense belowS2n�1 (if it exists). Sine S2n0 � S2n�10 � S2n�1 and T 0 is (M;P)-generi, D \M = D is predense below S2n0. Take an element from Dwhih is ompatible with S2n0 and hoose S2n so that the element wehave taken beomes S2n+1 by � and let S2n+10 be a ommon extension(in V ) of S2n0 and S2n+1. This �nishes the onstrution of the sequenes.�Claim 3.8Now let us prove the equivalene (?):Suppose ��1(B) is meager and assume there is a ountable transitivemodelM of ZFC with  2M suh that M � \��1(B) is not meager".We will derive a ontradition. Sine every Borel set is P-Baire, ��1(B)has the Baire property. Hene there is a T 2 PM suh that in M ,��1(B) is omeager in OT . By Claim 3.6 (a), ��1([T ℄ n B) is almostinluded in OT n ��1(B), hene, in M , ��1([T ℄ n B) is meager inSt(P). Now apply the laim for [T ℄ n B. Then we get a T 0 � T suhthat OT 0 \ ��1([T ℄ nB) is meager. But this means that OT 0 is almostinluded in ��1(B). Sine OT 0 is not meager by Lemma 3.1, ��1(B) isnot meager, whih ontradits the assumption that ��1(B) is meager.For the other diretion, by Fat 3.7, it suÆes to show that for anyT in P, there is a T 0 � T suh that OT 0 \��1(B) is meager. So �x anyT . Then pik a ountable transitive modelM with ; T 2M . Then byClaim 3.8, there is a T 0 � T suh that OT 0 \ ��1(B) is meager, as wedesired.(2) Let x be P-generi over M . Then the set Gx = fT 2 PM j x 2[T ℄g is a PM -generi �lter over M . We show that x =2 B when  is aBorel ode in M with B 2 IP�.Let  be suh a Borel ode. By (1) and the downward absolutenessfor �12-formulas, M � \B 2 IP�". Let iM be the dense embeddingfrom PM to ��B=IP�� n f0g�M de�ned in Proposition 2.18 and iM� (Gx)be the �B=IP��-generi �lter over M indued by iM and Gx. Usingthe fat that IP� is a �-ideal, it is routine to hek that B 2 iM� (Gx)



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 17i� x 2 B for any Borel set B with a ode in M . But the left handside of the above equivalene impliesM � \B =2 IP�", hene by upwardabsoluteness for �12-formulas, B =2 IP�. Sine B 2 IP�, x =2 B as wedesired.(3) Let x be a quasi-P-generi real over M and put Gx = fT 2 PM jx 2 [T ℄g. We show that Gx is a PM -generi �lter over M .We �rst see that Gx meets every maximal antihain of PM in M .Take any maximal antihain A of PM in M . Sine P is provably ,A is ountable in M . Now onsider B = Sf[T ℄ j T 2 Ag. Then B is aBorel set with a ode in M and M � \!! n B 2 IP�". By (1), this isalso true in V . Sine x is quasi-P-generi over M , x =2 B, i.e., x is inB. So Gx meets A.Now we see that Gx is a �lter. Take any two elements T1; T2 in Gx.We will �nd a ommon extension of T1, T2 in Gx. Consider D = fS 2P j ([S℄ \ [T1℄ = ; and [S℄ \ [T2℄ = ;) or (S � T1 and [S℄ \ [T2℄ =;) or (S � T2 and [S℄ \ [T2℄ = ;) or (S � T1; T2)g in M . Then bystrong arborealness of P, D is dense in M . Hene Gx meets D. Takea ondition S from Gx \ D. Then only the last ase in D happensbeause S 2 Gx () x 2 [S℄. Hene S � T1; T2. Therefore, Gx is aPM -generi �lter over M . �There is a lose onnetion between foring absoluteness for P andP-Baireness:Theorem 3.9 (Castells). Let P be a partial order. Then the followingare equivalent:(1) �13-P-absoluteness holds, and(2) every �12-set of reals is P-Baire.Proof. The argument is essentially the same as in [11, Theorem 3.1℄.�4. �13-absolutenessNow we give a preise statement of Theorem 1.3 and prove it. Alsowe will prove related results.Theorem 4.1. Let P be a strongly arboreal, proper foring. Then thefollowing are equivalent:(1) �13-P-absoluteness holds, and(2) every �12-set of reals is P-measurable.Proof. By Theorem 3.9, it suÆes to show that every �12-set of realsis P-measurable i� every �12-set of reals is P-Baire. By Lemma 3.5, it



