
ar
X

iv
:0

90
6.

11
82

v1
 [

cs
.A

I]
 5

 J
un

 2
00

9

Under consideration for publication in Theory and Practice of Logic Programming 1

The CIFF Proof Procedure for Abductive Logic

Programming with Constraints: Theory,

Implementation and Experiments

Paolo Mancarella and Giacomo Terreni

Dipartimento di Informatica, Università di Pisa
(e-mail: paolo.mancarella@unipi.it)

(e-mail: terreni@di.unipi.it)

Fariba Sadri and Francesca Toni

Department of Computing, Imperial College London

(e-mail: fs@doc.ic.ac.uk)
(e-mail: ft@doc.ic.ac.uk)

Ulle Endriss

Institute for Logic, Language & Computation (ILLC), University of Amsterdam
(e-mail: ulle.endriss@uva.nl)

submitted 23 January 2008; revised 23 December 2008; accepted 22 April 2009

Abstract

We present the CIFF proof procedure for abductive logic programming with constraints,
and we prove its correctness. CIFF is an extension of the IFF proof procedure for ab-
ductive logic programming, relaxing the original restrictions over variable quantification
(allowedness conditions) and incorporating a constraint solver to deal with numerical
constraints as in constraint logic programming. Finally, we describe the CIFF System,
comparing it with state of the art abductive systems and answer set solvers and showing
how to use it to program some applications.
(To appear in Theory and Practice of Logic Programming - TPLP).

KEYWORDS: Abduction, Constraints, Proof procedures.

1 Introduction

Abduction has found broad application as a powerful tool for hypothetical reasoning

with incomplete knowledge. This form of reasoning is handled by labeling some

pieces of information as abducibles, i.e. as possible hypotheses, that can be assumed

to hold, provided that they are consistent with the rest of the given information in

the knowledge base.

Attempts to make abductive reasoning an effective computational tool have given

rise to Abductive Logic Programming (ALP) which combines abduction with stan-

dard logic programming. A number of abductive proof procedures have been pro-

posed in the literature, e.g. (Kakas and Mancarella 1990b; Kakas and Mancarella 1990a;

http://arxiv.org/abs/0906.1182v1

Console et al. 1991; Denecker and De Schreye 1998; Fung and Kowalski 1997). These

differ in that they rely upon different semantics, the most common being the (gen-

eralized) stable models semantics (Kakas and Mancarella 1990b) and the (three-

valued) completion semantics (Kunen 1987). Many of these proof procedures en-

rich the expressive power of the abductive framework by allowing the inclusion of

integrity constraints (ICs) to further restrict the range of possible hypotheses.

ALP has also been integrated with Constraint Logic Programming (CLP) (Jaffar and Maher 1994;

Jaffar et al. 1998), in order to combine abductive reasoning with an arithmetic tool

for constraint solving (Kakas et al. 2001; Kakas et al. 2000; Kowalski et al. 1998;

Bressan et al. 1997) (in the sense of CLP, not to be confused with integrity con-

straints). In recent years, several proof procedures for ALP with constraints (ALPC)

have been proposed, including ACLP (Kakas et al. 2000) and theA-System (Kakas et al. 2001).

Important applications of ALP and ALPC include agent programming (Kakas et al. 2008;

Kakas et al. 2004; Sadri et al. 2002), (semantic) web management applications (Toni 2001),

planning and combinatorial problems (Wetzel et al. 1996; Kowalski et al. 1998).

Here we propose CIFF, another proof procedure for ALPC which extends the IFF

procedure (Fung and Kowalski 1997) in two ways, namely (1) by integrating ab-

ductive reasoning with constraint solving, and (2) by relaxing the allowedness con-

ditions on suitable inputs given in (Fung and Kowalski 1997), in order to be able to

handle a wider class of problems. The CIFF proof procedure has been implemented

in Prolog in the CIFF System (Terreni 2008b).

CIFF features have been exploited in various application domains. In (Kakas et al. 2008;

Kakas et al. 2004) CIFF has been used as the computational core for modelling an

agent’s planning, reactivity and temporal reasoning capabilities based on a variant

of the abductive event calculus (Kowalski and Sergot 1986a; Shanahan 1989). Also,

a (slightly modified) prototype version of CIFF for checking and repairing XML web

sites is currently under development (Mancarella et al. 2007; Mancarella et al. 2009;

Terreni 2008a).

We have compared empirically the CIFF System to other related systems, namely

the A-System (Kakas et al. 2001; Van Nuffelen 2004), which is the closest system

from both a theoretical and an implementative viewpoint, and two state-of-the-art

answer set solvers: SMODELS (Niemela and Simons 1997; Simons 2000) and DLV

(Eiter et al. 1997; Leone et al. 2006). These solvers implement a different (answer

set) semantics (Gelfond and Lifschitz 1991), but share with our approach the ob-

jective of modeling dynamic and non-monotonic settings in a declarative (and thus

human-oriented) way. The results of our tests show that (1) the CIFF System and

the other systems have comparable performances and (2) the CIFF System is able

to handle variables taking values in unbound domains.

The paper is organised as follows. In the next section we give background notions

about ALPC. Section 3 specifies the CIFF proof procedure, while formal results

are shown in Section 4. In Section 5 we briefly describe the CIFF System and in

Section 6 we discuss some related work together with some experimental results.

Finally, Section 7 concludes the paper and proposes some future work.

2

This paper combines and extends a number of earlier papers: (Endriss et al. 2004b),

defining an earlier version of the CIFF proof procedure, (Endriss et al. 2004a),

(Endriss et al. 2005) and (Mancarella et al. 2007) all defining earlier versions of the

CIFF System.

2 Abductive Logic Programming with Constraints

We present here some background on ALPC. We will assume familiarity with basic

concepts of Logic Programming (atom, term etc.) as found e.g. in (Lloyd 1987).

We will frequently write ~t for a vector of terms such as t1, . . . , tk. For instance, we

are going to write p(~t) rather than p(t1, . . . , tk). Throughout the paper, to simplify

the presentation, we will assume that predicates cannot have the same name but

different arities. Moreover, with an abuse of notation, we will often use disjunctions

and conjunctions as if they were sets, and similarly for substitutions. In particu-

lar, we will abstract away from the position of a conjunct (respectively disjunct)

in a conjunction (respectively disjunction) and we will apply to disjunctions and

conjunctions set-theoretic operations such as union, inclusion, difference and so on.

An abductive logic program is a tuple 〈P, A, IC〉 where:

• P is a normal logic program, namely a set of clauses of the form:

p(~s)← l1(~t1) ∧ . . . ∧ ln(~tn) n ≥ 0

where p(~s) is an atom and each li(~ti) is a literal, i.e. an atom a(~t) or the

negation of an atom a(~t), represented as ¬a(~t). We refer to p(~s) as the head

of the clause and to l1(~t1)∧ . . .∧ ln(~tn) as the body of the clause. A predicate

p occurring in the head of at least one clause in P is called a defined predicate

and the set of clauses in P such that p occurs in their heads is called the

definition set of p.

Any variable in a clause is implicitly universally quantified with scope the

entire clause.

• A is a set of predicates, referred to as abducible predicates. Atoms whose

predicate is an abducible predicate are referred to as abducible atoms or simply

as abducibles. Abducible atoms must not occur in the head of any clause of

P (without loss of generality, see (Kakas et al. 1998)).

• IC is a set of integrity constraints which are implications of the form:

l1(~t1) ∧ . . . ∧ ln(~tn) → a1(~s1) ∨ . . . ∨ am(~sm) n, m ≥ 0 n + m ≥ 1

Each of the li(~ti) is a literal (as defined above) while each of the ai(~si) is an

atom. We refer to l1(~t1)∧ . . .∧ ln(~tn) as the body and to a1(~s1)∨ . . .∨am(~sm)

as the head of the integrity constraint.

Any variable in an integrity constraint is implicitly universally quantified with

scope the entire implication.

Given an abductive logic program 〈P, A, IC〉, we will refer to the set of all (de-

fined and abducible) predicates occurring in 〈P, A, IC〉 as its Herbrand signature.

3

Moreover, as is the convention in LP, we will assume as given a Herbrand universe,

namely a set of ground terms. Further, we will refer to all ground atoms whose

predicate belongs to the Herbrand signature of 〈P, A, IC〉 and that can be built

using terms in the Herbrand universe as the Herbrand base of 〈P, A, IC〉. Finally,

we will refer to Herbrand terms as (ground and non ground) terms whose instances

belong to the Herbrand universe. Then, a query Q to an abductive logic program

〈P, A, IC〉 is a conjunction of literals whose predicate belongs to the Herbrand

signature of 〈P, A, IC〉 and whose arguments are Herbrand terms. Any variable

occurring in Q is implicitly existentially quantified with scope Q.

A normal logic program P provides definitions for certain predicates, while ab-

ducibles can be used to extend these definitions to form possible explanations for

queries, which can be regarded as observations against the background of the world

knowledge encoded in the given abductive logic program. Integrity constraints, on

the other hand, restrict the range of possible explanations. Note that, in general, the

set of abducible predicates may not coincide with the set of all predicates without

definitions in P (i.e. the set of open predicates).

Informally, given an abductive logic program 〈P, A, IC〉 and a query Q, an ex-

planation for a query Q is a set of (ground) abducible atoms ∆ that, together

with P , both “entails” (an appropriate ground instantiation of) Q, with respect to

some notion of “entailment”, and “satisfies” the set of integrity constraints IC (see

(Kakas et al. 1998) for possible notions of integrity constraint “satisfaction”). The

notion of “entailment” depends on the semantics associated with the logic program

P (there are many different possible choices for such semantics (Kakas et al. 1998)).

The following definition of abductive answer formalizes this informal notion of ex-

planation.

Definition 2.1 (Abductive answer)
An abductive answer to a query Q with respect to an abductive logic program

〈P, A, IC〉 is a pair 〈∆, σ〉, where ∆ is a finite set of ground abducible atoms and

σ is a ground substitution for the (existentially quantified) variables occurring in

Q, such that:

• P ∪∆ |=LP Qσ and
• P ∪∆ |=LP IC

where |=LP stands for the chosen semantics for logic programming.

Given an abductive logic program 〈P, A, IC〉, an abductive answer to a query Q

provides an explanation for Q, understood as an observation: the answer specifies

which instances of the abducible predicates have to be assumed to hold for the

(corresponding instances of the) observation Q to hold as well, and, in addition, it

forces such an explanation to validate the integrity constraints.

The framework of abductive logic programming can be usefully extended to han-

dle constraint predicates in the same way Constraint Logic Programming (CLP)

(Jaffar and Maher 1994) extends logic programming. The CLP framework is de-

fined over a particular structure ℜ consisting of a domain D(ℜ), and a set of con-

straint predicates which includes equality (
.
=) and disequality (6=), together with an

4

assignment of relations on D(ℜ) for each constraint predicate. We will refer to the

set of constraint predicates in ℜ as the constraint signature (of ℜ), and to atoms of

the constraint predicates as constraint atoms (over ℜ).

The structure ℜ is equipped with a notion of ℜ-satisfiability. Given a set of (possibly

non-ground) constraint atoms C, the fact that C is ℜ-satisfiable will be denoted

as |=ℜ C. Moreover we denote as σ |=ℜ C the fact that the grounding σ of the

variables of C over D(ℜ) satisfies C, i.e. C is ℜ-satisfied.

An abductive logic program with constraints is a tuple 〈P, A, IC〉ℜ with all compo-

nents defined as above but where constraint atoms for ℜ might occur in the body

of clauses of P and of integrity constraints of IC. Also, queries for abductive logic

programs with constraints might include constraint atoms (over ℜ). We keep the

notion of Herbrand signature and Herbrand base as before.

The semantics of CLP is obtained by combining the logic programming semantics

|=LP and the notion of ℜ-satisfiability (Jaffar and Maher 1994). We denote this

semantic notion as |=LP (ℜ) and we use it in the notion of abductive answer with

respect to an abductive logic program with constraints.

Definition 2.2 (Abductive answer with constraints)

An abductive answer with constraints to a query Q with respect to an abductive

logic program with constraints 〈P, A, IC〉ℜ is a tuple 〈∆, σ, Γ〉, where ∆ is a finite

set of abducible atoms, σ is a ground substitution for the (existentially quantified)

variables occurring in Q and Γ is a set of constraint atoms such that

1. there exists a ground substitution σ′ for the variables occurring in Γσ such

that σ′ |=ℜ Γσ and

2. for each ground substitution σ′ for the variables occurring in Γσ such that

σ′ |=ℜ Γσ, there exists a ground substitution σ′′ for the variables occurring

in Q ∪∆ ∪ Γ, with σσ′ ⊆ σ′′, such that:

• P ∪∆σ′′ |=LP (ℜ) Qσ′′ and

• P ∪∆σ′′ |=LP (ℜ) IC.

Example 2.1

Consider the following abductive logic program with constraints (here we assume

that < is a constraint predicate of ℜ with the expected semantics):

P : p(X)← q(T1, T2) ∧ T1<X ∧X<8

q(X1, X2)← s(X1, a)

A : {r, s}

IC : r(Z) → p(Z)

An abductive answer with constraints for the query Q = r(6) is

〈{r(6), s(T1, a)},⊘, {T1 < 6}〉

where ⊘ is the empty set.

5

Intuitively, given the query r(6), the integrity constraint in IC would fire and force

the atom p(6) to hold, which in turn requires s(T1, a) for some T1 < 6 to be true.

Considering a non-ground version of the query, for example Q = r(Y), the following

is an abductive answer with constraints:

〈{r(Y), s(T1, a)}, {Y/5}, {T1 < Y, Y < 8}〉.

3 The CIFF Proof Procedure

The language of CIFF is the same of an abductive logic program with constraints,

but we assume to have the special symbols false and true. These will be used, in

particular, to represent the empty body (true) and the empty head (false) of an

integrity constraint.

The CIFF framework relies upon the availability of a concrete CLP structure ℜ over

arithmetical domains equipped at least with the set {<,≤, >,≥,
.
=, 6=} of constraint

predicates whose intended semantics is the expected one1. The set of constraint

predicates is assumed to be closed under complement2. When needed, we will denote

by Con the complement of the constraint atom Con (e.g. X < 3 is X ≥ 3). We also

assume that the constraint domain offers a set of functions like +,−, ∗ . . . whose

semantics is again the expected one.

The structure ℜ is a black box component in the definition of the CIFF proof

procedure: for handling constraint atoms and evaluating constraint functions, we

rely upon an underlying constraint solver over ℜ which is assumed to be both

sound and complete with respect to |=ℜ. In particular we will assume that, given

a constraint atom Con and its complement Con, the formulae Con ∨ Con and

Con → Con are tautologies with respect to the constraint solver semantics. We

do not commit to any concrete implementation of a constraint solver, hence the

range of the admissible arguments to constraint predicates (D(ℜ)) depends on the

specifics of the chosen constraint solver.

The semantics of the CIFF proof procedure is defined in terms of Definition 2.2

where (1) the constraint structure ℜ is defined as above, and (2) the semantics

of logic programming is the three-valued completion semantics (Kunen 1987) (we

denote as |=3(ℜ) the notion of |=LP (ℜ) with respect to that semantics). We refer to

an abductive answer with constraints as a CIFF abductive answer. Recall that the

three-valued completion semantics embeds the Clark Equality Theory (Clark 1978),

denoted by CET, which handles equalities over Herbrand terms.

The CIFF proof procedure operates on a set of iff-definitions obtained from the

completion (Clark 1978) of the defined predicates p1, . . . , pn in the Herbrand sig-

nature of 〈P, A, IC〉ℜ.

The completion of a predicate p with respect to 〈P, A, IC〉ℜ is defined as follows.

Assume that the following set of clauses is the definition set of p in 〈P, A, IC〉ℜ:

1 Here
.
= is used for equality instead of =, the latter being used to stand for Clark’s equality as

shown later.
2 Clearly, 6= is the complement of

.
= and viceversa.

6

p(~t1) ← D1

...

p(~tk) ← Dk

where each Di is a conjunction of literals and constraint atoms. The iff-definition

of p is of the form:

p(~X) ↔ [~X = ~t1 ∧D1] ∨ · · · ∨ [~X = ~tk ∧Dk]

where ~X is a vector of fresh variables (not occurring in any Di or ti) implicitly

universally quantified with scope the entire iff-definition, and all other variables

are implicitly existentially quantified with scope the right-hand side disjunct in

which it occurs.

Note that the equality symbol = is used to represent Clark’s equality in iff-definitions.

In the sequel, we will refer to = as the equality predicate and to atoms containing

it as equality atoms3. Note also that input programs can not include = explicitly,

= being reserved for Clark’s equality in iff-definitions.

If p is a non-abducible, non-constraint, non-equality atom and it does not occur in

the head of any clause of P its iff-definition is of the form:

p(~X) ↔ false.

Definition 3.1 (CIFF Theory and CIFF Framework)

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints. The CIFF theory

Th relative to 〈P, A, IC〉ℜ is the set of all the iff-definitions of each non-abducible,

non-constraint predicate in the language of 〈P, A, IC〉ℜ. Moreover we say that a

CIFF framework is the tuple 〈Th, A, IC〉ℜ.

Example 3.1

Let us consider the following abductive logic program with constraints 〈P, A, IC〉ℜ:

P : p(T)← s(T)

p(W)←W<8

A : {s}

IC : r(T) ∧ s(T) → p(T)

The resulting CIFF theory Th is:

p(X) ↔ [X = T ∧ s(T)] ∨ [X = W ∧W<8]

r(Y) ↔ false.

With explicit quantification, the theory Th would be:

∀X (p(X) ↔ [∃T (X = T ∧ s(T)] ∨ [∃W (X = W ∧W<8)])

∀Y (r(Y) ↔ false).

3 In particular, constraints of the form A
.
= B are not equality atoms but they are (equality)

constraint atoms.

