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Abstract. Arrow’s Theorem is a central result in social choice theory.
It states that, under certain natural conditions, it is impossible to aggre-
gate the preferences of a finite set of individuals into a social preference
ordering. We formalise this result in the language of first-order logic,
thereby reducing Arrow’s Theorem to a statement saying that a given
set of first-order formulas does not possess a finite model. In the long
run, we hope that this formalisation can serve as the basis for a fully
automated proof of Arrow’s Theorem and similar results in social choice
theory. We prove that this is possible in principle, at least for a fixed
number of individuals, and we report on initial experiments with auto-
mated reasoning tools.

1 Introduction

Social choice theory is a branch of mathematical economics that is concerned
with the design and analysis of methods for collective decision making [1]. One
of the classical results in the field is Arrow’s Theorem [2]; it states that is impos-
sible to aggregate the preferences of a finite set of individuals in a manner that
would satisfy a small number of natural properties. In this paper we propose a
formalisation of Arrow’s Theorem in classical first-order logic (FOL), which may
eventually pave the way for an automated proof of this important result.

There have been a number of recent contributions that address the formal-
isation of theorems in social choice theory (e.g., Pauly [3], Ågotenes et al. [4],
Tang and Lin [5], Wiedijk [6], and Nipkow [7]). There are several reasons for this
broad interest in applying tools from mathematical logic and automated reason-
ing to social choice theory. One of them is of course that the full formalisation
of a problem domain can help us gain a deeper understanding of that domain.
More specifically, in social choice theory, it can clarify the exact nature of the
assumptions that are being made to derive, for instance, a characterisation re-
sult [3]. Second, a complete formalisation together with an automatically derived
(or automatically verifiable) proof can give additional assurances for the correct-
ness of a result. As pointed out by Blau [8], Arrow’s original proof contained an
error; this has been acknowledged and corrected in the second edition of Ar-
row’s book [2]. While there has been some discussion in the literature whether
the standard proofs have been worked out in sufficient detail [7], we certainly



do not want to suggest that the major results in social choice theory are not
based on sound foundations. However, for verifying newer and less well studied
results, automated reasoning could prove a very useful tool. Finally, the use of
automated reasoning in social choice theory has the potential to unveil entirely
new results. For instance, we can imagine that it may soon become possible to
use automated theorem provers to check whether a known impossibility result
persists when we weaken or otherwise alter some of the axioms, or to use model
generators to automatically derive counterexamples. To a limited extent, such
results have already been achieved in recent work by Tang and Lin [5].

Previous work has discussed formalisations of Arrow’s Theorem in modal
logic [4], dependence logic,1 and in the language of set theory [6, 7]. Here we
explore to what extent it is possible to model the framework underlying Arrow’s
Theorem in classical FOL. There are two reasons for focusing on FOL: it is
a natural language for speaking about linear orders, which are central to the
modelling of preferences, and automated theorem proving is more developed
for FOL than it is for other systems. We are able to show that it is possible
to completely describe the problem within a language of FOL based on the
language of linear orders, with one exception: for stating that Arrow’s Theorem
only applies to the case of a finite number of individuals we have to resort to a
statement outside the language (we will see that Arrow’s Theorem is equivalent
to a certain finite theory of FOL axioms not having a finite model). In particular,
we will not require any form of second-order quantification, which may seem
surprising given that several of the axioms used in Arrow’s Theorem certainly
have a “second-order flavour”. Our axiomatisation draws on several ideas from
an important recent paper by Tang and Lin [5], but goes beyond that work in
providing a complete axiomatisation of the Arrovian framework of social welfare
functions in classical FOL.

The remainder of the paper is organised as follows. In Section 2 we recall
Arrow’s Theorem and prove a useful lemma. Section 3 presents our axioms and
ends with the restatement of Arrow’s Theorem in our framework. The models of
our axiomatisation are studied in detail in Section 4, with particular attention
being paid to the issue of an infinite number of individuals. Related work is
discussed in Section 5; and in Section 6 we discuss our preliminary results with
an automated theorem prover and conclude. For the rest of the paper we shall
assume familiarity with the basic concepts of first-order logic (see e.g. [10]).

2 Social Welfare Functions and Arrow’s Theorem

In this section we review Arrow’s Theorem and the framework of social welfare
functions in which it is stated. We also discuss a recent contribution by Tang
and Lin [5], who give a new proof of Arrow’s Theorem based on an inductive
argument, in which the base case can be checked automatically using automated
reasoning tools, and we show how to generalise a lemma proved by these authors

1 J. Väänänen (personal communication, 2009); see also [9].



so as to also cover the case where there are an infinite number of alternatives
that need to be ranked.