18 D. IKEGAMIis enough to see that every �12-set of reals is P-Baire assuming every�12-set of reals is P-measurable.The following laim is the key point:Claim 4.2. Let P be a strongly arboreal, proper foring and � be aP-name for a real. Then for any T in P, there is a T 0 � T and a Borelfuntion g : [T 0℄! R suh that T 0  � = g( _xG).Proof of Claim 4.2. This is a ombination of Proposition 2.18 in thispaper and [30, Proposition 2.3.1℄. �Now take any�12-set A and a Baire measurable funtion f from St(P)to the reals. We show that f�1(A) has the Baire property. It suÆesto show that fT j OT \ f�1(A) is meager or OT n f�1(A) is meagerg isdense in P.So take any T in P and we will �nd an extension S of T with the aboveproperty. By the above laim, there is a T 0 � T and a Borel funtiong : [T 0℄ ! R suh that T 0  �f = g( _xG), where �f is the P-name for areal de�ned in Lemma 3.2 (1). Hene, by Lemma 3.2 (3), f = g Æ f _xGalmost everywhere in OT 0. Sine g�1(A) is �12, it is P-measurable bythe assumption. By Lemma 3.5 (2), f�1_xG (g�1(A)) = (g Æ f _xG)�1(A) hasthe Baire property. Hene f�1(A) has the Baire property in OT 0. Inpartiular, there is an S � T 0 suh that either OS \ f�1(A) is meageror OS n f�1(A) is meager as we desired. �Theorem 4.3. Let P be a strongly arboreal, proper foring. Assumethe following:f j  is a Borel ode and B 2 IP�g 2 �12: (�)Then the following are equivalent:(1) �13-P-absoluteness holds,(2) every �12-set of reals is P-measurable, and(3) for any real a and T 2 P, there is a quasi-P-generi real x 2 [T ℄over L[a℄.Proof. We have seen the equivalene between (1) and (2). We will showthe diretion from (1) to (3) and the diretion from (3) to (2).For (1) to (3), take a real a and T in P. We will �nd a quasi-P-generireal x over L[a℄ with x 2 [T ℄. But by the assumption (�), the statement\There is a quasi-P-generi real x over L[a℄ with x 2 [T ℄" is �13 and thisis true in a generi extension V [G℄ with T 2 G by the same argumentas in Proposition 2.17. (Although P might not be provably �12 as weassumed in Proposition 2.17, we used it only to seeM � B 2 IP� whenB 2 IP� in V and this is ensured by the assumption (�) and Shoen�eld



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 19absoluteness without using P being provably �12.) Hene by �13-foringabsoluteness, the statement is also true in V as we desired.For (3) to (2), take any �12-set A and we will show that A is P-measurable. Take any T in P.Case 1: !L[a℄1 < !V1 for any real a.Pik a real a with T 2 L[a℄. By the assumption, the set of all densesets of P in L[a℄ is ountable in V . Hene the set of all P-generi realsover L[a℄ is of measure one w.r.t. IP, (i.e., the omplement of that setis in IP). The rest is a standard Solovay argument to prove regularityproperties in Solovay models. (Atually, every �12-set of reals is P-measurable in this ase.)Case 2: !L[a℄1 = !V1 for some real a.The argument is basially the same as in [7, Proposition 2.1℄. Pika real a with T 2 L[a℄ and suh that !L[a℄1 = !V1 and A is �12(a). Theidea is to deompose [T ℄\A and [T ℄ nA into Borel sets in an absoluteway between L[a℄ and V , and a Borel set ontaining a quasi-P-generireal over L[a℄ must be IP�-positive and below that Borel set we will�nd an extension of T as a witness for P-measurability of A.Sine [T ℄ \ A and [T ℄ n A are �12(a) sets, there are Shoen�eld treesU1 and U2 in L[a℄ for [T ℄ \ A and [T ℄ n A respetively. From thesetrees, we an naturally deompose [T ℄ \ A and [T ℄ n A into !1-manyBorel sets as in [22, 2F.1-2F.3℄, i.e., there are sequenes h� j � < !1i,hd� j � < !1i of Borel odes in L[a℄ suh that [T ℄ \ A = S�<!1 B�and [T ℄ n A = S�<!1 Bd� . The point is that the above equations areabsolute between L[a℄ and V beause those two sequenes only dependon U1; U2 and !1 and !L[a℄1 = !V1 as we assumed.By assumption, there is a quasi-P-generi real x over L[a℄ with x 2[T ℄. Hene there is an � < !1 suh that either x 2 B� or x 2 Bd�.Without loss of generality, we may assume x 2 B�. Sine � is in L[a℄,by the de�nition of quasi-P-generiity, B� is not in IP�. Sine everyBorel set is P-Baire, it is P-measurable by Lemma 3.5 (2). Hene thereis a ondition T 0 suh that [T 0℄nB� 2 IP. Sine B� � [T ℄\A, T 0 � Tand [T 0℄ n A 2 IP, as we desired. �Theorem 4.4. Let P be a strongly arboreal, proper foring. Assumef j  is a Borel ode and B 2 IP�g 2 �12; (�)and IP is Borel generated or IP = NP: (��)Then the following are equivalent:



20 D. IKEGAMI(1) every �12-set of reals is P-measurable, and(2) for any real a, R n fx j x is quasi-P-generi over L[a℄g 2 IP�.Proof. For (1) to (2), take any real a and we show that A = fx jx is quasi-P-generi over L[a℄g is of measure one w.r.t. IP�. Supposenot. Then !!nA =2 IP�. By the assumption (�), !!nA is �12. So by (1),it is P-measurable. Hene there is a T in P suh that [T ℄ n (!! n A) =[T ℄ \ A 2 IP. We show that this annot happen.Case 1: IP is Borel generated, i.e., for any N in IP there is a Borel setB 2 IP suh that N � B.Sine [T ℄ \ A 2 IP, there is a Borel set B � [T ℄ in IP suh that[T ℄ \ A � B. Let  be a Borel ode for B. By Theorem 4.3, there is aquasi-P-generi real x over L[a; ℄ with x 2 [T ℄. Sine B 2 IP, x =2 B.But this is impossible beause x is also quasi-P-generi over L[a℄ andhene x 2 [T ℄ \ A � B.Case 2: IP = NP.In this ase, [T ℄ \ A is P-null, hene there is a T 0 � T suh that[T 0℄ \ A = ;. By Theorem 4.3, there is a quasi-P-generi real x overL[a℄ with x 2 [T 0℄. Hene x 2 [T 0℄ \ A, a ontradition.For (2) to (1), take any �12-set A. We show that A is P-measurable.Let T be in P. We will �nd an extension T 0 of T approximating A asin the de�nition of P-measurability. If [T ℄ \ A 2 IP�, we are done. Sowe assume [T ℄ \ A =2 IP�.Case 1: !L[a℄1 < !V1 for any real a.As in (3) to (2) in Theorem 4.3, in this ase, every �12-set of reals isP-measurable by a standard Solovay argument.Case 2: !L[a℄1 = !V1 for some real a.Let a be a real suh that [T ℄ \ A is �12(a) and !L[a℄1 = !V1 . Then wehave a Shoen�eld tree in L[a℄ for [T ℄\A and we get an !1-many Boreldeomposition of [T ℄\A into Borel sets fB� j � < !1g with � 2 L[a℄for eah � as in the proof of Theorem 4.3. Sine [T ℄ \ A =2 IP� andthe set of quasi-P-generi reals over L[a℄ is of measure one w.r.t. IP�by (2), there is a quasi-P-generi real x over L[a℄ with x 2 [T ℄ \ A, sothere is an � suh that x 2 B�.The rest is the same as in the proof for (3) to (2) in Theorem 4.3.Sine � 2 L[a℄ and x is quasi-P-generi over L[a℄, B� =2 IP�. SineBorel set is P-measurable, there is a T 0 in P suh that [T 0℄ n B� 2 IP.Sine B� � [T ℄ \ A, T 0 � T and [T 0℄ n A 2 IP, as we desired. �



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 215. �14-absolutenessIt is natural to try to generalize the relationship up to the one be-tween �14-foring absoluteness and the regularity properties for�13-setsof reals and �13-sets of reals. But these analogues annot be proved inZFC.9 In this setion, with an additional assumption (sharps for sets),we will prove the analogues of x 4.Theorem 5.1. Let P be a strongly arboreal, proper, �12 foring. Sup-pose every set has a sharp. Then either �12-determinay holds or thefollowing are equivalent:(1) �14-P-absoluteness holds, and(2) every �13-set of reals is P-measurable.Proof. For (1) to (2), the argument is the same as for (1) to (2) in [11,Theorem 3.1℄. What we should hek is that we get the absolute treerepresentation for �13-sets between V and V P. The rest is exatly thesame.For suh tree representation, Feng-Magidor-Woodin used Shoen�eldtrees for �12-sets. With the help of sharps for sets, now we use Martin-Solovay trees for �13-sets. By [13, Theorem 2.1℄, it suÆes to see thatuV2 = uVP2 for the absoluteness of Martin-Solovay trees between V andV P. But this is true assuming every set has a sharp and P being properby [25, Theorem 2.1.9, Example 3.2.7℄.For (2) to (1), �rst note that we may assume that every �13-set isP-Baire by the same argument for (2) to (1) in Theorem 4.1. Theargument is the same as for in [11, Theorem 3.1℄. What we need is touniformize a �12-relation by a �13-funtion (in [11, Theorem 3.1℄, Feng-Magidor-Woodin uniformized a �11-relation by a �12-funtion). Therest is exatly the same. But suh uniformization is possible assumingthe failure of �12-determinay.The author would like to thank Hugh Woodin for pointing out thefollowing fat to him:Theorem 5.2. Suppose every real has a sharp. Then either �12-determinay holds or �13 has the uniformization property, i.e., any�13-relation an be uniformized by a �13-funtion.10Proof. It suÆes to show that every �12-relation an be uniformized bya �13-funtion. Suppose �12-determinay fails. Then there is a real a09Start from L and add !1-many Cohen reals, then in this model, �14-foringabsoluteness for Cohen foring holds but there is a �12-set of reals without theBaire property.10Sine �12-determinay implies that �13 has the uniformization property, thisfat states the dihotomy of the uniformization property for �13 and �13.