7

Note that Th includes an iff-definition for r even though r occurs only in the

integrity constraints IC. Moreover, there is no iff-definition for the abducible pred-

icate s. To improve readability and unless otherwise stated, in the remainder we

will write CIFF theories with implicit variable quantification.

Definition 3.2 (CIFF query)

A CIFF query Q is a conjunction of literals, possibly including constraint literals.

All the variables in a CIFF query Q are implicitly existentially quantified with

scope Q.

Allowedness. Fung and Kowalski (1997) require frameworks for their IFF proof pro-

cedure to meet a number of so-called allowedness conditions to be able to guarantee

the correct operation of their proof procedure. These conditions are designed to

avoid problematic patterns of quantification which can lead to problems analogous

to floundering in LP with negation (Lloyd 1987). These allowedness conditions are

primarily needed to avoid dealing with atomic conjuncts which may contain uni-

versally quantified variables, and also to avoid keeping explicit quantifiers for the

variables which are introduced during an IFF computation.

Informally, the problem arises when a universally quantified variable occurring in a

clause occurs nowhere else in the body except, possibly, in a negative literal or in

an abducible atom.

The IFF proof procedure for abductive logic programming (without constraints)

has the following allowedness conditions:

• an integrity constraint A→ B is allowed iff every variable in it also occurs in

an atomic conjunct within its body A;

• an iff-definition p(~X) ↔ D1 ∨ · · · ∨ Dn is allowed iff every variable, other

than those in ~X, occurring in a disjunct Di, also occurs inside a non-equality

atomic conjunct within the same Di;

• a query is allowed iff every variable in it also occurs in an atomic conjunct

within the query itself.

As stated in (Fung and Kowalski 1997), the above allowedness conditions ensure

statically that floundering is avoided. We will refer to a CIFF framework arising

from an abductive logic program without constraints and to a query Q such that

they are allowed as above as IFF allowed.

Also our CIFF frameworks 〈Th, A, IC〉ℜ must be allowed in order to guarantee

the correct operation of CIFF. Unfortunately, it is difficult to formulate appropri-

ate allowedness conditions that guarantee correct execution of the proof procedure

without imposing too many unnecessary restrictions. This is a well-known problem,

which is further aggravated for languages that include constraint predicates. In par-

ticular, adapting the IFF approach, the allowedness condition for an iff-definition

would be defined as follows:

Definition 3.3 (CIFF Static Allowedness)

A CIFF framework 〈Th, A, IC〉ℜ is CIFF-statically allowed iff it satisfies the fol-

lowing conditions:

8

• each integrity constraint A → B ∈ IC is such that every variable in it also

occurs in a non-constraint atomic conjunct within its body A;

• each iff-definition p(~X) ↔ D1 ∨ · · · ∨ Dn ∈ Th is such that every variable,

other than those in ~X , occurring in a disjunct Di, also occurs in a non-equality,

non-constraint atomic conjunct within the same Di.

A CIFF query Q is CIFF-statically allowed iff every variable in Q also occurs in a

non-constraint atomic conjunct within the query itself.

Our proposal is to relax the above allowedness conditions, and to check dynamically,

i.e. at runtime, the risk of floundering. Some restrictions are still needed in order

to ensure that the quantification of variables during a CIFF computation can be

kept implicit, both for simplicity and for keeping the IFF style of behaviour.

The new allowedness conditions for CIFF are defined as follows.

Definition 3.4 (CIFF Allowedness)

A CIFF framework 〈Th, A, IC〉ℜ is CIFF-allowed iff every iff-definition in Th is

allowed. An iff-definition p(~X)↔ D1 ∨ · · · ∨Dn is allowed iff every variable, other

than those in ~X, occurring in a disjunct Di, also occurs inside an atomic conjunct

within the same Di.

A CIFF query Q is CIFF-allowed iff every variable in it also occurs in an atomic

conjunct within the query itself.

Note that in this definition there are no restrictions concerning the integrity con-

straints. Moreover, it is worth noting that for a query Q, the notions of IFF al-

lowedness, CIFF static allowedness and CIFF allowedness for Q are identical.

Example 3.2

The following CIFF framework is CIFF allowed (P1 is the original normal logic

program):

P1 : p(Z)

p(Y)← ¬q(Y)

Th1 : p(X)↔ [X = Z] ∨ [X = Y ∧ ¬q(Y)]

q(X)↔ false

s(X)↔ false

A1 : ⊘

IC1 : Z = W → s(Z, W)

It is worth noting that the above CIFF framework is neither CIFF statically allowed

nor IFF allowed (note that there are no constraints in it). Indeed, in Th1, the

variable Z occurs only in an equality atomic conjunct and the variable Y occurs

only in an equality atomic conjunct and in a negative literal. The following CIFF

framework, instead, is not CIFF allowed (P 2 is the original normal logic program):

9

P2 : p(Z)← ¬q(Z, Y)

Th2 : p(X)↔ [X = Z ∧ ¬q(Z, Y)]

q(X, Y)↔ false

s(X, Y)↔ false

A2 : ⊘

IC2 : q(Z, W) → s(Z, W)

The non-allowedness is due to the variable Y in Th2 which occurs only in a negative

literal.

The query Q = ¬q(V, a) is not CIFF allowed (and it is neither CIFF statically

allowed nor IFF allowed) due to the variable V which occurs only in a negative

literal.

Note that in some cases a CIFF framework which is not CIFF allowed can be

turned into a CIFF allowed framework by adding explicit, though useless since

trivially satisfied, constraints over the critical variables (e.g. Y in Th2 above). For

instance, the above non CIFF-allowed framework can be modified by changing the

first clause as follows:

P2 : p(Z)← ¬q(Z, Y) ∧ Y
.
= Y

Note however that this can be done only if the critical variables such as Y above

are meant to be variables ranging over the domain D(ℜ), i.e. they are constraint

variables.

The following example shows how the IFF allowedness requirement forbids the use

of the IFF proof procedure even for simple abductive frameworks where IFF could

compute correct abductive answers.

Example 3.3

Consider the following CIFF framework:

P3 : p(Y).

q(Z)↔ r(Z) ∧ p(a)

Th3 : p(X)↔ [X = Y]

q(X)↔ [X = Z ∧ r(Z) ∧ p(a)]

A3 : {r}

IC3 : ⊘

The above framework is not IFF allowed due to the variable Y . Consider the query

q(b). Intuitively there is a simple and sound abductive answer for q(b), i.e. r(b)

and this could be computed by IFF, were it not for the allowedness restrictions it

imposes on its inputs. Instead, the above framework is CIFF allowed and, as will

become clear, the CIFF proof procedure returns exactly the correct answer.

Until now we have shown only “artificial” examples, but the IFF allowedness re-

strictions limit the application of the IFF proof procedure in many realistic settings.

10

Example 3.4

Abduction is a very interesting solution for modeling agent systems and agent capa-

bilities. In particular the Abductive Event Calculus (AEC) language (Kowalski and Sergot 1986b;

Miller and Shanahan 2002) is a popular framework for modeling (among others)

planning capabilities of an agent through abductive reasoning. The following CIFF

framework models a fragment of the AEC (definitions for init and term are omitted

for simplicity).

AEC : holds(G, T)← happens(A, T1) ∧ init(A, G)∧

¬clip(T1, G, T) ∧ T1 < T

clip(T1, G, T2)← happens(A, T)∧ term(A, G) ∧ T1 ≤ T ∧ T < T2

ThAEC : holds(X1, X2)↔ [X1 = G ∧X2 = T ∧ happens(A, T1)∧

init(A, G) ∧ ¬clip(T1, G, T) ∧ T1 < T]

clip(X1, X2, X3)↔ [X1 = T1 ∧X2 = G ∧X3 = T2 ∧

happens(A, T)∧ term(A, G) ∧ T1 ≤ T ∧ T < T2]

AAEC : {happens}

ICAEC : ⊘

The above framework is neither an IFF framework due to the presence of constraint

atoms, nor CIFF statically allowed due to the variable T in the first iff-definition

and the variables T1 and T2 in the second iff-definition, violating the allowedness

restrictions stated in Definition 3.3. This is because these variables occur only in

equality and/or constraint atomic conjuncts in the respective disjuncts. However

the framework is CIFF allowed and CIFF can be used for reasoning with it, as

done, e.g., in the KGP model (Kakas et al. 2008).

In the remainder of the paper, we will always assume that CIFF frameworks and

CIFF queries are CIFF allowed. For simplicity, from here onwards, with the word

allowed we mean CIFF allowed, unless otherwise explicitly stated.

3.1 CIFF Proof Rules

The CIFF proof procedure is a rewriting procedure, consisting of a number of CIFF

proof rules, each of which replaces a CIFF formula by another one.

In the remainder, a negative literal L = ¬A, everywhere in a CIFF framework, in

a CIFF query, or in a CIFF formula, will be written in implicative form, i.e. ¬A is

written as A → false.

Hence, in this context a literal is either an atom A or an implication A→ false.

A special case of such implication is given by the next definition.

Definition 3.5 (CIFF Disequality)

A CIFF disequality is an implication of the form

X = t→ false

where X is an existentially quantified variable and t is a term not in the form of a

universally quantified variable and such that X does not occur in t.

11

Definition 3.6 (CIFF formula, CIFF node and CIFF conjunct)

A CIFF formula F is a disjunction

N1 ∨ . . . ∨Nn n ≥ 0.

If n = 0, the disjunction is equivalent to false.

Each disjunct Ni is a CIFF node which is of the form:

C1 ∧ . . . ∧ Cm m ≥ 0.

If m = 0, the conjunction is equivalent to true. Each conjunct Ci is a CIFF conjunct

and it can be of the form of:

• an atom (atomic CIFF conjunct),

• an implication (implicative CIFF conjunct, including negative literals) or

• a disjunction of conjunctions of literals (disjunctive CIFF conjunct)

where implications are of the form:

L1 ∧ . . . ∧ Lt → A1 ∨ . . . ∨As s, t ≥ 1,

where each Li is a literal (possibly false or true) and each Ai is an atom (possibly

false or true).

In the sequel we will refer to L1 ∧ . . . ∧ Lt as the body of the implication and to

A1 ∨ . . . ∨As as the head of the implication.

In a CIFF node N , variables which appear either in an atomic CIFF conjunct or in

a disjunctive CIFF conjunct are implicitly existentially quantified with scope N . All

the remaining variables, i.e. variables occurring only in implicative CIFF conjuncts,

are implicitly universally quantified with the scope being the implication in which

they appear.

Finally a CIFF node N can have an associated label λ. We will denote a node N

labeled by λ as λ : N .

We are now going to present the CIFF proof rules. In doing that, we treat a CIFF

node as a (multi)set of CIFF conjuncts and a CIFF formula as a (multi)set of CIFF

nodes. I.e. we represent a CIFF formula F = N1 ∨ . . . ∨Nn as

{N1, . . . , Nn}

where each Ni is a CIFF node, of the form C1 ∧ . . . ∧ Cm represented by

{C1, . . . , Cm}

where each Cj is a CIFF conjunct.

Example 3.5

Let us consider the following abductive logic program with constraints 〈P, A, IC〉ℜ:

P : p← a

p← b

A : {a, b, c}

IC : a→ c

12

The CIFF formula p ∧ (a→ c) (composed of a single node) is represented by:

{{p, (a→ c)}}

The CIFF formula [a ∧ (a → c)] ∨ [b ∧ (a → c)], composed of two CIFF nodes

(obtained in CIFF from the earlier nodes as will be seen later) N1 = a ∧ (a → c)

and N2 = b ∧ (a→ c) is represented by:

{{a, (a→ c)}, {b, (a→ c)}}.

Each CIFF proof rule4 operates over a node N within a formula F and it will result

in a new formula F ′. A rule is presented in the following form:

Rule name φ Input: F, N Output F ′

Given: a set of CIFF conjuncts χ in N
Conditions: a set of conditions over χ and N
Action: {replace, replace all, add, delete} Ψ; mark λ

The Given part identifies a (possibly empty) set of conjuncts χ in N within F . A

rule φ can be applied on a set χ of conjuncts of N satisfying the stated Conditions.

We say φ is applicable to F and we call the set χ a rule input for φ. Finally,

the Action part defines both a new set of conjuncts Ψ and an action (replace,

replace all, add, delete or mark) which states, as described below, how F ′ is

obtained from F through Ψ. In the remainder we will omit to specify the Input

part and the Output part.

Given a rule φ as above, we denote by

F
N ,χ

GGGGGGGGA

φ
F ′

the application of rule φ with Input F, N , Given χ, and Output F ′.

Abstracting from the particular action, F ′ is always derived from F replacing the

node N by a set of nodes N , i.e.:

F ′ = F − {N} ∪ N

We refer to N as the CIFF successor nodes of N and we refer to each node N ′ ∈ N

as a CIFF successor node of N . Each type of action defines N as follows:

replace: N= {(N − χ) ∪Ψ}

replace all: N= {[(N − χ) ∪ {D1}], . . . , [(N − χ) ∪ {Dk}]}

where Ψ = {D1 ∨ . . . ∨Dk}

add: N= {N ∪Ψ}

delete: N= {N −Ψ}

mark: N= {λ : N}

4 In the remainder, when we want to refer to a CIFF framework, a CIFF node, a CIFF formula
and so on, we drop the prefix “CIFF” if it is clear from the context.

13

The mark action does not change the elements in N but it marks the node N with

the label λ.5 All the actions, apart from the replace all action, replace N by a

single successor node.

In the replace all action, Ψ consists of a single conjunct in disjunctive form, i.e.

Ψ = {D1 ∨ . . . ∨Dk}. This action adds to F a set N of k successor nodes, each of

them obtained from N by deleting χ and by adding a single disjunct Di.

We are now ready to specify the proof rules in detail.

In the presentation we are going to write ~t = ~s as a shorthand for t1 = s1 ∧ · · · ∧

tk = sk (with the implicit assumption that the two vectors have the same length),

and [~X/~t] for the substitution [X1/t1, . . . , Xk/tk]. Note that X and Y will always

represent variables.

Furthermore, in our presentation of the proof rules, we abstract away from the order

of conjuncts in the body of an implication by writing the body of implications with

the “critical” conjunct in the first position.

Recall that, in writing the proof rules, we use implicit variable quantification de-

scribed in Definition 3.6.

The first proof rule replaces an atomic conjunct in a node N by its iff-definition:

R1 - Unfolding atoms

Given: { p(~t) }

Conditions: { [p(~X) ↔ D1 ∨ · · · ∨ Dn] ∈ Th }

Action: replace { (D1 ∨ · · · ∨ Dn)[~X/~t] }

Note that any variable in D1 ∨ · · · ∨Dn is implicitly existentially quantified in the

resulting formula F ′.

We assume that variable renaming may be applied so that all existential variables

have distinct names in the resulting CIFF node.

Unfolding can be applied also to atoms occurring in the body of an implication

yielding one new implication for every disjunct in the corresponding iff-definition:

R2 - Unfolding within implications

Given: { (p(~t) ∧ B) → H }

Conditions: { [p(~X) ↔ D1 ∨ · · · ∨ Dn] ∈ Th }

Action: replace { [(D1[~X/~t] ∧ B) → H], . . . , [(Dn[~X/~t] ∧ B) → H] }

Observe that, within F ′, any variable in any Di becomes universally quantified with

scope the implication in which it occurs. Also in rule R2 renaming of variables is

assumed, as discussed for R1.

5 As we will see later, λ can only be the label undefined. When clear from the context, we will
represent a CIFF node omitting its label.

14

The next rule is the propagation rule, which allows us to resolve an atom in the

body of an implication in N with a matching atomic conjunct also in N .

R3 - Propagation

Given: { [(p(~t) ∧ B) → H], p(~s) }
Conditions: { }

Action: add { (~t = ~s ∧ B) → H }

Note that if p has no arguments, (~t = ~s∧B)→ H should be read as (true∧B)→ H .

The splitting rule is the only rule performing a replace all action. Roughly speak-

ing it distributes a disjunction over a conjunction.

R4 - Splitting

Given: { D1 ∨ · · · ∨ Dn }
Conditions: { }
Action: replace all { D1 ∨ . . . ∨ Dn }

The following factoring rule can be used to generate two cases, one in which the

given abducible atoms unify and one in which they do not:

R5 - Factoring

Given: { p(~t), p(~s) }
Conditions: { p abducible }

Action: replace { [p(~t) ∧ p(~s) ∧ (~t = ~s → false)] ∨ [p(~t) ∧ ~t = ~s] }

The next set of CIFF proof rules are the constraint rules. They manage constraint

atoms and they are, in a sense, the interface to the constraint solver. They also deal

with equalities and CIFF disequalities (see Definition 3.5) which can be delegated

to the constraint solver if their arguments are in the constraint domain D(ℜ). The

formal definition of the proof rules is quite complex, hence we first introduce some

useful definitions.

Definition 3.7 (Basic c-atom)
A basic c-atom is either a constraint atom, or an equality atom of the form A = B

where A and B are not both variables, and each is either a variable or a term

ranging over the chosen constraint domain D(ℜ).

As an example, X > 3 and X = 2 are both basic c-atoms, whereas X = Y and

X = a are not (where a 6∈ D(ℜ)).

Definition 3.8 (basic c-conjunct and constraint variable)
A basic c-conjunct is a basic c-atom which occurs as a CIFF conjunct in a node.

A constraint variable is a variable occurring in a basic c-conjunct.

Note that a constraint variable is always an existentially quantified variable with

its scope the entire CIFF node in which it occurs. This is because it must appear

in a basic c-conjunct (i.e. outside an implication).

15

Definition 3.9 (c-atom and c-conjunct)

A c-atom is either a basic c-atom or a non-ground equality atom of the form A = B

such that all the variables occurring in it are constraint variables.

A c-conjunct is a c-atom which occurs as a CIFF conjunct in a node.

We are now ready to present the first constraint proof rule.

