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Abstract. We introduce the concept of a Zemanian logic above S4.3 and prove that an
extension of S4.3 is the logic of a Tychonoff HED-space iff it is Zemanian.

1. Introduction

It is a well-known theorem of McKinsey and Tarski [20] that when interpreting modal box
as topological interior, S4 is the logic of any separable crowded metric space. Recently this
result has been generalized in several directions. The McKinsey-Tarski completeness was
generalized to strong completeness in [19], and the modal logic of an arbitrary metric space
was axiomatized in [5]. When looking at non-metric spaces, S4.2 axiomatizes extremally
disconnected spaces (ED-spaces) and S4.3 axiomatizes hereditarily extremally disconnected
spaces (HED-spaces); see, e.g., [1, pg. 253] and [2, Prop. 3.1]. It follows from [6, Prop. 4.3]
that S4.2 is the logic of the Gleason cover E(I) of the closed real unit interval I = [0, 1],
and by [2, Thm. 3.6], S4.3 is the logic of a countable subspace of E(I). In this note we
characterize the logic of an arbitrary Tychonoff HED-space. We introduce the concept of a
Zemanian logic above S4.3 and show that an extension of S4.3 is the logic of a Tychonoff
HED-space iff it is Zemanian. We call these logics Zemanian because of their relationship to
the Zeman logic S4.Z and its generalizations S4.Zn introduced in [3].

2. S4.3 and its extensions

We assume the reader is familiar with the basic concepts and tools of modal logic (see,
e.g., [10, 18, 7]). We will be mainly interested in the modal logic

S4.3 = S4 + �(�p→ q) ∨�(�q → p)

and its consistent extensions. By the Bull-Fine theorem [9, 15], there are countably many
extensions of S4.3, each is finitely axiomatizable, and has the finite model property (fmp).
In fact, each L ⊇ S4.3 is a cofinal subframe logic (see, e.g., [10, Example 11.14]).

Rooted frames for S4.3 are rooted S4-frames F = (W,R) such that wRv or vRw for
each w, v ∈ W . They can be thought of as chains of clusters. We will refer to them as
quasi-chains. By the Bull-Fine theorem, we will work only with finite quasi-chains. A finite
quasi-chain F is depicted in Figure 1, where min(F) and max(F) denote the minimum and
maximum clusters of F, respectively.

For a finite quasi-chain F, let χF denote the (negation of the) Jankov-Fine formula of F.
It follows from Fine’s theorem [16] that for any S4.3-frame G,

G � χF iff F is not a p-morphic image of a generated subframe of G.

Let Q be the set of all non-isomorphic finite quasi-chains. For F,G ∈ Q, define F ≤ G
iff F is a p-morphic image of a generated subframe of G. Then ≤ is a partial ordering of Q
and there are no infinite descending chains in (Q,≤). For each extension L of S4.3, let FL
be the subset of Q consisting of L-frames. Then FL is a downset of Q, and the assignment
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Figure 1. A finite quasi-chain F.

L 7→ FL is a dual isomorphism between the extensions of S4.3 and the downsets of Q.
Moreover, each L is finitely axiomatizable by adding to S4.3 the Jankov-Fine formulas χF

where F ∈ min(Q \ FL).
The following lemma, which shows that p-morphic images of a finite quasi-chain correspond

to its cofinal subframes, is a version of [15, §4 Lem. 6].

Lemma 2.1. Let F and G be finite quasi-chains. Then F is a p-morphic image of G iff F
is isomorphic to a cofinal subframe of G.

Proof. Let F = (W,R) and G = (V, S). Suppose there is a cofinal subframe H = (U, S) of
G and an isomorphism f from H to F. If V = U , then there is nothing to show. Suppose
V 6= U . For x ∈ V \U , since U is cofinal, S(x)∩U 6= ∅. Therefore, min(S(x)∩U) 6= ∅ and
is contained in a cluster of G. Pick yx ∈ min(S(x) ∩ U) and define g : V → W by

g(x) =

{
f(x) if x ∈ U,
f(yx) otherwise.

That g is a well-defined onto map follows from the definition. To see that g is a p-morphism,
suppose xSy. Then S(y) ⊆ S(x). Therefore, S(y) ∩ U ⊆ S(x) ∩ U , and so for each
u ∈ min(S(x)∩U) and each v ∈ min(S(y)∩U), we have uSv. Thus, f(u)Rf(v), which yields
g(x)Rg(y). Next suppose g(x)Rz. Then there is u ∈ U such that xSu and f(u)Rz. Since f
is an isomorphism, there is v ∈ U such that uSv and f(v) = z. Therefore, xSv and g(v) = z.
Thus, g is an onto p-morphism, and hence F is a p-morphic image of G.