22 D. IKEGAMIsuh that for eah real a �T a0, �12(a)-determinay fails, where �T isthe Turing order.Case 1: for any real a �T a0, ay exists.In this ase, by the result of Steel, Ka is �13-orret for any a �T a0,where Ka is the Mithell-Steel ore model.11For eah a �T a0, let <a be the anonial good �13(a)-well-orderingon the reals in Ka. Given a real b and a �12(b)-relation R, de�ne theuniformization f as follows:f(x) = y () y is the �rst <hx;a0;bi-element with (x; y) 2 R,where hx; a0; bi is the real oding x; a0 and b. For eah x 2 dom(R),suh a y always exists beause Khx;a0;bi is �13-orret. So f uniformizesR and regarding the fat that <a is a good �13(a)-well-ordering in Kafor eah a �T a0, it is easy to see that f is �13.Case 2: there is a real a �T a0 suh that ay does not exist.Then there is a real a1 �T a0 suh that for any real a �T a1, ay doesnot exist. By the result of Dodd-Jensen in [10℄, Ka is �13-orret forany a �T a1, where Ka is the Dodd-Jensen ore model. The rest is thesame as Case 1. ��Theorem 5.3. Let P be a strongly arboreal, strongly proper, prov-ably �12 foring. Suppose every set has a sharp. Then either �12-determinay holds or the following are equivalent:(1) �13-P-absoluteness holds,(2) every �13-set of reals is P-measurable, and(3) for any real a and any T 2 P, there is a quasi-P-generi realx 2 [T ℄ over Ka, whereKa = (the Mithell-Steel ore model if ay exists,the Dodd-Jensen ore model otherwise.Proof. In Theorem 5.1, we have seen the equivalene between (1) and(2). We show the diretion from (1) to (3) and the one from (3) to (2).For (1) to (3), all we need is that the statement \there is a quasi-P-generi real x over Ka with x 2 [T ℄" is �14 for eah real a and eah11In [28, Theorem 7.9℄, Steel assumed the existene of two measurable ardinals.We an replae the lower measurable by ay and the greater measurable by ay#.(Reent development of inner model theory even allows one to omit this sharp.Jensen and Steel [17, 16℄ onstruted K without using measurable ardinals.) Forthe details, see [23℄.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 23T 2 P. But this is true by Proposition 2.17 (1) and the fat that theset of reals in Ka is �13(a) in V .The argument for (3) to (2) is basially the same as the one in Theo-rem 4.3. For simpliity, we assume the failure of �12-determinay, henethere is no inner model with a Woodin ardinal. The ase for the fail-ure of �12(a)-determinay for a real a an be dealt with in the sameway.Case 1. !Ka1 < !V1 for any real a.As in Theorem 4.3, we an onlude that every �13-set of reals (even�13-set of reals) is P-measurable by using �13-orretness for Ka. To see�13-orretness for Ka, we need the ase distintion whether ay existsor not. If ay does not exist, this is due to Dodd-Jensen in [10℄. Whenay exists, this is due to Steel.11Case 2. !Ka1 = !V1 for some real a.We need the absolute deomposition of �13-sets into Borel sets be-tween Ka and V for some real a. The following result is essential; itsproof was ommuniated to us by Ralf Shindler:Theorem 5.4 (Shindler). Suppose there is no inner model with aWoodin ardinal. Then if uKa2 < uV2 for any real a, then !Ka1 < !V1 forany real a.Proof. For simpliity, we only prove !K1 < !V1 assuming uKa2 < uV2 foreah real a. To derive a ontradition, we assume !K1 = !V1 . Thefollowing is the �rst point:Claim 5.5. The mouse Kj!1 is universal for ountable mie, i.e.,M ��Kj!1 for any ountable mouse M , where �� is the mouse order.Proof of Claim 5.5. Suppose there is a ountable mouseM withM >�Kj!1. Coiterate them and let T ;U be the resulting trees for M andKj!1 respetively.Case 1: lh(T ) is ountable.Sine M >� Kj!1, U does not have a drop. But then the last modelof U annot be an initial segment of the last model of T sine the lengthof T is ountable, a ontradition.Case 2: lh(T ) is unountable.SineM >� Kj!1, U does not have a drop. If U was non-trivial, thenthe �nal model of U would be non-sound and ould not be a properinitial segment of the �nal model of T . Hene U is trivial and Kj!1 isan initial segment of the �nal model of T . But this means !1 is a limitof ritial points of embeddings via T , hene !1 is inaessible in K,ontraditing the assumption !K1 = !V1 . �



24 D. IKEGAMIBy the same argument, we an prove that Kaj!1 is universal forountable a-mie for eah real a. We now have two ases:Case 1: There is a real a suh that a{ does not exist.This ase was taken are of by Steel and Welh. In [27, Lemma 3.6℄,they assumed u2 = !2, whih is stronger than uKa2 < uV2 for eah reala, and proved there is a ountable mouse stronger than Kj!1 w.r.t.mouse order. But assuming !K1 = !V1 and the non-existene of 0{, wean run their same argument only assuming uK2 < uV2 and get the sameonlusion. Furthermore, we an easily relativize this argument to Ka.Hene assuming !K1 = !V1 (even !Ka1 = !V1 ) and the non-existene ofa{, if uKa2 < uV2 , then there is an a-mouse stronger than Kaj!1 w.r.t.mouse order, whih ontradits the a-relativized version of Claim 5.5.Case 2: for any real a, a{ exists.This ase is new. Sine uK2 < uV2 , there is a real a suh that uK2 <(!+1 )L[a℄. The idea is to use ay (that exists sine a{ exists) and linearlyiterate it with the lower measure in ay with length !1. Then the heightof the last model is bigger than uK2 sine uK2 < (!+1 )L[a℄. Now we restritthis linear iteration map to K in ay onstruted up to the point withthe top measure. The point is this is an iteration map on it and the�nal model of this iteration has height bigger than uK2 . Sine it is aountable mouse, by Claim 5.5, we get a ountable mouse in K with thesame property, whih yields a ontradition by a standard boundednessargument.We will disuss this idea in detail. Let i be the linear iteration map ofay derived from the iterated ultrapower starting from the lower measurein it with length !1. Then the target N of i has height bigger thanuK2 sine uK2 < (!+1 )L[a℄ and the ritial point of i goes to !1 and Nhas a ardinal bigger than !1 and a 2 N . Let Kayj
 be the K in ayonstruted up to 
, the ritial point of the top measure in ay. ThenKayj
 is a mouse and we all it M .We laim that if we restrit i to M , then it is an iteration map onM . Sine i is from a linear iteration of ultrapowers via measures, byapplying the result of Shindler [24℄ in eah ultrapower in the iteration,we an prove that the restrition of i to M is an iteration with length!1 (whih itself might be quite ompliated). Moreover, the �nal modelof this iteration has height greater than uK2 beause i maps 
 greateror equal to (!+1 )L[a℄. Let us all the tree of this iteration T and let M�be the �-th iterate via T and iT�;� : M� !M� be the indued maps for� � � � !1.SineM is a ountable mouse, by Claim 5.5, there is an �0 < !1 suhthat M �� Kj�0. We will show that Kj�0 has the same property, i.e.,



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 25there is an iteration from Kj�0 with length !1 suh that the height ofthe �nal model is greater than uK2 . (Note that there might be a drop.)Coiterate Kj�0 and M and let � : M ! N be the resulted map. Notethat there is no drop from the M -side beause M �� Kj�0.We will onstrut hN� j � � !1i, h�� : M� ! N� j � � !1i, andhiU�;� : N� ! N� j � � � � !1i with the following properties:(1) The diagrams below all ommute,(2) M� �� N� �� M�+1 for eah �,(3) N� is the diret limit of N� (� < �) for limit �, and(4) iU�;�+1 and ��+1 are the resulted maps by the omparison betweenN� and M�+1 for eah �.Kj�0 ///o/o/o N = N0 iU0;1 // N1 iU1;2 // � � � // N� iU�;�+1 // � � � // N!1M =M0�=�0OO iT0;1 // M1�1OO iT1;2 // � � � // M���OO iT�;�+1 // � � � // M!1�!1OO