Let I be a set of individuals expressing preferences over a set A of alternatives.
We assume that these preferences are represented by linear orders2 Pi, so that
aPib holds if individual i strictly prefers a to b. We denote with L(A) the set
of all linear orders on A, and call a social welfare function (SWF) for A and I
a function w : L(A)I → L(A). A SWF associates with every preference profile
P = (P1, . . . , Pn) ∈ L(A)I a linear order w(P ), that in most interpretations is
taken to represent the aggregation of the preferences of the individuals into a
“social preference order” over A.

There are several properties that such an aggregation mechanism may satisfy,
and some of them have been argued to be natural requirements for a SWF.
The fact that in our definition w is defined on all preference profiles in L(A)I

represents what is often stated as a first such property, the universal domain
condition. The three additional properties that lead to the statement of Arrow’s
Theorem are the following:

– UN: A SWF w satisfies unanimity if, whenever every individual prefers
alternative a to alternative b, so does society. Formally, if aPib for every
individual i ∈ I, then aw(P ) b.

– IIA: w satisfies independence of irrelevant alternatives if the social ranking
of two alternatives a and b depends only on their relative ranking by every
individual. The formal condition is that, given two preference profiles P and
P ′, if for every individual i ∈ I we have that aPib if and only if aP ′i b, then
aw(P ) b if and only if aw(P ′) b.

– ND: w is non-dictatorial if there is no individual i ∈ I such that for every
profile P the social preference order w(P ) is equal to Pi.

Arrow’s Theorem [2] states that:

Theorem 1. If A and I are finite and non-empty, and if |A| ≥ 3, then there
exists no SWF for A and I that satisfies UN, IIA and ND.

Several proofs of the theorem are known (see e.g. [11]), and most of them give a
general argument that works for any number of individuals and any number of
alternatives. A new inductive proof has recently been given by Tang and Lin [5]:
the authors prove two lemmas to reduce the general statement to a base case
with 3 alternatives and 2 individuals, and verify this last step with a computer,
using either constraint programming or a satisfiability solver. The first lemma is
the inductive step on the number of alternatives: “if there exists a SWF for m+1
alternatives and n individuals that satisfies Arrow’s conditions, then there exists
a SWF for m alternatives and the same number of individuals that still satisfies
Arrow’s conditions.” The contrapositive of this lemma spreads the impossibility
from the base case to every finite set of alternatives: “if Arrow’s Theorem holds
2 The original statement of Arrow’s Theorem assumes weak orders, although many

proofs in the literature are restricted to this simpler case. We will discuss how our
framework can be extended to the more general case in Section 6.



for the case of 3 alternatives and n individuals, then it holds for every finite
set of m alternatives and n individuals.” We now prove a generalisation of this
lemma that also covers the case of an infinite number of alternatives:

Lemma 1. If there exists a SWF w for A and I, with |A| ≥ 3, that satisfies
UN, IIA and ND, then there exists a set A′ with |A′| = 3 and a SWF for A′

and I that satisfies the same properties.

Note that the contrapositive of Lemma 1 reads: “if Arrow’s Theorem holds for
the case of 3 alternatives and n individuals, then it also holds for any larger set
A (including the infinite case) and n individuals”.

Proof. Let A′ = {a1, a2, a3} be any set containing three different alternatives in
A; every linear order P over A′ can be extended to a linear order P e over the
whole set A (though not in a unique way). Define a SWF w′ for A′ and I in the
following way:

xw′(P ) y :⇔ xw(P e) y

where P is a preference profile over A′ and P e any extension to a preference
profile over A. By IIA this definition does not depend on the extension chosen;
w′ remains unanimous and independent of irrelevant alternatives by definition.

