
The Norm Implementation Problem
in Normative Multi-Agent Systems

Davide Grossi1, Dov Gabbay2,3, Leendert van der Torre3

1ILLC, University of Amsterdam
d.grossi@uva.nl

2King’s College London
dov.gabbay@kcl.ac.uk

3ICR, University of Luxembourg
leendert@vandertorre.com

Abstract. The norm implementation problem consists in how to see to it
that the agents in a system comply with the norms specified for that system
by the system designer. It is part of the more general problem of how
to synthesize or create norms for multi-agent systems, by, for example,
highlighting the choice between regimentation and enforcement, or the
punishment associated with a norm violation. In this paper we discuss
how various ways to implement norms in a multi-agent system can be
distinguished in a formal game-theoretic framework. In particular, we
show how different types of norm implementation can all be uniformly
specified and verified as types of transformations of extensive games. We
introduce the notion of retarded preconditions to implement norms, and
we illustrate the framework and the various ways to implement norms in
the blocks world environment.

Keywords. Normative systems, multi-agent systems, extensive games, logic.

1 Introduction

Normative multi-agent systems (NMAS) [15] study the specification, design,
and programming of systems of agents by means of systems of norms. Norms
allow for the explicit specification of the standards of behavior the agents in
the systems are supposed to comply with. Once such a set of norms is settled,
the question arises of how to organize the agents’ interactions in the system, in
such a way that those norms do not remain—so to say—dead letter, but they
are actually followed by the agents. Designing a NMAS does not only mean to
state a number of standards of behavior in the form of a set of norms, but also
to organize the system in such a way that those standards of behavior are met
by the agents participating in the system. In other words, norm creation [11]
distinguishes between the creation of the obligation and norm implementation,
because these two problems have different concerns. On the one hand the cre-
ation of the obligation says how the ideal can be reached, and the creation of the

sanction says how agents can be motivated to comply with the norms such that
the ideal will (probably) be reached. The paper moves the first steps towards a
formal understanding of the norm implementation problem, defined as follows.

The norm implementation problem. How to make agents comply with a set
of norms in a system?

In this paper we introduce a formal framework that can represent various
solutions to the norm implementation problem, which can be used to analyze
them, or to make a choice among them. For example, in some cases a norm
cannot be regimented, such as the norm to return books to the library within
two weeks, but in other cases there is the choice between regimentation and
enforcement. It is often assumed that regimenting norms makes the system
more predictable, since agents cannot violate the norms, but as a consequence
it also makes the system less flexible and less efficient. Conceptually, regimen-
tation is easier than enforcement, and since agents are bounded reasoners who
can make mistakes, regimentation is often favored by policy makers. How-
ever, policy makers are bounded reasoners too, who have to make norms in
uncertain circumstances, and therefore most people prefer enforcement over
regimentation—at least, when the legal system is reliable. As another example,
it is often assumed that very high punishments make the system less efficient
than lower ones, due to the lack of incentives for agents once they have violated
a norm. Such assumptions are rarely studied formally.

Although ideas about norm implementation can be found scattered over,
in particular, the multi-agent systems literature (for instance, in OperA [27],
Moise+ [41], AMELI [29], J-Moise+ [42], and in programming languages for
multi-agent system programs [26]), they have not yet been presented in a sys-
tematic and uniform way. One of the aims of the paper is to do so, providing a
formal overarching framework within which it becomes possible to place and
compare existing contributions. So the first requirement on a framework for
norm implementation is that it can represent existing widely discussed norm
implementation methods such as regimentation and enforcement via sanction-
ing. Moreover, a second requirement is that such a framework can also repre-
sent and reason about new ways of norm implementation, such as changing
the existing norms or the method, which we will study in detail, of retarded
preconditions. A formal framework may even suggest new ways to implement
norms, not discussed before. Our research problem therefore breaks down into
the following sub-questions:

1. How is the specification and verification of norm implementation methods
related to general specification and verification of multiagent systems?

2. Which formal model can we use to specify and verify norm implementation,
and more generally study the norm implementation problem?

3. How to model regimentation in the general formal model of norm imple-
mentation?

4. How to model enforcing in the general formal model of norm implementa-
tion?

5. How to model norm change in the general formal model of norm imple-
mentation?

The specification of normative multi-agent systems often considers a set of
agents and a set of norms or organization, which can be specified and verified
independently. However, when the set of norms is not designed off-line, but
created dynamically at run-time, then this approach does not work. Instead,
one can only specify the way in which norms are implemented in a system.

The perspective assumed for the formal framework is based on formal logic
and the primary aim of the paper is to present a simple class of logical models,
and of transformations on them, as salient representations of the implementation
problem. Moreover, we use a game-theoretic approach. We use the simplest
approach possible, so we can focus on one same framework for many kinds
of norm implementation, and are not lost in technical details about individual
approaches. As in classical game theory, our actions are abstract and we do
not consider issues like causality. We consider only perfect information games,
and we thus do not consider the problem of how norms are distributed and
communicated to a society. Moreover, we do not consider concurrent actions of
the agents in the composition of actions in plans, although this feature could
easily be added. However, we do represent the order of actions, that is, we use
extensive form games, because we need to do so to distinguish some of the norm
implementation methods, and thus we do not use the more abstract strategic
form used in most related work (such as Tennenholtz and Shoham’s artificial
social systems [62]). We do not go into details of solution concepts of game
theory, and we thus basically use a kind of state automata or process models.
Within a game-theoretic approach, we need to represent four things: the game
without the implemented norm, the game together with the implemented norm,
the procedure to go from the former to the latter, and the compliance criterion
stating the conditions when norms are fulfilled.

We test our model also by introducing the notion of implementation via
retarded preconditions. For example, assume that in the tax regime of a country,
for people who leave the country there is a period of three years after which
it is checked whether someone has really left the country. In this example, the
precondition is checked only after three years, and if the person has returned
to the country, the consequences of leaving the country are retracted. Likewise,
with actions with nondeterministic effects, we can say that the precondition
depends on the effect. For example, if there are no concurrent updates in the
database, then the update will be accepted, otherwise it will be rolled back. In
the blocks world, which will be used as running example throughout the paper,
assume that a block may not be put on another block if it stays there for three
minutes. If it stayed there for three minutes, then we can undo the action of
putting the block on top of the other one (alternatively, one can sanction it, of
course). Retarded preconditions offer more flexibility than simple regimenta-
tion. For example, consider the norm that it is forbidden to throw 6 on a dice.
With retarded preconditions, we can throw the dice and do a roll-back when
6 appears. Without retarded preconditions, the only way to regiment it, is to

forbid throwing the dice. We distinguish norm regimentation from automatic
enforcement and enforcement agents, assuming actions can be taken only if pre-
conditions hold. Some of such actions are forbidden, so all actions in order to
be taken must satisfy the precondition. For regimentation we consider violation
conditions as retarded preconditions of actions. In this action model, assumed
actions can be taken in some cases even though the preconditions do not hold.
When a violation occurs, i.e., when the retarded precondition does not hold, the
various strategies to implement norms follow as a consequence.

We illustrate the framework and the various ways to implement norms in
the blocks world environment, because the well-known planning environment
explains the use of normative reasoning and the challenges of norm implemen-
tation for a large AI audience. There are many variants of the blocks world
around, we use a relatively simple one with deterministic actions and without
concurrent actions. An alternative well-known example we could have chosen
is the Wumpus world from Russel and Norvig’s textbook [60].

We assume that all norms and their implementations are known once they
are created, and we thus do not study the norm distribution problem. Moreover,
we assume that everyone accepts the existence of a new norm, even when he
does not comply with it. Thus, we do not consider the norm acceptance problem.
We do not consider cognitive aspects of agents, and we thus do not consider
the bridge between our framework for MAS and existing BDI frameworks for
cognitive agents (see, e.g., [14]).

The paper follows the research questions and proceeds as follows. In Sec-
tion 2 we give a short introduction in the use of normative systems in computer
science in general, and specification and verification of normative multi-agent
systems in particular. In Section 3 we start with the game-theoretic framework
for norm implementation and a logic for representing extensive games, and we
introduce a running example. Sections 4, 5, 6, and 7 provide formal semantics
to the four implementation strategies of regimentation, enforcement, enforcers,
and, respectively, normative change. In presenting such semantics due care
will be taken to relate our framework to existing literature showing how the
framework is general enough to categorize, at a higher abstraction level, the
various contributions available in the literature. The findings of each section is
illustrated by means of the running example. In Section 8 related work at the
intersection of norms and multi-agent systems is discussed. Conclusions follow
in Section 9.

2 Normative multi-agent systems

In this section we first give a short summary of the main issues in using nor-
mative systems in computer science, and thereafter we discuss the specification
and verification of normative multi-agent systems.

2.1 Normative systems in computer science

The survey of the role of normative systems in computer science in this section
is taken from [7]. For a discussion on philosophical foundations for normative
multi-agent systems, see [8, 37].