The above properties uniquely speify hN� j � � !1i, h�� : M� !N� j � � !1i, and hiU�;� : N� ! N� j � � � � !1i. Hene it suÆes tohek (1) and (2) above for this onstrution.For (1), it suÆes to show that iU�;�+1 Æ�� = ��+1 Æ iT�;�+1 for eah �.By the Dodd-Jensen Lemma (e.g., in [32, Theorem 9.2.10℄), any twosimple iteration maps from a mouse to a mouse are the same. By (2)for �, ��, ��+1, iT�;�+1, and iU�;�+1 are all simple iteration maps. Henewe get the desired ommutativity. (2) follows from the fat that all themaps onstruted before are simple iteration maps.Sine the height of N!1 is greater than or equal to that ofM!1 , thereis an iteration from Kj�0 with length !1 whose �nal model has heightgreater than uK2 , as we desired.Sine Kj�0 is in K and �0 is ountable in K, there is a real x in Koding Kj�0. We show that the height of N!1 is less than (!+1 )L[x℄. InL[x℄, we ollapse !V1 with the foring Coll(!; !V1 ). Let g : ! ! !V1 be ageneri surjetion over L[x℄. Sine Kj�0 is oded by x and the length ofiteration is !V1 whih is ountable witnessed by g, by the boundednesslemma in L[x℄[g℄, the height of N!1 is less than !L[x℄[g℄1 = (!+1 )L[x℄, asdesired. Sine x is in K, (!+1 )L[x℄ < uK2 and hene the height of N!1 isless than uK2 . But the height was greater than uK2 . Contradition! �Now by the assumption and the above fat, there is a real a suhthat !Ka1 = !V1 and uKa2 = uV2 . By [13, Theorem 2.1℄, the Martin-Solovay trees for �13-sets are absolute between Ka and V . Sine the



26 D. IKEGAMItrees are on ! � u! and u! is absolute between Ka and V , we get theabsolute deomposition of �13-sets into Borel sets between Ka and Vas we desired. The rest is exatly the same as in Theorem 4.3. �Theorem 5.6. Let P be a strongly arboreal, strongly proper, provably�12 foring. Suppose every set has a sharp. AssumeIP is Borel generated or IP = NP: (��)Then either �12-determinay holds or the following are equivalent:(1) Every �13-set of reals is P-measurable, and(2) for any real a, R nfx j x is quasi-P-generi over Kag 2 IP�, whereKa = (the Mithell-Steel ore model if ay exists,the Dodd-Jensen ore model otherwise.Proof. The argument is exatly the same as Theorem 4.4 by replaingL[a℄ by Ka and using the analogous fats about Ka we have alreadystated. �6. AppliationsIn this setion, we mention two appliations of our theorems to par-tiular ases. One will be proved here and the other is in [9℄.Brendle-Halbeisen-L�owe [7℄ proved the following:Proposition 6.1 (Brendle-Halbeisen-L�owe). Let V be Silver foring.Suppose for any real a there is a quasi-V-generi real over L[a℄. Thenevery �12-set of reals is V-measurable.12Question 6.2 (Brendle-Halbeisen-L�owe). Does the onverse of Propo-sition 6.1 hold?13We answer the above question positively:Proposition 6.3. Assume every�12-set of reals is V-measurable. Thenfor any real a, there is a quasi-V-generi real over L[a℄.Proof. Sine Silver foring is strongly arboreal and proper, by Theo-rem 4.3, it suÆes to show that the set of Borel odes with B 2 IV� is�12. We use the following fat:Fat 6.4 (Zapletal). Let G be the graph on !2 onneting two binarysequenes if they di�er in exatly one plae. Let I be the �-idealgenerated by Borel G-invariant sets (i.e., Borel sets in !2 suh that any12See [7, Proposition 2.1℄. Regarding IV = NV, it is easy to hek that Silvermeasurability in their sense oinides with our V-measurability.13See [7, Question 4℄.