Conversely, suppose there is a p-morphism g from G onto F. Since g is onto, g−1(w) 6= ∅
for each w ∈ W . Therefore, max(g−1(w)) 6= ∅. Pick mw ∈ max(g−1(w)) 6= ∅ and let
U = {mw | w ∈ W}. Suppose x ∈ V . Then xSmg(x) and mg(x) ∈ U . Thus, U is cofinal in V .
Let f be the restriction of g to U . Clearly f is a bijection between U and W . To see that f
is an isomorphism, observe that wRv iff mwSmv. Thus, f is an isomorphism from a cofinal
subframe of G onto F. �

As an easy consequence of Lemma 2.1, we obtain:

Lemma 2.2. A generated subframe of a finite quasi-chain F is a p-morphic image of F.

Proof. Since F is a quasi-chain, a generated subframe of F is a cofinal subframe of F. Now
apply Lemma 2.1. �

As an immediate consequence of Lemmas 2.1 and 2.2, we obtain:

Lemma 2.3. For finite quasi-chains F and G, the following are equivalent:

(1) F ≤ G.
(2) F is a p-morphic image of G.
(3) F is isomorphic to a cofinal subframe of G.
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3. Zemanian logics

In this section we introduce the concept of a Zemanian logic above S4.3. We call F ∈ Q
uniquely rooted if its root cluster is a singleton. Otherwise we call F non-uniquely rooted. By
Cκ we denote a cluster of cardinality κ. Let Fr be the ordinal sum C1 ⊕ F which appends a
‘new’ unique root r beneath F (see Figure 2). We view F as a generated subframe of Fr.

F

•
C1

Fr

r

Figure 2. Appending ‘new’ root to F.

Definition 3.1. Let L be a consistent logic above S4.3. We call L Zemanian provided for
each non-uniquely rooted F ∈ FL, we have Fr ∈ FL.

To motivate the name ‘Zemanian logic’ we recall that the Zeman logic S4.Z is obtained
by adding to S4 the Zeman axiom

zem = �♦�p→ (p→ �p).

It is well known (see, e.g., [22]) that S4.Z is the logic of finite uniquely rooted S4-frames of
depth 2. In [3], the Zeman formula was generalized to n-Zeman formulas

zemn = �(� (�pn+1 → bdn)→ pn+1)→ (pn+1 → �pn+1),

and the Zeman logic was generalized to n-Zeman logics S4.Zn = S4 + zemn (n ≥ 1). By [3,
Lem. 7.6], S4.Z = S4.Z1, and it follows from [3, Rem. 7.4] that each S4.Zn is the logic of
finite uniquely rooted S4-frames of depth n+ 1.

Let S4.3.Zn = S4.3 + zemn. The next lemma shows that S4.3.Zn is a Zemanian logic,
hence Definition 3.1 generalizes the concept of n-Zeman logics for extensions of S4.3. For
n ≥ 1, let

bd1 = ♦�p1 → p1,

bdn+1 = ♦ (�pn+1 ∧ ¬bdn)→ pn+1,

It is well known (see, e.g., [10, Prop. 3.44]) that F � bdn iff F is of depth ≤ n.

Lemma 3.2. If L is a Zemanian logic of finite depth, then L ` zemn for some n ≥ 1.

Proof. Suppose L is a Zemanian logic of finite depth. Since L is of finite depth, there is a
least n ≥ 0 such that L ` bdn+1. Let F ∈ FL. Then the depth of F is ≤ n + 1. Suppose
that the depth of F is n+ 1. If F is not uniquely rooted, then since L is Zemanian, Fr ∈ FL.
But the depth of Fr is n+ 2, so Fr 6� bdn+1, a contradiction. Therefore, F must be uniquely
rooted. Thus, by [3, Rem. 7.4], F � zemn, and so L ` zemn. �

Remark 3.3. The converse of Lemma 3.2 is not true in general. To see this, let L be the
logic of the two point cluster C2 shown in Figure 3. Then FL = {C1,C2}. Since the depth of
both C1 and C2 is 1 < 2, we have that L ` zem1. But L is not Zemanian because Cr2 6∈ FL.

Example 3.4.
(1) It is clear that S4.3 and S4.3.Zn are Zemanian.
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C2

�� ��• •

Figure 3. The two point cluster C2.

(2) It is also obvious that Grz.3 is Zemanian, and so is the logic of the cluster C1.
(3) On the other hand, neither S5 nor S4.3n = S4.3 + bdn is Zemanian. Neither is the

logic of the cluster Cn for n ≥ 2.
(4) If L is a consistent extension of S4.3 such that L 6⊆ S5, then S5∩L is not Zemanian.

Indeed, since L is consistent and L 6⊆ S5, there is n ≥ 2 such that Cn /∈ FL. But then
Crn /∈ FL. Therefore, Cn ∈ FS5 ∪ FL but Crn /∈ FS5 ∪ FL. Since FS5∩L = FS5 ∪ FL,
we see that S5 ∩ L is not Zemanian. For example, S5 ∩Grz.3 is not Zemanian.

We next describe all Zemanian logics above S4.3.Z = S4.3+zem. It is clear that FS4.3.Z =
{Cn,Crn | n ≥ 1}. A picture of FS4.3.Z with the partial order induced from Q is shown in
Figure 4.
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Figure 4. The poset FS4.3.Z.