There is an increasing interest in normative systems in the computer science
community, due to the observation five years ago in the so-called AgentLink
Roadmap [51, Fig. 7.1], a consensus document on the future of multi-agent
systems research, that norms must be introduced in agent technology in the
medium term (i.e., now!) for infrastructure for open communities, reasoning in
open environments and trust and reputation. The first definition of a normative
multi-agent system emerged after two days of discussion at the first workshop
on normative multi-agent systems NorMAS held in 2005 as a symposium of
the Artificial Intelligence and Simulation of Behaviour convention (AISB) in
Hatfield, United Kingdom:

The normchange definition. “A normative multi-agent system is a multi-agent
system together with normative systems in which agents on the one hand
can decide whether to follow the explicitly represented norms, and on the
other the normative systems specify how and in which extent the agents
can modify the norms” [15].

A distinction has been made between systems in which norms must be ex-
plicitly represented in the system (the ‘strong’ interpretation) or that norms must
be explicitly represented in the system specification (the ‘weak’ interpretation).
The motivation for the strong interpretation of the explicit representation is to
prevent a too general notion of norms. Any requirement can be seen as a norm
the system has to comply with; but why should we do so? Calling every require-
ment a norm makes the concept empty and useless. The weak interpretation is
used to study the following two important problems in normative multi-agent
systems.

Norm compliance. How to decide whether systems or organizations comply
with relevant laws and regulations? For example, is a hospital organized
according to medical regulations? Does a bank comply with Basel 2 regula-
tions?

Norm implementation. How can we design a system such that it complies
with a given set of norms? For example, how to design an auction such that
agents cannot cooperate?

Norms are often seen as a kind of (soft) constraints that deserve special
analysis. Examples of issues which have been analyzed for norms but to a less
degree for other kinds of constraints are ways to deal with violations, represen-
tation of permissive norms, the evolution of norms over time (in deontic logic),
the relation between the cognitive abilities of agents and the global properties
of norms, how agents can acquire norms, how agents can violate norms, how
an agent can be autonomous [24] (in normative agent architectures and decision

making), how norms are created by a legislator, emerge spontaneously or are
negotiated among the agents, how norms are enforced, how constitutive norms
are used to describe institutions, how norms are related to other social and legal
concepts, how norms structure organizations, how norms coordinate groups
and societies, how contracts are related to contract frames and contract law,
how legal courts are related, and how normative systems interact?

Norms can be changed by the agents or the system, which distinguishes
this definition of normative multi-agent system from the common framework
used in the Deontic Logic in Computer Science (or ∆EON) community, and
led to the identification of this definition as the “normchange” definition of
normative multi-agent systems. For example, a norm can be made by an agent,
as legislators do in a legal system, or there can be an algorithm that observes
agent behavior, and suggests a norm when it observes a pattern. The agents
can vote on the acceptance of the norm. Likewise, if the system observes that a
norm is often violated, then apparently the norm does not work as desired, and
it undermines the trust of the agents in the normative system, so the system can
suggest that the agents can vote whether to retract or change the norm.

After four days of discussion, the participants of the second workshop on
normative multi-agent systems NorMAS held as Dagstuhl Seminar 07122 in
2007 agreed to the following consensus definition:

The mechanism design definition. “A normative multi-agent system is a multi-
agent system organized by means of mechanisms to represent, communi-
cate, distribute, detect, create, modify, and enforce norms, and mechanisms
to deliberate about norms and detect norm violation and fulfilment.” [17]

According to Boella et al., “the emphasis has shifted from representation
issues to the mechanisms used by agents to coordinate themselves, and in gen-
eral to organize the multi-agent system. Norms are communicated, for example,
since agents in open systems can join a multi-agent system whose norms are
not known. Norms are distributed among agents, for example, since when new
norms emerge the agent could find a new coalition to achieve its goals. Norm
violations and norm compliance are detected, for example, since spontaneous
emergence norms of among agents implies that norm enforcement cannot be
delegated to the multi-agent infrastructure.” [17] They refer to game theory in
a very liberal sense, not only to classical game theory studied in economics,
which has been criticized for its ideality assumptions. Of particular interest are
alternatives taking the limited or bounded rationality of decision makers into
account.

Games can explain that norms should satisfy various properties to be ef-
fective as a mechanism to obtain desirable behavior. For example, the system
should not sanction without reason, as the norms would loose their force to mo-
tivate agents. Moreover, sanctions should not be too low, but they also should
not be too high. Otherwise, once a norm is violated, there is no way to prevent
further norm violations.

Games can explain also the role of various kinds of norms in a system. For
example, assume that norms are added to the system one after the other and this

operation is performed by different authorities at different levels of the hierarchy.
Lewis “master and slave” game [48] shows that the notion of permission alone
is not enough to build a normative system, because only obligations divide
the possible actions into two categories or spheres: the sphere of prohibited
actions and the sphere of permitted (i.e., not forbidden) actions or “the sphere
of permissibility”. More importantly, Bulygin [22] explains why permissive
norms are needed in normative systems using his “Rex, Minister and Subject”
game. “Suppose that Rex, tired of governing alone, decides one day to appoint
a Minister and to endow him with legislative power. [...] an action commanded
by Minister becomes as obligatory as if it would have been commanded by Rex.
But Minister has no competence to alter the commands and permissions given
by Rex.” If Rex permits hunting on Saturday and then Minister prohibits it for
the whole week, its prohibition on Saturday remains with no effect.

As another example, Boella and van der Torre’s game theoretic approach to
normative systems [16] studies the following kind of normative games.

Violation games: interacting with normative systems, obligation mechanism,
with applications in trust, fraud and deception.

Institutionalized games: counts-as mechanism, with applications in distributed
systems, grid, p2p, virtual communities.

Negotiation games: MAS interaction in a normative system, norm creation ac-
tion mechanism, with applications in electronic commerce and contracting.

Norm creation games: multi-agent system structure of a normative system,
permission mechanism, with applications in legal theory.

Control games: interaction among normative systems, nested norms mecha-
nism, with applications in security and secure knowledge management
systems.

Norms are not only seen as the mechanism to regulate behavior of the
system, but they are often also part of a larger institution. This raises the question
what precisely the role of norms is in such an organization. Norms are rules
used to guide, control, or regulate desired system behavior. However, this is
not unproblematic, since norms can be violated, and behavior of agents may
change in unexpected ways when norms are introduced due to self organization.
Norms can also be seen as one of the possible incentives to motivate agents,
which brings us again back to economics. The fact that norms can be used as a
mechanism to obtain desirable system behavior, i.e., that norms can be used as
incentives for agents, implies that in some circumstances economic incentives
are not sufficient to obtain such behavior. For example, in a widely discussed
example of the so-called centipede game, there is a pile of thousand pennies,
and two agents can in turn either take one or two pennies. If an agent takes one
then the other agent takes turn, if it takes two then the game ends. A backward
induction argument implies that it is rational only to take two at the first turn.
Norms and trust have been discussed to analyze this behavior, see [40] for a
discussion.

A rather different role of norms is to organize systems. To manage properly
complex systems like multi-agent systems, it is necessary that they have a mod-

ular design. While in traditional software systems, modularity is addressed via
the notions of class and object, in multi-agent systems the notion of organiza-
tion is borrowed from the ontology of social systems. Organizing a multi-agent
system allows to decompose it and defining different levels of abstraction when
designing it. Norms are another answer to the question of how to model orga-
nizations as first class citizens in multi-agent systems. Norms are not usually
addressed to individual agents, but rather they are addressed to roles played
by agents [12]. In this way, norms from a mechanism to obtain the behavior
of agents, also become a mechanism to create the organizational structure of
multi-agent systems. The aim of an organizational structure is to coordinate
the behavior of agents so to perform complex tasks which cannot be done by
individual agents. In organizing a system all types of norms are necessary, in
particular, constitutive norms, which are used to assign powers to agents play-
ing roles inside the organization. Such powers allow to give commands to other
agents, make formal communications and to restructure the organization itself,
for example, by managing the assignment of agents to roles. Moreover, norma-
tive systems allow to model also the structure of an organization and not only
the interdependencies among the agents of an organization. Roles are played
by other agents, real agents (human or software) who have to act as expected
by their role. Each of these elements can be seen as an institution in a normative
system, where legal institutions are defined by Ruiter [59] as “systems of [reg-
ulative and constitutive] rules that provide frameworks for social action within
larger rule-governed settings”. They are “relatively independent institutional
legal orders within the comprehensive legal orders”.

The second NorMAS workshop identified a trend towards a more dynamic
interactionist view: “This shift of interest marks the passage of focus from the
more static legalistic view of norms (where power structures are fixed) to the
more dynamic interactionist view of norms (where agent interaction is the base
for norm related regulation).” This ties in to what Strauss [64] called “negotiated
order”, Goffman’s [33] view on institutions, and Giddens’ [32] structuration
theory. See [17] for a further discussion.

2.2 Specification and verification of normative multi-agent systems

The motivation of our work is to provide an answer to the more general issue
of finding a logical formalism that could play for programming NMAS the role
that BDI logics (e.g. [57]) have played for the programming of single agents.
Such an issue was recognized as central for the NMAS community during the
NorMAS’07 Datstuhl Seminar [16], and it was raised in the following incisive
form:

BDI : Agent Programming = ? : NMAS Programming.

This equation represents two issues. First, it raises the question about which
concepts should be used for programming NMAS, given that cognitive concepts
like beliefs, desires and intentions are used to program individual agents. There

is some consensus that instead of cognitive concepts, for normative multi-agent
systems social and organizational concepts are needed, such as trust, norms and
roles. Second, from a logical perspective, it raises the question which logical
languages used for specification and verification can be used for NMAS, like
BDI-CTL is used for single agents. Thus far, only partial answers have been
given to this question. For example, deontic logic can be used to represent
norms, but it cannot be used to say how agents make decisions in normative
systems, and about the multi-agent structure of normative systems.

In the traditional framework of artificial social systems, norms are designed
off-line [62]. Thus, a norm is part of the specification of the multi-agent sys-
tem, and the normative multi-agent system can be specified and verified using
traditional techniques. For example, since BDI-CTL [23] is used as a formal
specification and verification language for agent programming, and it has been
extended with deontic concepts such as obligations and permissions, called
BOID-CTL [20,21]. Such a logic is simply a modal combination of an agent logic
and a modal deontic logic. One drawback of this approach is that the norms
are not represented explicitly, see Section 8. However, a more fundamental
problem with this approach for the specification and verification of normative
multi-agent systems is that it is difficult to generalize this approach to the case
where norms are created or synthesized at run-time.

The main challenge of specification and verification of normative multiagent
systems is the specification and verification of norm change, and in particular
the specification and verification of norm creation. Norm creation distinguishes
between the creation of the obligation or prohibition, and the creation of the
associated sanction. For example, the obligation may be to return books to the
library within three weeks, and the sanction associated with its violation is that
a penalty has to be paid, and no other books can be borrowed. The creation of
the obligation is often called the norm design or synthesis problem [62], and the
creation of the sanction is an example of what we call the norm implementation
problem. Thus, in the library example, the norm implementation problem is
that given that we want people to return their books within three weeks, how
can we build a system such that they will actually do so? However, introducing
sanctions is not the only way to implement norms. In other cases, the norm can
be regimented, or instead of penalties, rewards can be introduced.

An alternative motivation to break down the specification of a normative
multi-agent system is common in computer science: divide and conquer. We dis-
tinguish the specification and verification of normative multi-agent systems in
three steps: the specification and verification of the agents, the specification and
verification of the normative system, and the specification and verification of
combining these two systems: the norm implementation problem. This reflects
a common ontology of normative multi-agent systems. For example, Figure 1
shows the ontology of Boella et al [18] containing a number of concepts related
to each other. They divide their ontology in three submodels: the agent model,
the institutional model, and the role assignment model, as shown in Figure 1.
Roughly, an institution is a structure of social order and cooperation govern-

ing the behavior of a set of individuals. Institutions are identified with a social
purpose and permanence, with the enforcing of rules governing cooperative
human behavior. The figure visualizes the three submodels which group the
concepts of their ontology.

Fig. 1. The conceptual metamodel [18].

As Boella et al. observe, such a decomposition is common in organizational
theory, because an organization can be designed without having to take into
account the agents that will play a role in it. For example if a node with the role
of simple user becomes a VO administrator, then this remains transparent for
the organizational model. Likewise, agents can be developed without knowing
in advance in which institution they will play a role. As shown in Figure 1, the
agent view is composed by concepts like agent, goal and skill or ability and
they are represented by means of a social dependence networks in which nodes
are the agents and the edges are the representation of goal-based dependencies.
The institutional view, instead, is composed by the notion of role and its institu-
tional goals, skills and facts. As for the agent view, also the institutional one is
represented by means of a social institutional dependence network representing
the norm-based dependency relations among roles. The role assignment view
associates to each agent the roles it plays, depending on the organization in
which the agent is playing. All these notions are unified in the combined view
where the dependence network represents at the same time both goal-based
dependencies and norm-based ones connecting the agents playing roles.

The norm implementation problem combines the specification and verifica-
tion of agents and norms, analogous to the role assignment problem combines
these two specifications. However, it does not consider organizational issue of
role assignment, but the question how to ensure that agents do comply with
the norms. The decomposition in the role assignment problem is based on the

rationale that organizations must be designed independently of the agents that
will play a role in it. The decomposition for the norm implementation problem
is based on the rationale that in specifying a normative system, it makes sense
to first specify the sub-ideal states the system should avoid, and thereafter how
to ensure that the system avoids these sub-ideal states. If one norm implemen-
tation method does not work, then it can be replaced by another one, without
changing the underlying norms.

2.3 Assumptions of norm implementation

Summarizing, the norm implementation problem is the part of the more gen-
eral problem of norm creation which lends itself to specification and verifica-
tion, since it focusses on the well-defined choice between regimentation and
enforcement, or the punishment associated with a norm violation. For example,
whether it is hard to give general guidelines for the violation states, since they
can be defined by the agents at run-time, it is more straightforward to specify
how these violation states must be avoided.

The assumption underlying our research problem is that the norm imple-
mentation problem can be studied in isolation. We thus disagree with the com-
mon idea that norm implementation can be studied only together with the norm
design problem, in the context of norm creation. For example, when a system
designer has to choose among various kinds of norms, at the same time he has
to take into account how the norm can be implemented. If a norm is chosen
which cannot be implemented, such that it will not be complied with, then
the norm may even be counterproductive, undermining the belief or faith into
the normative system (in particular, this holds for legal systems). Though we
agree that a choice among norms also has to take the available implementations
into account, we believe that this is not an argument against studying norm
implementation in isolation.

3 Formal framework and running example

The present section sets the stage of our formal investigations.

3.1 Norms and logic

The formal representation of norms by means of logic has a long-standing
history. In the present paper we assume a very simple perspective based on
[2, 47, 53] representing the content of norms as labeling of a transition systems
in legal and illegal states, which we will call violation states. In this view, the
content of a normative system can be represented by a set of statements of the
form:

pre→ [a]viol (1)

that is, under the conditions expressed in pre, the execution of action a neces-
sarily leads to a violation state. Such statements can be viewed as constraints

on the labeling of transition systems. Restating Formula (1), all states which are
labelled pre are states such that by executing an a-transition, states which are
labelled viol are always reached.1

It follows that a set of formulae as Formula (1) defines a set of labelled transi-
tion systems (i.e., the set of transition systems satisfying the labeling constraints
stated in the formulae), and such a set of transition systems can be viewed as
representing the content of the normative system specified by those formulae.

Now, within a set of transition systems modeling a set of labeling constraints,
transition systems may make violation states possibly reachable by transitions
in the systems, and others possibly not. So, from a formal semantics perspective,
we can think of the implementation problem as the problem of selecting those
transition systems which:

1. Model a given normative system specification in terms of labeling con-
straints like Formula (1);

2. Make some violation states unreachable within the transition system, hence
regimenting [46] the corresponding norms;

3. Make other violation states reachable but, at the same time, disincentivizing
the agents to execute the transitions leading to those states, for instance by
triggering appropriate systems reactions such as sanctioning, thus enforcing
the corresponding norms [35].

To sum up, normative systems can be studied as sets of labeling constraints
on the systems’ transitions generated by agents’ interaction, and the implemen-
tation problem amounts to designing the NMAS according to those transition
systems which, on the one hand, model the labeling constraints and, on the
other hand, make the agents’ access to violation states either impossible (regi-
mentation), or irrational (enforcement). What we mean by the term “irrational”
is precisely what is studied by game theory [56], because due to punishments
for norm violations the agent is motivated to fulfill the norm. Of course, this
does not exclude the possibility that in some circumstances an agent may ignore
this incentive and violate the norm. On the contrary, this is one of the reasons
why sometimes enforcement is preferred to regimentation, because the creator
of the norm cannot foresee all possible circumstances, and it is left to the rational
agent to accommodate the local circumstances. The next section moves to the
fundamental role that —we think— game theory can play for the analysis of the
norm implementation problem.

