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Abstract. With each superinuitionistic logic (si-logic), we associate its downward and
upward subframizations, and characterize them by means of Zakharsyachev’s canonical for-
mulas, as well as by embedding si-logics into the extensions of the propositional lax logic
PLL. In an analogous fashion, with each si-logic, we associate its downward and upward
stabilizations, and characterize them by means of stable canonical formulas, as well as by
embedding si-logics into extensions of the intuitionistic S4.

1. Introduction

Subframe logics were introduced by Fine [14] as modal logics that are characterized by a
class of frames closed under subframes. They turned out to be a rather well-behaved class of
modal logics (see, e.g., [14, 21, 22, 11]). In particular, there are continuum many subframe
logics, all transitive subframe logics have the finite model property, and a transitive modal
logic is a subframe logic iff it is axiomatizable by subframe formulas. From the point of view
of epistemic logic, subframe logics are exactly the logics admitting epistemic updates (cf. [1,
Ch. 2], [12, Sec. 7.4–7.5]).

Since subframe logics form a complete sublattice of the lattice of all modal logics, for
each modal logic L, there is a greatest subframe logic underneath L, and a least subframe
logic above L, called the downward and upward subframizations of L. They were studied
by Wolter [21, 22] who characterized the downward and upward subframizations in terms of
relativizations. Zakharyschev [24] studied superintuitionsitic subframe logics (subframe si-
logics), and proved that they are exactly the si-logics axiomatized by (∧,→)-formulas. In the
intuitionistic case, unlike the modal case, subframes no longer correspond to relativizations
(cf. [11, Sec. 9.1]), and hence characterizing downward and upward subframizations requires
different technique. We will show that they can be characterized by means of the canonical
formulas of Zakharyaschev.

As was shown in [9], subframes correspond to nuclei on Heyting algebras. This provides
an interesting link to Grothendieck topology and geometric modality [16], which give rise
to the propositional lax logic PLL of Fairtlough and Mendler [13]. We show that there are
two natural embeddings of si-logics into extensions of PLL, which yield a new characteri-
zation of subframe si-logics, as well as a more convenient characterization of the downward
subframization of a si-logic.

Alongside subframe logics, another well-behaved class of si-logics is that of stable si-logics
of [5]. Like subframe si-logics, stable si-logics also form a complete sublattice of the lattice of
all si-logics, leading to the notions of downward and upward stabilizations. We characterize
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downward and upward stabilizations of si-logics by means of stable canonical formulas of
[5], which are an alternative to Zakharyaschev’s canonical formulas. We observe that the
PLL-counterpart for stable si-logics is the intuitionistic S4 (IS4) studied by Ono [20]. Since
stability requires to work with rooted frames, which are captured by the multiple-conclusion
rule p ∨ q/p, q (cf. [7, Thm. 8.6]), we will embed stable si-logics into multiple-conclusion
consequence relations extending IS4 + p ∨ q/p, q. We show that there are two natural
embeddings of si-logics into extensions of IS4+p∨q/p, q, which yield a new characterization
of stable si-logics, as well as a more convenient characterization of the downward stabilization
of a si-logic.

2. Subframes, nuclei, and the lax logic

We assume the reader’s familiarity with Esakia duality between Heyting algebras and
descriptive Kripke frames (see, e.g., [4]). We will view descriptive Kripke frames as tuples
F = (X,≤), where X is a Stone space (zero-dimensional compact Hausdorff space) and ≤ is
a partial order on X such that ↑x := {y ∈ X | x ≤ y} is closed and U ⊆ X clopen (closed
and open) implies ↓U := {x ∈ X | ∃u ∈ U with x ≤ u} is clopen. We will refer to descriptive
Kripke frames as Esakia frames. Since the trivial Heyting algebra dually corresponds to the
empty Esakia frame, we will allow Esakia frames to be empty.

Let F = (X,≤) and G = (X ′,≤′) be Esakia frames. We recall [24, 9] that G is a subframe
of F if X ′ is a closed subspace of X, ≤′ is the restriction of ≤, and for each clopen U of X ′,
the set ↓U is clopen in X.

As was observed in [9, Sec. 5], subframes on an Esakia frame F correspond to nuclei on the
dual Heyting algebra A of clopen upsets of F, where we recall that a nucleus on a Heyting
algebra is a unary function j satisfying a ≤ ja, jja ≤ ja, and j(a ∧ b) = ja ∧ jb. Indeed, if
G = (S,≤) is a subframe of F = (X,≤), then j given by

(1) jU = X \ ↓(S \ U)

is a nucleus on A, and every nucleus on A is obtained this way. Moreover, if

Aj := {a ∈ A | a = ja}
is the Heyting algebra of fixpoints of j, then the dual Esakia frame of Aj is isomorphic to
G. This motivates the following definition.

Definition 2.1.
(i) A nuclear algebra is a pair (A, j) consisting of a Heyting algebra A and a nucleus j

on A.
(ii) An S-frame1 is a pair (F,G) consisting of an Esakia frame F and a subframe G of F.

Throughout the paper we will use the following notational convention.

Notation 2.2. For an S-frame (F,G), we always assume that F = (X,≤) and G = (S,≤).

Esakia duality coupled with the 1-1 correspondence between nuclei on Heyting algebras
and subframes of Esakia frames yields a 1-1 correspondence between nuclear algebras and
S-frames. This allows us to interpret the lax modality # of Fairtlough and Mendler [13] in
S-frames as follows. Suppose (F,G) is an S-frame. As with the intuitionistic propositional
calculus IPC, we interpret propositional letters as clopen upsets of F and intuitionistic

1The “S” in S-frame stands for subframe.
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connectives as the corresponding operations in the Heyting algebra of clopen upsets of F. In
addition, the lax modality # is interpreted as the nucleus j given by (1). Therefore, if v is
a valuation on (F,G) and x ∈ X, then

(2) x |=v #ϕ iff y |=v ϕ for all y ∈ ↑x ∩ S.
Since the defining axioms of # match the defining axioms of nuclei, we obtain that the
propositional lax logic PLL is sound and complete with respect to such interpretation.

This semantics is closely related to the semantics of PLL developed by Goldblatt [16]
and Fairtlough and Mendler [13] (see also [10]). We recall that a Goldblatt frame is a tuple
F = (X,R), where X is a partially ordered set and R is a binary relation on X such that
x ≤ yRz implies xRz, xRy implies x ≤ y, and xRy implies xRzRy for some z ∈ X. The
language of PLL is interpreted in a Goldblatt frame F by interpreting propositional letters as
upsets of F, intuitionistic connectives as the corresponding operations in the Heyting algebra
of upsets of F, and # as the nucleus jR given by

(3) jRU = X \R−1(X \ U).

If (F,G) is an S-frame, then let FG = (X,R), where R is defined by xRy iff x ≤ s ≤ y for
some s ∈ S. As follows from [9, Rem. 24], FG is a Goldblatt frame that in addition satisfies
xRy iff (∃z ∈ X)(zRz and x ≤ z ≤ y). Moreover, since R[x] = ↑(↑x ∩ S), we see that
jRU = jU for each upset U of F.

We also recall that an FM-frame (Fairtlough-Mendler frame) is a tuple F = (X,≤,�, F )
such that ≤,� are partial orders on X, x � y implies x ≤ y, and F is an ≤-upset of X. The
language of PLL is interpreted in an FM-frame slightly differently than in a Goldblatt frame.
Instead of working with the Heyting algebra of all upsets of F, we work with the Heyting
algebra of the upsets of F containing F . Therefore, propositional letters are interpreted as
upsets of F containing F , intuitionistic connectives as the corresponding operations in this
relativized Heyting algebra, and # is interpreted as the nucleus j≤� given by

(4) j≤�U = {x ∈ X | ∀y(x ≤ y ⇒ ∃z(y � z and z ∈ U))}.
If (F,G) is an S-frame, then define F∗G = (X∗,≤∗,�∗, F ∗) as follows. Set X∗ = X ∪ {m},
where m /∈ X. Let ≤∗ extend ≤ so that m is the maximum of X∗. Set F ∗ = {m} and define
x �∗ y iff x = y or x ∈ X \ S and y = m. It is straightforward to verify that F∗G is an
FM-frame. Moreover, if for an upset U of F, we let U∗ = U ∪ {m}, then U∗ is an upset of
F∗G and j≤�(U∗) = (jU)∗.

3. Subframe logics and subframization

Let L be a si-logic. We say that an Esakia frame F is an L-frame provided F |= L. Let Fr(L)
be the class of all L-frames. We recall that L is a subframe logic provided Fr(L) is closed under
subframes. The class of subframe logics is a well-behaved subclass of the class of all si-logics.
There are many characterizations of subframe logics (see, e.g., [14, 24, 25, 21, 22, 11, 9]).
We gather some of them below.

We recall that a frame F = (X,≤) is rooted provided there is r ∈ X, called the root of
F, such that X = ↑x. As was shown in [14, Sec. 3], with each finite rooted frame F we may
associate a formula β(F), called the subframe formula of F, such that for any Esakia frame
G = (Y,≤),

(5) G 6|= β(F) iff F is a p-morphic image of a subframe of G.
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Proposition 3.1. For a si-logic L, the following are equivalent:

(i) L is a subframe logic.
(ii) L is the logic of a class of Esakia frames closed under subframes.

(iii) L is axiomatizable by subframe formulas.
(iv) L is axiomatizable by (∧,→)-formulas.

Proof. See, e.g., [11, Sec. 11.3]. �

Let ΛSubf be the class of subframe logics. It is well known that ΛSubf is a complete sublattice
of the lattice of all si-logics. Therefore, every si-logic L has a greatest subframe neighbor
below it and a least subframe neighbor above it (cf. [21, 22]).