The lattice of extensions of S4.3.Z is dually isomorphic to the lattice of downsets of
FS4.3.Z. The lattice of consistent extensions of S4.3.Z is shown in Figure 5, where Log(F)
denotes the logic of F and the Zemanian logics above S4.3.Z are denoted by the larger dots.

The remainder of this section is dedicated to establishing some basic facts about Zemanian
logics. For L ⊇ S4.3, let UL = {F ∈ FL | F is uniquely rooted}.

Lemma 3.5. Let L ⊇ S4.3 be consistent. Then L is Zemanian iff UL is cofinal in FL.

Proof. Suppose L is Zemanian and let F ∈ FL. If F ∈ UL, then there is nothing to show. So
let F 6∈ UL. Then F is non-uniquely rooted. Since L is Zemanian, Fr ∈ FL. Clearly Fr is
uniquely rooted and F ≤ Fr. Thus, UL is cofinal in FL.

Conversely, suppose UL is cofinal in FL. Let F ∈ FL be non-uniquely rooted. Then there
is G ∈ UL such that F ≤ G. Therefore, it follows from Section 2 that up to isomorphism,
F is a cofinal subframe of G. Since G is uniquely rooted and F is non-uniquely rooted, the
root of G is not in F. Thus, we may identify the root of Fr with the root of G, yielding that
Fr is isomorphic to a cofinal subframe of G. Consequently, Fr ≤ G. Since FL is a downset
of Q and G ∈ FL, we see that Fr ∈ FL. Thus, L is a Zemanian logic. �

For a class of frames K, let Log(K) denote the logic of K.

Lemma 3.6. A Zemanian logic is the logic of its finite uniquely rooted quasi-chains.

Proof. Because L has the fmp, we have that L = Log(FL) ⊆ Log(UL). Suppose that L 6` ϕ.
Then there is F ∈ FL such that F 6� ϕ. If F ∈ UL, then there is nothing to show. Suppose
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Figure 5. The lattice of consistent extensions of S4.3.Z.

F 6∈ UL. Then F is non-uniquely rooted. Since L is Zemanian, Fr ∈ UL. As F is a generated
subframe of Fr, from F 6� ϕ it follows that Fr 6� ϕ. Thus, L = Log(UL). �

We finish the section by axiomatizing Zemanian logics by means of Jankov-Fine formulas.
For F ∈ Q, let Fa be the ordinal sum C2 ⊕ (F \ min(F)) shown in Figure 6. Intuitively, Fa

is obtained by replacing the root cluster of F by the two point cluster. When F is uniquely
rooted, this amounts to adding a second root.

Theorem 3.7. Let L ⊇ S4.3 be consistent. Then L is Zemanian iff for each G ∈ min(Q \
FL), either G is non-uniquely rooted or G \ {r} is uniquely rooted and (G \ {r})a 6∈ FL.

Proof. Suppose for each G ∈ min(Q \ FL), either G is non-uniquely rooted or G \ {r} is
uniquely rooted and (G \ {r})a 6∈ FL. Let F ∈ FL be non-uniquely rooted. If Fr 6∈ FL,
then there is G ∈ min(Q \ FL) such that G ≤ Fr. Therefore, up to isomorphism, G is a

�� �� �� ��
F

min(F)

F \min(F) Fa

C2• •

Figure 6. The frame Fa.
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cofinal subframe of Fr. Since Q \ FL is an upset of Q and F ∈ FL, we have that G 6≤ F, so
G is not isomorphic to any cofinal subframe of F. Thus, ∅ 6= G \ F ⊆ Fr \ F = {r}, and
hence G is uniquely rooted. By assumption, this yields that G \ {r} is uniquely rooted and
(G \ {r})a 6∈ FL. Because G is cofinal in Fr, it follows that G \ {r} is cofinal in Fr \ {r} = F.
Without loss of generality, we may assume that the root of G \ {r} is contained in the root
cluster of F. Since F is non-uniquely rooted, we have that (G \ {r})a is isomorphic to a
cofinal subframe of F. Therefore, (G \ {r})a ≤ F. As FL is a downset, we obtain that
(G\{r})a ∈ FL. The obtained contradiction proves that Fr ∈ FL, and hence L is Zemanian.