3.2 Norm implementation and games

In a social setting, like the one presupposed by NMAS, action essentially means
interaction. Agents’ actions have repercussions on other agents which react ac-
cordingly. Norm enforcement takes care that agents’ actions leading to violation
states happen to be successfully deterred, either by a direct system reaction or,

1 The reader is referred to [5] for more details on the logical study of labelled transition
systems.

as we will see, by means of other agents’ actions. The readily available formal
framework to investigate this type of social interaction is, needless to say, game
theory. The present paper uses the term implementation in the technical sense
of implementation theory, i.e., that branch of game theory which, together with
mechanism design [43–45, 52], is concerned with the design of the interaction
rules—the “rules of the game” [54] or mechanisms—to be put into place in a
society of autonomous self-interested agents in order to guarantee that the in-
teractions in the society always result in outcomes which, from the point of view
of the society as a whole (or from the point of view of a social designer), are
considered most desirable (e.g., outcomes in which social welfare is realized).2

In this paper we are going to work with games in extensive forms [56].
Games in extensive form have recently obtained wide attention as suitable tools
for the representation of social processes [3]. However, the key advantage for
us of choosing games in extensive form is that such games are nothing but
tree-like transition systems. This allows us to directly apply the logic-based rep-
resentation of norms exposed in Section 3.1, thus obtaining a uniform formal
background for talking about both norms and games and, hence, for formulat-
ing the norm implementation problem in an exact fashion. To ease such exact
formulation, we will make use of a simple running example.

3.3 Running example: ruling the Blocks World

We assume a multi-agent variant of the blocks world, where agents cannot do
concurrent actions (so we do not consider the issue of lifting a block simultane-
ously). Therefore we assume that the agents have to take actions in turn.

In the standard blocks world scenario [60], the pre- and postcondition spec-
ification of the action move(a,b, c) (“move block a from the top of b to the top of
block c”) runs as follows:

(on(b,a) ∧ clear(c) ∧ clear(b) ∧ turn(i))↔ 〈move(b,a, c)(i)〉> (2)
(on(b,a) ∧ clear(c) ∧ clear(b) ∧ turn(i))→ [move(b,a, c)(i)]((on(b, c)

∧clear(b) ∧ clear(a)) (3)

that is to say: the robotic arm i can execute action move(b,a, c) iff it is the case
that both blocks b and c are clear, and it is its ‘turn’ to move;and the effect of
such action is that block b ends up to the top of block c while block a becomes
clear. By permutation of the block identifiers, it follows that action move(a,d, c)
cannot be executed in the state depicted in Figure 2, in which block d represents
the floor. We assume background knowledge such that, for example, on(b, c)
implies ¬clear(c).

Suppose now the robotic arm to be in state of executing action move(a,d, c)
also if block a is not clear, thus possibly moving a whole stack of blocks at one

2 Therefore, when we talk about norm implementation we are not referring to the term
implementation in its programming acception like, for instance, in [31].

a c

b

d

Fig. 2. Initial state.

time. Suppose also that the system designer considers such actions as undesir-
able. In this case the robotic arm can be considered as an autonomous agent,
and the designer as a legislator or policymaker. In order to keep the example
perspicuous, the scenario is limited to one agent, but we can express multiple
agents analogously. The action move(a,d, c) would get the following specifica-
tion. Formula (4) does no longer demand clear(a), but Formula (5) does not
specify the effect when this is the case, i.e., when two or more blocks are moved
simultaneously.

(on(a,d) ∧ clear(c) ∧ turn(i))↔ 〈move(a,d, c)(i)〉> (4)
(on(a,d) ∧ clear(c) ∧ clear(a) ∧ turn(i))→ [move(a,d, c)(i)](on(a, c)

∧clear(a)
∧¬clear(c)) (5)

(on(a,d) ∧ clear(c) ∧ ¬clear(a) ∧ turn(i))→ [move(a,d, c)(i)](on(a, c)
∧¬clear(a)
∧¬clear(c)
∧viol(i)) (6)

where viol(i) intuitively denotes a state brought about by agent i which is
undesirable from the point of view of the system designer.

Suppose also that the system designer wants to implement the norm ex-
pressed by Formula (6).3 The paper tackles this question displaying a number
of strategies for norm implementation (Sections 4, 5, 6 and 7).

3.4 Talking about norms and extensive games in the Blocks World

In this section we bring together the logic-based perspective on norms sketched
in Section 3.1 with the game-theoretic setting argued for in Section 3.2. This
will be done in the context of the Blocks World scenario of the previous section.
As a result we obtain a very simple modal logic language4 which suffices to

3 Notice that Formula (6) is an instance of Formula (1).
4 For a comprehensive exposition of modal logic the reader is referred to [6].

express the properties of extensive games relevant for the purpose of the norm
implementation analysis of the Blocks World.

Language. The language is the standard propositional modal logic language
with n modal operators, where n = |Act|, that is, one modal operator for each
available transition label. In addition, the non-logical alphabet of the language,
consisting of the set of atomic propositions Pr and of atomic actions Act, contains
at least:

– Atoms inPrdenoting game structure: for all agents i ∈ I, turn(i), payoff(i, x),
labeling those states where it is player’s i turn, and where the payoff for
player i is x, where x is taken from a finite set of integers. The set of atoms
denoting payoffs is referred to as Prpay.

– Atoms in Pr denoting Blocks World states-of-affairs: for all blocks a,b ∈
B,on(a, b), clear(a), labeling those states where block a is on block b, and
where block a has no block on it.

– Atoms in Pr denoting normative states-of-affairs: for all agents i ∈ I, viol(i),
labeling those states where player i has committed a violation.

– Atoms in Act denoting deterministic transitions: for all agents i ∈ I and
blocks a,b, c ∈ B: move(a,b, c)(i), labeling those state transitions where
player i moves block a from the top of block b to the top of block c.

The inductive definition of the set of formulae obtained from compounding
via the set of Boolean connectives {⊥,¬,∧} and the modal connectives {〈a〉}a∈Act
is the standard one.

Semantics. Models are labelled transition systems m = 〈W,Wend, {Ra}a∈Act,I〉
such that:

– W is a non-empty set of system states;
– {Ra}a∈Act is a family of labelled transitions forming a rooted finite tree, i.e.

there is a node such that there is a unique path from this node to all other
nodes;

– Wend are the leaves of the finite tree;
– I : Pr −→ 2W is the state labeling function.

The standard satisfaction relation |= between pointed models (m,w) and modal
formulae is assumed [6]. In addition, the models are assumed to satisfy the
determinism condition, for all a ∈ Act:

〈a〉φ→ [a]φ.

Please note that such a condition is typical of the representation of actions within
games in extensive form.5

Now everything is put into place to formulate with exactness the question
that will be addressed in the next sections. Consider a model m as represented

5 The reader is referred, for more details, to [4].

w1

w3

w2

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(i)
+

-

Fig. 3. Initial model.

in Figure 3. State w1 is assumed to satisfy the relevant Blocks World description
of Figure 2: (m,w1) |= on(a,d) ∧ clear(c) ∧ clear(b) ∧ ¬clear(a).6 Notice that
in the model it is also assumed that agent i leans towards executing the action
“−” leading to the viol(i)-state which has got a higher payoff. The actions and
the violation conditions are given in the norm implementation problem. For
example, there may have been an obligation to do +, a prohibition to do −,
an obligation to reach state w2, or a prohibition to reach w3. Which norm is
created is part of the norm synthesis or creation problem, but not part of the
norm implementation problem. For the latter problem discussed in this paper,
the structure of Figure 3.

Consider now a normative specification as represented by formulae like
Formula (6), together with an initial model (such as the one in Figure 3). What
are the transformations of the model m, guaranteeing that the agents in the
system will comply with the normative specification? This is, in a nutshell,
what we are going to investigate in the remainder of the paper.

3.5 Two important caveats

Before starting off with our analysis, we find it worth stating explicitly also what
this work is not about.

The issue of norm implementation as intended here has already received
attention in the literature on MAS in the form of the quest for formal languages
able to specify sanctioning and rewarding mechanisms to be coupled with nor-
mative systems specifications. An example in this sense—but not the unique

6 To avoid clutter in figures and notation, in what follows forbidden actions (e.g.
move(a,d, c)(i) at w1) are denoted by “−”, and allowed actions (e.g. move(b,a, c)(i)
at w1) are denoted by “+”. We are confident that this notational simplification will not
give rise to misunderstandings.

one—is [50], where authors are concerned with the development of a whole
framework for the formal specification of NMAS. Such a framework is able
to capture also norm-implementation mechanisms such as sanctioning and re-
warding systems. As our research question discussed in Section 1 shows, our
aim in this paper differs from all such studies which can be found in the litera-
ture. The purpose of the paper is not to develop a formalism for the specification
of one or another mechanism which could be effectively used for implement-
ing norms in MAS. Rather, the paper aims at moving a first step towards the
development of a comprehensive formal theory of norm implementation. Such
a theory should be able to capture all forms of norm implementation mecha-
nisms highlighting their common features and understanding them all as system
transformations.

Finally, we want to stress that the present contribution abstracts completely
from the issue concerning the motivating aspect of norms, that is to say, their
capacity to influence and direct agents’ mental states and actions. We are not
assuming here that agents have the necessary cognitive capabilities to au-
tonomously accept or reject norms [24]. To put it yet otherwise, the perspective
assumed here is the one of a social designer aiming at regulating a society of
agents by just assuming such agents to be game-theoretic agents. We are of
course aware of this simplification, which is on the other hand necessary as we
are facing the very first stage of the development of a formal theory.

4 Making violations impossible

The present sections studies two simple ways of making illegal states unreach-
able within the system.

4.1 Regimentation

Regimentation [46] is the simplest among the forms of implementation. Con-
sider our running example, and suppose the social designer wants to avoid the
execution of move(a,d, c) by (i) in the case block a is not clear, as expressed in
Formula (6).

The implementation via regimentation for a transition a can be represented
by a transformation (or update) m 7−→ m′ of the model m into the model m′ such
that:

Rm′
a := Rm

a − {(w,w
′) | (m,w) |= prea & (m,w′) |= viol(i)}

where prea are the preconditions of the execution of a leading to a violation. In
other words, it becomes in m′ impossible to execute a transition with label a in
prea-states leading to a violation state.

In the running example, where a = move(a,d, c)(i), such update results in
pruning away the edges labeled by “−” (i.e., move(a,d, c)(i) form the frame of
m (Figure 4). The regimentation of the prohibition expressed in Formula (6)
corresponds therefore to the validity of the following property:

(on(a, d) ∧ clear(c) ∧ ¬clear(a) ∧ turn(i))→ [move(a, d, c)(i)]⊥

w1

w2

payoff(j,0)

turn(i)
+

Fig. 4. Regimentation.

and hence, by modal logic and some additional background knowledge on the
Blocks World:

(on(a, d) ∧ clear(c) ∧ ¬clear(a) ∧ turn(i))↔ 〈move(a, d, c)(i)〉>

which, notice, is a strengthening of Formula (4). In other words, regimentation
is an update restricting the possibility of actions of the agents by limiting them
exactly to the ones generating legal states. It is instructive to notice that the
standard Blocks World scenario can be viewed precisely as a result of the reg-
imentation of the normative variant of the scenario which we are considering
here.

Within multi-agent systems, regimentation has been the first technique used
for norm implementation. A typical example of this is AMELI [29], where all
executable actions of agents are actions which are allowed according to the rule
of the institutions. A formal semantics for a multi-agent program capturing
regimentation is also studied in [26].

4.2 Retarded preconditions

Ordinary action logic describes the actions using preconditions and postcondi-
tions. If a is an action with precondition prea and postcondition posta then

prea ↔ 〈a〉> (7)
prea → [a]posta (8)

express that action a can be executed if and only if prea hold (Formula (7)) and
with the effect expressed by posta (Formula (8)). So in the standard account of
the blocks world, if the world is in the situation as depicted in Figure 2, b can
be moved on top of c but a cannot be moved.

a c

b

d

e

Fig. 5. Retarded preconditions. Initial state.

According to the normative perspective we have assumed in the running
example, instead of imposing logically strong preconditions, we state logically
weak preconditions for action, which means allow their execution in a wider
range of states and assuming indeterminacy. In addition, we label states reached
by performing actions as violation states when they are executed under unde-
sirable conditions (see Section 3.3). In short, actions are allowed to be executed
under circumstances which can possibly lead to violations, but only if the effects
are still acceptable. If they are not, then nothing has happened.

These intuitions lead us to introduce, within the framework exposed in
Section 3.4, two new modal operators: 〈φ | a〉 ψ and [φ | a] ψ. The semantics of
these new operators is defined as follows:

m,w |= [φ | a] ψ iff ∀w′ ∈W if wRa|~φ�w′ then m,w′ |= ψ

m,w |= 〈φ | a〉 ψ iff ∃w′ ∈W such that wRa|~φ�w′ and m,w′ |= ψ

where ~φ� denotes, as usual, the truth-set of φ and Ra|~φ� is the subset of Ra
containing those state pairs (w,w′) such that the second element w′ of the pair
satisfies φ.7 Notice, therefore, that the new modal operators take an action
(e.g., a) and a formula (e.g., φ) yielding a new complex action type (e.g., φ | a).
Such action type corresponds, semantically, to those state transitions which are
of the given action type (a) and which end up in the given states (φ). So, retarded
preconditions are represented, rather than as a formula, as part of an action type.
This is in fact natural, as retarded preconditions are a way to further specify an
action type.

Note that if we consider only a single update, then it would suffice to in-
troduce Ra|~φ� as the subset of Ra containing pairs (w,w′) such that w′ |= φ.
However, for sequential actions we have multiple updates and this would not
suffice. This illustrates that we have a reduction from our logic to the fragment
without the dynamic operators, as usually done in update logic (see, e.g., [28]).

7 It might be instructive to notice that such operators are definable within standard
dynamic logic [38] by means of the sequencing operator ; and the test operator ?:
[φ | a] ψ := [a; ?φ]ψ. However, the full expressivity of dynamic logic is not required
given our purposes.

a

cb
d

e

Fig. 6. Situation A

a

c

b

d
e

Fig. 7. Situation B

a

cb
d

e

Fig. 8. Situation C

By means of this newly introduced operators, we can express that the exe-
cution of a given action a is possible only under the condition that it has certain
precise effects φ (Formula (9)), and that each time it is executed having such
effects φ, it also guarantees that ψ holds (Formula (10)):

prea → 〈ret prea | a〉> (9)
prea → [ret prea | a] posta (10)

where prea represents the precondition of a where the execution of a possibly
leads to a violation; ret prea the postcondition of prea which are tolerated, i.e.,
its retarded preconditions; and posta the postconditions of ret prea | a.

Let us now give an example. Suppose we have the situation depicted in
Figure 5. We move a, and we might end up with one of the three options
in Figures 6-8. Suppose also that only the situation depicted in Figure 6 is
tolerable to us. That is, a can be moved on c only if it is slid out carefully from
the tower composed by a,b,e. Such tolerance can be expressed by means of
retarded precondition, that is, a precondition which is evaluated as a result of the
action performed. In the example at hand, the execution of action move(a,d, c)
is tolerated in the case a is moved from within a tower only if the result of the
action yields the situation depicted in Figure 6:8

on(a,d) ∧ on(e,b) ∧ clear(c)→ 〈on(e,b) | move(a,d, c)〉> (11)
on(a,d) ∧ on(e,b) ∧ clear(c)→ [¬on(e,b) | move(a,d, c)]⊥ (12)
on(a,d) ∧ on(e,b) ∧ clear(c)→ [on(e,b) | move(a,d, c)]on(a, c). (13)

Block a can be moved also in the case it is not clear, provided that this does not
change the respective disposition of other blocks b and e (Formula 11). If that
is not the case, than it will not be possible to move it (Formula 12). The effect of
the execution of a under the retarded precondition that the stack of b and e is
left intact results in a being placed on c (Formula 13).

The specification of retarded preconditions for actions can be viewed as a
smoothening of regimentation requirements. As shown in the example above,

8 We drop the turn(i) atoms in the following formalization.

instead of regimenting the non-execution of action move(a,d, c) in case block a
as positioned within a tower, we can express that the execution can be tolerated,
provided it gives rise to specific results (Figure 6).

In a nutshell, the use of retarded preconditions is typical of situations where
the execution of a given action a under certain circumstances φ can possibly
lead to a violation state:

φ ∧ 〈a〉viol.

In such cases, we might not want to impose a regimentation, requiring that:

φ→ [a]⊥

but we would rather still allow the agent to perform the action, provided that
it does not end up in violation states, that is, we allow the execution of the
action under the potentially problematic conditions φ but only by assuming the
retarded precondition ¬viol:

φ→ 〈¬viol | a〉>
φ→ [viol | a]⊥

We conclude spending a few more words on the notion of retarded precondi-
tion. Such notion of retarded precondition is implicit in our culture. The saying
“you can’t argue with success” illustrates that way of thinking. An agent can
take action without following the rules and if he is successful then we have to
accept it. A major example is Admiral Nelson defying command and defeat-
ing the Spanish fleet. He is a hero. Had he failed, he would have been court
marshalled.

5 Perfect enforcement

Perfect enforcement takes place when the execution of an action leading to a
violation state is directly deterred by modifying the payoffs that the agent would
obtain from such an execution. The following condition says that the best action
does not imply a violation of the norm. It covers both penalties and rewards, or
combinations of them.

Let Prpay denote the set of payoff atoms and let Max(i) denote the maximum
payoff an agent i gets at a violation end state, if such a state exists. The imple-
mentation for i via perfect enforcement with respect to a transition a, is a model
update changing m = (W, {Ra}a∈Act,I) to m′ = (W′, {R′a}a∈Act,I′) as follows:

– W = W′;
– Wend = W′

end;
– {Ra}a∈Act = {R′a}a∈Act;
– Im

dPr − Prpay = Im′
dPr − Prpay, where d denotes the domain restriction

operation on functions;
– Im′

dPrpay is such that if Wend ∩ −I(viol(i)) , ∅, then for some payoff atom
payoff(i, x) with x > Max(i) and state w ∈W′

end, w ∈ I′(payoff(i, x)).

Notice that the update does not modify the interpretation of atoms which are
not payoff atoms nor the frame of the model. What it does is to change I to a
valuationI′which guarantees that at least one state in the end states of the game
which are not violation states (if such states exist), the payoff for i is higher than
the payoff in any of the violation states. Intuitively, such an update guarantees
that each agent faced with a decision between executing a transition leading to
a violation state, and one leading to a legal one, will—if they act rationally from
a decision-theoretic perspective—choose for the latter.

A number of different implementation practices can be viewed as falling
under this class such as, for instance, fines or side payments. However, the com-
mon feature consists in viewing the change in payoffs as infallibly determined
by the enforcement, thereby giving rise to perfect deterrence. The next section
will show what happens if such an assumption is dropped.

Getting back to our running example, the perfect enforcement of the prohi-
bition expressed in Formula (6) results, therefore, in the validity of the following
property:

on(a,d) ∧ clear(c) ∧ on(b,a) ∧ turn(i)→ ([+]payoff(i, 1) ∧ [−]payoff(i, 0))

where + = move(b,a, c)(i) and − = move(a,d, c)(i).
We deem worth stressing again the subtle difference between perfect en-

forcement and regimentation. While regimentation makes it impossible for the
agents to reach a violation state, automatic enforcement makes it just irrational
in a decision-theoretic sense. In other words, it is still possible to violate the
norm, but doing that would be the result of an irrational choice. As such, per-
fect enforcement is the most simple form of implementation which leaves the
game form (i.e., the frame of the modal logic models) intact. Although the ex-
tensive game considered is a trivial one-player game, it should be clear that
taking more player into consideration would not be a problem. In such case,
the application of solution concepts such as sub-game perfect Nash [56] would
become relevant.

In the multi-agent systems literature, perfect enforcement is used to provide
a formal semantics to multi-agent programs in [26].

6 Enforcers

Commonly, perfect deterrence is hard to realize as each form of sanctioning re-
quires the action of some third-party agent whose role consists precisely in mak-
ing the sanctions happen. Enforcement via agents (the enforcers) corresponds
to the update of model m to a model m′ defining a new game form between a
player i and enforcer j. The actions of enforcer j are punish(i) and reward(i). As
a result of such an update, the original model m results in a sub-model of m′.
The update is defined as follows:

– W′

end = {(w,n) | w ∈Wend & n ∈ {1, 2}};

– W′ = W ∪W′

end, that is, each dead end of W is copied twice and added to
the domain;

– {R′a}a∈Act = {Ra}a∈Act, that is, the labeling via Act remains the same;
– R′

reward(i) = {(w,w′) | w ∈ Wend & w′ = (w, 1)} and R′
punish(i) = {(w,w′) | w ∈

Wend & w′ = (w, 2)}, that is, the added transitions are labeled as rewarding
and punishing;

– I′ = I for all states in W;
– I′ for the states in W′

end is such that ∀w,w′ s.t. w ∈ Wend and (m′,w) |=
payoff(i, x)) and wRm′

reward(i)w
′ : (m′,w′) |= payoff(i, y) with x ≤ y; and

∀w,w′ s.t. w ∈ Wend and (m′,w) |= payoff(i, x)) and wRm′
punish(i)w

′ : (m′,w′) |=
payoff(i, y) with x > y;

What the definition above states is that the update consists in adding to every
dead end in m a trivial game consisting of a binary choice by enforcer j between
punishing or rewarding agent i. The result of a reward leaves the payoff of i
intact (or it increases it), while the result of a punishment changes i’s payoff to
a payoff which is lower than the payoff i would have obtained by avoiding to
end up in a violation state. In the running example, the action of the enforcer
swaps the payoffs of agent i from 0 to 1 or from 1 to 1 in case of a reward; from
1 to 0 or from 0 to 0 in case of a punishment, just like in the case of automatic
enforcement.

However, the use of agents as enforcers implies the introduction of a further
normative level, since the enforcer can choose whether to comply or not with
its role, that is, punish if i defects, and reward if i complies:

(turn(j) ∧ viol(i))→ [reward(i)]viol(j) (14)
(turn(j) ∧ ¬viol(i))→ [punish(i)]viol(j) (15)

Whether the enforcement works or not, depends on the payoffs of the enforcer j.
We are, somehow, back to the original problem of guaranteeing the behavior
of an agent (the enforcer in this case) to comply with the wishes of the social
designer. The implementation of norms calls for more norms (Figure 9). Enforce-
ment via enforcing agents lifts the implementation problem from the primary
norms addressed to the agents in the system, to norms addressed to special
agents with ‘institutionalized’ roles.

To the best of our knowledge, the only systematic multi-agent system frame-
works addressing norm implementation at the level of enforcement isMoise+

and its variants (e.g., [42]), although not providing a formal semantics for it.

6.1 Regimenting enforcement norms.

At this point, the norms expressed in Formulae (14) and (15) need implemen-
tation. Again, regimentation can be chosen. The result of regimentation of en-
forcement norms in the running example is depicted in Figure 10. Formally, this

payoff(i,0)

payoff(i,1)

payoff(i,0)

payoff(i,1)

w1

w4

w3

w2

w7

w6

w5

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)

viol(j)

+

-

+

+

-

-

viol(j)

Fig. 9. Enforcement norms.

corresponds to an update m 7−→ m′ of m where:

Rm′
punish(i) = Rm

punish(i) − {(w,w
′) | m,w |= turn(j) ∧ viol(i) & m,w′ |= viol(j)}

Rm′
reward(i) = Rm

reward(i) − {(w,w
′) | m,w |= turn(j) ∧ ¬viol(i) & m,w′ |= viol(j)}

As a result, the enforcer j always complies with what expected from its role. In a
way, regimented enforcement can be viewed as an equivalent variant of perfect
enforcement since its result is an adjustment of the payoffs of agent i w.r.t. to
the system’s norms.

6.2 Enforcing enforcement norms.

If the payoffs of the enforcer are appropriately set in order for the game to deliver
the desired outcome, then the system is perfectly enforced by enforcer j who au-
tonomously complies with the enforcement norms expressed in Formulae (14)
and (15), punishing player i when i commits a violation and rewarding i when i
complies (Figure 11). In the running example, perfect enforcement of enforce-
ment norms can be defined by a simple update m 7−→ m′ of the interpretation
functions of the two models such that:

I
m′ (payoff(j, 0)) = Im(viol(j))
I

m′ (payoff(j, 1)) = W − Im(viol(j))

which results in a perfect match between higher payoffs and legal behavior.
Figure 12 represents, in strategic form, the extensive game depicted in Figure 11
between player i and enforcer j. It is easy to see that the desired outcome in
which both i and j comply is the only Nash equilibrium [56]. It goes without
saying that much more complex game forms could be devised, and different
equilibrium notions could be chosen for norm implementation purposes. It is

payoff(i,0)

payoff(i,1)

w1

w3

w2

w6

w5

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)
+

-

+

+

Fig. 10. Regimentation of enforcement norms.

at this level that a number of concepts and techniques could be imported from
Mechanism Design and Implementation Theory [43–45,52] to the formal theory
of NMAS.

6.3 Who controls the enforcers?

Our analysis clearly shows the paradox hiding behind norm implementation.
In order to implement norms, it is likely to need more norms.

The implementation of a set of norms can be obtained either via regimen-
tation or via automatic enforcement or by the specification of an enforcement
activity to be carried out by an enforcer. Enforcement specification happens at a
normative level, i.e., via adding more norms to the prior set which, in turn, also
require implementation. Schematically, suppose X to be the non-empty set of
to-be-implemented norms, Regiment(X) to denote the set of norms from X which
are regimented or automatically enforced, and Enforce(X) to denote the set of
norms containing X together with all the norms specifying the enforcement of X
(X ⊆ Enforce(X)). The implementation of S is the enforcement of the norms in S
which are not regimented: Implement(X) = Enforce(X \ Regiment(X)).

In other words, to implement a set of norms amounts to implement the set
of unregimented norms together with their enforcement. These observations
clearly suggest that the implementation of a set of norms yields a set of norms.
Somehow, it is very difficult to get rid of norms when trying to implement
them. The only possibility is via full regimentation or automatic enforcement.
If Regiment(X) = X then there is no norm left to be implemented. Instead if
Regiment(X) ⊂ X then ∅ ⊂ Implement(S), which means that the implementation
operation should be iterated on Implement(X). In principle, such iteration is
endless, unless there exists a final implementation level whose norms are all
regimented or automatically enforced.

payoff(i,0)

payoff(i,1)

payoff(i,0)

payoff(i,1)

w1

w4

w3

w2

w7

w6

w5

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)
+

-

+

+

-

-

payoff(j,1)

payoff(j,0)

payoff(j,0)

payoff(j,1)

Fig. 11. Perfect enforcement.

@
@@i

j
- +

- (1,0) (0,1)
+ (0,0) (1,1)

Fig. 12. Enforcement of the Blocks World scenario in strategic form

7 Implementation via norm change

This section concerns the ways of obtaining desired social outcomes by just
modifying the set of norms of the system. The formal analysis of such phenom-
ena, which is pervasive in human normative systems, is strictly related with the
formal study of counts-as [34] and intermediate concepts [49].

As an example, consider the model m′ obtained via the update of the initial
model m corresponding to perfect enforcement (Figure 11). Suppose now the
social designers wants to punish player i no matter what it does. One way for
doing this would be to go back to the initial model m, to replace the enforcer
norms expressed in Formulae (14) and (15) by the following norm:

turn(j)→ [reward(i)]viol(j) (16)

and then update m to implement the norm expressed in Formula (16), for in-
stance via perfect enforcement.

A much quicker procedure would consist in updating model m′ trying to
inherit its implementation mechanism. This can be done by simply modifying
the extension of atom viol(i) in order for it to include state w2, thereby automat-
ically triggering the enforcement norms expressed in Formulae (14) and (15).
As a result, the enforcement mechanism in place in model m′ are imported “for

payoff(i,0)

payoff(i,1)

w1

w3

w2

w7

w6

payoff(i,1)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)
+

- +

-

payoff(j,1)

payoff(j,0)

viol(i)

payoff(i,0)

payoff(i,1)

w7

w6
+

-

payoff(j,1)

payoff(j,0)

viol(j)

viol(j)

Fig. 13. Implementation via norm change.

free” by simply changing the meaning of viol(i) (Figure 13). As you can see,
the payoffs for enforcer j are different from Figure 11.

The update of the extension of viol(i) can be obtained, for instance, by
adding the following norm to the system:

on(b,a) ∧ clear(b) ∧ clear(c) ∧ turn(i)→ [move(b,a, c)(i)]viol(i) (17)

To put it otherwise, such procedure exploits the nature of viol(i) as an interme-
diate concept occurring as precondition of other norms. In this case the norms
involved are the enforcement norms expressed in Formulae (14) and (15).

8 Related work

In this section we consider whether existing work in normative multi-agent
systems is able to answer the equation discussed in the introduction.

BDI : Agent Programming = ? : NMAS Programming.

Since BDI-CTL [23] is used as a formal specification and verification lan-
guage for agent programming, an obvious candiate for our question mark is an
extension of this language with deontic concepts such as obligations and per-
missions, called BOID-CTL [20,21]. Such a logic is simply a modal combination
of an agent logic and a modal deontic logic. The drawback of this approach is
that the norms are nor represented explicitly.

The first candidate for the question mark is Tennenholtz and Shoham’s game-
theoretic approach to artificial social systems. However, the central research
question of their work [62,63,65] consists in studying the emergence of desirable
social properties under the assumption that a given social law is followed by

the agents in the society at hands. The problem of how a social law can be
implemented in the society is not discussed.

Another obvious candidate for the question mark is a theory of normative
systems [1]. The key feature of normative systems is that they make norms
explicit in such a way that we can say, at a given state of the system, whether
a norm is active, in force, violated, and so on [67]. See [36] for an up to date
review on the distinction between a theory of normative systems and deontic
logic, and the challenge to bridge the two. A theory of normative systems is
useful for norm representation and reasoning, but not for the representation of
aspects such as the multi-agent structure of a normative system.

A third candidate is Boella and van der Torre’s game-theoretic approach
to normative multi-agent systems, which studies the more general problem of
norm creation [9, 11, 14]. For example, the introduction of a new norm with
sanctions is modeled as enforceable norms in artificial social systems as the
choice among various strategic games [10]. They focus in particular on the
enforcement of norms using enforcers, and discuss the role of procedural norms
to motivate the enforcers [13]. They consider the creation of a new norm into a
system of norms, whereas in this paper we do not consider the effect of norm
implementation on existing norms. They argue that the infinite regression of
enforcers can be broken if we assume that enforcers control each other and do
not cooperate [10]. Since they use strategic rather than extensive games they
cannot distinguish some subtle features of implementation such as retarded
preconditions. Moreover, they do not give a procedure to go from a norm
to its implemented system. Finally, they do not consider other methods than
sanctioning and rewarding to implement their norms. They do consider also
cognitive extensions of their model, which we do not consider in this paper.
See [14] for a detailed discussion on their approach.

There are many organizational and institutional theories, such as the ones
proposed in [34], and there is a lot of work on coordination and the environ-
ment [25, 58]. Institutions are built using constitutive norms defining interme-
diate concepts. However, this work is orthogonal to the work presented in this
paper in as much as, although sporadically addressing one or another form of
implementation, it never aims at laying the ground of an overarching formal
framework.

9 Conclusions

Aim of the paper is to illustrate how the issue of norm implementation can
be understood in terms of transformations (updates) performed on games in
extensive forms. The paper has sketched some of such updates by means of
a toy example, the blocks world, and mapped them to norm implementation
strategies, such as regimentation, automatic enforcement, enforcement via en-
forcers, and implementation via norm change. The full logical analysis (e.g., in
a dynamic logic setting) of the update operations sketched here is future work.
Such an analysis will make some intricacies of implementation explicit, such as,

for instance the fact that by implementing new norms, the implementation of
other norms might end up being disrupted.

Moreover, we introduce two views on representing forbidden actions, the
classical one in which the precondition has to be satisfied before the action can
be executed, and one based on so-called retarded preconditions. The two views
coincide if the language allows for action names, and we can include as part of
the state a list of which actions are allowed in this state. This can be formalised by
the predicate allowed(X), where X are names for actions. The allowed(X) predicate
can be part of the preconditions of X. We can use the feedback arrows of retarded
preconditions in Kripke models to change accessibility. This will implement the
severed connections in the diagrams, and the semantics would then be reactive
Kripke models. Consider for example the restriction ”you should not take any
action three times in a row.” With retarded preconditions, we can do a “roll-
back” when the action occurs three times in a row, whereas with regimentation
we have to predict whether the action is going to be executed three times rather
than two or four times. A further comparison of the two views is topic for
further research.

Finally, topics for further research are also the development of a more de-
tailed classification of norm implementation methods, the application of re-
tarded preconditions to the analysis of ambiguous norms.

Acknowledgments. The authors would like to thank the reviewers of the vol-
ume for their helpful comments. Davide Grossi wishes to acknowledge sup-
port by Ministère de la Culture, de L’Enseignement Supérieur et de la Recherche,
Grand-Duché de Luxembourg (grant BFR07/123) and by Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (VENI grant 639.021.816).

References

1. C. E. Alchourrón and E. Bulygin. Normative Systems. Springer Verlag, 1971.
2. A.R. Anderson. A reduction of deontic logic to alethic modal logic. Mind, 22:100–103,

1958.
3. J. van Benthem. Extensive games as process models. Journal of Logic, Language and

Information, 11:289–313, 2002.
4. J. van Benthem. Logic in games. Lecture Notes of the ILLC graduate course on

Logic, Language and Information, Universiteit van Amsterdam, Amsterdam, The
Netherlands, 2005.

5. J. van Benthem, J. van Eijck, and V. Stebletsova. Modal logic, transition systems and
processes. Journal of Logic and Computation, 4(5):811–855, 1994.

6. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
Cambridge, 2001.

7. G. Boella, G. Pigozzi, and L. van der Torre. Five guidelines for normative multi-agent
systems. In Proceedings of JURIX’09, 2009.

8. G. Boella, G. Pigozzi, and L. van der Torre. Norms in computer science: Ten guidelines
for normative multi-agent systems. In G. Boella, P. Noriega, G. Pigozzi, H. Verhagen,

editors, Normative Multi-agent Systems, number 09121 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2009.

9. G. Boella and L. van der Torre. ∆: The social delegation cycle. In Deontic Logic: 7th
International Workshop on Deontic Logic in Computer Science (∆EON’04), volume 3065
of LNCS, pages 29–42, Berlin, 2004. Springer.

10. G. Boella and L. van der Torre. Enforceable social laws. In Procs. of 4th International
Joint Conference on Autonomous Agents and multi-agent Systems (AAMAS’05), pages
682–689, New York (NJ), 2005. ACM Press.

11. G. Boella and L. van der Torre. Norm negotiation in multiagent systems. Int. J.
Cooperative Inf. Syst., 16(1):97–122, 2007.

12. G. Boella and L. van der Torre. The ontological properties of social roles in multi-
agent systems: Definitional dependence, powers and roles playing roles. Artificial
Intelligence and Law Journal (AILaw) 15(3): 201-221, 2007.

13. G. Boella and L. van der Torre. Substantive and procedural norms in normative
multi-agent systems. Journal of Applied Logic 6(2): 152-171, 2008.

14. G. Boella and L. van der Torre. A game-theoretic approach to normative multi-
agent systems. In G. Boella, L. van der Torre, and H. Verhagen, editors, Normative
Multi-agent Systems, number 07122 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007.

15. G. Boella, L. van der Torre, and H. Verhagen. Introduction to normative multi-agent
systems. Computational and Mathematical Organization Theory, 12(2-3):71–79, 2006.

16. G. Boella, L. van der Torre, and H. Verhagen, editors. Normative Multi-Agent Systems,
number 07122 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

17. G. Boella, H. Verhagen, and L. van der Torre. Introduction to the special issue
on normative multi-agent systems. Journal of Autonomous Agents and Multi Agent
Systems, 17(1):1–10, 2008.

18. G. Boella, L. van der Torre, and S. Villata. Conditional dependence networks in
requirements engineering. In Proceedings of COIN’09, LNCS. Springer, 2009.

19. W. Briggs and D. Cook. Flexible social laws. In Proceedings 14th International Joint
Conference on Artificial Intelligence, pages 688–693, 1995.

20. J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre. Goal generation in the
BOID architecture. Cognitive Science Quarterly, 2(3-4):428–447, 2002.

21. J. Broersen, M. Dastani, and L. van der Torre. Bdioctl: Obligations and the specifica-
tion of agent behavior. In Proceedings of IJCAI’03, pages 1389–1390, 2003.

22. E. Bulygin. Permissive norms and normative systems. In A. Martino and F. Socci
Natali, editors, Automated Analysis of Legal Texts, pages 211–218. Publishing Company,
Amsterdam, 1986.

23. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(2-3):213–261, 1990.

24. R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm acceptance. In J.
Müller, M. P. Singh, and A. S. Rao, editors, Proceedings of the 5th International Workshop
on Intelligent Agents V : Agent Theories, Architectures, and Languages (ATAL-98), volume
1555, pages 99–112. Springer-Verlag: Heidelberg, Germany, 1999.

25. M. Dastani, F. Arbab, and F. S. de Boer. Coordination and composition in multi-agent
systems. In Procs. of AAMAS, pages 439–446, 2005.

26. M. Dastani, D. Grossi, N. Tinnemeier, and J.-J. Meyer. Normative multi-agent pro-
grams and their logics. In Pigozzi G. Noriega P. Boella, G. and H. Verhagen, editors,
Normative Multi-agent Systems, Dagstuhl Seminar Proceedings, volume 09121, 2008.

27. V. Dignum. A Model for Organizational Interaction. SIKS Dissertation Series, 2003.
28. H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Dynamic Epistemic Logic, volume

337 of Synthese Library. Springer, 2007.
29. M. Esteva, J.A. Rodrı́guez-Aguilar, B. Rosell, and J.L. Arcos. Ameli: An agent-

based middleware for electronic institutions. In Third International Joint Conference
on Autonomous Agents and Multi-agent Systems, New York, US, July 2004.

30. D. Fitoussi and M. Tennenholtz. Choosing social laws for multi-agent systems:
Minimality and simplicity. Artificial Intel ligence, 119:61–101, 2000.

31. A. Garcia-Camino, P. Noriega, and J. A. Rodriguez-Aguilar. Implementing norms
in electronic institutions. In AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multi-agent systems, pages 667–673. ACM Press,
2005.

32. A. Giddens. The Constitution of Society. University of California Press, 1984.
33. E. Goffman. The Presentation of Self in Everyday Life. Doubleday, 1959.
34. D. Grossi. Designing Invisible Handcuffs. Formal Investigations in Institutions and Orga-

nizations for Multi-agent Systems. PhD thesis, Utrecht University, SIKS, 2007.
35. D. Grossi, H. Aldewereld, and F. Dignum. Ubi lex ibi poena. designing norm en-

forcement in electronic institutions. In V. Dignum, N. Fornara, P. Noriega, G. Boella,
O. Boissier, E. Matson, and J. Vázquez-Salceda, J.zquez-Salceda, editors, Proceedings
of COIN@AAMAS’06, volume 4386 of LNCS, pages 101–114. Springer, 2006.

36. J. Hansen. Imperatives and Deontic Logic: On the Semantic Foundations of Deontic Logic.
University of Leipzig, 2008.

37. J. Hansen, G. Pigozzi, and L. van der Torre. Ten philosophical problems in deontic
logic. In G. Boella, L. van der Torre, and H. Verhagen, editors, Normative Multi-agent
Systems, volume 07122 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

38. D. D. Harel, A.M.D. Kozen and J. Tiuryn. Dynamic logic. In D. Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic,
pages 497–604. Reidel, Dordrecht, The Netherlands, 1984.

39. W. van der Hoek, M. Roberts, and M. Wooldridge. Social laws in alternating time:
Effectiveness, feasibility, and synthesis. Synthese, 156(1), 2007.

40. M. Hollis. Trust within reason. Cambridge University Press, Cambridge, 1998.
41. J. F. Hübner, J. S. Sichman, and O. Boissier. Moise+: Towards a structural functional

and deontic model for mas organization. In Proceedings of the First Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS’02), Bologna, Italy, July 2002.
ACM Press.

42. J. F. Hubner, J. S. Sichman, and O. Boissier. Developing organised multiagent systems
using the moise+ model: programming issues at the system and agent levels. Int. J.
Agent-Oriented Softw. Eng., 1(3/4):370–395, 2007.

43. L. Hurwicz. Optimality and informational efficiency in resource allocation processes.
In K. Arrow, S. Karlin, and P. Suppes, editors, Mathematical Methods in the Social
Sciences. Stanford University Press, 1960.

44. M. O. Jackson. A crash course in implementation theory. Social Choice and Welfare,
18:655–708, 2001.

45. M. O. Jackson. Mechanism theory. In U. Derigs, editor, Encyclopedia of Life Support
Systems. EOLSS Publishers, 2003.

46. A. J. I. Jones and M. Sergot. On the characterization of law and computer systems.
Deontic Logic in Computer Science, pages 275–307, 1993.

47. S. Kanger. New fondations for ethical theory. In R. Hilpinen, editor, Deontic Logic:
Introductory and Systematic Readings, pages 36–58. Reidel Publishing Company, 1971.

48. D. Lewis. A problem about permission. In E. Saarinen, editor, Essays in Honour of
Jaakko Hintikka, pages 163–175. D. Reidel, Dordrecht, 1979.

49. L. Lindahl and J. Odelstad. Open and closed intermediaries in normative systems.
In T.M. van Engers, editor, Proceedings of the Nineteenth JURIX Conference on Legal
Knowledge and Information Systems (JURIX 2006), pages 91–100, 2006.

50. F. Lopez, M. Luck, and M. d’Inverno. A normative framework for agent-based
systems. Computational and Mathematical Organization Theory, 12:227–250, 2006.

51. M. Luck, P. McBurney, and C. Preist. Agent Technology: Enabling Next Generation
Computing (A Roadmap for Agent Based Computing). AgentLink, 2003.

52. E. Maskin. Nash equilibrium and welfare optimality. Review of Economic Studies,
66:23–38, 1999.

53. J.-J.Ch Meyer. A different approach to deontic logic: Deontic logic viewed as a variant
of dynamic logic. Notre Dame Journal of Formal Logic, 29(1):109–136, 1988.

54. D. C. North. Institutions, Institutional Change and Economic Performance. Cambridge
University Press, Cambridge, 1990.

55. S. Onn and M. Tennenholtz. Determination of social laws for multi-agent mobiliza-
tion. Artificial Intel ligence, 95:155–167, 1997.

56. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
57. Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a BDI-

architecture. In James Allen, Richard Fikes, and Erik Sandewall, editors, Proceedings of
the 2nd International Conference on Principles of Knowledge Representation and Reasoning
(KR’91), pages 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA,
1991.

58. A. Ricci, A. Omicini, and E. Denti. Activity theory as a framework for mas coordi-
nation. In Procs. of ESAW’02, pages 96–110, 2002.

59. D.W.P. Ruiter. A basic classification of legal institutions. Ratio Juris, 10(4):357–371,
1997.

60. S. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice Hall
International, 2001.

61. Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artificial
agent societies. In Proceedings of the 10th National Conference on Artificial Intelligence,
pages 276–281, 1992.

62. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line
design. Artificial Intelligence, 73(1-2):231–252, 1995.

63. Y. Shoham and M. Tennenholtz. On the emergence of social conventions: Modeling,
analysis and simulations. Artificial Intelligence, 94(1–2):139–166, 1997.

64. A. Strauss. Negotiations: Varieties, Contexts, Processes and Social Order. San Francisco,
Jossey-Bass, 1978.

65. M. Tennenholtz. On stable social laws and qualitative equilibria. Artificial Intelligence,
102(1):1–20, 1998.

66. M. Tennenholtz. On social constraints for rational agents. Computational Intelligence,
15(4), 1999.

67. L. van der Torre and Y. Tan. Diagnosis and decision making in normative reasoning.
Artificial Intelligence and Law, 7(1):51–67, 1999.