It remains to show that w′ is non-dictatorial. Suppose the contrary: we prove
that w would then be dictatorial too, in contradiction with the assumptions. Let
i be the dictator for w′, and x and y two different alternatives in A, and suppose
that xPiy in a certain profile P . We now show that also xw(P ) y must hold,
thus i is a dictator on every pair of alternatives in A. The case where both x and
y are in A′ is trivial. We can therefore restrict ourselves to the case where there
are at least two distinct elements in A′ different from x and y, a1 and a2. Let
individual i change her preference relation such that a1Pia2, obtaining profile P ′.
Let now every individual (including i) rearrange her preference such that xPja1

and a2Pjy, and call this profile P ′′. Both steps can be done without affecting
the initial ranking of x and y, thus by IIA xw(P ) y if and only if xw(P ′′) y. By
unanimity of w we have xw(P ′′) a1 and a2 w(P ′′) y. Since i is a dictator relative
to A′, it must be the case that a1 w(P ′′) a2 holds, and thus by transitivity also
xw(P ′′) y, which as previously observed implies xw(P ) y. �

3 Axiomatisation

In this section we present a formal system that can model the social choice frame-
work of Arrow’s Theorem. Our approach borrows several ideas from Tang and
Lin [5], whose main concern, however, is a different one and who do not provide
a complete axiomatisation. Arrow’s conditions suggest a formalisation in second-
order logic, due to the quantification over preference profiles. Following Tang and
Lin [5], we instead introduce a set of “situations” and consider them as names for
different preference profiles. In our case the set of situations will be (a subset of
the domain) marked by a unary predicate, thus allowing us to quantify over this



set, which in turn enables us to give a first-order axiomatisation. We will indi-
cate with Pu the preference profile associated to situation u. We first define the
following first-order signature L = {a1, a2, a3, i1, s1, A

(1), I(1), S(1), p(4), w(3)}:

– a1, a2, a3 are constants indicating three alternatives, i1 indicates an individ-
ual, and s1 indicates a situation;

– the three unary predicates mark alternatives (A), individuals (I), and situ-
ations (S);

– the predicate p represents, given an individual z and a situation u, the linear
order Pu

z associated with situation u; and
– w stands for the social welfare function, representing with a ternary predicate

the social preference relation w(Pu) for every situation u.

Using this language, we start by introducing the axioms of linear order for p:

LINp: • I(z) ∧ S(u) ∧A(x) ∧A(y) → (p(z, x, y, u) ∨ p(z, y, x, u) ∨ x = y)
• I(z) ∧ S(u) ∧A(x) → ¬p(z, x, x, u)
• I(z) ∧ S(u) ∧A(x1) ∧A(x2) ∧A(x2) ∧

p(z, x1, x2, u) ∧ p(z, x2, x3, u) → p(z, x1, x3, u)

All axioms presented in this paper are to be considered universally closed;
therefore the first axiom should be read as: “for all z, u, x and y, if z is
an individual, if u is a situation and if x and y are alternatives, then either
individual z in situation u prefers x to y, or she prefers y to x, or x is equal to
y.” This is the completeness (or connectedness) axiom, and the second and the
third are the irreflexivity and transitivity axioms.

The analogous axioms for w(·, ·, u) follow:

LINw: • S(u) ∧A(x) ∧A(y) → (w(x, y, u) ∨ w(y, x, u) ∨ x = y)
• S(u) ∧A(x) → ¬w(x, x, u)
• S(u) ∧A(x) ∧A(y) ∧A(t) ∧ w(x, y, u) ∧ w(y, t, u) → w(x, t, u)

The next two sets of axioms guarantee that there are at least 3 different
alternatives, that i1 is an individual, s1 is a situation, and that A, I and S form
a partition of the universe of a model:

MIN: • A(a1) ∧A(a2) ∧A(a3) ∧ I(i1) ∧ S(s1)
• ¬(a1 = a2) ∧ ¬(a1 = a3) ∧ ¬(a2 = a3)

PART: • A(x) → (¬I(x) ∧ ¬S(x))
• I(x) → (¬A(x) ∧ ¬S(x))
• S(x) → (¬I(x) ∧ ¬A(x))
• A(x) ∨ I(x) ∨ S(x)

The next two axioms restrict the arguments of p and w to be of the cor-
rect type:

DEF: • p(z, x, y, u) → (I(z) ∧A(x) ∧A(y) ∧ S(u))
• w(x, y, u) → (A(x) ∧A(y) ∧ S(u))

The next axiom guarantees that two distinct situations cannot encode



the same preference profile, thus the encoding of situations into preference
profiles must be injective:

INJ: • S(u) ∧ S(v) ∧ u 6= v →
∃z.∃x.∃y.[I(z) ∧A(x) ∧A(y) ∧ p(z, x, y, u) ∧ p(z, y, x, v)]

To express the condition of universal domain in our language, and to be
able to quantify over the entire set of situations, we use another idea from the
same paper by Tang and Lin [5]: identify the set L(A) with the symmetric
group S(A) of all permutations over A and generate it via transpositions. This
is the job of the next axiom:3

PERM: • p(z, x, y, u) → ∃v. {S(v) ∧ p(z, y, x, v) ∧
∀x1.[p(z, x, x1, u) ∧ p(z, x1, y, u) → p(z, x1, x, v) ∧ p(z, y, x1, v)] ∧
∀x1.[(p(z, x1, x, u) → p(z, x1, y, v)) ∧ (p(z, y, x1, u) → p(z, x, x1, v))] ∧
∀x1.∀y1.[x1 6= x ∧ x1 6= y ∧ y1 6= y ∧ y1 6= x → (p(z, x1, y1, u) ↔ p(z, x1, y1, v))] ∧
∀z1.∀x1.∀y1. [z1 6= z → (p(z1, x1, y1, u) ↔ p(z1, x1, y1, v))]}

The complexity of this axiom is largely due to the fact that linear orders
are being represented as binary relations. Given our representation of Pi not as
a complete sequence of elements in A but as a subset of A2, we have to require
that, given a situation u, an individual z, and two alternatives x and y, there
exists another situation v such that (the following five items correspond to the
five lines of the axiom):

– the relative positions of x and y have been switched in P v
z ;

– if an alternative x1 was between x and y in Pu
z , then its relation with respect

to x and y is switched in P v
z ;

– if x1 was more preferred than x in Pu
z , then in v it is more preferred than y

(and thereby also x); if it was less preferred than y in Pu
z , then in v it is less

preferred than x (and thereby also y).
– for every pair of alternatives different from x and y the relative ranking is

copied;
– P v

z′ = Pu
z′ for every individual z′ 6= z.

Call Tswf the theory composed of all the axioms above, as it summarises the
properties of social welfare functions. Adding the next three axioms we obtain
a theory that we shall call Tarrow:

UN: • S(u) ∧A(x) ∧A(y) → [(∀z.(I(z) → p(z, x, y, u))) → w(x, y, u)]
IIA: • S(u1) ∧ S(u2) ∧A(x) ∧A(y) →

[∀z.(I(z) → (p(z, x, y, u1) ↔ p(z, x, y, u2))) → (w(x, y, u1) ↔ w(x, y, u2))]
ND: • I(z) → ∃x.∃y.∃u.[S(u) ∧A(x) ∧A(y) ∧ p(z, x, y, u) ∧ w(y, x, u)]

Arrow’s Theorem can now be restated as:4

3 Observe that in this axiom the variables x1, y1, and z1 must be explicitly quantified,
because they are within the scope of an existential quantifier; the other variables x,
y, z, and u are instead implicitly bound by the universal closure of the axiom.

4 This equivalence is a straightforward consequence of Proposition 1 that will be stated
in the following section. Once we have proved that every model of Tswf is associated



Theorem 2. Tarrow has no finite models.

It is worth noting that some of our axioms, such as PART or INJ, are not
strictly required. Including these axioms permits to have more “control” in the
resulting models and improves the readability of the axiomatisation.

4 Dealing with the Infinite

In Section 3 we have referred to Tswf as the theory of social welfare functions, and
in this section we justify this choice of words by proving that Tswf axiomatises
this class.5 We will do so by associating with every SWF w a model Mw of
Tswf, and proving a completeness result. This enables us to determine precisely
to what extent Arrow’s Theorem can be proved automatically. Special attention
will be devoted to the issue of an infinite domain, where Arrow’s Theorem does
not hold. We will present two different approaches to overcome this difficulty,
first by fixing the number of individuals directly in the language, and then a
second one based on results by Kirman and Sondermann [12]. From now on we
shall assume that the set of alternatives is non-empty and contains at least 3
elements, and that the set of individuals is non-empty.

A model of Tswf is a structure M = (M,a1, a2, a3, i1, s1, A, I, S, p, w), speci-
fying the interpretation of every symbol in the language presented in Section 3.

Definition 1. If w is a SWF for A and I, then Mw is the following L-model:
(i) the universe M = A t I t L(A)I ; the disjoint union of the sets corresponds

to the three unary predicates A, I and S (in particular the set S is equal to
the set of all preference profiles L(A)I);

(ii) a1, a2, a3 are three different alternatives, i1 is an individual, and s1 is a
preference profile;

(iii) (z, x, y, u) ∈ p ⇔ xPu
z y, where Pu

z is the preference relation of z in profile
u; and

(iv) (x, y, u) ∈ w ⇔ xw(Pu) y.

If A is finite, then the resulting model Mw is in some sense unique, depending
only on the choice of the constants. In the case where A is infinite, on the other
hand, this is not the only model that can be built from w. To obtain a full
characterisation we need the following definition:

Definition 2. Given a set A, let S(A) denote the set of all permutations over
A. A transposition is a permutation that switches just two elements of the set.
G ⊆ S(A) is closed under transpositions if whenever g ∈ G, g ◦ τ ∈ G for every
transposition τ .

with a SWF, it will be sufficient to check that our last three axioms correspond to
Arrow’s conditions to prove that Theorem 2 is equivalent to Arrow’s Theorem.

5 Using the terminology introduced by Pauly [3], we will prove that Tswf absolutely
axiomatises the set of partial SWFs satisfying a condition of closure on the domain.
This translates in the finite case into an absolute axiomatisation of all SWFs.



Observe that if A is finite, then the only subset of S(A) closed under transposi-
tions is S(A) itself.

Let now w be a SWF on an infinite set of alternatives A. We have already
remarked that we can identify the set L(A) with the set S(A) of all permutations
over A. With every choice of Gi ⊂ S(A) closed under transpositions for every
individual i ∈ I we can associate a model of Tswf, using the same construction
as in Definition 1, except that the set of situations is now the Cartesian product
S =

∏
i∈I Gi. In the finite case this definition boils down to Definition 1, because

L(A) is the only possible choice for every individual. The following completeness
result shows that these are all possible models of Tswf:

Proposition 1. M |= Tswf if and only if there exist two non-empty sets A and
I, with |A| ≥ 3, and a SWF w for A and I such that M = Mw.

Proof. It is easy to prove that Mw is a model of Tswf. By definition, for every
z and u the relations p(z, ·, ·, u) and w(·, ·, u) are linear orders over A, so the
LINp axioms are satisfied as well as LINw. The axioms MIN, PART and
INJ are valid thanks to (i) and (ii) in Definition 1. The set of situations S is
either the set of all preference profiles or a Cartesian product

∏
i∈I Gi of subsets

of L(A) closed under transpositions. This is sufficient to validate axiom PERM:
given a situation u in S, for every individual and for every pair of alternatives
the linear order obtained by switching these two alternatives is the composition
of an element in Gi with a transposition. Therefore the new profile is still an
element of S, i.e., there exists a situation v that represents this profile.

Suppose now that M |= Tswf. We can define the two sets I and A as the
subsets of the universe indicated by the unary predicates. To every element in S
we can associate a preference profile, the one encoded in the relation pM. From
the relation wM we can define a partial SWF, whose domain is the set of all
preference profiles encoded in S, a subset G ⊆ L(A)I . By PERM, if we take the
projection of G on every component i, denoted with Gi, we obtain a set of linear
orders that is closed under transpositions: for every individual i, if g ∈ Gi then
g composed with every transposition (a swap of a pair of alternatives) is still in
Gi. Thus G is of the form

∏
i∈I Gi, and M = Mw as defined in Definition 1. �

In view of our ultimate goal of using automated reasoning in social choice theory,
a result like Theorem 2 is of little practical use, despite its theoretical interest.
What should be sought is a formalisation of Arrow’s theorem in a sentence that
can be derived formally from our theory. The first attempt of proving the incon-
sistency of Tarrow fails, because Arrow’s Theorem does not hold in the case of
an infinite number of individuals, as has first been pointed out by Fishburn [13].
(The issue of an infinite number of alternatives, on the contrary, is fully resolved
by Lemma 1.) Fishburn’s result translates in our framework into the existence
of an infinite model M of Tswf such that M |= (UN ∧ IIA ∧ND). Since there
is no first-order formula that characterises finite models (see e.g. [10]), we have
to somehow circumvent this problem.

One possibility is to give up some generality and to fix the number of indi-
viduals in the language. Let therefore the new language Ln be L ∪ {i2, . . . , in}



with n − 1 new constants, and call Tn
swf the theory composed of all axioms of

Tswf plus the following axioms:

– ik 6= ij for every k 6= j
– I(i2) ∧ · · · ∧ I(in)
– I(z) → (z = i1) ∨ · · · ∨ (z = in)

With a proof analogous to that of Proposition 1 we obtain a completeness result
for Tn

swf with respect to SWFs defined for a set I of n individuals. Now the
following automated-reasoning friendly proposition holds:

Proposition 2. If w is a SWF for A and I with |A| ≥ 3 and |I| = n, and if
Mw is the corresponding model, then Mw |= ¬(UN ∧ IIA ∧ND). Therefore,
for every n there exists a proof of ¬(UN ∧ IIA ∧ND) in Tn

swf.

Proof. The proof follows closely that of Lemma 1. In that proof, we never used
the condition of universal domain in its full generality: every time we defined a
new profile, it was always constructible with a finite sequence of switches between
pairs of alternatives. The condition of closure under transpositions therefore
guarantees that the result extends to every Mw defined on a finite set I. �

The second approach we present is an indirect one: derive a consequence of
Tarrow that forces the resulting models to be infinite. Following the presentation
of Arrow’s Theorem in the case of an infinite number of individuals given by
Kirman and Sondermann [12], this statement is the following: if a SWF satisfies
UN and IIA, then the collection of “winning coalitions”, those subsets J ⊆ I
such that if xPjy for every j ∈ J then xw(P ) y, is an ultrafilter over I. A
full axiomatisation of this statement can be given in the same language of Tswf

and is sketched in Appendix A. The condition of non-dictatorship corresponds
to requiring the ultrafilter to be free: an unsatisfiable requirement if the set of
individuals is finite. This finally formalises the argument of Fishburn [13] we
presented in this section: if a SWF satisfies UN, IIA and ND, then the number
of individuals must be infinite.

In conclusion, we have proved that an automated proof of Arrow’s Theorem is
possible, despite not in its most general form: for every finite number of individ-
uals there is a (possibly different) first-order proof of the theorem.6 The general
case can be proved indirectly by deducing a set of statements about the sets of
winning coalitions that force the set of individuals to be infinite. We report on
our preliminary results with automated theorem prover in the last section.

5 Related Work

While we are not aware of any other work exploring the limits of classical first-
order logic in expressing the Arrovian framework of social welfare functions,
6 And since the set of theorems of a first-order theory is recursively enumerable it will

eventually be found by an automated theorem prover.



there have been several contributions to the literature making proposals for a
full formalisation of Arrow’s Theorem, using a variety of logical frameworks. In
this section, we briefly review some of them.

As mentioned before, Tang and Lin [5] have shown that Arrow’s Theorem in
its general form (for finite A and I) follows from Arrow’s Theorem for 3 alter-
natives and 2 individuals. For this base case, these authors give a formalisation
in propositional logic. This is possible, because the number of possible situations
(preference profiles) is finite (namely 3! × 3! = 36) for this scenario. While the
number of SWFs is already prohibitively large in this case (namely 636 ≈ 1028),
a complete instantiation of Arrow’s conditions for 36 situations is still feasible,
and Tang and Lin [5] report that unsatisfiability can be verified using a state-
of-the-art SAT-solver in less than 1 second. While our implementation of the
same base case in FOL cannot compete with this performance, it arguably has
the advantage of being more easily extended. The propositional language pre-
sented in [5] has the advantage of being rapidly solved, but can only be used
to verify a base case. Building on this language, we aim instead at providing
a fully automated proof of Arrow’s Theorem without relying on any inductive
lemma. (Note that the role of Lemma 1 is that of a theoretical guarantee for the
existence of such a proof, at least for a fixed number of individuals, and it would
not be part of any eventual automated derivation.) Also, our axiomatisation in
Prover9 syntax is human-readable and easily fits on a single page (see Section 6
and Appendix B), while Tang and Lin’s input to the SAT-solver is very large
and has to be computer-generated (it consists of 106354 clauses).

Kaneko and Suzuki [14] discuss bounds on the size of a potential proof of
Arrow’s Theorem in a Gentzen-style sequent calculus, for the special case of 2
individuals and 3 alternatives.

Ågotnes et al [4] develop a modal logic for expressing concepts from social
choice theory, including Arrow’s Theorem. This logic is specifically designed for
this purpose, and to date no automated procedure has been developed. The
potential of the approach is limited by the fact that the number of individuals
as well as the number of alternatives is fixed in the language.

Yet another approach is the one adopted by Nipkow [7] and Wiedijk [6]. These
authors verify formally two proofs of Arrow’s Theorem given by Geanakoplos [11]
using proof checkers (Isabelle and Mizar, respectively). Their language is the
language of set theory and their objects are sets; the condition of finiteness of
the set of individuals is expressible in this language and this makes it possible
to formalise and check the full statement of Arrow’s Theorem. However, this
approach requires a substantial amount of work in the process of rewriting an
existing proof and then allows us to check every single simple step automatically.

The FOL framework developed by Rubinstein [15], while working with FOL,
is different from ours. It aims at proving the existence of single-profile analogues
of various results in social choice theory using social welfare functions defined
on models of a suitable first-order theory. The single-profile approach avoids
quantification over preference profiles from the outset. The exact relationship
between these two frameworks certainly deserves future investigation.



6 Conclusions and Future Work

In this work we have given a first-order axiomatisation of social welfare func-
tions, formalising the framework in which Arrow’s Theorem is stated. We have
been able to reduce non-trivial conditions to first-order statements, such as the
universal domain condition and IIA. The issue of an infinite number of alter-
natives has been solved by proving a lemma that reduces the impossibility to
the case of 3 alternatives. We have proved that, if the number of individuals is
fixed in our language, then there is a formal derivation of Arrow’s Theorem from
our axioms, and we have suggested an indirect approach to formalise the general
case with a possibly infinite number of individuals.

All these results support the belief that automated reasoning can play a role
in proving theorems of social choice theory, and we carried out some preliminary
experiments using an automated theorem prover. The system we used is Prover9,
the successor of the well-known and widely used Otter theorem prover [16]. The
task of writing an input file containing our axiomatisation does not pose any
challenge, thanks to the simplicity of the syntax and the high readability of our
axioms (see Appendix B). However, to date we have not been able to generate an
automated proof of Arrow’s Theorem. We designed a step-by-step proof of the
simplest case of Arrow’s Theorem for 2 individuals and 3 alternatives, following
the formalisation of a simple proof of Arrow’s Theorem by Nipkow [7]. At each
step we received a negative response, with the prover exceeding the search space
limits or not providing an answer in a reasonable amount of time.

A critical point, that may go some way towards explaining the difficulty
of automatically deriving a proof, is that all of the intermediate lemmas we
formalised rely on some steps where the existence of a particular preference
profile has to be shown, using the condition of universal domain. This seems to
require a clever use of the axiom of permutation, guessing the correct sequence
of swaps to get from a profile to another, and it is likely to be the cause of the
failure of Prover9 on these tasks. It is very likely that a suitable reformulation
of the axioms, in a way that can help and guide the work of the theorem prover,
would prove successful in increasing its speed and efficiency.

Despite these difficulties we were able to obtain some simple results, mainly
by restricting the domain to the case of 2 individuals and 3 alternatives. For
instance, we were able to generate an automated proof for the fact that the
unanimity condition entails a weaker condition known as the non-imposition
property [1]. A SWF satisfies non-imposition if for every pair of distinct alter-
natives x and y there is a profile P such that xw(P ) y. In the syntax of Prover9
this condition can be written as follows:

A(x) & A(y) & x!=y -> (exists u (S(u) & w(x,y,u))).

We added two axioms to those in Appendix B in order to fix the number of al-
ternatives and individuals, and we instantiated the axiom of permutation to this
restricted domain. This still produces a readable axiomatisation, and Prover9
succeeds in providing a proof after about 3 hours on a standard desktop ma-
chine (with a memory limit of 500 Mb). The proof consists of 193 steps, and



the number of clauses generated is 20623974, of which 257685 have been kept to
arrive at the proof. We have also run the same problem using another automated
theorem prover, the E prover [17], and we obtained a positive response in a few
seconds (on the other hand, for more difficult problems, E tends to run out of
memory faster than Prover9).

This work can be extended in a number of ways. First, it is likely that a refor-
mulation of the axioms and a guided use of the theorem prover will significantly
improve performance and lead to the creation of a usable tool for social choice
theorem proving. Second, it would be interesting to extend the axiomatisation
to allow for preferences that are weak orders, allowing both the individual and
the social order to express ties between alternatives. This can be achieved by
replacing the irreflexivity axiom for both p and w with a reflexivity axiom, and
adjusting the axiom of permutation to entail the condition of universal domain:
starting from a linear order over alternatives, added “by default” in a model,
it is possible to generate all weak orders requiring that in every situation ev-
ery two alternatives can not only be swapped, but also ranked the same in the
preference relation of every individual. Third, a large number of other results
in social choice theory are likely to also be expressible in first order-logic. Ex-
amples include Sen’s theorem on the impossibility of a Paretian Liberal and
the Gibbard-Satterthwaite Theorem on the impossibility of strategy-proof vot-
ing rules that are non-dictatorial. In this direction, as already remarked, lies the
main potential of this method: the use of automated reasoning as a tool for an
easier exploration of new results in social choice theory.
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Appendix A: Axioms for Kirman-Sondermann Theorem

The set J of “winning coalitions” is an ultrafilter:7

– I ∈ J (UN):
∃u.∃x.∃y.(∀z.(I(z) → p(z, x, y, u)) → w(x, y, u))

– J ∈ J and J ⊆ K then K ∈ J :
w(x, y, u) → [∀z.((I(z) ∧ p(z, x, y, u)) → p(z, x, y, v)) → w(x, y, v)]

– J1, J2 ∈ J then J1 ∪ J2 ∈ J :
w(x, y, u1) ∧ w(x, y, u2) →
[∀z.(I(z) ∧ p(z, x, y, u1) ∧ p(z, x, y, u2) ↔ p(z, x, y, v)) → w(x, y, v)]

– J ⊂ I then J ∈ J or Jc ∈ J :
∀z.(I(z) → (p(z, x, y, u) ↔ ¬p(z, x, y, v))) → (w(x, y, u) ∨ w(x, y, v))

– Free ultrafilter (ND):
¬∃z.(I(z) ∧ ∀x.∀y.∀u.(w(x, y, u) ↔ p(z, x, y, u)))

Call FUF the conjunction of these axioms. With an analogous proof to that of
Proposition 2 we obtain that Tarrow ` FUF. This gives a formal proof that the
set of winning coalitions under Arrow’s conditions must be a free ultrafilter (i.e.,
the Kirman-Sonderman Theorem). Since it is not possible to build a free ultra-
filter over a finite set, this formal proof is an indirect formalisation of Fishburn’s
generalisation of Arrow’s Theorem.

7 The axioms that follow formalise the notion of ultrafilter in this particular case only.
Their formulation use a definition of “winning coalitions” that strongly relies on
Lemma A by Kirman and Sondermann [12].



Appendix B: Tarrow in Prover9 Syntax

% LINp

(I(z) & S(u) & A(x) & A(y)) -> (p(z,x,y,u) | p(z,y,x,u) | x=y).

(I(z) & S(u) & A(x)) -> -p(z,x,x,u).

(I(z) & S(u) & A(x) & A(y) & A(v) & p(z,x,y,u) & p(z,y,v,u)) -> p(z,x,v,u).

% LINw

(S(u) & A(x) & A(y)) -> (w(x,y,u) | w(y,x,u) | x=y).

(S(u) & A(x) & A(y)) -> -w(x,x,u).

(S(u) & A(x) & A(y) & A(v) & w(x,y,u) & w(y,v,u)) -> w(x,v,u).

% MIN

A(a1) & A(a2) & A(a3) & I(b1) & S(c1) & a1!=a2 & a2!=a3 & a1!=a3.

% PART

A(x) -> (-I(x) & -S(x)).

I(x) -> (-A(x) & -S(x)).

S(x) -> (-I(x) & -A(x)).

A(x) | I(x) | S(x).

% DEF

p(z,x,y,u) -> (I(z) & A(x) & A(y) & S(u)).

w(x,y,u) -> (A(x) & A(y) & S(u)).

% INJ

(S(u) & S(v) & u!=v) ->

exists z exists x exists y (I(z) & A(x) & A(y) & p(z,x,y,u) & p(z,y,x,v)).

% PERM

p(z,x,y,u) -> exists v (S(v) & p(z,y,x,v) &

(all x1 (p(z,x,x1,u) & p(z,x1,y,u) -> p(z,x1,x,v) & p(z,y,x1,v))) &

(all x2 (p(z,x2,x,u) -> p(z,x2,y,v))) &

(all x3 (p(z,y,x3,u) -> p(z,x,x3,v))) &

(all x4 all y1 (x4!=x & x4!=y & y1!=y & y1!=x ->

(p(z,x4,y1,u) <-> p(z,x4,y1,v)))) &

(all z1 all x5 all y2 (z1!=z ->

(p(z1,x5,y2,u) <-> p(z1,x5,y2,v))))).

% UN

(S(u) & A(x) & A(y)) -> ((all z (I(z) -> p(z,x,y,u))) -> w(x,y,u)).

% IIA

(S(u1) & S(u2) & A(x) & A(y)) ->

((all z (I(z) -> (p(z,x,y,u1)<->p(z,x,y,u2)))) -> (w(x,y,u1)<->w(x,y,u2))).

% ND

I(z) ->

exists x exists y exists u (A(x) & A(y) & S(u) & p(z,x,y,u) & w(y,x,u)).