Definition 3.2. For a si-logic L, define the downward subframization of L as

Subf↓(L) :=
∨
{L′ ∈ ΛSubf | L′ ⊆ L}

and the upward subframization of L as

Subf↑(L) :=
∧
{L′ ∈ ΛSubf | L ⊆ L′}.

We summarize some rather obvious facts about the downward and upward subframizations
that we will use throughout the paper.

Lemma 3.3.
(i) Subf↓ is an interior operator and Subf↑ is a closure operator on the lattice of si-logics.

(ii) Sub↓(L) = IPC + {ϕ | ϕ is a (∧,→)-formula and L ` ϕ}.
(iii) Subf↓(L) = IPC iff for every (∧,→)-formula ϕ, L ` ϕ iff IPC ` ϕ.

Proof. (i). Straightforward from the definition.
(ii). By Proposition 3.1, every subframe logic is axiomatizable by (∧,→)-formulas. There-

fore, every subframe logic contained in L is axiomatizable by a set of (∧,→)-formulas that
are provable in L. Thus, the set {ϕ | ϕ is a (∧,→)-formula and L ` ϕ} axiomatizes the
largest subframe logic contained in L.

(iii). Apply (ii). �

We next give a semantic characterization of the downward and upward subframizations
of a si-logic L. For a class K of Esakia frames, we write K |= ϕ provided F |= ϕ for each
F ∈ K. Let Log(K) = {ϕ | K |= ϕ} be the si-logic of K, and write Log(F) if K = {F}.

Proposition 3.4. Suppose L is a si-logic and L = Log(K) for some class K of Esakia
frames.

(i) Subf↓(L) = Log ({G | G is a subframe of some F ∈ K}).
(ii) Subf↑(L) = Log ({F | G |= L for all subframes G of F}) .

Proof. (i) Let K ′ = {G | G is a subframe of some F ∈ K}. Then K ⊆ K ′, so Log(K ′) ⊆
Log(K) = L. Since K ′ is closed under subframes, Log(K ′) is a subframe logic by Proposi-
tion 3.1. If L′ is a subframe logic contained in L, then K |= L′, so K ′ |= L′ as L′ is a subframe
logic. Therefore, L′ ⊆ Log(K ′). Thus, Log(K ′) is the largest subframe logic contained in L,
and hence Subf↓(L) = Log(K ′).

(ii) Let K ′ = {F | G |= L for all subframes G of F}. It is clear that K ′ is closed under
subframes, so Log(K ′) is a subframe logic by Proposition 3.1. Moreover, K ′ |= L, so L ⊆
Log(K ′). Let L′ be a subframe logic containing L. If F |= L′, then since L′ is a subframe
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logic, G |= L′ for every subframe G of F. But then G |= L as L ⊆ L′, so F ∈ K ′. Therefore,
every L′-frame is contained in K ′, and so Log(K ′) ⊆ L′. Thus, Log(K ′) is the smallest
subframe logic containing L, and hence Subf↑(L) = Log(K ′). �

We use Proposition 3.4 and Zakharyaschev’s canonical formulas to give a syntactic char-
acterization of the downward and upward subframizations of a si-logic L. Zakharyaschev’s
canonical formulas generalize subframe formulas by adding additional parameters. By Za-
kharyaschev’s theorem [24] (cf. [11, Sec. 9.3]), every si-logic is axiomatizable by canonical
formulas.

Let F be a finite rooted frame and D be a family of upsets of F, called closed domains.
Suppose G is an Esakia frame. We say that a p-morphism f from a subframe H = (S,≤) of
G onto F satisfies the closed domain condition (CDC) provided

(6) x ∈ ↑S and f(↑x) ∈ D imply x ∈ S.

With a finite rooted F and D we associate the canonical formula β(F,D) such that for
any Esakia frame G,

(7) G 6|= β(F,D) iff there is a p-morphism from a subframe of G onto F satisfying CDC.

Remark 3.5.
(i) Here we follow Jerabek’s account of canonical formulas [18, Sec. 3], which is slightly

different from Zakharyaschev’s approach. Namely our closed domains are upsets
rather than antichains. Also, closed domains may be empty, which allows us to
work with subframes rather than cofinal subframes (see [18, Rem. 3.7]).

(ii) If D = ∅, then β(F,D) is the subframe formula β(F). In the other extreme case,
when D is the set of all upsets of F, the canonical formula β(F,D) is equivalent
to the Jankov formula χ(F) [11, Sec. 9.3]. If D is the set of all nonempty upsets,
then β(F,D) is the negation-free Jankov formula of F, and is denoted by β](F) [11,
Sec. 9.4].

Theorem 3.6. Let L = IPC + {β(Fi,Di) | i ∈ I} be a si-logic.

(i) Subf↓(L) = IPC + {β(F) | L ` β(F)}.
(ii) Subf↑(L) = IPC + {β(Fi) | i ∈ I)}.

Proof. (i). By Proposition 3.1, every subframe logic is axiomatizable by subframe formulas.
Therefore, every subframe logic contained in L is axiomatizable by a set of subframe formulas
that are provable in L. Thus, IPC+{β(F) | L ` β(F)} is the largest subframe logic contained
in L.

(ii). Let M = IPC + {β(Fi) | i ∈ I}. If G is an M -frame, then G |= β(Fi) for all i ∈ I.
Therefore, by (5) and (7), G |= β(Fi,Di) for all i ∈ I. Thus, G is an L-frame, and so L ⊆M .
Since M is axiomatized by subframe formulas, M is a subframe logic by Proposition 3.1.
It remains to show that M is the least subframe logic containing L. If not, then there is a
subframe logic L′ ⊇ L and an L′-frame G such that G 6|= M . Therefore, G 6|= β(Fi) for some
i ∈ I. By (5), Fi is a p-morphic image of a subframe S of G. Since L′ is a subframe logic, S
is an L′-frame. Thus, Fi is also an L′-frame. But Fi 6|= β(Fi,Di) by (7) because the identity
map is a p-morphism from F onto itself that satisfies CDC for any set of closed domains.
Consequently, Fi is not an L-frame, which is a contradiction since L′ ⊇ L. �

Remark 3.7.
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(i) It follows from Theorem 3.6(ii) that if L is a si-logic axiomatized by a set of formulas
Γ, then the upward subframization Subf↑(L) of L can be calculated effectively from
Γ as follows: First use Zakharyaschev’s theorem to transform Γ into an equivalent
set of canonical formulas; then delete the additional parameters Di in the resulting
canonical formulas; and finally apply Theorem 3.6(ii).

(ii) On the other hand, Theorem 3.6(i) does not provide an effective axiomatization of
the downward subframization Subf↓(L) of L. We will come back to this issue at the
end of Section 4.

Remark 3.8. In [21] Wolter studied describable operations on varieties of modal algebras.
This translates to Esakia frames as follows. A map C that associates with each Esakia frame
G a set C(G) of Esakia frames is describable if there is a map (·)c on the set of formulas of
IPC such that for each Esakia frame G and each formula ϕ,

G |= ϕc iff C(G) |= ϕ.

As follows from [21, p. 23], if L is the logic of a class K of Esakia frames, then the logic of
C(K) is axiomatized by {ϕc | L ` ϕc}, and the logic of {F ∈ K | C(F) ⊆ K} is axiomatized
by {ϕc | L ` ϕ}.

Now let C(G) = {H | H is a subframe of G}. Since canonical formulas axiomatize every
si-logic, we restrict our attention to the set of canonical formulas. We show that

(8) G |= β(F) iff C(G) |= β(F,D).

The left to right direction is obvious. For the right to left direction, suppose G 6|= β(F).
Then there is a subframe H of G which is p-morphically mapped onto F. Since F 6|= β(F,D),
we have H 6|= β(F,D). Therefore, we found H ∈ C(G) such that H 6|= β(F,D).

From (8) we deduce that (β(F,D))c = β(F). Thus, applying Wolter’s result to Proposi-
tion 3.4 yields an alternative proof of Theorem 3.6.

We conclude this section by providing the upward and downward subframizations of many
well-known si-logics. Following [6], we denote by L the Rieger-Nishimura ladder (the dual
Esakia frame of the free cyclic Heyting algebra, see Figure 1).

Figure 1. The Rieger-Nishimura ladder L

For Esakia frames F1, . . . ,Fn, we denote their ordered sum by
⊕n

i=1 Fi [6, Sec. 2.2]. We
consider the following logics:
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• The Rieger-Nishimura logic RN, which is the logic of the Rieger-Nishimura ladder
L.
• The Kuznetsov-Gerciu logic KG, which is the logic of

⊕n
i=1 Fi, where each Fi is a

generated subframe of L.
• The Kreisel-Putnam logic KP = IPC + (¬p→ q ∨ r)→ (¬p→ q) ∨ (¬p→ r).
• The Gabbay-de Jongh logics Tn, where Tn is the logic of finite trees of branching
≤ n.
• The logics BWn of finite frames of width ≤ n. In particular, BW1 is the Gödel-

Dummett logic LC = IPC + (p→ q) ∨ (q → p) of finite linear frames.
• The logics BTWn of finite frames of top width ≤ n. In particular, BTW1 is the

logic KC of weak excluded middle, which is the logic of finite directed frames.
• Maksimova’s logics NDn = IPC + (¬p→

∨
1≤i≤n ¬qi)→

∨
1≤i≤n(¬p→ ¬qi).

Table 1. Axiomatizations in terms of canonical formulas (see [6, Thm. 4.33]
for the axiomatization of RN and [11, Table 9.7] for the other cases).

KC = IPC + β( , {∅})
LC = IPC + β( )

BTWn = IPC + β(

n+ 1

, {∅})

BWn = IPC + β(

n+ 1

)

Tn = IPC + β](

n+ 1

)

RN = KG + χ( ) + χ( ) + χ( )

KP = IPC + β(
1 2

, {∅, {1, 2}}) + β(
1 2

, {∅, {1, 2}})

NDn = IPC + β(
1 2

, {∅, {1, 2}}) + · · ·+ β(
1 n

, {∅, {1, . . . , n}})

Proposition 3.9.
(i) Subf↓(KC) = IPC and Subf↑(KC) = LC.

(ii) Subf↓(BTWn) = IPC and Subf↑(BTWn) = BWn for every n ≥ 2.
(iii) Subf↓(Tn) = IPC and Subf↑(Tn) = BWn for every n ≥ 2.

(iv) Subf↓(RN) = KG and Subf↑(RN) = KG + β( ).

(v) Subf↓(KP) = IPC and Subf↑(KP) = BW2.
(vi) Subf↓(NDn) = IPC and Subf↑(NDn) = BW2 for every n ≥ 2.

Proof. (i). Since KC is axiomatized by β( , {∅}), it follows from Theorem 3.6(ii) that
Subf↑(KC) = IPC + β( ) = LC. To calculate the downward subframization of KC, we
utilize Proposition 3.4(i). It is well known that IPC is the logic of all finite frames and
that KC is the logic of all finite directed frames. Moreover, adding a new top to a finite
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frame F results in a finite directed frame G containing F as a subframe. Therefore, by
Proposition 3.4(i), Subf↓(KC) = IPC.

(ii). From the axiomatization of BTWn in Table 1 and Theorem 3.6(ii) it follows that

Subf↑(BTWn) = IPC + β(

n+ 1

) = BWn. To see that Subf↓(BTWn) = IPC observe that

BTWn ⊆ KC and apply (i) and Lemma 3.3(i).
(iii). It follows from Table 1 that Tn is axiomatized by the negation-free Jankov formula

β](

n+ 1

), which we view as the canonical formula β(

n+ 1

,D), where D is the set of all

nonempty upsets of

n+ 1

(see Remark 3.5(ii)). Therefore, Subf↑(Tn) = IPC + β(

n+ 1

) =
BWn. To determine the downward subframization, since Tn has the disjunction property
[15] and every si-logic with the disjunction property proves the same disjunction-free formulas
as IPC [19, 23], we conclude that Tn proves the same (∧,→)-formulas as IPC. Thus, by
Lemma 3.3(iii), Subf↓(Tn) = IPC.

(iv). Since KG is a subframe logic contained in RN (cf. [6, Sec. 3]), it follows from the
axiomatization of RN in Table 1 and Theorem 3.6(ii) that the upward subframization of

RN is KG+β( )+β( )+β( ). Since is a subframe of both and , the latter logic

is equal to KG + β( ). Therefore, Subf↑(RN) = KG + β( ). To determine the downward

subframization, KG ⊆ Subf↓(RN) since KG is a subframe logic contained in RN. For the
reverse inclusion, since KG is the logic of its finite rooted frames, by Proposition 3.4(i), it is
sufficient to show that every finite rooted KG-frame is a subframe of the Rieger-Nishimura
ladder L. First note that the subframe of L obtained by deleting the first k layers of L is
isomorphic to L. Using this it is easy to see that every finite generated subframe of L can
be realized as a subframe of L at an arbitrary depth, i.e., as a subframe of L that does not
contain the first k-layers of L for any k ∈ N. Therefore, a finite rooted KG-frame

⊕n
i=1 Fi

can be realized as a subframe of L by embedding F1, . . . ,Fn below each other so that the
two subsequent points in L between the embeddings of Fi and Fi+1 are skipped.

(v). The axiomatization of KP in Table 1 and Theorem 3.6(ii) yield that Subf↑(KP)

is axiomatized by β( ) and β( ). But is a subframe of , so Subf↑(KP) is

axiomatized by β( ), and hence Subf↑(KP) = BW2. Since KP has the disjunction

property, Subf↓(KP) = IPC by the same argument as in (iii).
(vi). Since the 3-fork is a subframe of the n-fork for n ≥ 3, it follows from the axiomati-

zation of NDn in Table 1 and Theorem 3.6(ii) that Subf↑(NDn) = BW2 for n ≥ 2. Since
NDn has the disjunction property, Subf↓(NDn) = IPC by the same argument as in (iii). �

4. Superintuitionistic logics and lax logics

As we saw in Remark 3.7, the upward subframization of a si-logic L = IPC + Γ can
be calculated effectively from Γ. In this section we show how to calculate the downward
subframization of L by utilizing the translation of IPC into PLL. Let LIPC be the language
of IPC and LPLL be the language of PLL.

Definition 4.1. Define a translation τ : LIPC → LPLL by
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• τ(p) = #p for a propositional letter p,
• τ(⊥) = #⊥,
• τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ),
• τ(ϕ→ ψ) = τ(ϕ)→ τ(ψ),
• τ(ϕ ∨ ψ) = #(τ(ϕ) ∨ τ(ψ)).

Recall that by Notation 2.2, given an S-frame (F,G), we always assume that F = (X,≤)
and G = (S,≤).

Lemma 4.2. Let v be a valuation on an S-frame (F,G). Define a valuation vG on G by
vG(p) = v(p) ∩ S. Then for every ϕ ∈ LIPC and x ∈ X,

x |=v τ(ϕ) iff y |=vG ϕ for all y ∈ ↑x ∩ S.
Proof. The proof is by induction on the complexity of ϕ ∈ LIPC.

If ϕ = p, then τ(ϕ) = #p. Therefore, by (2) and the definition of vG,

x |=v #p iff y |=v p for all y ∈ ↑x ∩ S
iff y |=vG p for all y ∈ ↑x ∩ S.

If ϕ = ⊥, then τ(ϕ) = #⊥. Therefore, x |=v #⊥ iff ↑x ∩ S = ∅. Thus, x |=v #⊥ iff
y |=vG ⊥ for all y ∈ ↑x ∩ S.

If ϕ = ψ ∧ χ, then τ(ψ ∧ χ) = τ(ψ) ∧ τ(χ). Therefore,

x |=v τ(ψ ∧ χ) iff x |=v τ(ψ) and x |=v τ(χ)

iff y |=vG ψ and y |=vG χ for all y ∈ ↑x ∩ S
iff y |=vG ψ ∧ χ for all y ∈ ↑x ∩ S.

If ϕ = ψ → χ, then τ(ψ → χ) = τ(ψ)→ τ(χ). Therefore,

x |=v τ(ψ)→ τ(χ) iff z |=v τ(ψ) implies z |=v τ(χ) for all z ≥ x

iff (w |=vG ψ implies w |=vG χ for all w ∈ ↑z ∩ S) for all z ≥ x

iff (w |=vG ψ implies w |=vG χ) for all w ∈ ↑x ∩ S.
If ϕ = ψ ∨ χ, then τ(ψ ∨ χ) = #(τ(ψ) ∨ τ(χ)). Therefore,

x |=v #(τ(ψ) ∨ τ(χ)) iff y |=v τ(ψ) ∨ τ(χ) for all y ∈ ↑x ∩ S
iff y |=v τ(ψ) or y |=v τ(χ) for all y ∈ ↑x ∩ S
iff (z |=vG ψ or z |=vG χ for all z ∈ ↑y ∩ S) for all y ∈ ↑x ∩ S
iff z |=vG ψ ∨ χ for all z ∈ ↑x ∩ S.

�

Lemma 4.3. Let ϕ ∈ LIPC and (F,G) be an S-frame.

(i) (F,G) |= ϕ iff F |= ϕ.
(ii) (F,G) |= τ(ϕ) iff G |= ϕ.

Proof. (i). This is obvious since ϕ contains no occurrences of #.
(ii). For the right to left direction, suppose v is a valuation on (F,G) that refutes τ(ϕ).

Define a valuation v′ on G by v′(p) = v(p) ∩ S. By Lemma 4.2, v′ refutes ϕ on G. For the
left to right direction, suppose v′ is a valuation on G that refutes ϕ. Define a valuation v on
F by v(p) = X \↓(S \v′(p)). Then v′(p) = v(p)∩S for every propositional letter p. Applying
Lemma 4.2 again yields that v refutes τ(ϕ) on (F,G). �
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Remark 4.4. An algebraic reformulation of Lemma 4.3 is as follows. If ϕ ∈ LIPC and (A, j)
is a nuclear Heyting algebra, then

(i) (A, j) |= ϕ iff A |= ϕ.
(ii) (A, j) |= τ(ϕ) iff Aj |= ϕ.

Let Λ(IPC) be the lattice of all si-logics and let Λ(PLL) be the lattice of all extensions
of PLL.

Definition 4.5. Let L ∈ Λ(IPC) and M ∈ Λ(PLL).

(i) We say that L ∈ Λ(IPC) is the intuitionistic fragment of M if for all ϕ ∈ LIPC,

ϕ ∈ L iff ϕ ∈M.

(ii) We say that L ∈ Λ(IPC) is the lax fragment of M if for all ϕ ∈ LIPC,

ϕ ∈ L iff τ(ϕ) ∈M.

Definition 4.6. For M ∈ Λ(PLL), we define

ρ1(M) = {ϕ ∈ LIPC | ϕ ∈M}
ρ2(M) = {ϕ ∈ LIPC | τ(ϕ) ∈M}

Lemma 4.7. Let M ∈ Λ(PLL).

(i) ρ1(M) is the intuitionistic fragment of M and

ρ1(M) = Log ({F | (F,G) |= M for some subframe G of F}) .

(ii) ρ2(M) is the lax fragment of M and

ρ2(M) = Log ({G | (F,G) |= M}) .

Proof. We first show (ii). For ϕ ∈ LIPC, using Lemma 4.3(ii), we have

ϕ ∈ Log ({G | (F,G) |= M}) ⇔ G |= ϕ for all (F,G) |= M
⇔ (F,G) |= τ(ϕ) for all (F,G) |= M
⇔ τ(ϕ) ∈M.

Therefore, ρ2(M) = Log ({G | (F,G) |= M}). Thus, ρ2(M) is a si-logic, and hence is the lax
fragment of M .

(i). This is proved similarly but uses Lemma 4.3(i) instead. �

Remark 4.8. An algebraic reformulation of Lemma 4.7 is as follows:

(i) ρ1(L) = Log ({A | (A, j) |= M for some nucleus j on A}).
(ii) ρ2(L) = Log ({Aj | (A, j) |= M}) .

Definition 4.9. For a si-logic L, we define

σ1(L) = PLL + {ϕ | ϕ ∈ L}
σ2(L) = PLL + {τ(ϕ) | ϕ ∈ L}

Lemma 4.10. Let L be a si-logic.

(i) σ1(L) = Log ({(F,G) | F |= L}).
(ii) σ2(L) = Log ({(F,G) | G |= L}).
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Proof. We first show (ii). Suppose (F,G) is an S-frame. By Lemma 4.3(ii), G |= L iff
(F,G) |= {τ(ϕ) | ϕ ∈ L}. Thus, σ2(L) = Log ({(F,G) | G |= L}).

(i). This is proved similarly but uses Lemma 4.3(i) instead. �

Remark 4.11. In algebraic terms, Lemma 4.10 can be expressed as follows:

(i) σ1(L) = Log ({(A, j) | A |= L}).
(ii) σ2(L) = Log ({(A, j) | Aj |= L}).

Lemma 4.12. Let L be a si-logic.

(i) L = ρ1σ1(L). In fact, σ1(L) is the least element of ρ−11 (L).
(ii) L = ρ2σ2(L). In fact, σ2(L) is the least element of ρ−12 (L).

Proof. (i). Let ϕ ∈ LIPC. Then ϕ ∈ L implies ϕ ∈ σ1(L), which implies ϕ ∈ ρ1σ1(L).
Therefore, L ⊆ ρ1σ1(L). If ϕ /∈ L, then there is an L-frame F such that F 6|= ϕ. Consider
the S-frame (F,F). By Lemma 4.10(i), (F,F) |= σ1(L), and by Lemma 4.3(i), (F,F) 6|= ϕ.
Thus, ϕ 6∈ σ1(L), and so by Lemma 4.7(i), ϕ 6∈ ρ1σ1(L). This shows that L = ρ1σ1(L). If
M ∈ ρ−11 (L), then for every ϕ ∈ LIPC, we have ϕ ∈ L iff ϕ ∈M . Consequently, σ1(L) ⊆M ,
and hence σ1(L) is the least element of ρ−11 (L).

(ii). Let ϕ ∈ LIPC. Then ϕ ∈ L implies τ(ϕ) ∈ σ2(L), which implies ϕ ∈ ρ2σ2(L).
Therefore, L ⊆ ρ2σ2(L). If ϕ /∈ L, then there is an L-frame F such that F 6|= ϕ. By
Lemma 4.10(ii), the S-frame (F,F) is a σ2(L)-frame, and by Lemma 4.3(ii), (F,F) 6|= τ(ϕ).
Thus, ϕ 6∈ σ2(L), and so by Lemma 4.7(ii), ϕ 6∈ ρ2σ2(L). This shows that L = ρ2σ2(L).
If M ∈ ρ−12 (L), then for every ϕ ∈ LIPC, we have ϕ ∈ L iff τ(ϕ) ∈ M . Consequently,
σ2(L) ⊆M , and hence σ2(L) is the least element of ρ−12 (L). �

As follows from Lemma 4.12, for a si-logic L, both ρ−11 (L) and ρ−12 (L) have least elements,
but they may not have largest elements. To see this we require the following lemmas.

Lemma 4.13. Let (F,G) be an S-frame.

(i) (F,G) |= #p↔ p iff F = G.
(ii) (F,G) |= #p iff G = ∅.

Proof. (i). First suppose that F = G. Then it is clear that (F,G) |= #p↔ p. Next suppose
that F 6= G. Let x ∈ X \ S. Then x /∈ ↑x ∩ S, so x /∈ ↑(↑x ∩ S). Therefore, since ↑(↑x ∩ S)
is a closed upset of X, there is a clopen upset U of X with ↑(↑x∩ S) ⊆ U and x 6∈ U . Let v
be a valuation on (F,G) such that v(p) = U . Clearly x 6|=v p. On the other hand, x |=v #p
by (2). Thus, (F,G) 6|= #p↔ p.

(ii). If G = ∅, then it is clear that (F,G) |= #p. If G 6= ∅, then let v be a valuation on
(F,G) such that v(p) = ∅. For x ∈ S, we then have x 6|=v #p, so (F,G) 6|= #p. �

For ψ ∈ LPLL, let ψ− be the formula obtained from ψ by deleting all occurrences of the
# modality and let ψ∗ be the formula obtained from ψ by replacing all subformulas of the
form #χ with >. Clearly ψ−, ψ∗ ∈ LIPC. Both ψ− and ψ∗ were considered in [13, Sec. 3].

Lemma 4.14. Let M ∈ Λ(PLL).

(i) If #p↔ p ∈M , then ψ ∈M iff ψ− ∈M for every formula ψ ∈ LPLL.
(ii) If #p ∈M , then ψ ∈M iff ψ∗ ∈M for every formula ψ ∈ LPLL.

Proof. (i). Suppose that #p ↔ p ∈ M and let ψ ∈ LPLL. By Lemma 4.13(i), M is the
logic of the class of S-frames of the shape (F,F). For (F,F), a valuation v on F, and x ∈ F,
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we have x |=v #ϕ iff x |=v ϕ. Therefore, induction on ψ yields (F,F) |= ψ iff (F,F) |= ψ−.
Thus, ψ ∈M iff ψ− ∈M .

(ii). Let #p↔ > ∈ M and let ψ ∈ LPLL. By Lemma 4.13(ii), M is the logic of the class
of S-frames of the shape (F,∅). For (F,∅), a valuation v on F, and x ∈ F, we have x |=v #ϕ.
Therefore, induction on ψ yields (F,∅) |= ψ iff (F,∅) |= ψ∗. Thus, ψ ∈M iff ψ∗ ∈M . �

Lemma 4.15. Let L be a si-logic.

(i) σ1(L) + #p↔ p is a maximal element of both ρ−11 (L) and ρ−12 (L).
(ii) σ1(L) + #p is a maximal element of ρ−11 (L).

Proof. (i). Let M = σ1(L)+#p↔ p. First we show that M is a maximal element of ρ−11 (L).
By Lemma 4.13(i), an S-frame (F,G) validates M iff F is an L-frame and F = G. Therefore,
by Lemma 4.7(i), ρ1(M) = L, so M ∈ ρ−11 (L). To see that M is maximal in ρ−11 (L), suppose
that M ⊆ M ′ ∈ ρ−11 (L). We show that M = M ′. Let ψ ∈ LPLL. If ψ 6∈ M , then by
Lemma 4.14(i), ψ− 6∈ M , and so ψ− 6∈ L as ψ− ∈ LIPC. Since ρ1(M

′) = L, we see that
ψ− 6∈ M ′. Because M ⊆ M ′, we have #p ↔ p ∈ M ′, so ψ 6∈ M ′ by Lemma 4.14(i). Thus,
M = M ′, and hence M is maximal in ρ−11 (L).

Next we show that M is a maximal element of ρ−12 (L). By Lemma 4.7(ii), ρ2(M) = L,
so M ∈ ρ−12 (L). Suppose M ⊆ M ′ ∈ ρ−12 (L). We show that M = M ′. Let ψ ∈ LPLL. If
ψ 6∈ M , then ψ− 6∈ M by Lemma 4.14(i). Therefore, τ(ψ−) 6∈ M because (τ(ψ−))− = ψ−.
Thus, ψ− 6∈ L, and so τ(ψ−) 6∈ M ′. Since M ⊆ M ′, we have #p ↔ p ∈ M ′, and hence
ψ− = (τ(ψ−))− 6∈ M ′ by Lemma 4.14(i). Consequently, ψ 6∈ M ′, and so M = M ′, which
yields that M is maximal in ρ−12 (L).

(ii). Let M = σ1(L) + #p. By Lemma 4.13(ii), an S-frame (F,G) validates M iff F is an
L-frame and G = ∅. Therefore, by Lemma 4.7(i), ρ1(M) = L, so M ∈ ρ−11 (L). To see that
M is maximal in ρ−11 (L), suppose that M ⊆ M ′ ∈ ρ−11 (L). We show that M = M ′. Let
ψ ∈ LPLL. If ψ 6∈M , then by Lemma 4.14(ii), ψ∗ 6∈M , and so ψ∗ 6∈ L as ψ∗ ∈ LIPC. Since
ρ1(M

′) = L, we see that ψ∗ 6∈ M ′. Because M ⊆ M ′, we have #p ∈ M ′, so ψ 6∈ M ′ by
Lemma 4.14(ii). Thus, M = M ′, and hence M is maximal in ρ−11 (L). �

Remark 4.16.
(i) Let L be a consistent si-logic. Then σ1(L) + #p ↔ p and σ1(L) + #p ↔ > are

different. Indeed, the S-frame ({x},∅) validates σ1(L)+#p↔ > but refutes σ1(L)+
#p↔ p. Therefore, by Lemma 4.15, ρ−11 (L) need not have a largest element.

(ii) To see that ρ−12 (L) also does not have a largest element, by Lemma 4.15, σ1(L) +
#p↔ p is a maximal element of ρ−12 (L). Let L = BTW2. For simplicity, we denote
the canonical formula axiomatizing BTW2 by β (see Table 1). Set M = σ1(KC) +
τ(β). By Lemmas 4.10(i) and 4.3(ii), an S-frame (F,G) validates M iff F is a KC-
frame and G is a BTW2-frame. Therefore, by Lemma 4.7(ii), BTW2 ⊆ ρ2(M). To
see the reverse inclusion, suppose that ϕ 6∈ BTW2. Then there is a finite BTW2-
frame G with G 6|= ϕ. Let F be obtained from G by adding a new top node. Then
F is a KC-frame, so (F,G) validates M , but refutes τ(ϕ) by Lemma 4.3(ii). Thus,
ϕ 6∈ ρ2(M). Consequently, ρ2(M) = L, and so M ∈ ρ−12 (L). On the other hand, M
is not contained in σ1(L) + #p ↔ p as for example the S-frame ( , ) validates
σ1(L) + #p↔ p but refutes M .

Figure 2 illustrates the situation for σ1 and ρ1, where CPC denotes the classical propo-
sitional logic and Fml the inconsistent logic. The situation is similar for σ2 and ρ2. Note
that in general the maximum of both ρ−11 (L) and ρ−12 (L) is rather complicated.



SUBFRAMIZATION AND STABILIZATION FOR SUPERINTUITIONISTIC LOGICS 13

IPC

CPC

Fml

L

σ1

ρ1

σ1(IPC) = PLL

σ1(CPC)

Fml

σ1(L)

Figure 2

We are ready to obtain a new characterization of subframe si-logics.

Theorem 4.17. For a si-logic L, the following are equivalent:

(i) L is a subframe logic.
(ii) σ2(L) ⊆ σ1(L).
(iii) σ2(L) + {ϕ | ϕ ∈ L} = σ1(L).
(iv) ρ2σ1(L) = L.
(v) σ1(L) is closed under the rule ϕ/τ(ϕ) for every ϕ ∈ LIPC.

Proof. (i)⇒(ii). Suppose (F,G) is an S-frame such that (F,G) |= σ1(L). By Lemma 4.10(i),
F |= L. Since L is a subframe logic, G |= L. Therefore, by Lemma 4.10(ii), (F,G) |= σ2(L).
Thus, σ2(L) ⊆ σ1(L).

(ii)⇒(iii). This is obvious.
(iii)⇒(iv). By Lemmas 4.12(ii) and 4.7(ii), L = ρ2σ2(L) = Log({G | (F,G) |= σ2(L)}) and

ρ2σ1(L) = Log({G | (F,G) |= σ1(L)}). Therefore, it is sufficient to show that {G | (F,G) |=
σ2(L)} = {G | (F,G) |= σ1(L)}. The inclusion ⊇ is immediate from (iii). For the reverse
inclusion, suppose that (F,G) |= σ2(L). By Lemma 4.10(ii), G |= L, so (G,G) |= σ1(L) by
Lemma 4.10(i). Thus, G ∈ {G | (F,G) |= σ1(L)}.

(iv)⇒(v). Suppose that there is ϕ ∈ LIPC such that ϕ ∈ σ1(L) but τ(ϕ) 6∈ σ1(L). Then
there is an S-frame (F,G) with (F,G) |= σ1(L) and (F,G) 6|= τ(ϕ). By Lemma 4.7(ii),
(F,G) |= σ1(L) implies G |= ρ2σ1(L) = L, and by Lemma 4.3(ii), (F,G) 6|= τ(ϕ) implies
G 6|= ϕ. Therefore, ϕ 6∈ L, contradicting ϕ ∈ σ1(L).

(v)⇒(i). Let F be an L-frame and G be a subframe of F. By Lemma 4.10(i), (F,G) |=
σ1(L). By (v), (F,G) |= τ(ϕ) for each ϕ ∈ LIPC such that ϕ ∈ σ1(L). Therefore, (F,G) |=
τ(ϕ) for each ϕ ∈ L. Thus, G |= L by Lemma 4.3(ii), and we conclude that L is a subframe
logic. �

Remark 4.18. In general, σ1(L) 6⊆ σ2(L). In fact, for any consistent si-logic L, from
σ1(L) ⊆ σ2(L) it follows that L = IPC. To see this, suppose L 6= IPC. Then there is a
finite frame F that refutes L. Pick a point in F and let G be the subframe of F consisting of
the point. Clearly G is an L-frame. Therefore, by Lemma 4.10(ii), (F,G) |= σ2(L). On the
other hand, by Lemma 4.10(i), (F,G) 6|= σ1(L). Thus, σ1(L) 6⊆ σ2(L).
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As a consequence of Theorem 4.17, we obtain the following characterization of the down-
ward subframization of a si-logic.

Theorem 4.19. Let L be a si-logic. Then Subf↓(L) = ρ2σ1(L).

Proof. Let G be an Esakia frame. By Lemma 4.7(ii), G |= ρ2σ1(L) iff there is an Esakia
frame F such that (F,G) |= σ1(L). By Lemma 4.10(i), (F,G) |= σ1(L) iff F |= L. Therefore,
G |= ρ2σ1(L) iff G is a subframe of some F |= L. Thus, by Proposition 3.4(i), ρ2σ1(L) =
Subf↓(L). �

Remark 4.20.
(i) Let L be a si-logic and ϕ ∈ LIPC. By Theorem 4.19, ϕ ∈ Subf↓(L) iff τ(ϕ) ∈

σ1(PLL). Therefore, if σ1(PLL) is decidable, then so is Subf↓(L).
(ii) In contrast to Theorem 4.19, for every si-logic L, we have ρ1σ2(L) = IPC. Indeed,

suppose L is a si-logic and F is an Esakia frame. By Lemma 4.7(i), F |= ρ1σ2(L)
iff there is a subframe G of F such that (F,G) |= σ2(L). By Lemma 4.10(ii),
(F,G) |= σ2(L) iff G |= L. Therefore, F |= ρ1σ2(L) iff G |= L for some subframe
G of F. Now every frame contains the empty frame as a subframe and since the
empty frame is an L-frame, we conclude that every frame validates ρ1σ2(L). Thus,
ρ1σ2(L) = IPC.

Remark 4.21. We recall that a subframe G of an Esakia frame F is cofinal provided it
contains the maximum of F. Cofinal subframes of an Esakia frame F correspond to dense
nuclei on the dual Heyting algebra A of F, where we recall that a nucleus j is dense if j0 = 0.
Since being a dense nucleus can be expressed by adding #¬⊥ to PLL, the correspondence
between subframe logics and extensions of PLL discussed in this section extends to the
correspondence between cofinal subframe logics and extensions of PLL + #¬⊥.

5. Stable logics and stabilization

Another well-behaved class of si-logics, along with subframe logics, is that of stable logics
of [5]. In this section we define upward and downward stabilizations of si-logics, which are
stable analogues of upward and downward subframizations of Section 3, and obtain their
semantic and syntactic characterizations. For the syntactic characterization, we make use of
the stable canonical formulas of [5].

A continuous map f : F → G between Esakia frames is called stable provided it is order
preserving (x ≤ y implies f(x) ≤ f(y)), and G is a stable image of F provided there is an
onto stable map f : F→ G. It is easy to see that stable images of rooted frames are rooted.

Definition 5.1. A si-logic L is stable provided its rooted frames are closed under stable
images (that is, if F is an L-frame, then so is every stable image of F).

Remark 5.2. Definition 5.1 is slightly different from [5, Def. 6.6] but it follows from [8,
Thm. 5.3] that the two are equivalent.

In [5, Thm. 6.8] it is shown that every stable logic has the finite model property. We will
require the following characterization of stable logics.

Proposition 5.3. For a si-logic L, the following are equivalent.

(i) L is stable.
(ii) L is the logic of a class of frames closed under stable images.
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(iii) The rooted L-frames are closed under finite stable images.

Proof. The equivalence of (i) and (ii) is proved in [8, Thm. 5.3]. It is clear that (i) implies
(iii). It is left to show that (iii) implies (i). Let F be a rooted L-frame and let G be a stable
image of F. If G is not an L-frame, then G 6|= ϕ for some ϕ ∈ L. By [5, Lem. 3.6], there is
a finite stable image H of G such that H 6|= ϕ. Therefore, H is a finite stable image of F. By
(iii), H is an L-frame, contradicting H 6|= ϕ. Thus, G is an L-frame, and hence L is stable,
yielding (i). �

Let ΛStab be the collection of all stable logics.

Lemma 5.4. ΛStab is a complete sublattice of Λ(IPC).

Proof. Let {Li | i ∈ I} be a family of stable logics. Then the classes of rooted Li-frames are
stable. Therefore, so are

⋂
i{F | F is a rooted Li-frame} and

⋃
i{F | F is a rooted Li-frame}.

The intersection of all Li-frames is exactly the class of all (
∨

i Li)-frames. Since every logic is
characterized by its rooted frames,

∨
i Li is characterized by

⋂
i{F | F is a rooted Li-frame}.

Thus, by Proposition 5.3,
∨

i Li is stable. The logic
∧

i Li is characterized by
⋃

i{F |
F is a rooted Li-frame} (see, e.g., [11, Sec. 4]). Therefore,

∧
i Li is also stable. Thus, ΛStab

is a complete sublattice of Λ(IPC). �

Lemma 5.4 allows us to define the least and greatest stable neighbors of a given si-logic.

Definition 5.5. For a si-logic L, define the downward stabilization of L as

Stab↓(L) :=
∨
{L′ ∈ ΛStab | L′ ⊆ L}

and the upward stabilization of L as

Stab↑(L) :=
∧
{L′ ∈ ΛStab | L ⊆ L′}.

The following lemma is obvious.

Lemma 5.6. Stab↓ is an interior operator and Stab↑ is a closure operator on the lattice of
si-logics.

We next give a semantic characterization of upward and downward stabilizations.

Proposition 5.7. Let L be a si-logic.

(i) Stab↓(L) = Log ({G | G is a stable image of a rooted L-frame F}).
(ii) Stab↑(L) = Log ({F | F is finite rooted and G |= L for every stable image G of F }).

Proof. (i). Let K = {G | G is a stable image of a rooted L-frame F}. Then K is closed
under stable images, so Log(K) is a stable logic. Since K contains the class of rooted L-
frames, Log(K) ⊆ L. Let L′ be a stable logic contained in L. Then the class K ′ of rooted
L′-frames contains the class of rooted L-frames and is closed under stable images. Therefore,
K ⊆ K ′, and so L′ ⊆ Log(K). Thus, Log(K) is the largest stable logic contained in L.

(ii). Let K = {F | F is finite rooted and G |= L for every stable image G of F }. Then
K is closed under stable images, so Log(K) is a stable logic. Since K is contained in the
class of rooted L-frames, L ⊆ Log(K). Let L′ be a stable logic extending L, and let F be a
finite rooted L′-frame. Since L′ is stable, all stable images of F are L′-frames, and hence also
L-frames. Therefore, F ∈ K. Since L′ is stable, L′ is the logic of its finite rooted frames.
Thus, Log(K) ⊆ L′, and so Log(K) is the least stable extension of L. �
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For a syntactic characterization of Stab↓(L) and Stab↑(L), we briefly recall the definition
and main properties of the stable canonical formulas of [5]. Let F be a finite rooted frame
and D be a family of upsets of F, called closed domains. Suppose G is an Esakia frame. We
say that a stable map f from G onto F satisfies the closed domain condition (CDC) for D
provided

↑f(x) ∩ d 6= ∅ ⇒ f [↑x] ∩ d 6= ∅ for all d ∈ D.

As was shown in [5], each such pair (F,D) gives rise to the stable canonical formula γ(F,D)
such that for each Esakia frame G,

G 6|= γ(F,D) iff there are a point-generated subframe H of G and a

stable onto map f : H→ F satisfying CDC for D.

Moreover, stable canonical formulas axiomatize all si-logics. Stable canonical formulas of the
form γ(F,∅) are called stable formulas, and are denoted γ(F). As follows from the above,

G 6|= γ(F) iff there are a point-generated subframe H of G and a

stable onto map f : H→ F.

By [5, Thm. 6.11], a si-logic L is stable iff L is axiomatizable by stable formulas.

Proposition 5.8. Let L = IPC + {γ(Fi,Di) | i ∈ I} be a si-logic.

(i) Stab↓(L) = IPC + {γ(F) | L ` γ(F)}.
(ii) Stab↑(L) = IPC + {γ(Fi) | i ∈ I}.

Proof. (i). By [5, Thm. 6.11], IPC + {γ(F) | L ` γ(F)} is the largest stable logic contained
in L. Therefore, Stab↓(L) = IPC + {γ(F) | L ` γ(F)}.

(ii). Let M = IPC+{γ(Fi) | i ∈ I}, and let G be a rooted M -frame. Then G |= γ(Fi) for
all i ∈ I. Thus, G |= γ(Fi,Di) for all i ∈ I as can easily be seen by the semantic description
of the formulas. Therefore, G is an L-frame, and so L ⊆ M . Since M is axiomatized by
stable formulas, M is a stable logic. Suppose L′ is a stable extension of L, and G is a rooted
L′-frame. If G 6|= γ(Fi) for some i ∈ I, then Fi is a stable image of some point-generated
subframe H of G. Therefore, Fi is an L′-frame. But Fi is not an L-frame, which contradicts
to L′ being an extension of L. Thus, G |= γ(Fi) for all i ∈ I, and so M ⊆ L′. Consequently,
M is the least stable extension of L, and hence Stab↑(L) = M . �

Remark 5.9. If a si-logic L is axiomatized by a set of formulas Γ, then Stab↑(L) can be
calculated effectively as follows: First use [5, Thm. 3.7] to transform Γ into an equivalent
set of stable canonical formulas; then delete the additional parameters Di in the resulting
canonical formulas; and finally apply Proposition 5.8(ii). We will come back to this issue at
the end of Section 6.

Remark 5.10. By restricting Wolter’s describable operations (cf. Remark 3.8) to the class
of rooted Esakia frames, we can obtain an alternative proof of Theorem 5.8. For a rooted
Esakia frame G, let C(G) = {H | H is a stable image of G}. We show that

(9) G |= γ(F) iff C(G) |= γ(F,D).

The left to right direction is obvious. For the right to left direction, suppose G 6|= γ(F). Since
G is rooted, it follows from [8, Prop. 5.1] that F is a stable image of G. Therefore, F ∈ C(G).
Thus, since F 6|= γ(F,D), we conclude that C(G) 6|= γ(F,D). Set (γ(F,D))c = γ(F).
Because every logic is characterized by its rooted Esakia frames, Wolter’s result applied to
Proposition 5.7 yields an alternative proof of Theorem 5.8.
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We conclude this section by giving several examples of upward and downward stabilizations
of si-logics. In addition to the si-logics from Section 3, we consider the following si-logics.

• The logics BDn of finite rooted frames of depth ≤ n.
• The logics BCn of finite rooted frames of cardinality ≤ n.

Proposition 5.11.
(i) Stab↓(BDn) = IPC and Stab↑(BDn) = BCn for all n ≥ 2.

(ii) If L is consistent and has the disjunction property, then Stab↓(L) = IPC.
(iii) Stab↓(Tn) = IPC and Stab↑(Tn) = BWn for all n ≥ 2.

Proof. (i). First we show that Stab↓(BDn) = IPC for all n ≥ 2. Since BDn ⊆ BD2 for
all n ≥ 2, it suffices to show that Stab↓(BD2) = IPC. Let F be a finite rooted frame.
Suppose F has at most n + 1 elements, and Fn is the n-fork shown in Figure 3. Mapping
the root of Fn to the root of F and the top nodes of Fn surjectively onto the other nodes
of F defines a stable map from Fn onto F. Since Fn is a BD2-frame, by Proposition 5.7(i),
F |= Stab↓(BD2) for every finite rooted frame F. Thus, Stab↓(BD2) = IPC.

Next we show that Stab↑(BDn) = BCn for all n ≥ 2. Suppose F is a finite rooted frame.
If F has no more than n elements, then every stable image of F also has no more than n
elements. Therefore, every stable image of F is a BCn-frame. On the other hand, if F has
at least n + 1 elements, then we can define a stable map from F on the (n + 1)-chain Cn+1

(see Figure 3) as follows: Map the root r of F to the root of Cn+1; map the immediate
successors of r on top of each other; continue this process with the immediate successors of
the immediate successors of r, and so on; if you run out of points in Cn+1, then map the
remaining points to the top node of Cn+1. Since Cn+1 is not a BDn-frame, F has a stable
image refuting BDn. Thus, by Proposition 5.7(ii), Stab↑(BDn) = BCn.

(ii). Suppose L is consistent and has the disjunction property. By [11, Thm. 15.5], if
F1,F2 are rooted L-frames, then their disjoint union F1tF2 is a generated subframe of some
rooted L-frame. This implies that for every n, there is a rooted L-frame F containing at
least n maximal points. To see this, since L is consistent, the one-point frame F1 is an
L-frame. Therefore, F1 t F1 is a generated subframe of some rooted L-frame F2. Clearly F2

has at least 2 maximal points. By the same argument, F2 t F2 is a generated subframe of
some rooted L-frame F3 that has at least 4 maximal points. Continuing this process yields
a rooted L-frame F with at least n maximal points, say {x1, x2, . . . xn}. We show that the
n-fork Fn is a stable image of F. Separate x1, . . . , xn by disjoint clopen upsets U1, . . . , Un

with xi ∈ Ui for 1 ≤ i ≤ n, and define a map f : F→ Fn by

f(x) =

{
vi if x ∈ Ui for some i ∈ I,
r otherwise,
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where r is the root of Fn. It is straightforward to see that f is an onto stable map. Thus,
Stab↓(L) ⊆ BD2. Now apply (i) to conclude that Stab↓(L) = IPC.

(iii). Since Tn is consistent and has the disjunction property for all n ≥ 2, by (ii),
Stab↓(Tn) = IPC for all n ≥ 2.

Next we show that Stab↑(Tn) = BWn for all n ≥ 2. Let K = {F | F is finite rooted and
G |= Tn for every stable image G of F}. By Proposition 5.7(ii), Stab↑(Tn) = Log(K). Let
K ′ be the class of finite rooted frames of width ≤ n. We show that K = K ′. Let F be finite
and rooted. If F is of width ≤ n, then so are all its stable images (see [5, Thm. 7.3(2)]).
Therefore, K ′ ⊆ K. Conversely, if F has width greater than n, then by [5, Thm. 7.5(3)],
either the (n + 1)-fork or the (n + 1)-fork with top (see Figure 3) is a stable image of F.
Since neither of these is a Tn-frame, F /∈ K. Thus, K = K ′, and as BWn is the logic of K ′,
we conclude that Stab↑(Tn) = BWn. �

6. Stable logics and intuitionistic S4

As we saw in Section 4, there is a close connection between subframe logics and the
propositional lax logic PLL. In this section we show that there is a close connection between
stable logics and intuitionistic S4 [20]. Intuitionistic S4 is the least set of formulas of the
propositional modal language containing IPC, the axioms 2p → p, 2p → 22p, 2(p →
q) → (2p → 2q), and closed under substitution, modus ponens, and necessitation. We
denote it by IS4.

As was observed in [20], the algebraic semantics of IS4 is provided by interior Heyting
algebras, which are pairs (A,2), where A is a Heyting algebra and 2 is an interior operator
on A; that is, 2 is a unary function on A satisfying 2a ≤ a, 2a ≤ 22a, 2(a∧ b) = 2a∧2b,
and 21 = 1. The fixpoints A2 := {a ∈ A | 2a = a} form a bounded sublattice of A, which
is also a Heyting algebra, where a →2 b = 2(a → b). In fact, interior Heyting algebras
correspond to pairs (A,A0) of Heyting algebras such that A0 is a bounded sublattice of A
and the embedding A0 � A has a right adjoint (cf. [2, Sec. 3]).

Given such a pair (A,A0), let F = (X,≤) be the Esakia frame of A and G = (Y,≤) be
the Esakia frame of A0. Since the embedding A0 � A is a bounded lattice morphism, the
dual map π : X → Y is an onto stable map. Moreover, the right adjoint 2 : A → A0 of
the embedding A0 � A is dually described as follows: if U is a clopen upset of F, then
2U = Y \ ↓π(X \ U). Therefore, for each clopen U in X, we have that ↓π(U) is a clopen
subset of Y . Thus, interior Heyting algebras correspond to pairs of Esakia frames (F,G)
and an onto stable map between them satisfying ↓π(U) is clopen in G for each clopen U in
F (cf. [3]). This yields the following definition.

Definition 6.1. An St-frame (stable frame) is a pair (F,G) such that F = (X,≤) and
G = (Y,≤) are Esakia frames and π : X → Y is an onto stable map satisfying ↓π(U) is
clopen in Y for each clopen U in X.

The correspondence between interior Heyting algebras and St-frames allows us to interpret
formulas of IS4 in St-frames. Let (F,G) be an St-frame, where F = (X,≤) and G = (Y,≤).
We interpret propositional letters as clopen upsets of F and intuitionistic connectives as
the corresponding operations in the Heyting algebra of clopen upsets of F. In addition,
2 is interpreted as the corresponding unary function on the clopen upsets of F; that is,
2U = π−1(Y \ ↓π(X \ U)). Therefore, if v is a valuation on (F,G) and x ∈ X, then
x 6∈ 2v(ϕ) iff π(x) ∈ ↓π(X \v(ϕ)), which happens iff there is z ∈ X \v(ϕ) with π(x) ≤ π(z).



SUBFRAMIZATION AND STABILIZATION FOR SUPERINTUITIONISTIC LOGICS 19

Thus,
x |=v 2ϕ iff z |=v ϕ for all z ∈ X with π(x) ≤ π(z).

We utilize the Gödel-McKinsey-Tarski translation to translate a formula ϕ of IPC into
the formula t(ϕ) of IS4 as follows:

• t(p) = 2p for a propositional letter p,
• t(⊥) = 2⊥,
• t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ),
• t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ),
• t(ϕ→ ψ) = 2(t(ϕ)→ t(ψ)).

It is clear that for every ϕ ∈ LIPC and every interior Heyting algebra (A,2), we have:

(i) (A,2) |= ϕ iff A |= ϕ.
(ii) (A,2) |= t(ϕ) iff A2 |= ϕ.

In dual terms we have:

Lemma 6.2. For every ϕ ∈ LIPC and every St-frame (F,G),

(i) (F,G) |= ϕ iff F |= ϕ.
(ii) (F,G) |= t(ϕ) iff G |= ϕ.

As we saw in the previous section, a si-logic L is stable iff rooted L-frames are closed under
stable images. It is known (see, e.g., [7, Thm. 8.6]) that rooted frames are characterized by
the multi-conclusion disjunction rule p ∨ q/p, q. Therefore, instead of working with logics
above IS4, we will work with multi-conclusion consequence relations above IS4.

We recall (see, e.g., [18, 17, 8]) that a multi-conclusion rule is an expression of the form
Γ/∆, where Γ and ∆ are finite sets of formulas. A multi-conclusion consequence relation
over IS4 is a set S of multi-conclusion rules such that

• ϕ/ϕ ∈ S.
• ϕ, ϕ→ ψ/ψ ∈ S.
• ϕ/2ϕ ∈ S.
• /ϕ ∈ S for each theorem ϕ of IS4.
• If Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S.
• If Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S.
• If Γ/∆ ∈ S and s is a substitution, then s(Γ)/s(∆) ∈ S.

Let SIS4 be the multi-conclusion consequence relation over IS4 that in addition contains
the disjunction rule p∨q/p, q. Let also Σ(SIS4) be the complete lattice of all multi-conclusion
consequence relations extending SIS4.

A multi-conclusion rule Γ/∆ is valid on an interior Heyting algebra (A,2) if for every
valuation v on A, from v(γ) = 1 for every γ ∈ Γ it follows that v(δ) = 1 for some δ ∈ ∆.
The validity of Γ/∆ on an St-frame (F,G) is defined similarly.

Consequence relations in Σ(SIS4) correspond to universal classes of interior Heyting al-
gebras whose underlying Heyting algebras are well-connected (a ∨ b = 1 implies a = 1 or
b = 1). Dually they are characterized by classes of St-frames (F,G) such that F is rooted.
We call such St-frames rooted. For a class K of rooted St-frames, let Con(K) be the set of
multi-conclusion rules that are valid in K. Then Con(K) ∈ Σ(SIS4).

Notation 6.3. From now on all St-frames are assumed to be rooted.

Definition 6.4. Let L ∈ Λ(IPC) and S ∈ Σ(SIS4).
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(i) We say that L is the intuitionistic fragment of S if for all formulas ϕ ∈ LIPC,

ϕ ∈ L iff /ϕ ∈ S.
(ii) We say that L is the stable fragment of S if for all formulas ϕ ∈ LIPC,

ϕ ∈ L iff /t(ϕ) ∈ S.

For S ∈ Σ(SIS4), we define

ζ1(S) = {ϕ ∈ LIPC | /ϕ ∈ S},
ζ2(S) = {ϕ ∈ LIPC | /t(ϕ) ∈ S}.

Lemma 6.5. Let S ∈ Σ(SIS4).

(i) ζ1(S) is the intuitionistic fragment of S and

ζ1(S) = Log ({F | ∃G : (F,G) is an St-frame and (F,G) |= S}) .
(ii) ζ2(S) is the stable fragment of S and

ζ2(S) = Log ({G | ∃F : (F,G) is an St-frame and (F,G) |= S}) .

Proof. (i). For ϕ ∈ LIPC, we have

ϕ ∈ Log ({F | ∃G : (F,G) is an St-frame and (F,G) |= S})
⇔ F |= ϕ for all (F,G) |= S
⇔ F |= /ϕ for all (F,G) |= S
⇔ (F,G) |= /ϕ for all (F,G) |= S
⇔ /ϕ ∈ S
⇔ ϕ ∈ ζ1(S).

Therefore, ζ1(S) = Log ({F | ∃G : (F,G) is an St-frame and (F,G) |= S}). Thus, ζ1(S) is a
si-logic, and so it is the intuitionistic fragment of S.

(ii). For ϕ ∈ LIPC, we have

ϕ ∈ Log ({G | ∃F : (F,G) is an St-frame and (F,G) |= S})
⇔ G |= ϕ for all (F,G) |= S
⇔ G |= /ϕ for all (F,G) |= S
⇔ (F,G) |= /t(ϕ) for all (F,G) |= S
⇔ /t(ϕ) ∈ S
⇔ ϕ ∈ ζ2(S).

Therefore, ζ2(S) = Log ({G | ∃F : (F,G) is an St-frame and (F,G) |= S}). Thus, ζ1(S) is a
si-logic, and so it is the stable fragment of S. �

Conversely, for a si-logic L, define:

η1(L) =SIS4 + {/ϕ | ϕ ∈ L},
η2(L) =SIS4 + {/t(ϕ) | ϕ ∈ L}.

Lemma 6.6. For every si-logic L, we have:

(i) η1(L) = Con ({(F,G) | F is an L-frame}),
(ii) η2(L) = Con ({(F,G) | G is an L-frame)}.
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Proof. We prove (ii), the proof of (i) is similar. For an St-frame (F,G) we have G |= L
iff (F,G) |= {t(ϕ) | ϕ ∈ L}, which happens iff (F,G) |= {/t(ϕ) | ϕ ∈ L}. Thus, η2(L) =
Con ({(F,G) | G is an L-frame}). �

Lemma 6.7. Let L be a si-logic.

(i) L = ζ1η1(L), and η1(L) is the least multi-conclusion consequence relation in ζ−11 (L).
(ii) L = ζ2η2(L), and η2(L) is the least multi-conclusion consequence relation in ζ2

−1(L).

Proof. (i). Let ϕ ∈ LIPC. Then ϕ ∈ L implies /ϕ ∈ η1(L), which implies ϕ ∈ ζ1η1(L).
Therefore, L ⊆ ρ1η1(L). If ϕ /∈ L, then there is a rooted L-frame F such that F 6|= ϕ.
Consider the St-frame (F,F), where π is the identity map. Then (F,F) 6|= /ϕ, and (F,F) |=
η1(L) by Lemma 6.6(i). Therefore, by Lemma 6.5(i), ϕ 6∈ ζ1η1(L). This shows that L =
ζ1η1(L). If S ∈ ζ−11 (L), then for every ϕ ∈ LIPC, we have ϕ ∈ L iff /ϕ ∈ S. Thus, η1(L) ⊆ S,
and hence η1(L) is the least element of ζ−11 (L).

(ii). Let ϕ ∈ LIPC. Then ϕ ∈ L implies /t(ϕ) ∈ η2(L), which implies ϕ ∈ ζ2η2(L).
Therefore, L ⊆ ζ2η2(L). If ϕ /∈ L, then there is a rooted L-frame F such that F 6|= ϕ. Then
(F,F) 6|= /t(ϕ), and (F,F) is a η2(L)-frame by Lemma 6.6(ii). Thus, by Lemma 6.5(ii),
ϕ 6∈ ζ2η2(L). This shows that L = ζ2η2(L). If S ∈ ζ−12 (L), then for every ϕ ∈ LIPC, we
have ϕ ∈ L iff /t(ϕ) ∈ S. Consequently, η2(L) ⊆ S, and hence η2(L) is the least element of
ζ−12 (L). �

As follows from Lemma 6.7, for a si-logic L, both ζ−11 (L) and ζ−12 (L) have least elements,
but they may not have largest elements. To see this we require the following lemma.

Lemma 6.8. Let (F,G) be an St-frame. Then (F,G) |= /2p↔ p iff π is an isomorphism.

Proof. Let F = (X,≤) and G = (Y,≤). First suppose that π is an isomorphism. Then it is
clear that (F,G) |= 2p ↔ p. Next suppose that π is not an isomorphism. Then there are
x 6≤ y with π(x) ≤ π(y). Let U be a clopen upset of F, with x ∈ U but y 6∈ U . Define a
valuation v on (F,G) with v(p) = U . Then x |=v p but x 6|=v 2p. Thus, (F,G) 6|= 2p↔ p. �

For ψ ∈ LIS4, let ψ− be the formula obtained from ψ by deleting all occurrences of 2.
Similarly to Lemmas 4.14 and 4.15, we can show that for every S ∈ Σ(SIS4), if /2p↔ p ∈ S,
then /ψ ∈ S iff /ψ− ∈ S. From this we can infer that η1(L) + /2p↔ p is maximal in both
ζ−11 (L) and ζ−12 (L). On the other hand, neither of ζ−11 (L) and ζ−12 (L) has to have a largest
element, as the next example shows.

Example 6.9. Let γ abbreviate (p→ q)∨ (q → p) and let S = η1(BD2)+/t(γ). By Lemma
6.2, an St-frame (F,G) is an S-frame iff F is a BD2-frame and G is an LC-frame.

(i) We show that ζ1(S) = BD2. By Lemma 6.5(i), BD2 ⊆ ζ1(S). Conversely, suppose
ϕ 6∈ BD2. Then there is a finite rooted BD2-frame F refuting ϕ. Let n = |F| and let
G be the n-chain. As we saw in the proof of Proposition 5.11(i), G is a stable image
of F. Therefore, (F,G) is an S-frame refuting ϕ. Thus, ζ1(S) = BD2. On the other
hand, S 6⊆ η1(BD2) + /2p↔ p because ( , ) validates η1(BD2) + /2p↔ p but

refutes S. Consequently, ζ−11 (BD2) does not have a largest element.
(ii) We show that ζ2(S) = LC. By Lemma 6.5(ii), LC ⊆ ζ2(S). Conversely, suppose

ϕ 6∈ LC. Then there is a finite chain G refuting ϕ. Let n = |G|. As follows from the
proof of Proposition 5.11(i), G is a stable image of the (n − 1)-fork F. Therefore,
(F,G) is an S-frame and (F,G) 6|= t(ϕ). Thus, ϕ 6∈ ζ2(S). On the other hand,
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S 6⊆ η1(LC) + 2p ↔ p because ( , ) satisfies η1(LC) + /2p ↔ p but refutes S.

Consequently, ζ−12 (LC) does not have a largest element.

We will use the above correspondence between si-logics and Σ(SIS4) to provide another
characterization of stable logics.

Theorem 6.10. For a si-logic L, the following are equivalent.

(i) L is a stable logic.
(ii) η2(L) ⊆ η1(L).

(iii) η2(L) + {/ϕ | ϕ ∈ L} = η1(L).
(iv) ζ2η1(L) = L.
(v) For every ϕ ∈ LIPC, from /ϕ ∈ η1(L) it follows that /t(ϕ) ∈ η1(L).

Proof. (i)⇒(ii). Suppose that (F,G) |= η1(L). By Lemma 6.6(i), F |= L. Since L is a stable
logic, G |= L. Therefore, by Lemma 6.6(ii), (F,G) |= η2(L). Thus, η2(L) ⊆ η1(L).

(ii)⇒(iii). This is obvious.
(iii)⇒(iv): By Lemmas 6.7(ii) and 6.5(ii), L = ζ2η2(L) = Log({G | (F,G) |= η2(L)}) and

ζ2η1(L) = Log({G | (F,G) |= η1(L)}). Therefore, it is sufficient to show that {G | (F,G) |=
η2(L)} = {G | (F,G) |= η1(L)}. The inclusion ⊇ is immediate from (iii). For the reverse
inclusion, suppose that (F,G) |= η2(L). By Lemma 6.6(ii), G |= L, so (G,G) |= η1(L) by
Lemma 6.6(i). Thus, G ∈ {G | (F,G) |= η1(L)}.

(iv)⇒(v). Suppose that there is ϕ ∈ LIPC such that /ϕ ∈ η1(L) but /t(ϕ) 6∈ η1(L). Then
there is an St-frame (F,G) with (F,G) |= η1(L) and (F,G) 6|= t(ϕ). By Lemma 6.5(ii),
(F,G) |= η1(L) implies G |= ζ2η1(L) = L. Also, (F,G) 6|= t(ϕ) implies G 6|= ϕ. Therefore,
ϕ 6∈ L, contradicting /ϕ ∈ η1(L).

(v)⇒(i). Suppose that F is a rooted L-frame and G is a stable image of F. Then (F,G) is
an St-frame, and by Lemma 6.6(i), (F,G) |= η1(L). By (v), (F,G) |= t(ϕ) for each ϕ ∈ LIPC

such that /ϕ ∈ η1(L). Therefore, (F,G) |= t(ϕ) for each ϕ ∈ L. Thus, G |= L, and we
conclude that L is a stable logic. �

Theorem 6.11. Let L be a si-logic. Then Stab↓(L) = ζ2η1(L).

Proof. By Lemma 6.5(ii),

ζ2η1(L) = Log ({G | ∃F : (F,G) is an St-frame and F |= L}) .

Let
K = {G | ∃F : (F,G) is an St-frame and F |= L},
K ′ = {G | G is a stable image of a rooted L-frame F}.

By Proposition 5.7(i), Stab↓(L) = Log(K ′). Clearly K ⊆ K ′, so Stab↓(L) = Log(K ′) ⊆
Log(K) = ζ2η1(L). Suppose that ϕ 6∈ Stab↓(L). Then there is G ∈ K ′ refuting ϕ. Therefore,
there is an L-frame F such that G is a stable image F. Applying [5, Lem. 3.6] yields a
finite stable image G′ of G refuting ϕ. Since G′ is finite, (F,G′) is an St-frame (because the
topological condition of Definition 6.1 trivializes), so G′ ∈ K. Thus, ϕ 6∈ ζ2η1(L). �

Remark 6.12.
(i) Let L be a si-logic and ϕ ∈ LIPC. By Theorem 6.11, ϕ ∈ Stab↓(L) iff t(ϕ) ∈
SIS4 + {/ϕ | ϕ ∈ L}. In particular, if SIS4 + {/ϕ | ϕ ∈ L} is decidable, then so is
Stab↓(L).
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(ii) In contrast to Theorem 6.11, if L is consistent, then ζ1η2(L) = IPC. Indeed, suppose
F is a nonempty Esakia frame. Let G be the one-point frame. Then (F,G) is an
St-frame. Since L is consistent, G is an L-frame, so (F,G) |= η2(L) by Lemma
6.6(ii), and hence F |= ζ1η2(L) by Lemma 6.5(i). Thus, ζ1η2(L) = IPC.

Remark 6.13. We recall [8] that a stable map f : F→ G between Esakia frames is cofinal
stable provided max ↑ f(x) = f (max ↑x), where maxU is the set of maximal points of
U . A si-logic L is cofinal stable provided its rooted frames are closed under cofinal stable
images (that is, if F is an L-frame, then so is every cofinal stable image of F). It follows
from [8] that cofinal stable images of an Esakia frame F correspond to pseudocomplemented
sublattices (that is, bounded sublattices preserving ¬) of the dual Heyting algebra A of F.
Since being a pseudocomplemented sublattice is expressed by adding 2¬2p↔ ¬2p to SIS4,
the correspondence between stable logics and the multi-conclusion consequence relations
extending SIS4 discussed in this section extends to the correspondence between cofinal stable
logics and the multi-conclusion consequence relations extending SIS4 + /2¬2p↔ ¬2p.
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