For the converse, we proceed by contraposition. Suppose there is G ∈ min(Q \ FL) such
that G is uniquely rooted, and either G\{r} is non-uniquely rooted or (G\{r})a ∈ FL. Since
G is uniquely rooted, G = (G \ {r})r. First suppose G \ {r} is non-uniquely rooted. The
minimality of G in Q \ FL yields that G \ {r} ∈ FL. Therefore, L is not Zemanian because
G \ {r} ∈ FL is non-uniquely rooted and (G \ {r})r = G 6∈ FL. Next suppose G \ {r}
is uniquely rooted. Then (G \ {r})a ∈ FL. By construction, (G \ {r})a is non-uniquely
rooted. Because G \ {r} is uniquely rooted, G \ {r} is isomorphic to a cofinal subframe of
(G \ {r})a, so G \ {r} ≤ (G \ {r})a. Since G is uniquely rooted and G \ {r} ≤ (G \ {r})a,
it follows that G = (G \ {r})r is isomorphic to a cofinal subframe of ((G \ {r})a)r, hence
G ≤ ((G \ {r})a)r. AsQ\FL is an upset inQ containing G, we have that ((G \ {r})a)r 6∈ FL.
Thus, (G \ {r})a ∈ FL but ((G \ {r})a)r 6∈ FL, and so L is not Zemanian. �

Corollary 3.8. Let L ⊇ S4.3. If min(Q \ FL) = {G}, then L is Zemanian iff G is non-
uniquely rooted.

Proof. Suppose that G is non-uniquely rooted. Then every quasi-chain in min(Q\FL) is non-
uniquely rooted, so L is Zemanian by Theorem 3.7. Conversely, suppose that L is Zemanian.
Then Theorem 3.7 yields that either G is non-uniquely rooted or G \ {r} is uniquely rooted
and (G \ {r})a 6∈ FL. We show that the latter condition is never satisfied when min(Q\FL)
is a singleton. Suppose that both G and G \ {r} are uniquely rooted. Since the depth of G
is greater than the depth of (G \ {r})a, we have that G is not isomorphic to any subframe
of (G \ {r})a. Therefore, G 6≤ (G \ {r})a, and so (G \ {r})a ∈ FL. �

4. S4.3 and HED-spaces

We assume the reader is familiar with basic topological concepts (see, e.g., [14]). For a
topological space X, we use cX and iX for closure and interior in X, respectively. We recall
that a topological space X is extremally disconnected (ED) if the closure of any open set
is open, and X is hereditarily extremally disconnected (HED) if every subspace of X is ED.
While HED is clearly a stronger concept than ED, it is of note that every countable Hausdorff
ED-space is HED (see, e.g., [8, pg. 86]). As we pointed out in the introduction, if we interpret
� as topological interior, and hence ♦ as topological closure, then S4.2 = S4+♦�p→ �♦p
axiomatizes all ED-spaces, and S4.3 axiomatizes all HED-spaces.

Since S4-frames can be viewed as special topological spaces, called Alexandroff spaces,
in which each point has a least open neighborhood (namely the set of points that are R-
accessible from it), relational completeness of logics above S4 clearly implies their topological
completeness. However, Alexandroff spaces do not satisfy higher separation axioms. In fact,
an Alexandroff space is T1 iff it is discrete. Therefore, obtaining completeness with respect
to “good” topological spaces, such as Tychonoff spaces, requires additional work.

As we pointed out in the introduction, S4.2 is the logic of the Gleason cover E(I) of the
real unit interval I = [0, 1], and S4.3 is the logic of a countable subspace of E(I). Our goal
is to build on this and show that an extension of S4.3 is the logic of a Tychonoff HED-space
iff it is a Zemanian logic. The key technique is to associate a Tychonoff HED-space XF with
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each uniquely rooted finite quasi-chain F of depth > 1 so that the logic Log(XF) of the space
XF is equal to Log(F). For this we require some tools.

We recall that the Gleason cover E(X) of a compact Hausdorff space X is the (unique up
to homeomorphism) compact Hausdorff ED-space for which there exists an irreducible map
π : E(X) → X (an onto continuous map such that the image of a proper closed subspace
is proper). The Gleason cover of X is realized as the Stone space of the complete Boolean
algebra of regular open subsets of X, accompanied by the mapping π(∇) =

⋂
{cX(U) | U ∈

∇} (see [17]). The Cantor cube, 2c, is the topological product of continuum many copies of
the two-point discrete space 2. We will consider the Gleason cover E(2c) of the Cantor cube
2c.

A space X is resolvable provided there is a dense subset D of X such that X \D is dense in
X. If X is not resolvable, then X is irresolvable. If every subspace of X is irresolvable, then
X is hereditarily irresolvable, and X is open-hereditarily irresolvable if every open subspace
of X is irresolvable. A space X is nodec provided every nowhere dense subset is closed
(equivalently, closed and discrete).

Definition 4.1. [11, §2] Suppose X is a topological space.

(1) For a subspace Y of X, let

N(Y ) =
⋃
{cX(D) | D is a countable discrete subspace of Y }.

(2) The subspaces Y and Z of X are far if N(Y ) ∩N(Z) = ∅.

Theorem 4.2. [11, §4] There is a countable pairwise disjoint family A of countable crowded
dense subsets of E(2c) such that

(1) Each element of A is a nodec open-hereditarily irresolvable ED-space.
(2) Distinct elements of A are far.

Remark 4.3. As follows from [11, §4], each element of A is not only nodec and open-
hereditarily irresolvable, but also maximal, hence submaximal, and hence also hereditarily
irresolvable.