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 27two distint elements of them are not onneted by G). Then everyanalyti set is either in I or ontains [T ℄ for some T 2 V.Proof. See [30, Lemma 2.3.37℄. �We show how to use Fat 6.4 to prove Proposition 6.3. We �rst showthat I � IV. It suÆes to see that every Borel G-invariant set is inNV. Take suh Borel set B. Sine every Borel set is V-measurable andIV = NV, for eah T 2 V, there is a T 0 � T suh that either [T 0℄ � B or[T 0℄\B = ;. But the former ase annot happen beause [T 0℄ ontainsmanyG-onneted elements. Hene [T 0℄\B = ;. Therefore B is V-null.With the above fat, this means every Borel set is either in I orontains [T ℄ for some T 2 V. Hene B 2 IV� i� B is in I, i.e., it isthe union of a ountable set of G-invariant Borel sets. This is easily�12, as we desired. �Regarding IV = NV, the following is a diret onsequene of Theo-rem 4.4 and Proposition 6.3 (or an easy onsequene of [7, Lemma 3.1℄):14Corollary 6.5. The following are equivalent:(1) Every �12-set of reals is V-measurable, and(2) for any real a, the set of quasi-V-generi reals over L[a℄ is ofmeasure one w.r.t NV.Another appliation is for eventually di�erent foring by Brendle-L�owe [9℄. They used Theorem 4.4 to prove that the Baire property ineventually di�erent topology for every �12-set of reals is equivalent tothe statement \!1 is inaessible by reals". For the basi de�nitions andproperties for eventually di�erent foring and its topology, the readeran onsult [21℄. 7. Questions and disussionsWe lose this paper by raising questions and disussing them.7.1. On IP and IP�. Although IP� is the same as IP for most ases aswe have seen in Lemma 2.13, as in Question 2.12, we still do not knowwhether this is true in general. What we ould wish is that this is trueat least for Borel sets:Question 7.1. Let P be a strongly arboreal, proper foring. Then anwe prove B 2 IP i� B 2 IP� for any Borel set B?If this is true, we do not have to mention IP� in our theorems.14This answers [7, Question 3℄ positively.



28 D. IKEGAMI7.2. On the ondition (�) in Theorem 4.3. It is interesting to givesuÆient onditions for P satisfying (�) in Theorem 4.3, i.e., the setof all Borel odes with B 2 IP� is �12. These onditions ould bede�nability onditions on IP� or diretly on P.For the �rst ase, we have a useful suÆient ondition: we say thata �-ideal I on the reals is �12 on �11 if for any analyti set B � !2�!!,the set f j B 2 Ig is �12. It is easy to hek that if IP� is �12 on �11,then (�) holds. Sine IP is �12 on �11 and IP = IP� for most ases, (�)is true for most P.For the seond ase, we ask the following:Question 7.2. Let P be a strongly arboreal, strongly proper, provably�12-foring. Then an we prove (�)?7.3. �12-determinay and �14-foring absoluteness. In Theorem 5.1,we use the failure of �12-determinay to prove the equivalene between(1) and (2). But it ould be that both (1) and (2) are onsequenesof �12-determinay. Sine we have only used sharps for sets for thediretion from (1) to (2), it is enough to see whether �12-determinayimplies �14-foring absoluteness:Question 7.3. Suppose�12-determinay holds. Then an we prove�14-P-absoluteness for eah strongly arboreal, proper, provably �12-foringP?7.4. Sharps for sets vs sharps for reals. In Theorem 5.1, Theo-rem 5.3 and Theorem 5.6, we have assumed the existene of sharps forsets. It is natural to ask whether we an redue this assumption tosharps for reals. The obstale is whether proper forings preserve thestatement \every real has a sharp" and u2:Question 7.4. Suppose every real has a sharp. Let P be a stronglyarboreal, proper, provably �12-foring. Then an we prove that everyreal has a sharp in V P and uV2 = uVP2 ?Finally, we show that in the ase of provably , �11-forings, thingswork perfetly:Proposition 7.5. Let P be a strongly arboreal, provably , �11-foring. Then(1) IP = IP�.(2) IP is Borel generated.(3) The ondition (�) holds. Moreover, f j B 2 IP�g 2 �12.(4) Let M be a transitive model of ZFC. Then a real x is P-generiover M i� x is quasi-P-generi over M .



FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 29(5) If �12-determinay holds, then so does �14-P-absoluteness.(6) If every real has a sharp, then every real has a sharp also in V Pand uV2 = uVP2 .Proof. (1) is already mentioned in Lemma 2.13 (3) and (2) is immediatesine P is .For (3), it suÆes to see the following by Lemma 3.5 (1):��1(B) is meager () (9M 3 ) �M : a ountable transitive modelof ZFC and M � \��1(B) is meager"�() (8M 3 ) �M : a ountable transitive modelof ZFC =) M � \��1(B) is meager"�;where � = f _xG as before.We only show the �rst equivalene. For left to right, if we take aountable elementary substruture X of H� for enough large � suhthat X has all the essential elements, then the transitive ollapse of Xwill do the job for M in the right hand side.For right to left, take an M with the property in the right handside. The idea is the same as the proof of Claim 3.8 in Lemma 2.17(1). This time, we use G, the Banah-Mazur game with a witness for��1(B) starting from any element of P, both inM and V and translatea winning strategy in GM to the one in G.By the assumption, in M , player II has a winning strategy �0 in G.The onstrution of a winning strategy for II inG in V from �0 is exatlythe same as Claim 3.8. But instead of using the (M;P)-generiity fora ondition T 0, we use the following:Claim 7.6. Let D be a dense subset of P in M . Then D is predensein P in V .Proof of Claim 7.6. Let D be a dense subset of P in M . Then sine Pis provably , in M , there is a ountable maximal antihain A � D.But sine P is �11, the statement \a real odes a maximal antihain" is�11 ^�11 and therefore A remains a maximal antihain in V . Hene Dis predense in P in V . �The rest is exatly the same as Claim 3.8. The argument for (4)is exatly the same as for Lemma 2.17 (2) and (3). For (5), see [25,Lemma 2.2.4℄. For (6), see [25, Lemma 2.2.2, Theorem 2.2.7, Exam-ple 3.2.7℄. �
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FORCING ABSOLUTENESS AND REGULARITY PROPERTIES 31[15℄ Thomas Jeh. Set theory. Springer Monographs in Mathematis. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.[16℄ Ronald B. Jensen and John R. Steel. Note on getting almost-true K, 2007.Unpublished manusript.[17℄ Ronald B. Jensen and John R. Steel. Note on weak overing, 2007. Unpublishedmanusript.[18℄ Haim Judah. Absoluteness for projetive sets. In Logi Colloquium '90(Helsinki, 1990), volume 2 of Leture Notes Logi, pages 145{154. Springer,Berlin, 1993.[19℄ Haim Judah and Saharon Shelah. �12-sets of reals. Ann. Pure Appl. Logi,42(3):207{223, 1989.[20℄ Alexander S. Kehris. Classial desriptive set theory, volume 156 of GraduateTexts in Mathematis. Springer-Verlag, New York, 1995.[21℄ G. Labèdzki. A topology generated by eventually di�erent funtions. AtaUniv. Carolin. Math. Phys., 37(2):37{53, 1996. 24th Winter Shool on Ab-strat Analysis (Bene�sova Hora, 1996).[22℄ Yiannis N. Moshovakis. Desriptive set theory, volume 100 of Studies in Logiand the Foundations of Mathematis. North-Holland Publishing Co., Amster-dam, 1980.[23℄ Ralf Shindler. A simple proof of �13-orretness of K. available athttp://wwwmath.uni-muenster.de/logik/Personen/rds/.[24℄ Ralf Shindler. Iterates of the ore model. J. Symboli Logi, 71(1):241{251,2006.[25℄ Philipp Shliht. Thin equivalene relations in L(R) and inner models. PhDthesis, Westf�alishen Wilhelms-Universit�at M�unster, 2008.[26℄ Robert M. Solovay. On the ardinality of �12 sets of reals. In Foundationsof Mathematis (Symposium Commemorating Kurt G�odel, Columbus, Ohio,1966), pages 58{73. Springer, New York, 1969.[27℄ J. R. Steel and P. D. Welh. �13 absoluteness and the seond uniform indis-ernible. Israel J. Math., 104:157{190, 1998.[28℄ John R. Steel. The ore model iterability problem, volume 8 of Leture Notesin Logi. Springer-Verlag, Berlin, 1996.[29℄ W. Hugh Woodin. On the onsisteny strength of projetive uniformization.In Proeedings of the Herbrand symposium (Marseilles, 1981), volume 107 ofStud. Logi Found. Math., pages 365{384, Amsterdam, 1982. North-Holland.[30℄ Jind�rih Zapletal. Desriptive set theory and de�nable foring. Mem. Amer.Math. So., 167(793):viii+141, 2004.[31℄ Jind�rih Zapletal. Foring idealized, volume 174 of Cambridge Trats in Math-ematis. Cambridge University Press, Cambridge, 2008.[32℄ Martin Zeman. Inner models and large ardinals, volume 5 of de Gruyter Seriesin Logi and its Appliations. Walter de Gruyter & Co., Berlin, 2002.
The Institute for Logi, Language and Computation, Universiteitvan Amsterdam, Siene Park 904, 1098 XH, Amsterdam, The Nether-lands



32 D. IKEGAMIVisiting address: Institut f�ur mathematishe Logik und Grundla-genforshung Fahbereih Mathematik und Informatik Universit�at M�unster,Einsteinstra�e 62, 48149, M�unster, Germany, Tel:+49-251-83-33764,Fax:+49-251-83-33 078E-mail address, D. Ikegami: d.ikegami�uva.nl