R6 - Case analysis for constraints

Given: { (Con ∧ A) → B }
Conditions: { Con is a c-atom }

Action: replace { [Con ′ ∧ (A → B)] ∨ Con ′ }

where Con′ is A
.
= B if Con is A = B, and Con′ is Con otherwise.

Observe that as Con is a c-atom, all the variables occurring in it are constraint

variables, thus they are existentially quantified.

The next rule provides the actual constraint solving step itself. It may be applied

to any set of c-conjuncts in a node, but to guarantee soundness, eventually, it has

to be applied to the set of all c-conjuncts in a node. To simplify presentation, we

assume that the constraint solver will fail whenever it is presented with an ill-defined

constraint such as, say, bob ≤ 5 (in the case of a numerical solver). For inputs that

are “well-typed”, however, such a situation never arises.

R7 - Constraint solving

Given: { Con1, . . . , Conn }
Conditions: { each Coni is a c-conjunct;

{Con ′

1, . . . ,Con ′

n} is not ℜ-satisfiable }
Action: replace { false }

As in the case of the previous rule, Con ′
i is obtained from Con i by replacing all

occurrences of = with
.
=.

The next proof rules deal with equalities (which are not constraint atoms to be

handled by the constraint solver) and they rely upon the following rewrite rules

which essentially implement the term reduction part of the unification algorithm of

(Martelli and Montanari 1982):

(1) Replace f(t1, . . . , tk) = f(s1, . . . , sk) by t1 = s1 ∧ · · · ∧ tk = sk.

(2) Replace f(t1, . . . , tk) = g(s1, . . . , sl) by false if f and g are distinct or k 6= l.

(3) Replace t = t by true.

(4) Replace X = t by false if t contains X .

(5) Replace t = X by X = t if X is a variable and t is not.

(6) Replace Y = X by X = Y if X is a universally quantified variable and Y is

not.

16

In the following equality rewriting rules, we denote as E(e) the result of applying

the above rewrite rules (1)-(6) to the equality e. If no rewrite rule can be applied

then E(e) = e.

R8 - Equality rewriting in atoms

Given: { t1 = t2 }
Conditions: { }
Action: replace { E(t1 = t2) }

R9 - Equality rewriting in implications

Given: { (t1 = t2 ∧ B) → H }
Conditions: { }
Action: replace { (E(t1 = t2) ∧B) → H }

The following two substitution rules propagate equalities to the rest of the node. In

the first case we assume that N = (X = t ∧Rest).

R10 - Substitution in atoms

Given: { X = t, Rest }
Conditions: { X 6∈ t; t is a Herbrand term }
Action: replace { X = t, (Rest[X/t]) }

R11 - Substitution in implications

Given: { (X = t ∧ B) → H }
Conditions: { X universally quantified; X 6∈ t; t is a Herbrand term }
Action: replace { (B → H)[X/t] }

Note that if B is empty then (B → H)[X/t] should be read as (true→ H)[X/t].

If none of the equality rewriting or substitution rules are applicable, then an equality

in the body of an implication may give rise to a case analysis:

R12 - Case analysis for equalities

Given: { (X = t ∧ B) → H }
Conditions: { (X = t ∧ B) → H is not of the form X = t → false; X 6∈ t;

X is existentially quantified; X = t is not a c-atom;
t is not a universally quantified variable;
t is a Herbrand term }

Action: replace { [X = t ∧ (B → H)] ∨ [X = t → false] }

Note that the variables which occur in t become existentially quantified in the

first disjunct while in the second disjunct each variable in t maintains its original

quantification.

17

The first condition of the rule avoids applying case analysis if the implication

(X = t∧B)→ H is of the form X = t→ false. This is because, if it were applied,

the resulting first disjunct would become [X = t∧(true→ false)] which is trivially

false, while the second disjunct would become X = t → false itself. The other

conditions guarantee that none of the earlier rules are applicable.

The next rule moves negative literals in the body of an implication to the head of

that implication:

R13 - Negation rewriting

Given: { ((A → false) ∧ B) → H }
Conditions: { }
Action: replace { B → (A ∨ H) }

Note that if B is empty then B → (A ∨H) should be read as true→ (A ∨H).

The following are logical simplification rules.

R14 - Logical simplification #1

Given: { true }
Conditions: { }
Action: delete { true }

R15 - Logical simplification #2

Given: { (true ∧ B) → H }
Conditions: { B is not empty }
Action: replace { B → H }

R16 - Logical simplification #3

Given: { false → H }
Conditions: { }
Action: delete { false → H }

R17 - Logical simplification #4

Given: { true → H }
Conditions: { H does not contain any universally quantified variable }
Action: replace { H }

Note that the last simplification rule replaces an implication with an empty body

with its head as a CIFF conjunct. This is done only if no universally quantified

variables occur in the head, otherwise we would have some universally quantified

variables outside implications in a node. For example, suppose we applied the rule

on true→ a(f(Y)) where Y is universally quantified and a is abducible. We would

18

obtain a(f(Y)) as a conjunct in a node, thus leading to two main problems: (1) the

variable quantification cannot be implicit and, even worse, (2) the semantics should

be extended to the case of infinitely many instantiations of abducible atoms in an

abductive answer.

The case where H does have a universally quantified variable is dealt with by

the Dynamic Allowedness rule, which is used to identify nodes with problematic

quantification patterns, which could lead to floundering:

R18 - Dynamic allowedness (DA)

Given: { B → H }
Conditions: { either B = true or B consists of constraint atoms alone;

no other rule applies to the implication }
Action: mark undefined

Due to the definition of the other CIFF proof rules, the implication B → H to

which DA is applied to falls in one of the following cases:

1. B = true and there is a universally quantified variable in H ;

2. there is a constraint atom in B with an universally quantified variable occur-

ring in it.

DA allows us to avoid obtaining infinitely many abducible atoms in an abductive

answer. For example, let us consider an implication of the form X > Y → H

such that X is universally quantified. Depending on D(ℜ), there could be infinitely

many instances of X satisfying the c-atom and CIFF should handle all those cases.

However, we believe that DA could be relaxed, in particular for those implications

falling in case 2 above. Consider, for example, the following implication:

X > 3 ∧X < 100→ a(X)

where X is universally quantified and a is an abducible predicate. If D(ℜ) is the set

of all integers, there is a finite set of abducible atoms satisfying the implication, i.e.

the set {a(4), a(5), . . . , a(99)}. However, DA marks a node with this implication as

undefined due to the presence of X . The relaxation of DA is not in the scope of

this paper.

The CIFF proof rules are summarized in Table 1 where the rules drawn from the

IFF procedure are indicated by “IFF” on the right-hand side. It is worth noting that

the four Logical Simplification rules are a reformulation of the corresponding IFF

rules where, in particular, Logical Simplification #4 checks for the quantification

of the variables in the head of an implication for managing correctly the floundering

problem. Moreover, Case analysis for equalities is a slight extension of the

corresponding IFF rule for handling c-atoms.

19

Table 1. CIFF proof rules

R1 Unfolding atoms IFF
R2 Unfolding in implications IFF
R3 Propagation IFF
R4 Splitting IFF
R5 Factoring IFF
R6 Case analysis for constraints
R7 Constraint solving
R8 Equality rewriting in atoms IFF
R9 Equality rewriting in implications IFF
R10 Substitution in atoms IFF
R11 Substitution in implications IFF
R12 Case analysis for equalities IFF
R13 Negation rewriting IFF
R14 Logical Simplification #1 IFF
R15 Logical Simplification #2 IFF
R16 Logical Simplification #3 IFF
R17 Logical Simplification #4 IFF
R18 Dynamic Allowedness

3.2 CIFF Derivation and Answer Extraction

The CIFF proof rules are the building blocks of a CIFF derivation which defines

the process of computing answers with respect to a framework 〈Th, A, IC〉ℜ and

a query Q.

Prior to defining a CIFF derivation formally, we introduce some useful definitions.

Definition 3.10 (Failure and undefined CIFF nodes)
A CIFF node N which contains false as an atomic CIFF conjunct is called a failure

CIFF node. A CIFF node N marked as undefined is called an undefined CIFF node.

Definition 3.11 (CIFF selection function)
Let F be a CIFF formula. We define a CIFF selection function S as a function such

that:

S(F) = 〈N, φ, χ〉

where N is a CIFF node in F , φ is a CIFF proof rule and χ is a set of CIFF

conjuncts in N such that χ is a rule input for φ.

In the sequel we assume that selection functions, given a CIFF formula F , always

select a triple 〈N, φ, χ〉 whenever a rule is applicable to F .

We are now ready to define a CIFF pre-derivation and a CIFF branch.

Definition 3.12 (CIFF Pre-derivation and initial formula)
Let 〈Th, A, IC〉ℜ be a CIFF framework, let Q be a query and let S be a CIFF

selection function. A CIFF pre-derivation for Q with respect to 〈Th, A, IC〉ℜ and S

is a (finite or infinite) sequence of CIFF formulae F1, F2, . . . , Fi, Fi+1 . . . such that

each Fi+1 is obtained from Fi through S as follows:

20

• F1 = {N1} = {Q∪IC}, where Q and IC are treated as sets of CIFF conjuncts,

(we will refer to F1 as the initial formula of a CIFF pre-derivation)

• S(Fi) = 〈Ni, φi, χi〉 such that Ni is neither an undefined CIFF node nor a

failure CIFF node and

• Fi

Ni, χi

GGGGGGGGGGA

φi

Fi+1

The construction of a pre-derivation can be interpreted as the construction of an or-

tree rooted at N1 and whose nodes are CIFF nodes. Roughly speaking, the whole

or-tree can be seen as a search tree for answers to the query. Note that all the

variables in the query are existentially quantified in N1 because the allowedness

conditions of Definition 3.4 impose that each variable in Q occurs in an atomic

conjunct of Q.

CIFF formulas Fi in a pre-derivation correspond to successive frontiers of the search

tree. Each derivation step is done by applying (through S) the selected proof rule

on a set χ of CIFF conjuncts within a node N in a frontier. The resulting frontier

is obtained by replacing N by the set of successor nodes N .

Definition 3.13 (Successor Nodes in a CIFF pre-derivation)

Let D be a CIFF pre-derivation for a query Q with respect to a CIFF framework

〈Th, A, IC〉ℜ and a selection function S.

We say that N is the set of successor nodes of N in D, iff

• S(Fi) = 〈N, φi, χi〉,

• Fi

N, χi

GGGGGGGGGA

φi

Fi+1, and

• for each N ′ ∈ Fi+1 such that N ′ 6∈ Fi\{N}, then N ′ ∈ N .

Moreover we say that a node N ′ in N is a successor node of N in D.

Definition 3.14 (CIFF branch)

Given a CIFF pre-derivation D = F1, F2, . . . , Fi, Fi+1 . . ., a CIFF branch B in D is

a (finite or infinite) sequence of CIFF nodes N1, N2, . . . , Ni, Ni+1 . . . such that each

Ni ∈ Fi and each Ni+1 is a CIFF successor node of Ni in D.

The next step, finally, is the definition of a CIFF derivation.

Definition 3.15 (CIFF derivation)

Let 〈Th, A, IC〉ℜ be a CIFF framework, let Q be a query and let S be a CIFF

selection function. A CIFF derivation D for Q with respect to 〈Th, A, IC〉ℜ and

S is a CIFF pre-derivation F1, F2, . . . such that for each CIFF branch B in D if

• S(Fi) = 〈Ni, φ, χ〉,

• S(Fj) = 〈Nj , φ, χ〉,
• Ni ∈ B,

• Nj ∈ B and

• i 6= j

21

then φ 6∈ {Propagation, Factoring, Equality rewriting in atoms, Equality

rewriting in implications, Substitution in atoms}.

Informally, a derivation is a pre-derivation such that in each branch certain proof

rules can be applied only once to a given set of selected CIFF conjuncts. This is

because those rules can produce loops if they are applied repeatedly to the same

set of conjuncts6. The concept of successor nodes in a pre-derivation is valid also

for a derivation. Where it has no impact, we will omit the selection function when

we refer to a derivation.

Example 3.6

Consider the following framework 〈Th, A, IC〉ℜ:

Th : p↔ true

A : {a}

IC : p → a

The following is a pre-derivation D for the query Q = p.

F1 = {{p, [p→ a]}} [Init]

F2 = {{p, [p→ a], [true→ a]}} [R3]

F3 = {{p, [p→ a], [true→ a], [true→ a]}} [R3]
...

The Propagation rule R3 can be applied repeatedly to the integrity constraint

giving rise to an infinite pre-derivation which should be avoided in a derivation7.

Definition 3.16 (Successor CIFF Derivation)

Let D= F1, . . . , Fi be a CIFF derivation, let S be a CIFF selection function and let

N ∈ Fi. We say that D′ = F1, . . . , Fi+1 is a successor CIFF derivation via N of D

iff

• S(Fi) = 〈N, φi, χi〉,

• Fi

N, χi

GGGGGGGGGA

φi

Fi+1, and

• D′ is a CIFF derivation.

Definition 3.17 (Leaf and successful CIFF nodes)

Let D= F1, . . . , Fi be a CIFF derivation. A CIFF node N in Fi is a leaf CIFF node

iff

• it is a failure CIFF node or

• it is an undefined CIFF node or

• there exists no successor CIFF derivation via N of D.

6 Note, however, that they could be applied to different copies of a set of conjuncts.
7 The example shows the need of multisets for representing correctly CIFF formulae and CIFF

nodes.

22

A leaf node which is neither a failure CIFF node nor an undefined CIFF node is

called a successful CIFF node.

We are now ready to introduce the following classifications of CIFF branches and

CIFF derivations.

Definition 3.18 (Failure, undefined and successful CIFF branches)

Let D be a CIFF derivation and let B = N1, . . . , Nk be a CIFF branch in D. We

say that B is

• a successful CIFF branch if Nk is a successful CIFF node;

• a failure CIFF branch if Nk is a failure CIFF node;

• an undefined CIFF branch if Nk is an undefined CIFF node.

Definition 3.19 (Failure and Successful CIFF Derivations)

Let D be a CIFF derivation. D is called a successful CIFF derivation iff it contains

at least one successful CIFF branch. D is called a failure CIFF derivation iff all its

branches are failure CIFF branches.

Intuitively, an abductive answer to a query Q can be extracted from a successful

node of a successful derivation. Formally:

Definition 3.20 (CIFF Extracted Answer)

Let 〈Th, A, IC〉ℜ be a CIFF framework and let Q be a CIFF query. Let D be a

successful CIFF derivation for Q with respect to 〈Th, A, IC〉ℜ. A CIFF extracted

answer from a successful node N of D is a pair

〈∆, C〉

where ∆ is the set of abducible atomic conjuncts in N , and C = 〈Γ, E, DE〉 where:

• Γ is the set of all the c-conjuncts in N ,

• E is the set of all the equality atoms (i.e. equalities over Herbrand terms) in

N ,

• DE is the set of all the CIFF disequalities in N .

The soundness of the CIFF proof procedure with respect to the notion of ℜ-

satisfiability and the three-valued completion semantics is the subject of the next

section. The idea is to show that CIFF extracted answers correspond to abductive

answers with constraints in the sense of Definition 2.2.

Example 3.7

Consider the following framework 〈Th, A, IC〉ℜ, obtained from the abductive logic

program with constraints of Example 2.1, and the following query Q:

Th : p(T)↔ T = X ∧ q(T1, T2) ∧ T1<X ∧X<8

q(X, Y)↔ X = X1 ∧ Y = X2 ∧ s(X1, a)

A : {r, s}

IC : r(Z) → p(Z)

Q : r(Y)

23

The following is a CIFF derivation D for Q with respect to 〈Th, A, IC〉ℜ:

F1 = {{r(Y), [r(Z) → p(Z)]}} [Init]
F2 = {{r(Y), [Z = Y → p(Z)], [r(Z) → p(Z)]}} [R3]
F3 = {{r(Y), [true → p(Y)], [r(Z) → p(Z)]}} [R11]
F4 = {{r(Y), p(Y), [r(Z) → p(Z)]}} [R17]
F5 = {{r(Y), Y = X, q(T1, T2), T1<X, X <8, [r(Z) → p(Z)]}} [R1]
F6 = {{r(X), Y = X, q(T1, T2), T1<X, X <8, [r(Z) → p(Z)]}} [R10]
F7 = {{r(X), Y = X, T1 = V, T2 = W, s(V, a), T1<X, X <8, [r(Z) → p(Z)]}} [R1]
F8 = {{r(X), Y = X, T1 = V, T2 = W, s(V, a), V <X,X <8, [r(Z) → p(Z)]}} [R10]

No more new rules can be applied to the only node in F8 and this is neither a failure

node nor an undefined node. Hence, it is a successful node from which we extract

the following answer:

〈{r(X), s(V, a)}, C〉

where C = 〈Γ, E, DE〉 is:

Γ : {Y = X, T1 = V, V<X, X <8}

E : {T2 = W}

DE : ⊘

Indeed, note that the abductive answers with constraints given in Example 2.1 are

instances of the above extracted answer.

Example 3.8

Consider the following framework 〈Th, A, IC〉ℜ (where we assume a constraint

structure ℜ over integers with the usual relations and functions), and the following

query Q:

Th : p(X)↔ X = Z ∧ a(Z) ∧ Z < 5

A : {a}

IC : a(2) → false

Q : p(Y)

The following is a CIFF derivation D for Q with respect to 〈Th, A, IC〉ℜ:

F1 = {{p(Y), [a(2) → false]}} [Init]
F2 = {{Y = Z, a(Z), Z < 5, [a(2) → false]}} [R1]
F3 = {{Y = Z, a(Z), Z < 5, [a(2) → false], [2 = Z → false]}} [R3]
F4 = {{Y = Z, a(Z), Z < 5, [a(2) → false], [Z = 2 → false]}} [R9]
F5 = {{Y = Z, a(Z), Z < 5, [a(2) → false], [Z 6= 2 ∨ [Z

.
= 2, (true → false)]]}} [R6]

F6 = {{Y = Z, a(Z), Z < 5, Z 6= 2, [a(2) → false]},
{Y = Z, a(Z), Z < 5, Z

.
= 2, [a(2) → false], (true → false)}} [R4]

F7 = {{Y = Z, a(Z), Z < 5, Z 6= 2, [a(2) → false]},
{Y = Z, a(Z), Z < 5, Z

.
= 2, [a(2) → false], false}} [R17]

Note that only the Case analysis for constraints rule (R6) can be applied to

F4 because the variable Z is a constraint variable. Hence Z = 2 is a c-atom (see

Definition 3.9) and thus the Case analysis for equalities rule (R12) cannot be

applied to F4.