A dense partition of a topological space X is a pairwise disjoint collection P of dense
subsets of X such that X =

⋃
P . Call X n-resolvable provided there is a dense partition of

X consisting of n elements; otherwise X is called n-irresolvable.
Let A be as in Theorem 4.2. Enumerate A = {A1, . . . , An, . . . } and set X = A1∪· · ·∪An.

Lemma 4.4.
(1) X is nodec.
(2) If k > n and N is nowhere dense in X, then N(Ak) ∩ cE(2c)(N) = ∅.
(3) A nonempty open subspace U of X is n-resolvable and (n+ 1)-irresolvable.

Proof. (1). Suppose N is nowhere dense in X. We show that Ni := N ∩Ai is nowhere dense
in the subspace Ai. Let U be an open subset of Ai such that U ⊆ cX(Ni). Then there is an
open subset V of X such that U = V ∩ Ai. Since Ai is dense in X, we have V ⊆ cX(U).
Therefore, V ⊆ cX(Ni) ⊆ cX(N). Because N is nowhere dense in X, we have V = ∅. Thus,
U = ∅, and so Ni is nowhere dense in Ai.

Since Ai is nodec, Ni is closed and discrete. If i 6= j, then Ai and Aj are far. Therefore,
as Ni is countable,

cE(2c)(Ni) ∩ Aj ⊆ N(Ai) ∩N(Aj) = ∅.



8 G. BEZHANISHVILI, N. BEZHANISHVILI, J. LUCERO-BRYAN, J. VAN MILL

Thus,

cX(N) = cX

(
n⋃
i=1

Ni

)
=

n⋃
i=1

cX(Ni) =
n⋃
i=1

[
cE(2c)(Ni) ∩X

]
=

n⋃
i=1

[
cE(2c)(Ni) ∩

n⋃
j=1

Aj

]

=
n⋃
i=1

n⋃
j=1

(
cE(2c)(Ni) ∩ Aj

)
=

n⋃
i=1

cE(2c)(Ni) ∩ Ai =
n⋃
i=1

cAi
(Ni) =

n⋃
i=1

Ni = N,

and so N is closed in X. This yields that X is a nodec space.
(2). Suppose k > n. Then Ai and Ak are far for each i ≤ n. Since Ni is a countable

discrete subset of Ai, we have

N(Ak)∩cE(2c)(N) = N(Ak)∩
n⋃
i=1

cE(2c)(Ni) =
n⋃
i=1

N(Ak)∩cE(2c)(Ni) ⊆
n⋃
i=1

N(Ak)∩N(Ai) = ∅.

(3). Let U be a nonempty open subspace of X. Note that X is n-resolvable since
{A1, . . . , An} is a dense partition of X. Therefore, U is n-resolvable by [12, Prop. 1.1(c)].
Since Ai is dense, U ∩ Ai is a nonempty open subset of Ai, and hence a crowded open-

hereditarily irresolvable space. Because U =
n⋃
i=1

(U ∩ Ai), it follows from [12, Lem. 3.2(a)]

that U is (n+ 1)-irresolvable. �

For m > 1 and a finite uniquely rooted quasi-chain F of depth m, we construct XF by
recursion on m. Suppose max(F) consists of n elements.

Base case: For m = 2, set XF =
⋃n
i=1Ai. Then XF is a countable dense subspace of E(2c),

and hence XF is a countable crowded ED-space.

Recursive step: Suppose m > 2, G := F \max(F), and Y := XG is already built. So Y is a
countable crowded ED-space constructed from the finite uniquely rooted quasi-chain G. Let
Z =

⋃n
i=1Ai. Since An+1 is crowded, it is easy to construct a countable family {Ui | i ∈ ω} of

open sets in An+1 such that their closures in An+1 are pairwise disjoint. Picking a point from
each Ui then yields a countably infinite closed discrete subset D of An+1. By [23, Prop. 1.48],
cE(2c)(D) is homeomorphic to βω since countable sets in an ED-space are C∗-embedded (see,
e.g., [23, Prop. 1.64]). Also, cE(2c)(D) ∩ Z = ∅ since Ai and An+1 are far for all i ≤ n.

By Efimov’s theorem [13] (see also [21, Thm. 1.4.7]), each compact Hausdorff ED-space of
weight ≤ c can be embedded in βω. Therefore, βY and hence Y is embedded in βω, which
is homeomorphic to cE(2c)(D). Since Y is crowded, we may assume that Y is a subspace of
cE(2c)(D) \D. We set XF to be the subspace Y ∪ Z of E(2c); see Figure 7.

5. Properties of XF

It follows from the construction that XF is a countable crowded Tychonoff ED-space, and
hence an HED-space. Moreover, Z is open and dense in XF and Y is closed and nowhere
dense in XF. To see this, Y ⊆ cE(2c)(D) gives Y ∩ Z = ∅, so Y = XF ∩ cE(2c)(D) is closed
in XF, and so Z = XF \ Y is open in XF. Since each Ai is dense in E(2c), it follows that Z
is dense in XF. As Z is open and dense in XF, we see that Y = XF \ Z is nowhere dense.

We recall that a map f : X → Y between topological spaces is interior provided f is
continuous and open. If f is an onto interior map, then we call Y an interior image of X.
Our next goal is to show that F, viewed as an Alexandroff space, is an interior image of XF.
This requires some preliminary lemmas.
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Figure 7. Recursive step defining XF = Y ∪ Z.

Lemma 5.1. Let X, Y be topological spaces and f : X → Y be an onto interior map.
Suppose C ⊆ Y is closed and D = f−1(C). Then the restriction of f to D is an interior
mapping onto C.

Proof. Let g be the restriction of f to D. Since f is continuous and onto, g is continuous
and onto C. For an open subset U of X, we show that g(U ∩D) = f(U) ∩ C. We have

g(U ∩D) = f(U ∩D) ⊆ f(U) ∩ f(D) = f(U) ∩ f(f−1(C)) = f(U) ∩ C.

Conversely, if y ∈ f(U) ∩ C, then there is x ∈ U such that f(x) = y. Since y ∈ C, we have
x ∈ f−1(C). Therefore, x ∈ U ∩D, and so y ∈ f(U ∩D) = g(U ∩D). Thus, g is in addition
open, and the proof is complete. �

Lemma 5.2. A dense subspace of a crowded T1-space is crowded.

Proof. Let Y be a dense subspace of a crowded T1-space X. If x ∈ Y is isolated in Y , then
there is U open in X such that {x} = Y ∩ U . Since X is T1, U \ {x} is open. Because
X is crowded, U \ {x} is nonempty. As Y is dense in X, we have ∅ 6= Y ∩ (U \ {x}) =
(Y ∩ U) \ {x} = ∅. The obtained contradiction yields that Y is crowded. �

Let F = (W,R) be a finite quasi-chain. Call U ⊆ W an R-upset provided w ∈ U and
wRv imply v ∈ U (R-downsets are defined dually). Recall that the opens in the Alexandroff
topology on W are the R-upsets, and the closure in the Alexandroff topology is given by
R−1(A) = {w ∈ W | ∃v ∈ A with wRv}.

Lemma 5.3. Let X be a T1-space and F be a non-uniquely rooted finite quasi-chain. Then
F is an interior image of X iff Fr is an interior image of X.

Proof. First suppose there is an onto interior mapping f : X → Fr. As F is a generated
subframe of Fr, by Lemma 2.2, there is an onto p-morphism g : Fr → F. Since p-morphisms
correspond to interior maps between Alexandroff spaces, the composition g ◦ f : X → F is
an onto interior map, showing that F is an interior image of X.

Next suppose there is an onto interior mapping f : X → F. For each w ∈ min(F),
let Aw = f−1(w). Then D := f−1(min(F)) is partitioned into {Aw | w ∈ min(F)}. By
Lemma 5.1, the restriction of f is an interior mapping of D onto min(F). Therefore, since
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R−1(w) = min(F), each Aw is dense in D. Because min(F) contains more than one point, D
is crowded. By Lemma 5.2, each Aw is crowded, hence infinite.

Choose w0 ∈ min(F), x0 ∈ Aw0 , and define g : X → Fr by

g(x) =

{
r if x = x0,
f(x) if x 6= x0.

Clearly g is a well-defined map, and g is onto since g(x0) = r and Aw0 \ {x0} 6= ∅. For
w ∈ Fr, observe that

g−1(R(w)) =

 X if w = r,
X \ {x0} if w ∈ min(F),
f−1(R(w)) otherwise.

Therefore, g is continuous since X is T1 and f is continuous. For a nonempty open subset
U of X, observe that

g(U) =

{
f(U) if x0 6∈ U,
Fr if x0 ∈ U.

Thus, g is open since f is open and F is a generated subframe of Fr. Consequently, Fr is an
interior image of X. �

We are ready to prove that F is an interior image of XF.

Theorem 5.4. F is an interior image of XF.

Proof. Suppose max(F) consists of n elements. Let G = F\max(F). We proceed by induction
on m ≥ 2. First suppose m = 2. By Lemma 4.4(3), XF is n-resolvable. By [3, Lem. 7.17],
max(F) is an interior image of XF. Therefore, since F = max(F)r, Lemma 5.3 yields that F
is an interior image of XF.

Next suppose m > 2. By construction, XF = Y ∪Z, where Y = XG and Z =
⋃n
i=1Ai. By

the inductive hypothesis, there is an onto interior map g : Y → G. By Lemma 4.4(3), the
open subspace Z of XF is n-resolvable. Therefore, by [3, Lem. 7.17], there is an onto interior
map h : Z → max(F). Define f : XF → F by

f(x) =

{
g(x) if x ∈ Y,
h(x) if x ∈ Z.

Since Y and Z are complements in XF, the map f is well-defined. It is onto since g is onto
G and h is onto max(F). Moreover,

f−1(R−1(w)) =

{
XF if w ∈ max(F),
g−1(R−1(w)) if w ∈ G.

Since g is continuous and Y is closed in XF, if w ∈ G, then f−1(R−1(w)) is closed in XF.
Therefore, f is continuous. To see that f is open, let U be a nonempty open subset of XF.
Since Ai is dense in Z and hence in XF, we have U ∩ Ai 6= ∅ for all i ≤ n. So

f(U) = f(U ∩ Z) ∪ f(U ∩ Y ) = h(U ∩ Z) ∪ g(U ∩ Y ) = max(F) ∪ g(U ∩ Y ).

Because g is open and U ∩ Y is open in Y , we have g(U ∩ Y ) is an R-upset of G. Therefore,
f(U) is an R-upset of F. Thus, f is open, so f is an onto interior map, and hence F is an
interior image of XF. �

We recall the definition of the localic Krull dimension ldim(X) of a topological space X
from [3]:
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ldim(X) = −1 if X = ∅,
ldim(X) ≤ n if ldim(D) ≤ n− 1 for every nowhere dense subset D of X,
ldim(X) = n if ldim(X) ≤ n and ldim(X) 6≤ n− 1,
ldim(X) =∞ if ldim(X) 6≤ n for any n = −1, 0, 1, 2, . . . .

As follows from [3, Sec. 7], for a T1-space X, we have ldim(X) ≤ n iff X � zemn; in particular,
X is nodec iff ldim(X) ≤ 1.

Theorem 5.5. The localic Krull dimension of XF is m− 1.

Proof. The proof is by induction on m ≥ 2. First suppose m = 2. Then XF is nodec by
Lemma 4.4(1). Since XF is a crowded T1-space, it follows from [3, Lem. 7.5] that ldim(XF) =
1.

Next suppose m > 2. Let max(F) consist of n elements and G = F \ max(F). By
construction, XF = Y ∪Z, where Y = XG, Y ⊆ cE(2c)(D) ⊆ N(An+1), and Z =

⋃n
i=1Ai. By

the inductive hypothesis, ldim(Y ) = m− 2. Let N be a nowhere dense subset of XF. Since
Z is open in XF, we see that N ∩ Z is nowhere dense in Z. By Lemma 4.4(2),

Y ∩ cN(N ∩ Z) ⊆ N(An+1) ∩ cE(2c)(N ∩ Z) = ∅.

Therefore, cN(N ∩Z) ⊆ N \ Y = N ∩Z, showing that N ∩Z is closed in N . Clearly N ∩Z
is open in N since Z is open in XF. Thus, N ∩ Z is clopen in N . It follows that N is the
topological sum of N ∩ Z and N ∩ Y . By Lemma 4.4(1), Z is nodec. So by [3, Lem. 5.3],
ldim(N ∩ Z) ≤ ldim(Z) ≤ 1 ≤ m − 2 and ldim(N ∩ Y ) ≤ ldim(Y ) = m − 2. Therefore, [3,
Lem. 7.14] yields ldim(N) ≤ m − 2. Thus, by definition, ldim(XF) ≤ m − 1. But since Y
is a nowhere dense subspace of XF with ldim(Y ) = m − 2, we see that ldim(XF) 6≤ m − 2.
Consequently, ldim(XF) = m− 1. �

Lemma 5.6. Suppose a finite quasi-chain F is an interior image of X. If X has an isolated
point, then max(F) is a singleton.

Proof. Let f : X → F be an onto interior mapping. If x ∈ X is an isolated point, then since
f is interior, {f(x)} is an R-upset of F. But the least nonempty R-upset of F is max(F).
Thus, max(F) = {f(x)} is a singleton. �

Lemma 5.7. Suppose X is a nodec space and F is a finite quasi-chain. If f : X → F is an
onto interior mapping, then F = max(F) or F = max(F)r.

Proof. It is shown in [4, Prop. 3.8] that S4.Z defines the class of nodec spaces. Therefore,
an interior image of a nodec space is a nodec space. It is a consequence of [4, Prop. 4.1]
that a finite quasi-chain, viewed as an Alexandroff space, is a nodec space iff F is a cluster
or F = max(F)r. The result follows. �

Lemma 5.8. If C is a nonempty closed subset of a nodec ED-space X, then C = E ∪ F
where E and F are disjoint, E is clopen, and F is closed discrete.

Proof. Let E = cXiX(C). Then C ⊇ E and E is clopen since X is ED. Also F := C \E is a
closed nowhere dense subset of X. Therefore, F is discrete since X is nodec. Clearly E,F
are disjoint and C = E ∪ F . �

The next lemma is the main technical result of the section.

Lemma 5.9. If a finite quasi-chain G = (V,R) is an interior image of a closed subspace C
of XF, then G is isomorphic to a subframe of F. Moreover, if the interior of C is nonempty,
then G is isomorphic to a cofinal subframe of F.
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Proof. Suppose that g : C → G is an onto interior mapping, depth(F) = m, max(F) consists
of n elements, and max(G) consists of k elements. By [3, Lem. 5.3] and Theorem 5.5,
ldim(C) ≤ ldim(XF) = m− 1. Therefore, by [3, Thm. 5.6], C � bdm. Since G is an interior
image of C, we have G � bdm, and hence depth(G) ≤ m. Suppose that depth(G) = m. If G
is non-uniquely rooted, then Lemma 5.3 yields that Gr is an interior image of C. This is a
contradiction since Gr 6� bdm. Thus, if depth(G) = m, then G is uniquely rooted. We prove
that G is isomorphic to a subframe of F by induction on m ≥ 2.

Base case: Suppose m = 2. Then G = max(G) or G = max(G)r. We show that G is
isomorphic to a cofinal subframe of F. For this it is sufficient to show that max(G) consists of
no more than n elements. Since m = 2, we have that XF is a nodec ED-space, so Lemma 5.8
gives that C = E ∪ F , where E and F are disjoint, E is clopen in XF, and F is closed and
discrete in XF. If F 6= ∅, then since F is discrete, every point in F is isolated in C. Therefore,
C has an isolated point. Thus, by Lemma 5.6, max(G) is a singleton, and hence max(G)
consists of no more than n elements. If F = ∅, then C = E is open in XF, so g−1(max(G))
is open in XF. By Lemma 4.4(3), g−1(max(G)) is (n + 1)-irresolvable. Therefore, by [3,
Lem. 7.17], max(G) consists of no more than n elements. Thus, G is isomorphic to a cofinal
subframe of F.

Inductive step: Suppose m > 2. By construction, XF = Y ∪ Z, where Y := XF\max(F) is
closed and nowhere dense in XF and Z =

⋃n
i=1Ai is open and dense in XF. If C ⊆ Y , then

by the inductive hypothesis, G is isomorphic to a subframe of F \ max(F), and hence G is
isomorphic to a subframe of F.

Suppose C 6⊆ Y , so C ∩Z 6= ∅. We first show that max(G) has no more than n elements.
Since C∩Z is open in C, it follows that g|C∩Z is an interior mapping of C∩Z onto g(C∩Z),
which is a generated subframe of G, and hence contains max(G). Also C ∩Z is closed in Z.
By Lemma 4.4(1), Z is nodec, so by Lemma 5.8, there are disjoint subsets E and F of Z
such that E is clopen in Z, F is closed and discrete in Z, and C∩Z = E∪F . If F 6= ∅, then
C ∩ Z has an isolated point, and so max(G) = max(g(C ∩ Z)) is a singleton by Lemma 5.6.
So we may assume that F = ∅. But then C∩Z = E is open in Z, and so (g|C∩Z)−1(max(G))
is open in Z. By Lemma 4.4(3), g|−1C∩Z(max(G)) is (n+ 1)-irresolvable, so it follows from [3,
Lem. 7.17] that max(G) contains no more than n elements.

We next show that G is isomorphic to a cofinal subframe of F. If depth(G) = 1, then
G = max(G). Since max(G) has no more than n elements and max(F) has n elements, G is
isomorphic to a cofinal subframe of F. Suppose depth(G) > 1. The set N := g−1(G\max(G))
is a closed nowhere dense subset of C. Since the restriction g|C∩Z is interior, we have
N ∩ Z = (g|C∩Z)−1(G \max(G)) is a closed nowhere dense subset of Z. By Lemma 4.4(2),

Y ∩ cE(2c)(N ∩ Z) ⊆ N(An+1) ∩
n⋃
i=1

N(Ai) = ∅.

Therefore,

cXF
(N ∩ Z) = cXF

(N ∩ Z) ∩ (Y ∪ Z) =
(
cXF

(N ∩ Z) ∩ Y
)
∪
(
cXF

(N ∩ Z) ∩ Z
)

=
(
XF ∩ cE(2c)(N ∩ Z) ∩ Y

)
∪ cZ(N ∩ Z) = ∅ ∪ (N ∩ Z) = N ∩ Z.

Thus, N ∩ Z is closed in XF. Clearly N ∩ Z is open in N since Z is open in XF. Because
N ∩Z is closed in XF, we have that N ∩Z is clopen in N . Consequently, N ∩ Y = N \Z is
also clopen in N . We proceed by cases.

First suppose N ⊆ Z. Then N = N ∩ Z, so N is closed in XF, and hence N is closed
in C ∩ Z. Therefore, (C ∩ Z) \ N is open in C ∩ Z. The restriction g|C∩Z : C ∩ Z → G is
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interior and onto G since

g|C∩Z(C ∩ Z) = g((C ∩ Z) \N) ∪ g((C ∩ Z) ∩N)

⊇ max(G) ∪ g(N) = max(G) ∪ (G \max(G)) = G.

Because Z is nodec and C ∩ Z is a closed subspace of Z, we see that C ∩ Z is nodec.
Since depth(G) > 1, