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Abstract

While there are several languages for representing
combinatorial preferences over sets of alternatives,
none of these are well-suited to the representation
of ordinal preferences over sets of goods (which are
typically required to be monotonic). We propose
such a language, taking inspiration from previous
work on graphical languages for preference repre-
sentation, specifically CP-nets, and introduce con-
ditional importance networks (CI-nets). A CI-net
includes statements of the form “if I have a set A
of goods, and I do not have any of the goods from
some other set B, then I prefer the set of goods C
over the set of goods D.” We investigate expres-
sivity and complexity issues for CI-nets. Then we
show that CI-nets are well-suited to the description
of fair division problems.

1 Introduction
Specifying a fair division problem of indivisible goods needs
the expression of each agent’s preferences over all possible
combinations (or “bundles”) of goods. Such preferences are
generally monotonic (an agent never prefers a smaller set of
goods to a larger one). In case preferences are numerical, we
can resort to a variety of languages for the compact repre-
sentation of utility or valuation functions, including bidding
languages for combinatorial auctions [Nisan, 2006]. Often
it is not reasonable to assume that preferences can easily be
expressed numerically. When no objective currency is avail-
able, it is well-known that agents are often reluctant or even
incapable to express their preferences using numbers.

Now, there do exist well-known languages for eliciting and
representing ordinal preferences over combinatorial domains,
notably CP-nets [Boutilier et al., 2004], tailored to represent-
ing preference relations on the domain of each variable con-
ditioned by the values of the variables it depends on, TCP-
nets [Brafman et al., 2006a], which extend CP-nets by al-
lowing statements of conditional importance between single
variables, and conditional preference theories [Wilson, 2004],
which further extend TCP-nets. And after all, the set of all
bundles has a combinatorial structure, so we might wonder
whether these languages would not be good candidates for

our concern. It turns out that they are not, because they can-
not easily express statements such as “everything else being
equal, I prefer to have the bundle {a, b} rather than the bundle
{a, c, d}” (this will be made more precise later).

In this paper we define a graphical language, called con-
ditional importance networks (CI-nets), for expressing such
preferences. This language has strong structural similarities
with the (T)CP-net family. More precisely, CI-nets can be
seen as being obtained from TCP-nets by a simplification fol-
lowed by a generalization. First, the variables correspond to
the goods (and their domains are binary: each good is in the
bundle or it is not). The simplification is that CI-nets do not
include any conditional preference statements on the values
of the variables: because the preference relation between bun-
dles is monotonic, an agent never prefers not having a good
to having it, and expressing a conditional preference on the
domains of the variables would be useless (except maybe for
distinguishing between strict preference or indifference). The
generalization is that importance statements can bear on arbi-
trary sets of variables, and not only on singletons.

In Section 2 we define CI-nets and give a semantics as
well as a proof theory in terms of “worsening flips”; we also
discuss the expressivity of the language and the satisfiability
problem. In Section 3 we identify the complexity of domi-
nance checking for CI-nets, both in the general case and for
some restrictions on the language. Section 4 sketches possi-
ble applications of CI-nets to fair division problems.

2 Conditional importance networks
CP-nets [Boutilier et al., 2004] provide a preference represen-
tation language based on the notion of conditional indepen-
dence, allowing to express that the preference on the value
of a given variable depends only on a specific set of vari-
ables. The main element of CP-nets are conditional prefer-
ence tables. For binary variables, these tables are of the form
{S+,S−} : x < x, with < = . or < = /, with S+ and S−
being sets of variables. This informally translates to: “pro-
vided that the variables from S+ are set to true and that the
variables from S− are set to false, all other things being equal,
I prefer having x set to true (false) rather than to false (true).”
This is somewhat inadequate for modeling preferences over
sets of goods, which are almost always monotonic. In this
context, we would rather want to express conditional impor-
tance relations between the variables themselves, and not be-



tween their truth values. An example of the kind of relations
we try to capture is: abc : d.ef , that is, provided that I have
item a but none of items b or c, I would rather have item d
than items e and f together, all other things being equal.

2.1 Conditional importance statements
From now on, V is a finite set of binary variables, correspond-
ing to objects to be allocated.
Definition 1 (Conditional importance statement)
A conditional importance statement on V is a quadruple γ =
(S+,S−,S1,S2) of pairwise disjoint subsets of V , written as
S+,S− : S1 . S2.

The informal reading is: “if I have all the items in S+ and
none of those in S−, I prefer obtaining all items in S1 to ob-
taining all those in S2, ceteris paribus.” S+ and S− are called
the positive precondition and the negative precondition of γ,
respectively. S1 and S2 are called the compared sets of γ.
We will sometimes use x1 . . . xpȳ1 . . . ȳq : S1 .S2 as a short-
hand for {x1, . . . , xp}, {y1, . . . , yq} : S1 . S2, and we will
typically omit brackets ({a, b} will be denoted as ab).

Definition 2 (CI-net) A CI-net on V is a setN of conditional
importance statements on V .

CI-statements are similar to importance statements in TCP-
nets [Brafman et al., 2006a], up to a very important differ-
ence: CI-nets can compare sets of objects of arbitrary size,
while TCP-nets can only express importance statements be-
tween single objects, ceteris paribus. On the other hand, CI-
nets do not express preferences between values of variables,
as TCP-nets do, since monotonicity makes them redundant.

2.2 Semantics
A (strict) preference relation � is a strict partial order (an
irreflexive, asymmetric and transitive binary relation) over
2V . A preference relation � is monotonic if X ⊃ Y entails
X � Y for any X, Y ∈ 2V . It is complete if it is a linear
order, that is, for any X, Y ∈ 2V with X 6= Y , either X � Y
or Y � X . A preference relation �′ refines � just when for
all X, Y ∈ 2V , X � Y implies X �′ Y .

Definition 3 (Semantics) A preference relation � over 2V

(i) satisfies a CI-statement S+,S− : S1 . S2 if for every
S ′ ⊆ V \ (S+∪S−∪S1∪S2), we have S ′∪S+∪S1 �
S ′ ∪ S+ ∪ S2; and it

(ii) satisfies a CI-net N if � satisfies each CI-statement in
N and � is monotonic.

Definition 4 (Satisfiability) A CI-net N is called satisfiable
if there exists a preference relation satisfying N .

Definition 5 (Induced preference relation) Let N be a sat-
isfiable CI-net. Then its induced preference relation �N is
defined as the smallest preference relation satisfying N .

This definition is well-founded, because the intersection of
preference relations satisfyingN also satisfiesN . Figure 1 is
an example for a preference relation induced by a CI-net.

While CI-nets, as defined here, are tailored to the repre-
sentation of strict preferences, one can also consider CI-nets
with weak preference (and indifference) statements, that suit
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Figure 1: Preference relation induced by the CI-net {a : d .
bc, ad : b . c, d : b . c}. Solid arcs obtained by monotonicity,
dotted ones by CI-statements. Transitivity arcs omitted.

the compact representation of weak monotonic preference re-
lations. For the sake of simplicity, we focus on strict prefer-
ences, but most of our results easily extend to CI-nets with
weak preferences and indifferences: weak CI-statements are
of the form A D B, rather than A . B, and the generated
preference relation � has only to be weakly monotonic.

2.3 Worsening flipping sequences
We can define an alternative (but equivalent) way of inter-
preting CI-statements in terms of worsening flips, similar to
flipping sequences in CP-nets [Boutilier et al., 2004].

Definition 6 (Worsening flip) Let N be a CI-net on the set
of variables V , and let V1,V2 ⊆ V . Then V1 ; V2 is called
a worsening flip wrt.N if one of the following two conditions
is satisfied:
• V2 ( V1 (monotonicity flip)
• there is a CI-statement (S+,S− : S1 . S2) ∈ N such

that if S = V \ (S+ ∪ S− ∪ S1 ∪ S2), then:
– V1 ⊇ S1 ∪ S+, V2 ⊇ S2 ∪ S+;
– V1 ∩ S− = V2 ∩ S− = V1 ∩ S2 = V2 ∩ S1 = ∅;
– and S ∩ V1 = S ∩ V2.

The first condition says: adding items to my bundle makes
me better off. The second condition expresses that, all other
things being equal (S ∩ V1 = S ∩ V2), having all the goods
in S+ but none from S−, I prefer having S1 rather than S2.

The notion of worsening flip provides an alternative (oper-
ational) semantics (or “proof theory”) for CI-nets:
Proposition 1 Let N be a satisfiable CI-net, and A,B ⊆ V
two bundles. We have A �N B if and only if there exists a
sequence of worsening flips from A to B wrt. N .
The proof is omitted for lack of space, but it is similar to the
proof of Theorems 7 and 8 in [Boutilier et al., 2004].

We can now formulate a necessary and sufficient condition
for satisfiability in terms of worsening flips:

Proposition 2 A CI-net N is satisfiable if and only if it does
not possess any cycle of worsening flips.

Proof sketch: Let N be a satisfiable CI-net and � an order
satisfying N . By Proposition 1, if N possesses a worsening
cycle (X0, X1, . . . , Xq, X0) then X0 � X0, a contradiction.



Conversely, assume N has no worsening cycle. Then take
any preference relation � respecting the flips, that is, for
every X, Y , (X � Y ⇔ X ; Y ). Using again the same
kind of technique as in [Boutilier et al., 2004], we can show
that � satisfies N , therefore N is satisfiable. �

2.4 Acyclicity and satisfiability
Definition 4 and Proposition 2 do not offer a practical method
for checking satisfiability. We therefore introduce two suffi-
cient conditions for satisfiability of a CI-net. The first condi-
tion is very similar to the one introduced in [Brafman et al.,
2006a] for TCP-nets, and relies on the notions of dependency
graph and S-induced graph.

Formally, given a CI-net N on V , the dependency graph
of N ? has V as nodes, and is defined as follows: (x, y) is
a directed edge in N ? if and only if there is a CI-statement
S+,S− : S1 . S2 in N such that x ∈ S+ ∪ S− and y ∈
S1 ∪ S2. Given a set S ⊆ V , the S-induced graph GS(N ) is
defined as follows: (x, y) is a directed edge in GS(N ) if and
only if it is a directed edge of N ? or there is a CI-statement
S+,S− : S1 . S2 in N such that x ∈ S1, y ∈ S2, S+ ⊆ S
and S− ∩ S = ∅. As for TCP-nets, a CI-net N will be
called conditionally acyclic if GS(N ) is acyclic for all S ⊆⋃

(S+,S−:S1.S2)∈N (S+ ∪ S−).

Proposition 3 Any conditionally acyclic CI-net is satisfiable.

Proof sketch: The proof is similar to the one for TCP-nets
[Brafman et al., 2006a]. It is based on two properties: (i)
since N is conditionally acyclic, there is at least one root
variable a such that ∀(S+,S− : S1 .S2) ∈ N , a 6∈ S+ ∪S−
and a 6∈ S2, and (ii) every subnet of a conditionally acyclic
CI-net is also conditionally acyclic. The proof proceeds
by induction on the number of variables in V: given a root
variable a, we project N on V \ {a} to obtain Na and Nā

(for the two possible values of a). An ordering � satisfying
N can be obtained by gathering the orderings �a and �ā. �

Verifying conditional acyclicity of a CI-net is coNP-
complete in the general case, for similar reasons as those
presented in [Brafman et al., 2006a]. Thus it is worthwhile
giving another sufficient condition for satisfiability, which is
easier to verify. Given a CI-netN , let the corresponding pref-
erence graph G(N ) be defined as the graph whose directed
edges are the pairs (x, y) such that there is a CI-statement
S+,S− : S1 . S2, with x ∈ S1 and y ∈ S2.

Proposition 4 Any CI-net with an acyclic preference graph
is satisfiable.

Proof: Let N be a CI-net whose preference graph G(N ) is
acyclic. Let >O be a linear order on V respecting G(N )
(i.e., if (x, y) ∈ G(N ) then x >O y). Such an order exists,
because G(N ) is acyclic. Let �O be the lexicographic pref-
erence relation wrt. >O. For each (S+,S− : S1 . S2) ∈ N ,
and each S ′ disjoint from S1, S2, S+ and S−,
S+ ∪ S1 ∪ S ′ �O S+ ∪ S2 ∪ S ′ because the most important
element in (S+ ∪S1 ∪S ′) \ (S+ ∪S2 ∪S ′) is in S1, and the
most important element in (S+ ∪ S2 ∪ S ′) \ (S+ ∪ S1 ∪ S ′)
is in S2. Hence, �O satisfies every CI-statement in N , and it

is monotonic, i.e., N is satisfiable. �

Since G(N ) can be built in polynomial time, this sufficient
condition can be checked in (low-order) polynomial time.
This condition is at the same time stronger and weaker than
conditional acyclicity: it bears on the union of the S-induced
graphs, but it does not require dependency acyclicity.

2.5 Expressivity
Let L be a restriction of the language of CI-nets (for a fixed
set of objects V). For instance, a particular language may not
allow the use of preconditions, or the compared sets referred
to in CI-statements may not exceed a certain cardinality. We
say that a preference relation � is expressible in L if there
exists a CI-netN in L such that (�N=�). We first show that
the language without any restrictions is fully expressive.

Proposition 5 CI-nets can express all strict monotonic pref-
erence relations on 2V .

Proof sketch: Let � be a strict monotonic order. Consider the
CI-net N containing, for every (X, Y ) such that X � Y and
X 6⊃ Y , the CI-statement (X∩Y ), (X ∪ Y ) : X \Y .Y \X .
It is easy to check that �N=�. �

This full expressivity is lost when any of the following re-
strictions to the language is imposed: (a) no positive precon-
ditions; (b) no negative preconditions; (c) the cardinality of
compared sets is bounded by a fixed integer K ≤ n− 2.

To see why it is so for restrictions (a) and (b), let V =
{x, y, z} and � be a monotonic preference relation contain-
ing xy � xz and z � y. � is expressible using the statements
x : y.z, x̄ : z.y. However,�would not be expressible with-
out positive (nor without negative) preconditions: Suppose
there exists a satisfiable CI-net N , without negative precon-
ditions, such that �=�N . Because negative preconditions
are not allowed, z �N y implies that in N we have either (1)
z . y, (2) z . x and x . y, or (3) z . xy. In case (1), we have
xz �N xy, which contradicts xy �N xz. In case (2), we
have xz �N yz �N xy, which again contradicts xy �N xz.
In case (3), we have xz �N z �N xy, which again contra-
dicts xy �N xz. Therefore, there can be no satisfiable CI-net
N without negative preconditions such that�=�N (note that
an unsatisfiable CI-net would not express� either). A similar
line of reasoning shows that the same preference relation �
is not expressible without positive preconditions.

To see why it is so for restriction (c), consider V =
{x, y, z} and the monotonic preference relation xyz � xz �
xy � x � yz � y � z � ∅. � is expressible by
the CI-net {x : z . y, x̄ : y . x, x . yz}. If compared
subsets in CI-statements were only singletons, there would
be no way of expressing x . yz. More generally, if we
have n items x1, . . . , xn, then a preference relation satisfy-
ing x1 � {x2, . . . , xn} cannot be expressed if the cardinality
of the compared subsets is bounded by K ≤ n− 2.

The restriction to singletons is particularly relevant, due
to its simplicity. Note that the “conditional importance frag-
ment” of binary TCP-nets falls in this fragment of CI-nets:
any conditional importance is translated into a CI-statement
on singletons in an obvious way.



Even simpler than the restriction to singletons is the com-
bination of the restriction to comparisons between singletons
and the absence of preconditions. In this case, a CI-statement
has the form i . j. A CI-net is called an SCI-net if it is a set of
precondition-free, singleton-comparing CI-statements – that
is, a set {i1 . j1, . . . , iq . jq}, where ik and jk are elements
of V . An SCI-net N is called exhaustive if it has the form
iθ(1) . iθ(2) . . . . . iθ(n), where V = {i1, . . . , in}, and θ is
a permutation of {1, . . . , n}. Exhaustive SCI-nets have (im-
plicitly) been considered in various places, including [Brams
et al., 2004]. An SCI-net N is transitively closed if for every
i . j and j . k in N , i . k is in N as well. Observe that the
preference relation induced by an SCI-net and its transitive
closure N ∗ are equivalent (proof omitted, but easy). Lastly,
it is easy to check that an SCI-net is satisfiable if and only if
it does not possess a cycle xi1 . xi2 . . . . . xi1 .

Note that CI-nets also capture the monotonic fragment
of conditional preferences theories [Wilson, 2004]. Recall
that CP-theories allow to express statements of the form “x
is preferred to x̄, given ~u whatever the values of the vari-
ables in W ”. Corresponding statements in our language are
statements of the form “I prefer the set of objects X to the
set Y regardless of whether the objects in Z are in or out”
(note that this is much stronger than “ceteris paribus”). Due
to monotonicity, such a statement is simply expressed by
(X∩Y ), ∅ : (X\Y ).(Y \X)∪Z. Note that such statements
are not expressible in the language of CP-theories when X\Y
and Y \X are not singletons.

3 Computational complexity
Next, we analyze the complexity of reasoning about pref-
erences expressed as CI-nets. We will be interested in two
problems: checking whether a given CI-net is satisfiable, and
checking whether one bundle dominates another according
to a given CI-net. The DOMINANCE problem is defined as:
Given a CI-net N on V and bundles X, Y ∈ 2V , is it the case
that X �N Y ? Note that, formally, (semantic) dominance
has only been defined for satisfiable CI-nets (Definition 5).

Proposition 6 DOMINANCE in satisfiable CI-nets is
PSPACE-complete, even under any of these restrictions:

(1) every CI-statement bears on singletons and has no neg-
ative preconditions;

(2) every CI-statement bears on singletons and has no posi-
tive preconditions;

(3) every CI-statement is precondition-free.

Proof sketch: Membership is easy to establish. For hardness,
we need a reduction for each of the three cases.

For case (1), consider the following reduction from DOM-
INANCE IN SATISFIABLE BINARY CP-NETS, known to be
PSPACE-complete [Goldsmith et al., 2008]. With every sat-
isfiable CP-net M = 〈X, G, T 〉, where X is a set of binary
variables, G a graph on X , and T a set of conditional prefer-
ence tables wrt. G, we associate the following CI-net N :
• V = {x, x′ | x ∈ X};

• for each z ∈ X and each ~t : z � z̄ (resp. ~t : z̄ � z) in T
(where ~t denotes a vector of Boolean values), we add a

statement f(~t), ∅ : z . z′ (resp. f(~t), ∅ : z′ . z), where
f(~t) = {x | ~t contains x} ∪ {x′ | ~t contains x̄}.

Let ~x, ~y ∈ 2X . We claim that ~x �M ~y if and only if f(~x) �N
f(~y). First, assume ~x �M ~y. Then there exists a worsening
sequence from ~x to ~y. Replacing x̄ by x′ everywhere in it, we
obtain a worsening sequence in N ; hence f(~x) �N f(~y).

Conversely, assume f(~x) �N f(~y). Then there exists a
worsening sequence from f(~x) to f(~y) in �N . Such a wors-
ening sequence is composed of applications of CI-statements
in N and monotonicity flips. Now, f(~x) and f(~y) both have
n = |X| objects, and every CI-statement in N preserves the
number of objects. Therefore, as soon as one monotonicity
flip is applied, the obtained set of objects contains n − 1 ob-
jects, and there is no way of obtaining n objects again later
in the sequence. This implies that the worsening sequence is
composed only of applications of CI-statements in N . Now,
replacing every z′ by z̄, we obtain a worsening flipping se-
quence from ~x to ~y in N . Finally, note that N contains a
worsening cycle if and only if M does; therefore, the satisfi-
ability of M implies the satisfiability of N .

For case (2), the reduction is the same as above, except
that f(~t), ∅ : z . z′ is replaced by ∅, g(~t) : z . z′, with
g(~t) = {x′ | ~t contains x} ∪ {x | ~t contains x̄}.

For case (3), we use a reduction from case (1). Any CI-net
over singletons with only positive preconditions M on V is
mapped to the following CI-net N :

• the set of objects for N is V ∪ {v′ | v ∈ V};

• N contains the n statements v′.v, for every v ∈ V , plus,
for every X : a . b on M, the statement X ∪{a} . X ′ ∪
{b}, where X ′ = {x′ | x ∈ X}.

For instance, if M = {a : b . c, bc : d . a}, then N =
{ab . a′c, bcd . b′c′a, a′ . a, b′ . b, c′ . c, d′ . d}. We claim
that for any A,B ⊆ V , A �M B if and only if A �N B.

Assume A �M B. Then there exists a worsening sequence
from A to B. Consider any flip Zi ; Zi+1 in the sequence.
If it is a monotonicity flip, leave it unchanged. If it is an
application of some CI-statement X : y.z, then we can write
Zi = X ∪ {y} ∪ Ti and Zi+1 = X ∪ {z} ∪ Ti. Then replace
this flip by X∪{y}∪Ti ; X ′∪{y}∪Ti, followed by the |X|
flips {x′ . x | x ∈ X} in any order. It is easily checked that a
flipping sequence in M from A to B is thus transformed into
a flipping sequence in N from A to B. Hence, A �N B.

Conversely, assume A �N B. We only sketch the proof.
There exists a flipping sequence Z1 = A ; Z2 ; . . . ;

Zq = B sanctioned by N . This sequence can be mapped to
an equivalent sequence where every flip Zk ; Zk+1 result-
ing from the application of a CI-statement X∪{a}.X ′∪{b}
is followed directly by |X| − 1 flips of kind v . v′, and such
that Zk and Zk+|X| do not contain any object from V ′. This
new sequence can be mapped directly into a worsening flip-
ping sequence from A to B in M.

It is important to note that the reductions used give rise to
satisfiable CI-nets. Hence, the dominance problem remains
PSPACE-complete for satisfiable CI-nets. �

The complexity of DOMINANCE falls down to P for the case
of precondition-free singletons (SCI-nets):



Proposition 7 DOMINANCE in satisfiable SCI-nets is in P.

LetN be an SCI-net. As remarked in Section 2.5,�N=�N∗ .
Therefore, we can assume wlog. thatN is transitively closed,
and acyclic (if it were cyclic it would not be consistent). Note
that N defines a partial order on V . For any X, Y ⊆ V ,
we define the bipartite graph GN ,X,Y = (V1, V2, E), where
V1 = X \ Y , V2 = Y \ X and (i, j) ∈ E if and only if N
contains i . j.

Lemma 1 If |X| = |Y | then X �N Y if and only if there
exists a perfect matching in GN ,X,Y .

Proof: If there exists a perfect matching π in GN ,X,Y , then
we can construct the flipping sequence starting from X and
consisting in applying, in any order, the statements i . π(i)
for every i ∈ X \ Y (it is easy to see that all these flips will
be applicable). Therefore, X �N Y .

Conversely, assume X �N Y . Then there is a flipping se-
quence X = Z0 ; Z1 ; Z2 . . . ; Zq = Y from X to Y
sanctioned by N . We now show, by induction on the length
t of the flipping sequence, that if there is a flipping sequence
from X to Y sanctioned by N , then there exists a perfect
matching πt in GN ,X,Y . This is true if t = 1: because there
is a T such that X = T ∪{a}, Y = T ∪{b}, the CI-statement
applied being a . b; thus X \ Y = {a}, Y \ X = {b}, and
the matching is defined by π1(a) = b. Now, assume the prop-
erty is true for any flipping sequence of length t. Consider a
sequence X ; . . . ; Zt ; Zt+1. By the induction hypoth-
esis, there exists a perfect matching πt between X \ Zt and
Zt \X , such that for every i ∈ X , i . πt(i). Let a . b be the
CI-statement of N applied between Zt and Zt+1. We know
that a ∈ Zt \ Zt+1 and b ∈ Zt+1 \ Zt. We are now going to
build πt+1 from πt and a . b. There are four possible cases
(we only detail the first two ones due to lack of space):

(1) a ∈ X and b 6∈ X . Since a ∈ X ∩ Zt, a was not
involved in πt, nor b (because b 6∈ X). Just add a 7→ b to πt,
we get a perfect matching in GN ,X,Zt+1 .

(2) a ∈ X and b ∈ X . Then b ∈ X \ Zt, therefore, by
applying the induction hypothesis, there exists a c ∈ Zt \X
such that πt(b) = c (therefore, b. c is inN ). Note that c 6= a,
because a ∈ X . Then, c ∈ Zt and c is left intact by the
application of a . b from Zt to Zt+1, therefore c ∈ Zt+1, that
is, c ∈ Zt+1 \ X . Moreover, N contains a . b and b . c,
therefore it contains a . c by transitivity. Replacing b 7→ c in
πt by a 7→ c, we get a perfect matching πt+1 in GN ,X,Zt+1 .

(3) a 6∈ X and b ∈ X . One can check that replacing d 7→ a
and b 7→ c in πt by d 7→ c (with πt(b) = c and πt(d) = a)
gives a perfect matching in GN ,X,Zt+1 .

(4) a 6∈ X and b 6∈ X . Replace d 7→ a in πt by d 7→ b
(with πt(d) = a) to get a perfect matching in GN ,X,Zt+1 . �

Proof of Proposition 7: When |X| = |Y |, the claim is a
direct consequence of Lemma 1, because a matching can be
found in polynomial time. If |X| > |Y |, just add |X| − |Y |
dummy items z1, . . . , z|X|−|Y | to Y , and for every x ∈ X
and every i, add x . zi to N . Then X �N Y if and only if
X �N Y ∪ {z1, . . . , z|X|−|Y |}, and again the problem is in
P. Lastly, if |Y | > |X|, we cannot have X �N Y , because
for any worsening flip Z ; Z ′ either |Z| = |Z ′| (CI flip), or

|Z| > |Z ′| (monotonicity flip). �

SCI-nets are a fragment of TCP-nets, so Proposition 7 can
also be seen as a tractability result for a fragment of TCP-
nets, which, to the best of our knowledge, does not follow
from any of the known complexity results for TCP-nets.

An open question is the complexity of DOMINANCE for
precondition-free CI-nets where the cardinality of the com-
pared sets is bounded by a constant.

Lastly, we discuss the complexity of SATISFIABILITY, the
problem of deciding whether a given CI-net is satisfiable.

Proposition 8 SATISFIABILITY for CI-nets is PSPACE-
complete.

Proof: Membership is as usual. Hardness comes from the
following reduction from DOMINANCE: given a satisfi-
able CI-net N and two bundles A, B, we have A �N B if
and only ifN∪{A∩B, ∅ : B\A.A\B} is not satisfiable. �

Since the CI-net resulting from the reduction has no negative
preconditions, SATISFIABILITY remains PSPACE-complete
even for CI-nets free of negative preconditions. However,
the result does not obviously carry over to precondition-free
CI-nets, nor to CI-nets where the compared sets are single-
tons. Finally, SATISFIABILITY for SCI-nets is in P, because
an SCI-net is satisfiable if and only if it is acyclic.

Note that while the PSPACE-hardness results may seem
rather negative, this is inherent to the problem: as soon as
we want to design a language for specifying preferences be-
tween sets of objects of arbitrary size, to be understood ceteris
paribus, we have to face this high complexity. This can be
compared to the inherent complexity of propositional STRIPS
planning: as soon as we want the language to be as expressive
as STRIPS, we have to face PSPACE-hardness. On the posi-
tive side, as PSPACE-hardness is caused by the existence of
exponentially long flipping sequences, it may be reasonable
enough, in many practical cases, to look for short flipping se-
quences, at the risk of not finding any when there exists one
(compare this to the SATPLAN approach to STRIPS planning).
We conjecture that the simpler the CI-statements (where sim-
plicity can be measured, for instance, by the cumulative size
of preconditions and compared subsets), the shorter the flip-
ping sequences (we leave this for further research).

4 CI-nets and fair division
A possible field of application for CI-nets is fair division. We
now briefly want to outline how they may be used. Let us first
recall the basics of fair division of indivisible goods (see e.g.,
[Brams et al., 2004]). Given a set of goods V , a set of agents
A = {1, . . . , N}, each of whom has a preference structure
on 2V , we have to find an allocation π : A → 2V , such that
π(i) ∩ π(j) = ∅ for every i 6= j, satisfying some fairness or
efficiency criteria. Two classical criteria are envy-freeness (an
allocation is envy-free if every agent (weakly) prefers his own
share to the share of any other agent) and Pareto-efficiency
(there is no other allocation making some agent better and no
other agent worse off). These two criteria are purely ordinal.
It is a well-known fact that for some fair division problems
there exists no allocation that is both envy-free and efficient.



A serious problem is that it is not reasonable to expect
agents to specify their preferences explicitly over all sets of
goods. This was already pointed out in [Brams et al., 2004;
Brams and King, 2005], who suggested to use a preference
relation over singletons, the semantics of which corresponds
exactly to our exhaustive SCI-nets. The problem was dis-
cussed further, and analyzed computationally, in [Bouveret
and Lang, 2008], but there mostly for the case of dichoto-
mous preferences. CI-nets can be seen as a way of coping
with this issue: they provide a fully expressive, yet compact
way for agents to express their monotonic preferences.

Due to space limitations, we only illustrate how CI-nets can
be used to express and solve fair division problems by means
of an example. For every agent i, her (not necessarily com-
plete) preference relation�i on 2V is described succinctly by
a CI-net Ni. Following [Brams et al., 2004], though with a
slight shift in terminology, we say that an allocation π is:
• EF-necessary if π is envy-free under every possible re-

finement of every agent’s �i to a complete relation;
• EF-possible if π is envy-free under some refinement of

every agent’s �i to a complete relation;
Pareto-necessity and -possibility are defined accordingly.
Example Let V = {a, b, c}. Suppose there are two agents
with CI-netsN1 = {b : c.a, b : a.c} andN2 = {c.a, a.b}.
Allocations are denoted by pairs 〈π(1), π(2)〉.
• 〈a, bc〉 is not EF-possible, because bc �1 a. Neither are
〈c, ab〉, 〈ac, b〉, and 〈bc, a〉. Furthermore, 〈abc, ∅〉 and
〈∅, abc〉 are not EF-possible due to monotonicity.

• 〈ab, c〉 is EF-possible but not EF-necessary: agent 1
prefers ab to c, and for agent 2, ab and c are incom-
parable. The same is true for 〈b, ac〉. Furthermore, it
can be checked that 〈ab, c〉 is also Pareto-necessary.

If we allow incomplete allocations, then 〈a, c〉 is EF-
necessary (but not Pareto-possible, since it is incomplete).
Note that no allocation is both definitely envy-free and effi-
cient (i.e., EF-necessary and Pareto-necessary).
Another (related) application of CI-nets is constrained opti-
mization. Assume we have an agent whose monotonic pref-
erences are represented by a CI-net over V , and that some
constraints restrict the set of feasible subsets (for instance,
the user may only receive a fixed number of objects, or more
generally, each object may have a volume and there may be
a maximum volume allowed). Then searching for a preferred
feasible subset is a nontrivial task worth studying.

5 Conclusion
This paper contributes to filling a gap in preference repre-
sentation in combinatorial domains: we have introduced a
language, CI-nets, for the compact representation of mono-
tonic preference relations over sets of goods, which is crucial
in many applications. Compactness stems from the ceteris
paribus interpretation of preference statements; a single CI-
statement may express up to an exponential number of com-
parisons. While there were languages for expressing numeri-
cal preferences before (e.g., bidding languages), there was no
such language for ordinal preferences.

We have already commented on the related work on CP-
nets, TCP-nets, and CP-theories. [Brafman et al., 2006b] give
a very different language for expressing preferences over sets
of objects; they have a two-tier language where preferences
are expressed on properties that the set of objects enjoy, while
we express preferences directly at the object level. Also, they
are not concerned with monotonicity. These two lines of work
are complementary to each other: we could use a two-tier sys-
tems and use CI-nets for expressing monotonic preferences
over sets of properties. Finally, Yaman and desJardins [2007]
identify a tractable subclass of CP-nets, which is character-
ized by what the authors call monotonic variables – not to be
confused with the monotonicity property of preference rela-
tions themselves, which is what we are interested in.

We have shown that CI-nets can represent all monotonic
strict orders, and that any of the natural restrictions on the
language considered reduces expressivity. A study of which
restriction can model which class of preferences is an impor-
tant issue for future work, even if many families of cardinal
preferences do not have natural ordinal counterparts.

Reasoning about preferences expressed as CI-nets can be
hard, which is typical in compact preference representation.
As our results show, as soon as we compare sets of arbitrary
size with a ceteris paribus interpretation, dominance is hard.

Finally, we have sketched the application of CI-nets in the
context of fair division. As our discussion indicates, there are
a plethora of opportunities for fruitful research in this area.
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