24

No more rules can be applied to both nodes in F7. The first node is neither a failure

node nor an undefined node. Hence, it is a successful node from which we extract

the following answer:

〈{a(Z)}, 〈{Y = Z, Z < 5, Z 6= 2},⊘,⊘〉〉

4 Correctness of the CIFF Proof Procedure

As anticipated in the previous section, the CIFF proof procedure is sound with

respect to the three-valued completion semantics, i.e. each CIFF extracted answer

is indeed a CIFF correct answer in the sense of definition 2.2. All the results stated

in this section (and whose proofs are given in Appendix A) are based upon the

results given in (Fung 1996) for the IFF proof procedure.

Theorem 4.1 (CIFF Soundness)

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints such that the

corresponding CIFF framework is 〈Th, A, IC〉ℜ. Let 〈∆, C〉, where C = 〈Γ, E, DE〉,

be a CIFF extracted answer from a successful CIFF node in a CIFF derivation

with respect to 〈Th, A, IC〉ℜ and a CIFF query Q. Then there exists a ground

substitution σ such that 〈∆, σ, Γ〉 is an abductive answer with constraints to Q

with respect to 〈P, A, IC〉ℜ.

The proof of the theorem relies upon the following propositions. The first proposi-

tion shows that given a CIFF extracted answer 〈∆, C〉 there exists a substitution

satisfying all the constraint atoms, equality atoms and CIFF disequalities in C.

Proposition 4.1

Let 〈∆, C〉 be a CIFF extracted answer from a successful CIFF node N , where

C = 〈Γ, E, DE〉. Then:

1. there exists a ground substitution θ such that θ |=3(ℜ) Γ, and

2. for each such ground substitution θ, there exists a ground substitution σ such

that

θσ |=3(ℜ) Γ ∪ E ∪DE

Example 4.1

Given Γ = {2 ≤ T, T < 4}, E = {X = f(Y), Z = g(V)} and DE = {(Y =

h(W, V)) → false}, we have that both θ1 = {T/2} and θ2 = {T/3} satisfy Γ and

they contain all the possible assignments for T (given that D(ℜ) is the set of all

integers). We can obtain a ground substitution θ1σ (with σ = σDE ∪σE) as follows:

1. σDE = {Y/r(c)} obtaining S1 = ((E ∪DE)θ)σDE =

{X = f(r(c)), Z = g(V), (r(c) = h(W, V))→ false}

2. the second step is to assign the corresponding terms to X and Z obtaining

S2 = {f(r(c)) = f(r(c)), g(V) = g(V), (r(c) = h(W, V))→ false}

25

3. finally we assign new terms with fresh functions to the remaining existentially

quantified variable V , e.g. σE = {V/t(c)} obtaining

S3 = {f(r(c)) = f(r(c)), g(t(c)) = g(t(c)), (r(c) = h(W, t(c)))→ false}

The set S3 is clearly entailed by CET. Note that we do not care about the universally

quantified variable W in S3. This is because

(r(c) = h(W, t(c)))→ false

is entailed by CET for any assignment to W , due to the fact that r and h are

distinct function symbols.

Similarly, we can obtain another ground substitution using θ2.

The next proposition directly extends the above result to the set ∆ of a CIFF

extracted answer.

Proposition 4.2
Let 〈∆, C〉 be a CIFF extracted answer from a successful CIFF node N where

C = 〈Γ, E, DE〉. For each ground substitution σ′ such that σ′ |=3(ℜ) Γ ∪ E ∪DE,

there exists a ground substitution σ which extends σ′ for the variables that are in

∆ but not in C such that

1. σ′ ⊆ σ
2. ∆σ |=3(ℜ) ∆ ∪ Γ ∪ E ∪DE.

The third proposition shows that the CIFF proof rules are indeed equivalence pre-

serving rules with respect to the three-valued completion semantics. This a basic

requirement to prove the soundness of CIFF.

Proposition 4.3 (Equivalence Preservation)
Given an abductive logic program with constraints 〈P, A, IC〉ℜ, a CIFF node N

and a set of CIFF successor nodes N obtained by applying a CIFF proof rule φ to

N , it holds that:

P |=3(ℜ) N iff P |=3(ℜ) N
∨

where N∨ is the disjunction of the nodes in N .

Corollary 4.1 (Equivalence Preservation of CIFF Formulae)
Let 〈P, A, IC〉ℜ be an abductive logic program with constraints, F a CIFF formula

and S any CIFF selection function. Let S(F) = 〈N, φ, χ〉 and F ′ the result of

applying φ to N in F . Then:

P ∪ IC |=3(ℜ) F iff P ∪ IC |=3(ℜ) F ′, i.e.

P ∪ IC |=3(ℜ) (F ↔ F ′).

The CIFF soundness in Theorem 4.1 concerns only those branches of a CIFF suc-

cessful derivations whose leaf node is a CIFF successful node. It implies that ab-

ductive answers with constraints can be obtained also by those derivations which

contain failure and undefined branches but which have at least a successful branch.

We also prove the following notion of soundness regarding failure CIFF derivations.

26

Theorem 4.2 (Soundness of failure)

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints such that the

corresponding CIFF framework is 〈Th, A, IC〉ℜ. Let D be a failure CIFF derivation

with respect to 〈Th, A, IC〉ℜ and a query Q. Then:

P ∪ IC |=3(ℜ) ¬Q.

Note that there is a class of CIFF derivations for which a soundness result cannot

be stated, i.e. all the derivations containing only undefined and failure branches.

The meaning of such CIFF derivations is that for each branch, no CIFF answer can

be extracted, but there are some branches (undefined branches) for which neither

failure nor success is ensured. The presence of an undefined branch is due to the

application of the Dynamic Allowedness rule and, as we have seen at the end of

Section 3.1, this could lead to infinite sets of abducibles in the answers.

Concerning completeness, CIFF inherits the completeness results for IFF in (Fung 1996)

for the class of allowed IFF frameworks. In (Fung 1996), the only requirement for

ensuring completeness is the use of a fair selection function, i.e. a selection func-

tion that ensures that any node to which a proof rule can be applied is eventually

selected in each branch of a derivation. This condition is also required in the case

of CIFF. To illustrate fairness, suppose we have the following iff-definitions

q ↔ p ∨ a

p↔ p

where a is an abducible predicate. Consider the query q and an empty set of integrity

constraints. After the unfolding of q, the IFF proof procedure would return the

abductive answer a if the second disjunct is eventually selected, but it loops forever

in the other case. A fair selection function ensures that the second disjunct is

eventually selected during a derivation.

For the class of IFF allowed frameworks, a CIFF derivation is exactly an IFF deriva-

tion as there are no constraint atoms in the framework. Moreover, the Dynamic

allowedness rule can never apply in a derivation due to the following lemma, stat-

ing that for the of class CIFF statically allowed frameworks and queries (see Defini-

tion 3.3) there does not exist a CIFF derivation in which Dynamic allowedness

is applied.

Lemma 4.1 (Static Allowedness lemma)

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints such that the corre-

sponding CIFF framework 〈Th, A, IC〉ℜ and the query Q are both CIFF statically

allowed. Then, given any CIFF derivation F1, F2, . . . with respect to 〈P, A, IC〉ℜ
and Q, and any selection function S: it is never the case that S(Fi) = 〈Ni, R18, χ〉

for any Fi, where R18 is the Dynamic allowedness rule.

Indeed, the above lemma trivially applies also to IFF allowed frameworks.

As a consequence, we can state the following result.

Theorem 4.3 (CIFF completeness for IFF allowed frameworks)

27

Let 〈P, A, IC〉ℜ be an abductive logic program without constraints such that

the corresponding CIFF framework 〈Th, A, IC〉ℜ and the query Q do not contain

constraint atoms and they are IFF allowed.

If there exists an abductive answer with constraints 〈∆, σ,⊘〉 for Q with respect

to 〈P, A, IC〉ℜ, then there exists a CIFF derivation D for Q with respect to

〈Th, A, IC〉ℜ and to a fair CIFF selection function S such that

• 〈∆′, 〈⊘, E, DE〉〉, can be extracted from a successful CIFF node in D; and

• there exists a ground substitution σ′′ ⊇ σ such that

— P ∪∆′σ′′ |= Qσ′′

— P ∪∆′σ′′ |= IC

— ∆′σ′′ ⊆ ∆σ′′.

Considering the whole class of CIFF frameworks, we cannot formulate a full com-

pleteness theorem for CIFF because, tackling the allowedness problem dynamically,

we could obtain undefined derivations, even with a fair selection function.

Example 4.2

Consider the following framework 〈Th, A, IC〉ℜ where we assume an arithmetical

constraint over integers in which > has the expected meaning:

P : p(Y)← a(Y)

Th : p(X)↔ [X = Y ∧ a(Y)]

A : {a}

IC : V > 2 → a(V)

The following is a CIFF derivation D for the empty query.

F1 = {{[V > 2 → a(V)]}} [Init]

F2 = {undefined : {[V > 2 → a(V)]}} [R18]

The only rule applicable to F1 is the Dynamic allowedness rule due to the

presence of V in the constraint atom V > 2. Note that the existence of infinite

values for V greater than 2 would give rise to an infinite set of abducibles arising

from a(V) in the head of the implication.

However, we can state a weak completeness theorem for the CIFF proof proce-

dure if we assume CIFF derivations without undefined branches. The result is

analogous to the completeness result shown for the A-System (Van Nuffelen 2004;

Kakas et al. 2001).

Theorem 4.4 (Weak CIFF Completeness)

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints with the corre-

sponding CIFF framework 〈Th, A, IC〉ℜ and let Q be a CIFF query. Let D be a

finite CIFF derivation with respect to 〈Th, A, IC〉ℜ and Q such that each branch

in D is either a failure or a successful branch. Then:

1. if P ∪ IC |=3(ℜ) ¬Q then all the branches of D are failure branches; and

2. if P ∪IC 6|=3(ℜ) ¬Q (i.e. P ∪IC∪Q is satisfiable) then there exists a successful

branch in D.

28

The above result gives rise to the following completeness theorem for the CIFF

proof procedure.

Theorem 4.5 (Weak CIFF Completeness for CIFF statically allowed frameworks)

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints such that the

corresponding CIFF framework 〈Th, A, IC〉ℜ and the query Q are both CIFF stat-

ically allowed. Let D be a finite CIFF derivation with respect to 〈Th, A, IC〉ℜ and

Q. Then:

1. if P ∪ IC |=3(ℜ) ¬Q then all the branches of D are failure branches; and

2. if P ∪IC 6|=3(ℜ) ¬Q (i.e. P ∪IC∪Q is satisfiable) then there exists a successful

branch in D.

All the correctness results so far focus on the three-valued completion semantics.

However, it is worth noting that both IFF and CIFF are sound with respect to the

well-founded semantics (van Gelder et al. 1991), since the well-founded model is a

three-valued model of the completion of a logic program (van Gelder et al. 1991).

However IFF (and thus CIFF for the class of IFF allowed frameworks) is not com-

plete with respect to that semantics. Indeed, considering the iff-definition

p↔ p

the negative literal ¬p holds with respect to the well-founded semantics while p is

undefined with respect to the three-valued completion semantics. Accordingly, both

IFF and CIFF fail to terminate for the query ¬p.

5 The CIFF System

The CIFF System is a SICStus Prolog8 implementation of CIFF. We rely upon

the SICStus CLPFD solver integrated in the platform. This is a very fast and

reliable constraint solver for finite domains (Fernández and Hill 2000). The version

of the system described here is version 4.0 whose engine has been almost completely

rewritten with respect to older versions (Endriss et al. 2004a; Endriss et al. 2005),

in order to improve efficiency.

Here we give a brief general description of the CIFF System. Further details can

be found in (Terreni 2008a) and in the CIFF user manual (Terreni 2008b).

The main predicate, to be run at Prolog top-level is

run ciff(+ALP, +Query, -Answer)

where ALP is a list of .alp files containing an abductive logic program with con-

straints9, Query is a CIFF query and Answer will be instantiated to either a CIFF

8 http://www.sics.se/isl/sicstuswww/site/index.html
9 All the files in the ALP list together represent a single abductive logic program with constraint.

This is to facilitate writing CIFF applications. A typical example is a list with two elements
where one .alp file contains the clauses and the integrity constraints which specify the problem
and the other file contains the specification of the particular problem instance. In this way the
first file could be reused for other instances.

29

http://www.sics.se/isl/sicstuswww/site/index.html

extracted answer (see Definition 3.20) or to the special atom undefined if an al-

lowedness condition is not met. A CIFF extracted answer is represented by a triple,

namely a list of abducible atoms ∆, a list of CIFF disequalities DE and finally a list

of finite domain constraints Γ. The set of equalities E is not returned as the final

substitution (in E) is directly applied by the system. Further answers are returned

via Prolog backtracking. If no (further) answer is found, the system fails, returning

the control to the Prolog top-level.

Each abductive logic program with constraints (ALPC) consists of the following

components, which could be placed in any position in any .alp file:

• Declarations of abducible predicates, using the predicate abducible. For ex-

ample an abducible predicate abd with arity 2, is declared via

abducible(abd(,)).

• Clauses, represented as

A :- L1, ..., Ln.

• Integrity constraints, represented as

[L1, ..., Lm] implies [A1, ..., An].

where the left-hand side list represents a conjunction of CIFF literals while

the right-hand side list represents a disjunction of CIFF atoms.

Equality/disequality atoms are defined via =, \== and constraint atoms are de-

fined via #=, #\=, #<, #=<, #>, #>=10. Finally, negative literals are of the form

not(Atom) where Atom is an ordinary atom.

All the clauses defining the same predicate (here a predicate is identified by its

name plus its arity) are preprocessed by the system in order to build the internal

representation (an iff-definition). Each iff-definition is asserted in the Prolog global

state in order to retrieve such information, when needed during a CIFF derivation,

in a simple and efficient way.

The CIFF proof rules are implemented in CIFF 4.0 as Prolog clauses defining

sat(+State, -Answer), where State represents the current selected CIFF node.

State is initialized to the internal representation of the Query plus all the integrity

constraints in (all files in) the ALP argument.

Throughout the computation State is defined as:

state(Diseqs,CLPStore,Imps,Atoms,Abds,Disjs)11

where the aggregation of the arguments represent a CIFF node. Diseqs represents

the set of CIFF disequalities, CLPStore represents the current finite domain con-

straint store, Imps the set implications, Atoms the set of defined atoms, Abds the

10 Note that, whenever possible, disequalities in the system are managed through the operator
\== rather than in the corresponding (and less efficient) implicative form.

11 The representation of the current node, in the real code, needs some further elements dropped
here for simplicity.

30

set of abduced atoms and finally Disjs is the set of disjunctive CIFF conjuncts in

the node.

The predicate sat calls itself recursively until no more rules can be applied to the

current State, thus instantiating the Answer.

Finally a note on the implemented CIFF selection function. We use a classical

Prolog-like selection function, i.e. we always select the left-most CIFF node in a

CIFF formula. It is not a fair selection function in the sense that it does not ensure

completeness (see Section 4 for further details), but it has been found as the only

possible practical choice in terms of efficiency. Without entering in technical details,

this is mostly because, fixing the choice of the selected node in a CIFF formula as

the left-most CIFF node, we can directly take advantage of the Prolog backtracking

mechanism in order to switch to another CIFF node in case of failure.

Concerning the order of selection of the proof rules in a CIFF node, this is deter-

mined by the order of the sat clauses. If a sat clause defining a CIFF proof rule,

e.g. Unfolding atoms (R1), is placed before the sat clause defining e.g. Propa-

gation (R3), then the system tries first to find a rule input for R1 and, only if no

such rule input can be found, then the system tries R3.

Below we sketch the most important techniques used to make the CIFF System

an efficient abductive system. For further details on these topics, please refer to

(Terreni 2008a).

Managing variables and equalities. Variables play a fundamental role in nodes

in CIFF: they can be either universally quantified or existentially quantified. Uni-

versally quantified variables can appear only in implications (which define their

scope). Existentially quantified variables can appear in any element of the node,

with scope the entire node. In the system the CIFF variables are Prolog variables,

but to distinguish at run-time existentially quantified and universally quantified

variables we use the Prolog facility of attribute variables (Holzbaur 1992), associ-

ating to each existentially quantified variable an existential attribute. Moreover,

whenever possible, we use the unification of Prolog for managing equality rewriting

and substitutions, but we also implemented the Martelli-Montanari unification algo-

rithm (Martelli and Montanari 1982) for managing, in particular, equality rewriting

and substitutions involving universally quantified variables.

Many CIFF proof rules, for example, Propagation (R1) and Unfolding (R2,

R3) rules, typically need to be followed by a set of Equality rewriting (R8, R9)

and Substitution (R10, R11) rules. In the CIFF System, these “equality” rules

are not treated at the same level of the other main proof rules, but rather they have

been integrated within them in order to improve efficiency. In particular rules R8,

R9, R10, R11 are applied transparently to the user (i.e. they are not defined as

sat clauses) at the very end of the other proof rules, e.g. R1, R2 and R3.

Loop management. Recall that in the definition of a CIFF derivation (Definition

3.15), we avoid repeated applications of certain proof rules. In the CIFF System this

requirement is dealt with through a non-straightforward loop management which is

31

designed to avoid repetitive application of CIFF proof rules, in particular Propa-

gation (R3) and Factoring (R5), to the same rule input. Obviously, in order to

manage even small-medium size problems, loop management needs to be efficient.

We do not enter in details here, but just give a hint of the technique. Loop manage-

ment is done by enumerating univocally each potential rule input component for

R3 and R5 (e.g. implications for Propagation and abducibles for Factoring) in

a CIFF node, maintaining them sequentially ordered throughout the computation.

Then, we can (non-straightforwardly) avoid loops, applying proof rules R3 and R5

to appropriate rule inputs, following the order given by the enumeration.

The loop management required in a CIFF derivation for Equality and Substi-

tution rules is, instead, obtained (almost) for-free due to the integration of those

proof rules in the other main proof rules as discussed above.

Constraint solving. Interfacing efficiently the CIFF System with the underlying

SICStus CLPFD solver is fundamental for performance purposes. Despite a clear

interface made available by the Prolog platform, the main problem in the interaction

with the solver is that the solver binds variables to numbers when checking the

satisfiability of the current CLPstore (i.e. when the Constraint Solving (R7) rule

is applied), while we want to be able to return non-ground answers. The solution

adopted in the CIFF System tackles this problem through an algorithm which

allows, when needed, to check the satisfiability of the CLPstore as usual and then

restores the non-ground values via a forced backtracking.

Groundable integrity constraints The main source of inefficiency in a CIFF

computation is probably represented by integrity constraints. The main problem

is the presence of universally quantified variables which potentially lead, through

the Propagation rule, to a new implication in a CIFF node for each propagated

variable instance. It is worth noting that even in a small/medium size CIFF appli-

cation, the number of such implications resulting from integrity constraints easily

grows, thus representing the main computational bottleneck.

To deal with this, we have incorporated within CIFF a specialized algorithm that

can be applied to a wide class of integrity constraints, called groundable integrity

constraints. Intuitively, an integrity constraint I is groundable if the set of implica-

tions obtained through the exhaustive application of CIFF proof rules (in particu-

lar Unfolding in implications and Propagation) on I is “expected to become

ground” at run-time. For example, consider an integrity constraint of the form

p(X), q(Y)→ r(X, Y)

where p and q are both defined through a set of N and M ground facts respectively.

Intuitively, the exhaustive application of Unfolding in implications gives rise, at

run-time, to a set of N ∗M implications which become ground after the application

of the substitutions on X and Y . This type of integrity constraint is included in the

class of groundable integrity constraints which is formally defined in (Terreni 2008a)

together with the details of an algorithm for managing it. This algorithm handles

most of the operations on groundable integrity constraints in the Prolog global state,

via a non-straightforward combination of assertions/retractions of the (partial) in-

stances of the groundable integrity constraints. The system checks automatically, in

32

the preprocessing phase, whether an integrity constraint is a groundable integrity

constraint and it prepares all the needed data-structures. This feature significantly

boosts the performance of the system because firstly the operations on implica-

tions performed in the Prolog global state are much faster than the operations

performed in a CIFF node in the usual way, and secondly, the absence of a large

set of implications in a node boosts also the application of the proof rules to the

other elements.

Example 5.1

The following is an example of groundable integrity constraint:

[q(R,C)] implies [p(R,C)].

where q is an abducible predicate. Indeed, for all the concrete ground instances of

q which are abduced during a CIFF derivation, the above integrity constraint gives

rise to a set of ground implication. Note that the class of groundable integrity con-

straints includes integrity constraints containing abducibles in their bodies because

the algorithm also manages the cases in which such abducibles are propagated to

an abducible atom containing existentially quantified variables.

Example 5.2

The following is an example of an integrity constraints which is not groundable:

[p(X)] implies [false].

where a clause defining p(X) is:

p(Y).

The problem in this case is given by the variable X in the body of the integrity

constraint: unfolding p(X) we will obtain X = Y and there is no way for Y to be

grounded.

6 Related Work, Comparison and Experiments

There is a huge literature on abductive logic programming with and without con-

straints, see for example (Kakas et al. 1992; Kakas et al. 1998; Denecker and Kakas 2002;

Kakas and Mancarella 1990b; Kakas and Mancarella 1990a; Kakas et al. 2000; Pereira et al. 1991;

Eshghi and Kowalski 1989; Denecker and De Schreye 1992; Denecker and De Schreye 1998;

Van Nuffelen 2004; Kakas et al. 2001; Fung and Kowalski 1997; Sadri and Toni 1999;

Alferes et al. 2004; Lin and You 2002; Ciampolini et al. 2003; Bressan et al. 1997;

Christiansen and Dahl 2005). The closest systems to CIFF are theA-System (Van Nuffelen 2004)

and SCIFF (Alberti et al. 2007). The latter has also been developed as an exten-

sion of the IFF proof procedure to handle numerical constraints as in CLP, but with

focus on the specification and verification of interactions in open agent societies.

The main features of SCIFF are the support of dynamical happening of events

during computations, universally quantified variables in abducibles, the concept of

fulfilment and violation of expectations, given a set of events, and integrity con-

straints of a specialised form which requires to include in their body at least one

33

specific social construct (an event or an expectation). Instead, CIFF is intended as

a general purpose abductive proof procedure, keeping the spirit of the original IFF

proof procedure and conservatively adding numerical constraints.

The A-System, as remarked in (Van Nuffelen 2004), is a combination of three exist-

ing abductive proof procedures, namely the IFF proof procedure (Fung and Kowalski 1997),

the ACLP proof procedure (Kakas et al. 2000) and, most importantly, the SLDNFA

proof procedure (Denecker and De Schreye 1998), of which the A-System is a direct

descendant. The A-System is the state-of-the-art of abductive logic programming

with constraints, borrowing the most interesting features from the above cited proof

procedures. In Section 6.1 we give a detailed comparison between CIFF and the

A-System.

Many approaches to abductive logic programming (Kakas and Mancarella 1990b;

Kakas and Mancarella 1990a; Kakas et al. 2000; Lin and You 2002) rely upon the

stable models semantics (Gelfond and Lifschitz 1988) and its extensions. Answer

Set Programming (ASP) (Baral and Gelfond 1994) is a logic programming based

paradigm for computing stable models and answer set semantics. The comparison

of CIFF with the two dominant answer set solvers, DLV (Eiter et al. 1997) and

SMODELS (Niemela and Simons 1997), is discussed in Section 6.2.

In Section 6.3, we present some experimental results on concrete examples and in

comparison with theA-System and the aforementioned answer set solvers. Note that

(Christiansen and Dahl 2005) gives an extensive experimental comparison between

Hyprolog, another relevant system for abductive logic programming, and CIFF,

some ASP systems and the A-System. Whereas CIFF is a meta-interpreter, Hypro-

log avoids meta-interpretation by directly extending Prolog to incorporate abduc-

tion and constraint handling à la CHR (Frühwirth 1998). However, Hyprolog has

restrictions on the use of negation, as mentioned in (Christiansen and Dahl 2005).

Finally, in Section 6.4 we give a comparison with analytic tableaux-based methods.

6.1 Comparison with A-System

The A-System and CIFF share many common points. They both rely upon the

three-valued completion semantics and their computational schemas are both based

on rewrite (proof) rules. Moreover, both systems are implemented under SICStus

Prolog and the syntax of the input programs is very similar. In both systems much

effort has been done, though adopting different solutions, for obtaining considerable

efficiency, by exploiting the data structures and the services available in a modern

Prolog platform such as SICStus. However there are also some important differences.

Treatement of Integrity Constraints - The A-System framework requires that

integrity constraints are in denial form. Logically, implicative integrity constraints

can be written in denial form, since

(B → H) ≡ ((B ∧ ¬H)→ false).

34

However, the operational treatement of the two representations of integrity con-

straints is rather different in CIFF and in the A-System. For example, given a

CIFF integrity constraint

a→ b

(where a and b are abducibles) and an empty query, CIFF computes the empty set

of abducibles, whereas, given the equivalent denial

a ∧ ¬b→ false

and the same query, the A-System computes two alternative answers: the empty

set of abducibles and {b}. Indeed, assuming b renders the original implication true.

However, in some applications this treatment leads to unintuitive behaviours. For

example, if a is alarm sounds and b is evacuate, then, with the A-System, evacuate

is a possible answer independently of whether alarm sounds has been observed or

not. This and other examples are discussed in (Sadri and Toni 1999).

Negation in implications/denials - The presence of a negative literal (¬A) in

the body of an implication is handled by CIFF through a Negation rewriting rule

which moves A to the head of the implication. The A-System, instead, manages such

negations with a rule similar to a Case Analysis rule. That is, it creates a two-

terms disjunction with a disjunct containing A and the other disjunct containing

(¬A) in conjunction with the rest of the original implication. This is exactly what

CIFF does in the Case Analysis for equalities (R12) and Case Analysis for

constraints (R6) rules. However, as noted also in (Fung 1996), applying a Case

Analysis rule to a defined/abducible atom A, is not in the spirit of a three-valued

semantics approach. This is the reason why in CIFF Case Analysis is used only

for equalities and constraints, whose semantics is two-valued.

6.2 Comparison with Answer Set Programming

Answer Set Programming (ASP) (see, e.g. (Marek and Truszczynski 1999; Baral 2003;

Baral and Gelfond 1994)) and Abductive Logic Programming with Constraints (ALPC)

are strongly interconnected mechanisms for representing knowledge and reason-

ing. This interconnection arises at first glance, just noting that ASP is based

on the Answer Set Semantics (Gelfond and Lifschitz 1991), an “evolution” of the

stable models semantics (Gelfond and Lifschitz 1988) (which in turn is used as

the core semantics for many abductive proof procedures, e.g. (Kakas et al. 2000;

Kakas and Mancarella 1990a; Lin and You 2002)) and that abduction can be mod-

eled in ASP, as shown e.g. in (Bonatti 2002).

Nevertheless, ASP and ALPC show important differences which we briefly discuss

here, assuming the reader has some familiarity with ASP.

The ASP framework is based upon some concrete assumptions. In particular ASP

relies upon programs with finite Herbrand Universe This assumption has a high

impact on the computational model and, hence, on the implemented answer set

solvers.

35

The computational model of ASP, relying upon programs with a finite Herbrand

Universe, shares many common points with typical constraint solving algorithms

and it is very distinct from the classic computational model of logic programming

(mostly used in ALPC and also in CIFF). For an excellent comparison of the two

computational models, see (Marek and Truszczynski 1999).

Directly from the above observations, the implemented answer set solvers benefit

from a number of features which have made them popular tools for knowledge

representation and reasoning: completeness, termination and efficiency.

Completeness and termination follows directly from the assumption that the Her-

brand universe of a program is finite.

The idea of applying constraint solving techniques in the computational model,

together with hardware improvements, makes it possible to have also efficient an-

swer set solvers, and, indeed, state-of-the-art solvers are able to handle hundreds

of thousands of ground Herbrand terms in acceptable times. This is sufficient for

many medium to large size applications.

However, the ASP assumptions also introduce some important limitations on the

expressiveness of the framework. Even if many application domains can be mod-

eled through ASP, there are some applications which need the possibility of in-

troducing non-ground terms. The web sites repairing example described in Section

6.3.3 below is one such (simple) application which is being further investigated

(Mancarella et al. 2007; Mancarella et al. 2009). Moreover, there are applications

which can be effectively modeled in ASP, but for which non-ground answers could

be more suitable. Consider, for example, a planning application where we search

for a plan to solve a goal G by time T = 5. Assume that a certain action A

solves the goal. In a plan obtained from an answer set solver the action A will

be bound to a ground time, for example 4 or 3. However, it might be preferable

to have a more general plan with A associated with a non-ground time TA to-

gether with the constraint TA ≤ 5. Obviously, this is just a hint of a planning

framework which is outside the scope of this paper. Work focused on these top-

ics include, for example, (Mancarella et al. 2004), and part of the SOCS European

Project (SOCS-consortium 2005).

To illustrate the main conceptual differences when programming applications in

ASP and CIFF, let us consider the well-known N-queens domain, where N queens

have to be placed on an N*N board in such a way that for no pair of queens Qi and

Qj, Qi and Qj are in the same row or in the same column or in the same diagonal.

We represent the problem in CIFF as follows (N is a placeholder for a natural

number).

36

P : exists q(R)← q domain(R) ∧ q domain(C) ∧ q pos(R, C)

q domain(R)← R ≥ 1 ∧R ≤ N

safe(R1, C1, R2, C2)← C1 6= C2 ∧ (R1 + C1 6= R2 + C2)∧

(C1 −R1 6= C2−R2)

A : {q pos}

IC : q pos(R1, C1) ∧ q pos(R2, C2) ∧R1 6= R2→ safe(R1, C1, R2, C2)

Q : exists q(1) ∧ . . . ∧ exists q(N)

The CIFF specification of the problem is very compact. A CIFF computation for

the query Q proceeds as follows (we abstract away from the concrete CIFF selection

function). Each exists q(R) atom in the query (where R is one of the N integer

values between 1 and N) is unfolded giving rise to three atoms: q domain(R),

q domain(C) and the abducible q pos(R, C). The first two atoms are in turn un-

folded populating the CIFF node with the finite-domain constraints:

R ≥ 1, R ≤ N, C ≥ 1, C ≤ N

which will be evaluated by the constraint solver. Note that the constraints concern-

ing R are obviously ground, while the constraints concerning C are not ground due

to the presence of C.

The third atom q pos(R, C) is instead an abducible non-ground atom (due to the

presence of the constraint variable C).

Assuming that all the unfolding, the equality rewriting and the substitutions have

been done, we will obtain a node with the following abducible atoms:

q pos(1, C1), . . . , q pos(N, CN)

Each pair of these has to be propagated to the integrity constraint firing N2 non-

ground instances of the safe atom. The condition R1 6= R2 in the body of the

integrity constraint in IC avoids to propagate twice the same abducible, i.e. it

avoids to have an instance like safe(R1, C1, R1, C1).

At this point the safe atoms are unfolded, resulting in the whole set of non-ground

finite-domain constraints needed to ensure correct positioning of the queens. Fi-

nally, this set, once the solver checks its satisfiability, is returned as part of the

extracted answer. The extracted answer “contains” all the possible solutions: the

corresponding ground answers identifying the concrete positions of the queens can

be obtained performing a labeling on the constraint variables (the CIFF System

automatically performs the final labeling if the user wishes it).

Consider now the following ASP representation 12:

12 We choose the DLV representation, borrowed from
http://www.dbai.tuwien.ac.at/proj/dlv/tutorial/ ,

because it is the closest representation to ours and we can easily highlight the differences. For
the same reason we present the DLV specification as a set of ALPC integrity constraints: DLV
syntax is slightly different.

37

http://www.dbai.tuwien.ac.at/proj/dlv/tutorial/

row(1)

. . .

row(N)

row(R)→ q pos(R, 1) ∨ . . . ∨ q pos(R, N)

q pos(R1, C) ∧ q pos(R2, C) ∧R1 6= R2→ false

q pos(R1, C1) ∧ q pos(R2, C2) ∧ row(R) ∧R2 = R1 + R ∧ C1 = C2 + R→ false

q pos(R1, C1) ∧ q pos(R2, C2) ∧ row(R) ∧R2 = R1 + R ∧ C2 = C1 + R→ false

Also in this case all the possible solutions are returned by the answer set solvers,

even if enumerating them in a ground form.

Abstracting away from syntactical differences, there is an important difference be-

tween the two specifications. The CIFF specification takes advantage of the con-

straint solver because it delegates the constraints on the variables inside the clause

concerning the safe predicate as informally described above. Conversely, in an ASP

computation, the conditions on the queen positions are checked locally, resulting in

a huge set of groundable integrity constraints, each one containing a ground pair of

queen positions.

As expected (and as shown in Section 6.3.1 below), delegating the checks to a finite-

domain constraint solver results in performances an order of magnitude faster than

any answer set solver. Note that the ASP community is aware of this problem

and recently some work has been initiated on integrating ASP with constraint

solvers, in an effort to reduce the grounding size and speed computation (e.g.,

(Baselice et al. 2005; Mellarkod and Gelfond 2008)), but for limited forms of con-

straints and restricted combinations of logic programs and constraints.

6.3 Experimental Results

In this section, we show some experimental results obtained running two of the most

typical benchmark examples, namely the N-Queens problem and the graph coloring

problem. We also present a simple instance of a web sites repairing framework

which could be used with CIFF. Note that we focus our experimental evaluation

on examples where abduction benefits from constraint solving, in order to illustrate

the main innovative feature of CIFF with respect to its predecessor IFF, as well as

related systems (ALP solvers and A-System).

In this performance comparison we restricted our attention to three systems: the

A-System (Van Nuffelen 2004) and two state-of-the-art answer set solvers, namely

the DLV system (Eiter et al. 1997) and SMODELS (Niemela and Simons 1997).

All the tests have been run on a Fedora Core 5 Linux machine equipped with a 2.4

Ghz PENTIUM 4 - 1Gb DDR Ram. The SICStus Prolog version used throughout

the tests is the 3.12.2 version. All execution times are expressed in seconds (“—”

means that the system was still running after 10 minutes). In all examples, unless

otherwise specified, the CIFF System query is the empty list [] representing true

and the algorithm groundable integrity constraint is activated. In each experiment,

38

the formalisation of the problems are taken from http://www.dbai.tuwien.ac.at/proj/dlv/tutorial/

for DLV, from http://www.baral.us/code/smodels/ for SMODELS, and from

(Van Nuffelen 2004) for A-System.

6.3.1 The N-Queens problem

We recall the N-Queens, already seen in Section 6.2: N queens have to be placed

on an N*N board in such a way that for no pair of queens Qi and Qj , Qi and Qj

are in the same row or in the same column or in the same diagonal.

The CIFF System formalization (CIFF (1)) of this problem is very simple (the

query is a conjunction of N exists q(R) where each R is a natural number, distinct

from each other, in [1, N]):

%%% CIFF (1)

%%% ABDUCIBLES

abducible(q_pos(_,_)).

%%% CLAUSES

q_domain(R) :- R #>= 1, R #=< N.

%%% N must be an integer in real code!

exists_q(R) :- q_domain(R),q_pos(R,C),q_domain(C).

safe(R1,C1,R2,C2) :- C1#\=C2, R1+C1#\=R2+C2, C1-R1#\=C2-R2.

%%% INTEGRITY CONSTRAINTS

[q_pos(R1,C1),q_pos(R2,C2),R1#\=R2] implies [safe(R1,C1,R2,C2)].

We also show another CIFF formalization which is a direct translation of the DLV

formalization. Here, the checks on the queen position conditions, are made locally

in each groundable integrity constraint instance and they are not delegated to the

constraint solver. In these programs, abs is the absolute value function.

The DLV translation (CIFF (2)) is very similar to the (CIFF (1)) formalization

and the query is the same. But in this case the conditions on the queen positions

is done locally in the body of the integrity constraints13.

%%% CIFF (2)

%%% DLV translation

%%% ABDUCIBLES

abducible(q_pos(_,_)).

13 The concrete CIFF syntax differs a bit from that of the program shown in Section 6.2. The
conditions which avoid to place two queens in the same diagonal are integrated in a single
integrity constraint, taking advantage of the - and abs functions of the constraint solver: the
DLV system does not allow to express such functions. The straight DLV translation with two
integrity constraints runs a bit slower in CIFF, as expected.

39

http://www.dbai.tuwien.ac.at/proj/dlv/tutorial/
http://www.baral.us/code/smodels/

%%% CLAUSES

row(1).

...

row(N).

%%% INTEGRITY CONSTRAINTS

[row(R)] implies [q_pos(R,1), ..., q_pos(R,N)].

%%% N must be an integer in real code!

[q_pos(R1,C),q_pos(R2,C),R1\==R2] implies [false].

[q_pos(R1,C1),q_pos(R2,C2),R1\==R2,(abs(R1-R2)#=abs(C1-C2))]

implies [false].

In Table 2, we show the results for the first solution found. In the tables, we denote

the A-System as ASYS and the SMODELS as SM.

Table 2. N-Queens results (first solution)

Queens CIFF (1) CIFF (2) ASYS SM DLV

n = 4 0.01 0.02 0.01 0.01 0.01
n = 6 0.01 0.21 0.01 0.01 0.01
n = 8 0.03 1.29 0.03 0.01 0.01
n = 12 0.05 5.98 0.05 0.01 0.01
n = 16 0.09 410.33 0.07 0.36 0.61
n = 24 0.20 — 0.17 4.88 5.44
n = 28 0.29 — 0.27 55.32 35.17
n = 32 0.37 — 0.32 — —
n = 64 1.62 — 1.52 — —
n = 100 4.55 — 4.24 — —

All systems return all the correct solutions, but we do not show the times for all

solutions because the number of possible solutions is huge when N grows.

Only the CIFF System and the A-System, through the use of the finite domain

constraint solver, can solve the problem, in a reasonable time, for a high number

of queens. Note also that the CIFF System performances in the other “answer set”

variants of the specification, i.e. CIFF (2), is, as expected, worse in comparison

with the first one, i.e. CIFF (1). However, we argue that, on the whole, the results

show that the system is able to handle a reasonable number of ground instances.

40

6.3.2 The Graph Coloring problem

The graph coloring problem can be defined as follows: given a connected graph we

want to color its nodes in a way that each node does not have the color of any of

its neighbors.

The CIFF System formalization is as follows (again, we omit the domain-dependent

definitions of any specific graph):

%%% ABDUCIBLES

abducible(abd_color(_,_)).

%%% CLAUSES

coloring(X) :- color(C),abd_color(X,C).

%%% INTEGRITY CONSTRAINTS

[vertex(X)] implies [coloring(X)].

[edge(X,Y),abd_color(X,C),abd_color(Y,C)] implies [false].

The results are the following, where Jean and Games are two graph instances (up

to a 120-nodes graph)14:

Table 3. Graph coloring results (first solution).

Nodes CIFF CIFF (G) ASYS SM DLV

4 0.09 0.01 0.01 0.01 0.01
Jean — 0.68 0.60 0.19 0.48
Games — 2.39 3.61 0.28 1.14

As for the N-Queens problem all the systems return all the solutions. Here answer

set solvers have the best performances as the constraint solver is not involved in the

computation. However, it is worth noting that performances of both the A-System

and the CIFF System, when the algorithm for groundable integrity constraints is

activated (second column), are encouraging, even if the domain is a typical ASP

application.

6.3.3 Web Sites Repairing

The last example is a practical problem in which abduction can be used effectively:

checking and repairing links in a web site, given the specification of the site via

an abductive logic program with constraints. This example, which follows the ap-

proach in (Toni 2001), is currently being formalized, expanded and investigated

(Mancarella et al. 2007; Mancarella et al. 2009; Terreni 2008a).

14 They are borrowed from http://mat.gsia.cmu.edu/COLOR/instances.html .

41

http://mat.gsia.cmu.edu/COLOR/instances.html

Consider a web site where a node (representing a web page) can be a book, a review

or a library. A link is a relation between two nodes. Nodes and links may need to

be added to guarantee some properties.

• each node must not belong to more than one type, and

• each book must have at least a link to both a review and a library.

We represent the addition of links and nodes as abducibles and we impose that:

• each abduced node must be distinct from each other node (either abduced or

not),

• each abduced link must be distinct from each other link (either abduced or

not),

The CIFF System 4.0 formalization of this problem (together with a simple web

site instance) is the following:

%%% ABDUCIBLES

abducible(add_node(_,_)).

abducible(add_link(_,_)).

%%%CLAUSES

is_node(N,T) :- node(N,T), node_type(T).

is_node(N,T) :- add_node(N,T), node_type(T).

node_type(lib).

node_type(book).

node_type(review).

is_link(N1,N2) :- link(N1,N2), link_check(N1,N2).

is_link(N1,N2) :- add_link(N1,N2), link_check(N1,N2).

link_check(N1,N2) :- is_node(N1,_), is_node(N2,_), N1 \== N2.

book_links(B) :- is_node(B,book), is_node(R,review), is_link(B,R),

is_node(L,lib), is_link(B,L).

%%% INTEGRITY CONSTRAINTS

[add_node(N,T1), node(N,T2)] implies [false].

[add_link(N1,N2), link(N1,N2)] implies [false].

[is_node(N,T1), is_node(N,T2), T1 \== T2] implies [false].

[is_node(B,book)] implies [book_links(B)].

%%%WEB SITE INSTANCE

node(n1,book).

node(n3,review).

link(n1,n3).

The CIFF System returns two answers representing correctly the need of a new link

between the book n1 and a new library node L. The first answer is:

42

[add_link(n1,L), add_node(L,lib)], %%%ABDUCIBLES

[L\==n3, L\==n1], %%%DISEQUALITIES

[] %%%FD CONSTRAINTS

Note that in the answer it is included the fact that L must be a new node, i.e. a

node distinct from both n1 and n3.

The second answer is more complex:

[add_link(n1,L), add_node(L,lib),

add_link(n1,R), add_node(R,review)], %%%ABDUCIBLES

[L\==n3, L\==n1, R\==n3, R\==n1, R\==L], %%%DISEQUALITIES

[] %%%FD CONSTRAINTS

In this case, the system also adds a new review node R and provides the right links

among the new nodes. Note that, again, each node must be distinct from each other:

this is expressed through CIFF disequalities.

Correctly, no further answers are found and the system terminates accordingly.

For this example we do not make a performance comparison with other systems as

both answer set solvers and the A-System seem unable to provide correct answers

due to the presence of unbound variables.

6.4 Comparison with Analytic Tableaux

The overall framework of the CIFF procedure resembles the method of analytic

tableaux, which has been used mostly for deductive inference in a range of different

logics (D’Agostino et al. 1999). A tableau proof proceeds by initializing a proof

tree with a set of formulas to which we then apply expansion rules, similar to

those of CIFF, until we reach an explicit contradiction on every branch. This can

be used to prove that a set of formulas T is unsatisfiable or that a formula ϕ

follows from a set T (by adding the complement of ϕ to T before expansion).

There has been a (very limited) amount of work on applying the tableau method

to the problem of abductive inference (Mayer and Pirri 1993; Aliseda-Llera 1997;

Klarman 2008). The basic idea is that if an attempted proof of T |= ϕ fails, then

those branches that could not be closed can provide hints as to what additional

formulas would allow us to close all branches. That is, we can compute an abductive

answer for the query ϕ given the theory T in this manner. While, in principle it is

possible to use such an approach, the search space would be enormous. The rules

of CIFF (which are more complicated and tailored to specific cases than the rules

of most tableau-based procedures) have been specifically designed so as to avoid

at least some of this complexity and search for to abductive answers more directly.

Most work on tableau-based abduction has concentrated on (classical and non-

classical) propositional logics (Aliseda-Llera 1997; Klarman 2008). The only work

on tableau-based abduction for first-order logic that we are aware of does not focus

on algorithmic issues (Mayer and Pirri 1993). We are also not aware of any major

implementations of any of the tableau-based procedures for abduction proposed in

the literature.

43

7 Conclusions

We have presented the CIFF proof procedure, a step forward at both theoretical

and implementative levels in the field of abductive logic programming (with con-

straints). CIFF is able to handle variables in a non-straightforward way, and it is

equipped with a useful interface to a constraint solver. We have proved that CIFF

is sound with respect to the three-valued completion semantics, and it enjoys some

completeness properties with respect to the same semantics.

In addition, we have described the CIFF System, a Prolog implementation of the

CIFF proof procedure. The CIFF System reaches good levels of efficiency and flex-

ibility and is comparable to other state-of-the-art tools for knowledge representa-

tion and reasoning. The system has been developed in SICStus Prolog, but recently

ported to SWI-Prolog (Wielemaker 2003), the state-of-the-art open-source Prolog

platform, whose constraint solver is however less efficient than the one in SICStus.

We have developed an extension of CIFF incorporating a more sophisticated form

of integrity constraints, with negation as failure in their bodies. This extension is

inspired by (Sadri and Toni 1999) and is described in (Terreni 2008a). Even though

the current implementation supports this extended treatment of negation, further

work is needed to give it a formal foundation.

At the implementative level, a main issue in CIFF is the lack of a Graphical User

Interface (GUI) which would improve its usability: we hope to add it in the CIFF

System 5 release.

Other interesting features which are planned to be added to the CIFF System 5

release, are the following.

• Compatibility to the SICStus Prolog 4 release (which is claimed to be much

faster: a porting of the system will benefit at once from this boost in perfor-

mances).

• The possibility of invoking Prolog platform functions directly. We think that

this would enhance performances and ease-of-programming in CIFF. However,

some work has to be done in order to understand how to integrate them safely.

• Further improvements in the management of groundable integrity constraints.

• Further experimentations with other applications, for example planning.

Finally, we also plan to compare the CIFF system with tools in Potassco (the

Potsdam Answer Set Solving Collection) 15, that incorporate efficient implementa-

tions of constraint solving within answer set programming.

Acknowledgements: We would like to thank Michael Gelfond and the anonymous

reviewers for their comments and suggestions. The work described in this paper

has been partially supported by European Commission FET Global Computing

Initiative, within the SOCS project (IST-2001-32530).

15 http://potassco.sourceforge.net/

44

http://potassco.sourceforge.net/

References

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni., P.

2007. Verifiable agent interaction in abductive logic programming: the SCIFF frame-
work. ACM Transactions on Computational Logic (ToCL).

Alferes, J. J., Pereira, L. M., and Swift, T. 2004. Abduction in well-founded se-
mantics and generalized stable models via tabled dual programs. Theory and Practice
of Logic Programming 4, 4, 383–428.

Aliseda-Llera, A. 1997. Abduction in logic, philosophy of science and artificial intelli-
gence. Ph.D. thesis, ILLC, University of Amsterdam.

Baral, C. 2003. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, New York, NY, USA.

Baral, C. and Gelfond, M. 1994. Logic programming and knowledge representation.
Journal of Logic Programming 19/20, 73–148.

Baselice, S., Bonatti, P. A., and Gelfond, M. 2005. Towards an integration of
answer set and constraint solving. In ICLP. Lecture Notes in Computer Science, vol.
3668. 52–66.

Bonatti, P. A. 2002. Abduction, ASP and open logic programs. In Proceedings of the
9th International Workshop on Non-Monotonic Reasoning (NMR-2002). 184–190.

Bressan, S., Goh, C. H., Lee, T., Madnick, S. E., and Siegel, M. 1997. A proce-
dure for mediation of queries to sources in disparate contexts. In International Logic
Programming Symposium. 213–227.

Christiansen, H. and Dahl, V. 2005. Hyprolog: A new logic programming language
with assumptions and abduction. In Proc. of the 21st International Conference on Logic
Programming, (ICLP05). Sitges, Spain, 159–173.

Ciampolini, A., Lamma, E., Mello, P., Toni, F., and Torroni, P. 2003. Cooperation
and competition in ALIAS: a logic framework for agents that negotiate. Annals of
Mathematics and Artificial Intelligence 37, 1-2, 65–91.

Clark, K. L. 1978. Negation as failure. In Logic and Data Bases. Plenum Press.

Console, L., Dupre, D. T., and Torasso, P. 1991. On the relationship between
abduction and deduction. Journal of Logic and Computation 1, 5, 661–690.

D’Agostino, M., Gabbay, D. M., Hähnle, R., and Posegga, J., Eds. 1999. Handbook
of Tableau Methods. Springer-Verlag.

Denecker, M. and De Schreye, D. 1992. SLDNFA: an abductive procedure for nor-
mal abductive programs. In Proceedings of the 9th Joint International Conference and
Symposium on Logic Programming. 686–700.

Denecker, M. and De Schreye, D. 1998. SLDNFA: an abductive procedure for ab-
ductive logic programs. Journal of Logic Programming 34, 2, 111–167.

Denecker, M. and Kakas, A. C. 2002. Abduction in logic programming. In Computa-
tional Logic: Logic Programming and Beyond. 402–436.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F. 1997. A deductive
system for non-monotonic reasoning. In LPNMR ’97: Proceedings of the 4th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning. Springer-
Verlag, London, UK, 364–375.

Endriss, U., Hatzitaskos, M., Mancarella, P., Sadri, F., Terreni, G., and Toni,

F. 2005. Refinements of the CIFF procedure. In Proceedings of the 12th Workshop on
Automated Reasoning.

Endriss, U., Mancarella, P., Sadri, F., Terreni, G., and Toni, F. 2004a. Abductive
logic programming with CIFF: system description. In Proceedings of JELIA 2004.

45

Endriss, U., Mancarella, P., Sadri, F., Terreni, G., and Toni, F. 2004b. The CIFF
proof procedure for abductive logic programming with constraints. In Proceedings of
JELIA 2004. 31–43.

Eshghi, K. and Kowalski, R. A. 1989. Abduction compared with negation by failure.
In Proceedings of the 6th International Conference on Logic Programming. 234–254.

Fernández, A. J. and Hill, P. M. 2000. A comparative study of eight constraint
programming languages over the boolean and finite domains. Constraints 5, 3, 275–
301.

Frühwirth, T. W. 1998. Theory and practice of constraint handling rules. J. Log.
Program. 37, 1-3, 95–138.

Fung, T. H. 1996. Abduction by deduction. Ph.D. thesis, Imperial College, University
of London.

Fung, T. H. and Kowalski, R. A. 1997. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming 33, 2, 151–165.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Proceedings of the Fifth International Conference and Symposium on Logic
Programming (ICLP/SLP). 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing 9, 365–385.

Holzbaur, C. 1992. Metastructures versus attributed variables in the context of exten-
sible unification. In Proceedings of 4th Symposium on Programming Language Imple-
mentation and Logic Programming. 260–268.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: a survey. Journal of
Logic Programming 19/20, 503–581.

Jaffar, J., Maher, M. J., Marriott, K., and Stuckey, P. J. 1998. The semantics of
constraint logic programs. Journal of Logic Programming 37, 1-3, 1–46.

Kakas, A., Kowalski, R., and Toni, F. 1998. The role of abduction in logic program-
ming. In Handbook of Logic in Artificial Intelligence and Logic Programming 5. Oxford
University Press, 235–324.

Kakas, A. C., Kowalski, R. A., and Toni, F. 1992. Abductive logic programming.
Journal of Logic and Computation 2, 6, 719–770.

Kakas, A. C. and Mancarella, P. 1990a. Abductive logic programming. In Pro-
ceedings of the 1st International Conference on Logic Programming and Nonmonotonic
Reasoning. 49–61.

Kakas, A. C. and Mancarella, P. 1990b. Generalized stable models: a semantics for
abduction. In Proceedings of the 9th European Conference on Artificial Intelligence.
385–391.

Kakas, A. C., Mancarella, P., Sadri, F., Stathis, K., and Toni, F. 2004. The
KGP model of agency. In Proceedings of the 16th European Conference on Artificial
Intelligence. 33–37.

Kakas, A. C., Mancarella, P., Sadri, F., Stathis, K., and Toni, F. 2008. Compu-
tational logic foundations of KGP agents. J. Artif. Intell. Res. (JAIR) 33, 285–348.

Kakas, A. C., Michael, A., and Mourlas, C. 2000. ACLP: Abductive constraint logic
programming. Journal of Logic Programming 44, 129–177.

Kakas, A. C., Van Nuffelen, B., and Denecker, M. 2001. A-system: Problem solv-
ing through abduction. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence. 591–596.

Klarman, S. 2008. ABox abduction in description logic. M.S. thesis, ILLC, University
of Amsterdam.

46

Kowalski, R. and Sergot, M. 1986a. A logic-based calculus of events. New Generation
Computing 4, 1, 67–95.

Kowalski, R. and Sergot, M. 1986b. A logic-based calculus of events. New Gen.
Comput. 4, 1, 67–95.

Kowalski, R. A., Toni, F., and Wetzel, G. 1998. Executing suspended logic programs.
Fundamenta Informaticae 34, 3, 203–224.

Kunen, K. 1987. Negation in logic programming. Journal of Logic Programming 4, 4,
289–308.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-

cello, F. 2006. The DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic 7, 3, 499–562.

Lin, F. and You, J.-H. 2002. Abduction in logic programming: A new definition and an
abductive procedure based on rewriting. Artificial Intelligence 140, 1/2, 175–205.

Lloyd, J. W. 1987. Foundations of logic programming; (2nd extended ed.). Springer-
Verlag New York, Inc., New York, NY, USA.

Mancarella, P., Sadri, F., Terreni, G., and Toni, F. 2004. Planning partially for
situated agents. In Proceedings of the 5th International Workshop on Computational
Logic in Multi-Agent Systems. 230–248.

Mancarella, P., Sadri, F., Terreni, G., and Toni, F. 2007. Programming applica-
tions in CIFF. In Proceedings of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning.

Mancarella, P., Terreni, G., and Toni, F. 2007. Web sites verification: An abductive
logic programming tool. In Proceedings of the 23rd International Conference on Logic
Programming.

Mancarella, P., Terreni, G., and Toni, F. 2009. Web sites repairing through abduc-
tion. Electr. Notes Theor. Comput. Sci. 235, 137–152.

Marek, W. and Truszczynski, M. 1999. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective.
Springer-Verlag, 375–398.

Martelli, A. and Montanari, U. 1982. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems 4, 2, 258–282.

Mayer, M. C. and Pirri, F. 1993. First order abduction via tableau and sequent calculi.
Bulletin of the IGPL 1, 1, 99–117.

Mellarkod, V. S. and Gelfond, M. 2008. Integrating answer set reasoning with con-
straint solving techniques. In FLOPS 2008. Lecture Notes in Computer Science, vol.
4989. 15–31.

Miller, R. and Shanahan, M. 2002. Some alternative formulations of the event calculus.
In Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert
A. Kowalski, Part II. Springer-Verlag, London, UK, 452–490.

Niemela, I. and Simons, P. 1997. SMODELS - an implementation of the stable model
and well-founded semantics for normal logic programs. In LPNMR ’97: Proceedings of
the 4th International Conference on Logic Programming and Nonmonotonic Reasoning.
Springer-Verlag, London, UK, 421–430.

Pereira, L. M., Apaŕıcio, J. N., and Alferes, J. J. 1991. Nonmonotonic reasoning
with well founded semantics. In Proceedings of the 8th International Conference on
Logic Programming. 475–489.

Sadri, F. and Toni, F. 1999. Abduction with negation as failure for active and reactive
rules. In AI*IA 99: Advances in Artificial Intelligence, 6th Congress of the Italian
Association for Artificial Intelligence. 49–60.

47

Sadri, F., Toni, F., and Torroni, P. 2002. An abductive logic programming architec-
ture for negotiating agents. In Proceedings of JELIA 2002. Springer-Verlag.

Shanahan, M. 1989. Prediction is deduction but explanation is abduction. In Proceedings
of the 11th International Joint Conference on Artificial Intelligence. 1055–1060.

Simons, P. 2000. Extending and implementing the stable model semantics. Tech. rep.,
Helsinki University of Technology.

SOCS-consortium. 2002-2005. Societies of computees (SOCS): a computational logic
model for the description, analysis and verification of global and open societies of het-
erogeneous computees. IST200132530. http://lia.deis.unibo.it/Research/SOCS/.

Terreni, G. 2008a. The CIFF proof procedure for abductive logic programming with
constraints: definition, implementation and a web application. Ph.D. thesis, Università
di Pisa.

Terreni, G. 2008b. The CIFF System. http://www.di.unipi.it/∼terreni/research.php.

Toni, F. 2001. Automated information management via abductive logic agents. Telem-
atics and Informatics 18, 1, 89–104.

van Gelder, A., Ross, K., and Schlipf, J. S. 1991. The well-founded semantics for
general logic programs. Journal of the ACM 38, 3, 620–650.

Van Nuffelen, B. 2004. Abductive constraint logic programming: Implementation and
applications. Ph.D. thesis, K. U. Leuven.

Wetzel, G., Kowalski, R. A., and Toni, F. 1996. PROCALOG - programming with
constraints and abducibles in logic (poster abstract). In Proceedings of the 13th Joint
International Conference and Symposium on Logic Programming. 535.

Wielemaker, J. 2003. An overview of the SWI-Prolog programming environment. In
Proceedings of the 13th International Workshop on Logic Programming Environments.
1–16. http://www.swi-prolog.org/.

48

http://lia.deis.unibo.it/Research/SOCS/
http://www.di.unipi.it/~terreni/research.php
http://www.swi-prolog.org/

Appendix A Proofs of CIFF results

Proof of Proposition 4.1

To prove the first part of the proposition, we need the semantics of the constraint

solver while to prove the second part we need the Clark Equality Theory (CET).

Both are embedded in our semantics (|=3(ℜ)) and we will write explicitly |=ℜ and

|=CET , respectively, instead of |=3(ℜ) where appropriate.

1. Γ is the set of c-conjuncts in N , and this is a successful node. Then the Constraint

solving rule R7 cannot be applied to N . Thus, by the assumption of having a

sound and complete constraint solver, we have that Γ is not an unsatisfiable set of

constraints, i.e. we can always obtain a ground substitution θ such that:

|=ℜ Γθ

and so

θ |=ℜ Γ.

2. Let us consider F = (E ∪DE)θ. Equalities in E are of the form

Xi = ti (1 ≤ i ≤ n, n ≥ 0)

where each Xi is an existentially quantified variable and ti is a term (containing

neither universally quantified variables nor Xi itself). The scope of each variable in

E is the whole CIFF node N and each Xi does not appear elsewhere in the node

due to the exhaustive application of the Equality rewriting in atoms rule R8.

The disequalities in DE are of the form

Xj = tj → false (n < j ≤ m, m ≥ 0)

where each Xj is an existentially quantified variable appearing also in E (due to the

Substitution in atoms rule R10) and tj is a term not in the form of a universally

quantified variable.

The ground substitution θ contains an assignment to all the constraint variables

occurring in (E ∪DE). This is because (i) all the equalities in E are equalities over

Herbrand terms by definition and (ii) there is no CIFF disequality in DE of the

form Xi = ti → false where Xi = ti is a c-atom because the Case analysis for

constraints rule R6 replaced any such CIFF disequality with a c-conjunct of the

form Xi 6= ti.

Note that also CIFF disequalities of the form X = Y → false such that X is a

constraint variable and Y is not (or viceversa) are not a problem. This is because

X has been substituted by a ground term c by θ and there is no equality of the

form Y = c in Eθ because in that case also Y would be a constraint variable and

that equality would belong to Γ.

Finally, the proposition is proven by finding a ground substitution σ such that

|=CET Fσ and this can be done following the proof in (Fung 1996), as follows.

49

First we assign a value to each existentially quantified variable Xj in DEθ. We

do this by using a fresh function symbol gj , i.e. the function symbol gj does not

appear in the CIFF branch whose leaf is N (we assume here that we have an infinite

number of distinct function symbols in our language). Then we choose a constant c

and we assign gj(c) to Xj. We define G = FσI where σI is the ground substitution

composed of the above assignments.

The second step is to assign to each variable Xi in (Eθ)σI its corresponding term

si = tiσI .

Finally, for each remaining existentially quantified variable, we use another fresh

function and a constant c to make assignments as for what done for CIFF disequal-

ities.

The whole set of assignments so far obtained is the ground substitution σ which

proves the proposition. This is because, after θσ has been applied, each equality

originally in E is of the form t = t and each CIFF disequality originally in DE is

of the form f(t) = g(t)→ false which are obviously entailed by CET.

We have:

σ |=3(ℜ) (E ∪DE)θ

and thus, being θ |=ℜ Γ, we have:

θσ |=3(ℜ) Γ ∪ E ∪DE

Proof of Proposition 4.2

Let us consider the set ∆σ′. There can be existentially quantified variables in ∆

not assigned by σ′ because they do not appear in C. Then it is enough to choose

arbitrary ground terms to assign to those variables to obtain a substitution σ such

that σ′ ⊆ σ, which proves the proposition.

Proof of Proposition 4.3

We prove the proposition considering each of the CIFF proof rules in turn. Recall

that, apart from the Splitting rule, for each proof rule the set N of successor nodes

of N is a singleton, i.e. N = {N ′}.

R1 - Unfolding atoms. This rule applies a resolution step on a defined atom p(~t)

in N and its iff-definition in Th:

p(~X)↔ (D1 ∨ · · · ∨Dn)

Hence, the atom p(~t) is replaced in N ′ by

(D1 ∨ · · · ∨Dn)[~X/~t]

The replacement is obviously equivalence preserving with respect to P and |=3(ℜ).

R2 - Unfolding within implication. This rule resolves a defined atom p(~t) with

its iff-definition in Th:

50

p(~X)↔ (D1 ∨ · · · ∨Dn)

as in the previous rule. The result is a set of implications in N ′ replacing the original

implication, each one containing one of the disjuncts Diθ, with 1 ≤ i ≤ n where

θ = [~X/~t]. Without loss of generality, suppose that the original implication is of the

form

(p(~t[~W, ~Y]) ∧R[~W, ~Y])→ H [~W, ~Y]

where R is a conjunction of literals and H is a disjunction of atoms. We use the

notation E[~Y] to say that ~Y may occur in E for a generic E. Suppose that all and

only the variables in ~W occur also in another non-implicative CIFF conjunct (recall

that in a CIFF node variables appearing only within an implication are implicitly

universally quantified with scope the implication itself and variables appearing out-

side an implication are existentially quantified with scope the whole node). Making

the quantification explicit, the implication becomes:

∃ ~W∀~Y (p(~t[~W, ~Y]) ∧R[~W, ~Y]→ H [~W, ~Y])

To simplify the presentation, in the following we assume that ~W and ~Y may occur

everywhere in the implication without denoting it explicitly. Applying resolution

we obtain:

∃ ~W∀~Y ((∃~Z1D
′

1θ ∨ · · · ∨ ∃~ZnD′

nθ) ∧R→ H)

where each Di is of the form ∃~ZiD
′
i and the vectors ~Zi of existentially quantified

variables arise from the iff-definition. Thus we have:

∃ ~W∀~Y ((∃~Z1(D
′
1θ) ∨ · · · ∨ ∃~Zn(D′

nθ)) ∧R→ H) ≡

∃ ~W∀~Y (¬(∃~Z1(D
′
1θ) ∨ · · · ∨ ∃~Zn(D′

nθ)) ∨ ¬R ∨H) ≡

∃ ~W∀~Y ((¬(∃~Z1(D
′
1θ)) ∧ · · · ∧ ¬(∃~Zn(D′

nθ))) ∨ ¬R ∨H) ≡

∃ ~W∀~Y ((¬(∃~Z1(D
′
1θ)) ∨ ¬R ∨H) ∧ · · · ∧ (¬(∃~Zn(D′

nθ)) ∨ ¬R ∨H)) ≡

∃ ~W (∀~Y (¬(∃~Z1(D
′
1θ)) ∨ ¬R ∨H) ∧ · · · ∧ ∀~Y (¬(∃~Zn(D′

nθ)) ∨ ¬R ∨H)) ≡

∃ ~W (∀~Y , ~Z1(¬D′
1θ ∨ ¬R ∨H) ∧ · · · ∧ ∀~Y , ~Zn(¬D′

nθ ∨ ¬R ∨H)) ≡

∃ ~W (∀~Y , ~Z1(D
′
1θ ∧R→ H) ∧ · · · ∧ ∀~Y , ~Zn(D′

nθ ∧R→ H))

Note that the variables ~Zi in the new implications are universally quantified with

scope the implication in which they occur. So with our convention for implicit

quantification, the last sentence is:

(D1θ ∧R→ H) ∧ · · · ∧ (Dnθ ∧R→ H).

R3 - Propagation. This rule uses an atomic CIFF conjunct p(~s) and an atom p(~t)

within an implication of the form (p(~t)∧B)→ H and it adds in N ′ an implication

of the form:

~t = ~s ∧B → H

51

It is obvious that, due to the fact that the second implication is a consequence of

the CIFF conjunct and the implication and both remain in N ′, the Propagation

rule is equivalence preserving.

R4 - Splitting. This rule uses a disjunctive CIFF conjunct of the form D =

D1∨ . . .∨Dk and builds a set of CIFF successor nodes N= {N1, . . . , Nk} such that

in each Ni the conjunct D is replaced by Di.

It is obvious that the Splitting rule is equivalence preserving because it is an op-

eration of disjunctive distribution over a conjunction, i.e. is a case of the tautology:

A ∧ (D1 ∨ . . . ∨Dk) ≡ (A ∨D1) ∧ . . . ∧ (A ∨Dk)

R5 - Factoring. This rule uses two atomic CIFF conjuncts of the form p(~t) and

p(~s) and it replaces them in N ′ by a disjunction of the form:

(p(~s) ∧ p(~t) ∧ (~t = ~s→ false)) ∨ (p(~t) ∧ ~t = ~s)

To show that the rule is equivalence preserving, consider the tautology

(~t = ~s→ false) ∨ ~t = ~s

We have that

p(~t) ∧ p(~s) ≡

p(~t) ∧ p(~s) ∧ ((~t = ~s→ false) ∨ ~t = ~s) ≡

(p(~t) ∧ p(~s) ∧ (~t = ~s→ false)) ∨ (p(~t) ∧ p(~s) ∧ ~t = ~s) ≡

(p(~t) ∧ p(~s) ∧ (~t = ~s→ false)) ∨ (p(~t) ∧ p(~t) ∧ ~t = ~s) ≡

(p(~t) ∧ p(~s) ∧ (~t = ~s→ false)) ∨ (p(~t) ∧ ~t = ~s)

R6 - Case Analysis for constraints.

Recall that variables in Con are all existentially quantified and that the constraint

domain is assumed to be closed under complement, i.e. the complement Con of a

constraint atom Con is a constraint atom.

(Con ∧A)→ B ≡

Con→ (A→ B) ≡

(Con→ Con) ∧ (Con→ (A→ B)) ≡

Con→ (Con ∧ (A→ B)) ≡

¬Con ∨ (Con ∧ (A→ B)) ≡

Con ∨ (Con ∧ (A→ B))

Variable quantification need not be taken into account here because each variable

occurring in Con must be existentially quantified in order for the rule to be applied

to it. Hence the quantification of those variables remain unchanged in the two

resulting disjuncts.

R7 - Constraint solving. This rules replaces a set {Con1, . . . , Conk} of c-conjuncts

in N by false in N ′, provided the constraint solver evaluates them as unsatisfiable.

By the assumption that the constraint solver is sound and complete, the rule is

obviously equivalence preserving.

52

R8 - Equality rewriting in atoms and R9 - Equality rewriting in implica-

tions. These rules are directly borrowed from the Martelli-Montanari unification

algorithm. The equivalence preserving is proven by the soundness of this algorithm

(Martelli and Montanari 1982).

R10 - Substitution in atoms and R11 - Substitution in implications. These

rules simply propagate an equality either to the whole node or to the implication

in which it occurs. Again they are obviously equivalence preserving rules.

R12 - Case Analysis for equality. The equivalence preservation of this rule

requires some carefulness due to the quantification of the variables involved. First

of all note that if no variable in the Given formula is universally quantified the proof

is trivial. For simplicity we provide the full proof for the case in which the Given

formula contains only one universally quantified variable and no other existentially

quantified variables except X . The proof can be then easily adapted to the general

case. With this simplification, we need to prove that the following two formulae are

equivalent (where implicit quantifications are made explicit).

F1 ∃X ∀Y ((X = t ∧B)→ H)

F2 [∃X, Y (X = t ∧ (B → H))] ∨ [∃X∀Y (X = t→ false)]

We do a proof by cases, using the following two (complementary) hypotheses:

Hyp1 ¬∃X∃Y (X = t).

Hyp2 ∃X∃Y (X = t)

The equivalence under Hyp1 is trivial.

Assume Hyp2 holds. Let s be a ground value for X such that

∃Y (s = t).

and let ϑ be the ground substitution for X and Y such that Xϑ = s and (X = t)ϑ.

Note that, by CET, given s such a ground substitution is unique. Consider now the

formulae obtained from F1 and F2 by substituting X by s

F1(s) ∀Y ((s = t ∧B)→ H)

F2(s) [∃Y (s = t ∧ (B → H))] ∨ [∀Y (s = t→ false)]

It is not difficult to see that F1(s) is equivalent to

(B → H)ϑ

since for any ground instantiation of Y other than Y ϑ the implication ((s = t∧B)→

H) is trivially true.

Consider now F2(s). The second disjunct is false by Hyp2 whereas the first disjunct

is clearly equivalent to (B → H)ϑ due to the uniqueness of ϑ.

R13 - Negation rewriting. This rule uses common logical equivalences:

((A→ false) ∧B)→ H ≡

B → ¬(A→ false) ∨H ≡

B → ¬(¬A ∨ false) ∨H ≡

B → (A ∧ true) ∨H ≡

B → A ∨H

53

R14, R15, R16, R17 - Logical simplification #1 - #4 rules. All the four

simplification rules are again obviously equivalence preserving rules as they use

common logical equivalences.

R18 - Dynamic Allowedness. This rule does not change the elements of a node

N . Hence, given that N ′ = N , ignoring the marking, the equivalence preservation

is proven.

Proof of Corollary 4.1

The proof is an immediate consequence of Proposition 4.3, because for any CIFF

formula F ′ obtained from F through the application of a CIFF proof rule φ on a

node N , we have that

F ′ = F − {N} ∪ N

where N is the set of successor nodes of N with respect to φ.

Proof of Theorem 4.1

Let us consider a CIFF successful node N . By definition of CIFF extracted answer,

the node N from which 〈∆, C〉 is extracted, is a conjunction of the form

∆ ∧ Γ ∧E ∧DE ∧Rest

where C = 〈Γ, E, DE〉 and Rest is a conjunction of CIFF conjuncts.

Propositions 4.1 and 4.2 ensure the existence of a ground substitution σ such that:

∆σ |=3(ℜ) ∆ ∪ Γ ∪ E ∪DE.

Let X the set of variables occurring in Q and let θ the restriction of σ over the

variables in X.

Let γ be a ground substitution for all the variables occurring in Qθ. Let σ = θγ. It

is straightforward that

∆θγ |=3(ℜ) ∆ ∪ Γ ∪ E ∪DE

as the substitution γ does not involve any variable in ∆ ∪ Γ ∪ E ∪DE.

To prove that 〈∆, σ, Γ〉 is an abductive answer with constraint, we need that:

1. there exists a ground substitution σ′ for the variables occurring in Γσ such that

σ′ |=ℜ Γσ and

2. for each ground substitution σ′ for the variables occurring in Γσ such that σ′ |=ℜ Γσ,

there exists a ground substitution σ′′ for the variables occurring in Q∪∆∪Γ, with

σσ′ ⊆ σ′′, such that:

• P ∪∆σ′′ |=LP (ℜ) Qσ′′ and

• P ∪∆σ′′ |=LP (ℜ) IC.

Again, Propositions 4.1 and 4.2 ensure that

• there exists a ground substitution σ′ for the variables occurring in Γσ such that

σ′ |=ℜ Γσ and such that, for each ground substitution σ′ and

54

• for each ground substitution σ′ for the variables occurring in Γσ such that σ′ |=ℜ Γσ,

there exists a ground substitution σ′′ for the variables occurring in Q∪∆∪Γ, with

σσ′ ⊆ σ′′, such that:

∆σ′′ |=3(ℜ) ∆ ∪ Γ ∪ E ∪DE (+)

If we prove that ∆σ′′ |=3(ℜ) Rest, we have that

P ∪∆σ′′ |=3(ℜ) N. (∗)

From this, by induction and by Proposition 4.3, we will obtain

• P ∪∆σ′′ |=3(ℜ) Qσ′′, and

• P ∪∆σ′′ |=3(ℜ) IC,

thus proving that 〈∆, C〉 is an abductive answer with constraints to Q with respect

to 〈P, A, IC〉ℜ.

We now prove (∗). It is obvious that:

P ∪∆σ′′ |=3(ℜ) ∆ ∪ Γ ∪E ∪DE

by (+) above. We need to show that:

P ∪∆σ′′ |=3(ℜ) Rest.

Let us consider the structure of Rest. Due to the exhaustive application of CIFF

proof rules, a CIFF conjunct in Rest cannot be any of the following:

• a disjunction (due to the exhaustive application of Splitting);

• a defined atom (due to the exhaustive application of Unfolding atoms);

• either true or false (due to the exhaustive application of Logical simplification

(#1 - #4) and the fact that N is not a failure node, respectively);

• an implication whose body contains a defined atom (due to the exhaustive appli-

cation of Unfolding in implications);

• an implication with a negative literal in the body (due to the exhaustive application

of Negation rewriting);

• an implication with true or false in the body (due to the exhaustive application

of Logical simplification (#1 - #4));

• an implication with only equalities or constraint atoms in the body (due to the

exhaustive application of Case analysis for equalities, Case analysis for con-

straints, Substitution in implications and Dynamic Allowedness).

Thus, each CIFF conjunct in Rest is an implication whose body contains at least

an abducible atom. We denote as Aa ⊆ ∆ the set of abducible atoms in ∆ whose

predicate is a. Consider an implication I ∈ Rest of the form a(~t) ∧ B → H where

a is an abducible predicate and ~t may contain universally quantified variables.

Either Aa = ⊘ or not. If Aa = ⊘ then it trivially holds that P ∪ ∆σ′′ |=3(ℜ) I

because the body of I falsified.

The case Aa 6= ⊘ is more interesting. Assume Aa = a(~s1), . . . , a(~sk). Due to the

fact that a has no definition in P , a(~s1)σ
′′, . . . , a(~sk)σ′′ represent all and only the

55

instances of a(~t) which are entailed by P ∪ ∆σ′′ with respect to the three-valued

completion semantics.

Hence, if ~t = ~sσ′′, where ~s is such that a(~s)σ′′ 6∈ Aa, it trivially holds that P ∪

∆σ′′ |=3(ℜ) I, because the body of I falsified.

Consider now the case ~t = ~sσ′′, where ~s is such that a(~s)σ′′ ∈ Aa. Because N

is a CIFF successful node, Propagation has been exhaustively applied in the

CIFF branch B whose leaf node is N . This means that for each a(~si)σ
′′ ∈ Aa, an

implication I ′ of the form

~t = ~siσ
′′ ∧B → H

occurs in at least a node Ni ∈ B (otherwise Propagation is still applicable and N

is not a successful node). Then, if B of the body does not contain other abducibles,

the implication I ′ is not in Rest and has been reduced to a conjunction in N .

Otherwise, if B contains another abducible atom, the process is applied again on

it. Because a successful branch is finite, the proof is obtained by induction on the

number of abducible atoms in B.

Hence, it holds that:

P ∪∆σ′′ |=3(ℜ) Rest

and

P ∪∆σ′′ |=3(ℜ) N

Let us consider the CIFF branch B whose leaf node is N , i.e. the branch B = N1 =

Q ∧ IC, N2, . . . , Nl = N with l ≥ 1. If we prove that for each pair of nodes Ni and

Ni+1 belonging to B it holds that if

P ∪∆σ′′ |=3(ℜ) Ni+1

then

P ∪∆σ′′ |=3(ℜ) Ni

we have, by induction, that

P ∪∆σ′′ |=3(ℜ) Qσ′′ ∧ IC

Suppose P ∪ ∆σ′′ |=3(ℜ) Ni+1, for some i. Due to the definition of CIFF branch,

each node Ni+1 ∈ B is one of the successor nodes of Ni. If Ni+1 is obtained by Ni by

applying a CIFF proof rule distinct from the Splitting rule, if follows immediately

that

P ∪∆σ′′ |=3(ℜ) Ni

given that Ni+1 is the only successor node of Ni and thus, from Proposition 4.3,

we have that Ni ≡ Ni+1. If the Splitting rule has been applied, however, then the

node Ni is of the form

RestNode ∧ (D1 ∨ . . . ∨Dn)

56

and Ni+1 is of the form

(RestNode ∧Di) for some i ∈ [1, n].

It is obvious that the latter formula entails the former.

Summarizing, we have that

P ∪∆σ′′ |=3(ℜ) Qσ′′ ∧ IC

which implies that

P ∪∆σ′′ |=3(ℜ) Qσ′′, and

P ∪∆σ′′ |=3(ℜ) IC.

Proof of Theorem 4.2

From the definition of failure CIFF derivation,D is a derivation starting with Q∪IC

and such that all its leaf nodes are CIFF failure nodes which are equivalent to false.

Hence, due to Corollary 4.1 and the transitivity of the equivalence, it follows im-

mediately that:

P ∪ IC |=3(ℜ) (Q ∧ IC)↔ false

Because IC occurs in both the left and the right hand side of the statement, we

have that

P ∪ IC |=3(ℜ) Q↔ false

and thus

P ∪ IC |=3(ℜ) ¬Q.

The proof of Lemma 4.1 requires some auxiliary definition and result given in the

sequel

Definition Appendix A.1

An atom is a pure constraint atom if is either a constraint atom or it is an equality

t = s where either t or s are non-Herbrand terms.

For example the equality X = 3 is a pure constraint atom whereas the equality

X = a is not.

Definition Appendix A.2 (Statically allowed implication)

An implication of the form B → H is statically allowed if and only if:

• each universally quantified variable occurring in H occurs also in B;

• each universally quantified variable occurring in a negative literal or in a pure

constraint atom in B, occurs also in an atomic non-constraint atom in B;

• if a universally quantified variable in B occurs only in an equality t = s of B

then either t or s do not contain universally quantified variables.

57

Lemma Appendix A.1 (Static allowed implications lemma)

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints such that the corre-

sponding CIFF framework 〈Th, A, IC〉ℜ and the query Q are both CIFF statically

allowed. Let D be a CIFF derivation with respect to 〈Th, A, IC〉ℜ and Q. Let Fi be

a CIFF formula in D and let N be a CIFF node in Fi such that each implication

(as a CIFF conjunct) in N is statically allowed. Then, for each CIFF proof rule φ

such that

Fi

N, χ
GGGGGGGGA

φ
Fi+1,

each node N ′ in the set of CIFF successor nodes N of N in D is such that each

implication (as a CIFF conjunct) in N ′ is statically allowed.

Proof of Lemma Appendix A.1

We need to prove that each implication I of the form B → H in each successor

node N ′ of N is statically allowed.

For all CIFF proof rules but (R1), (R2), (R3), (R9), (R11), (R12) and (R13) the

proof is trivial.

Unfolding atoms (R1). This rule resolves an atom p(~t) with its iff-definition

[p(~X) ↔ D1 ∨ · · · ∨ Dn] ∈ Th. New implications can arise from negative literals

(rewritten in implicative form) in some disjunct Di (i ∈ [1, n]). However, by as-

sumption, Th is statically allowed and thus each universally quantified variable V

occurring in a negative literal occurs elsewhere in a non-equality, non-constraint

atom in the same disjunct. Hence any such newly introduced implication is stati-

cally allowed.

Unfolding within implications (R2). This rule resolves an atom p(~t) in the body

of an implication with its iff-definition [p(~X) ↔ D1 ∨ · · · ∨Dn] ∈ Th, producing n

new implications I1, . . . , In in the successor node of N . As for the previous case,

since Th is statically allowed, each universally quantified variable V occurring in a

disjunct Di (i ∈ [1, n]) occurs elsewhere in a non-equality, non-constraint atom in

the same disjunct. Hence each Ii (i ∈ [1, n]) is a statically allowed implication.

Propagation (R3). This rule resolves an atom p(~t) in the body of an implication

I with an atom p(~s) as a CIFF conjunct in N , adding a new implication I ′ in the

successor node of N , where p(~t) is replaced by ~t = ~s. By definition, all the variables

in ~s are existentially quantified, hence the newly introduced implication is statically

allowed.

Equality rewriting in implications (R9). This rule handles an implication I

of the form (t1 = t2 ∧ B) → H , replacing it with an implication I ′ of the form

((E(t1 = t2) ∧ B) → H in the successor node N ′ of N . Assume that I ′ is not a

statically allowed implication. There are two cases:

• a universally quantified variable V in H occurred in B only in the equality t1 = t2
and the application of E(t1, t2) has eliminated V . This can never happen since,

being I statically allowed, cases (4) and (5) in the definition of E do not apply;

58

• a universally quantified variable V occurring only in t1 = t2 still occurs only in

an equality t′ = s′ introduced by the application of E(t1 = t2), and both t′ and s′

contain universally quantified variables. This can not happen either, since t′ is a

subterm of t1, s′ is a subterm of t2 and either t1 or t2 do not contain universally

quantified variables by the hypothesis that I is statically allowed.

Substitution in implications (R11). This rule handles an implication I of the

form (X = t∧B)→ H (where X is universally quantified and X does not occur in

t), replacing it with an implication I ′ of the form (B → H)[X/t] in the successor

node N ′ of N . Since I is statically allowed and I ′ contains one less universally

quantified variable with respect to I, I ′ is also statically allowed.

Case analysis for equalities (R12). This rule handles an implication I of the

form (X = t ∧ B) → H , (where X is existentially quantified) replacing it with a

disjunctive node of the form [X = t ∧ (B → H)] ∨ [X = t → false] (where all the

variables in t in the first disjunct become existentially quantified) in the successor

node N ′ of N . Being X existentially quantified, the implication X = t → false

in the second disjunct is statically allowed. Moreover, due to the fact that all the

variables in t become existentially quantified in the first disjunct, also B → H is

statically allowed because it contains less universally quantified variables than I

which is, by assumption, statically allowed.

Negation rewriting (R13). This rule handles an implication I of the form ((A→

false)∧B)→ H , replacing it with an implication I ′ of the form B → (A∨H) in the

successor node N ′ of N . Being I statically allowed, for each variable V occurring in

A, V must also occur in a non-equality, non-constraint atom in B and thus also I ′

is statically allowed because each variable in (A∨H) occurs also in a non-equality,

non-constraint atom in B.

Corollary Appendix A.1

Let 〈P, A, IC〉ℜ be an abductive logic program with constraints such that the corre-

sponding CIFF framework 〈Th, A, IC〉ℜ and the query Q are both CIFF statically

allowed. Let D be a CIFF derivation with respect to 〈Th, A, IC〉ℜ and Q. Then

each implication occurring in D is a statically allowed implication.

Proof

Any implication in the initial node of D is statically allowed since the 〈Th, A, IC〉ℜ
and the query Q are both CIFF statically allowed by hypothesis. The result then

follows directly from Lemma Appendix A.1.

Proof of Lemma 4.1

We prove the Lemma by contradiction. Assume that there exists a CIFF derivation

such that R18 - Dynamic allowedness is selected. By definition of the Dynamic

allowedness rule, an implication of form B → H is selected such that:

(i) either B is true, or

59

(ii) B contains constraint atoms only

and

(iii) no other rule applies to the implication.

Due to the definition of the CIFF proof rules, (i), (ii) and (iii) above imply that

(iv) either B is true and H contains universally quantified variables, or

(v) B contains constraint atoms only, each constraint atom in B contains universally

quantified variables, and each equality atom in B is a pure constraint atom.

Note, in particular, that equalities in B are pure constraint atoms since otherwise

R9, R11 or R12 would be applicable. In both cases (iv) and (v) the implication

is not a statically allowed implication, contradicting Corollary Appendix A.1.

Proof of Theorem 4.3

By assumption, both 〈Th, A, IC〉ℜ and Q do not contain constraint atoms. This

means that both the CIFF framework 〈Th, A, IC〉ℜ and the CIFF query Q are also

an IFF framework and an IFF query respectively. Moreover, the CIFF proof rules

are a superset of the IFF proof rules. Directly from the same assumption Case

analysis for constraints and Constraint solving (which are all the CIFF rules

managing c-atoms) can never be applied in any derivation D for Q with respect to

〈Th, A, IC〉ℜ.

Moreover, the fact that both 〈Th, A, IC〉ℜ and Q are IFF allowed ensures that

they are also CIFF statically allowed. This is trivial because an IFF allowed query

is defined exactly as a CIFF statically allowed query and the notion of CIFF static

allowedness and the notion of IFF allowedness for, respectively, a CIFF and an

IFF framework, differ only for the CIFF static allowedness conditions over con-

straint atoms. As 〈Th, A, IC〉ℜ does not contain constraint atoms, the two no-

tions for 〈Th, A, IC〉ℜ coincide. Hence 〈Th, A, IC〉ℜ is also a CIFF statically al-

lowed framework and thus, for Lemma 4.1, Dynamic allowedness is never ap-

plied. This means that any derivation D for Q with respect to 〈Th, A, IC〉ℜ is an

IFF derivation and thus, we can apply directly the completeness result stated in

(Fung and Kowalski 1997).

Proof of Theorem 4.4

1. It is easy to see that

P ∪ IC |=3(ℜ) ¬Q

is equivalent to:

P ∪ IC |=3(ℜ) Q↔ false

Because IC occurs in the left hand side of the statement, the above statement is

equivalent to:

(∗) P ∪ IC |=3(ℜ) (Q ∧ IC)↔ false

60

Assume that there exists a CIFF successful branch in D and let Ans be the cor-

responding CIFF extracted answer. Due to the equivalence preservation of CIFF

rules (Proposition 4.1) and the transitivity of the equivalence, we have that

P ∪ IC |=3(ℜ) (Q ∧ IC)↔ (false ∨Ans)

which clearly contradicts the above statement (∗) being Ans distinct from false

due to the soundness of CIFF.

2. Assume that all the branches in D are failure branches. Due to the equivalence

preservation of CIFF rules (Proposition 4.1) and the transitivity of the equivalence,

we have that

P ∪ IC |=3(ℜ) (Q ∧ IC)↔ false

which is equivalent to

P ∪ IC |=3(ℜ) Q↔ false

and to

P ∪ IC |=3(ℜ) ¬Q

which clearly contradicts that

P ∪ IC 6|=3(ℜ) ¬Q.

Proof of Theorem 4.5

By Lemma 4.1 we have that, given a CIFF derivationD with respect to 〈Th, A, IC〉ℜ
and Q, D does not contain undefined branches. This is because the Dynamic

Allowedness rule is never applied in D and this is the only rule which gives rise

to an undefined node. Due to the assumption that D is finite, we have that all the

final nodes in D are either successful or failure CIFF nodes. Hence Theorem 4.4

can be applied to 〈Th, A, IC〉ℜ and Q, thus proving the statement.

61

	Introduction
	Abductive Logic Programming with Constraints
	The CIFF Proof Procedure
	CIFF Proof Rules
	CIFF Derivation and Answer Extraction

	Correctness of the CIFF Proof Procedure
	The CIFF System
	Related Work, Comparison and Experiments
	Comparison with A-System
	Comparison with Answer Set Programming
	Experimental Results
	Comparison with Analytic Tableaux

	Conclusions
	References
	Appendix A Proofs of CIFF results

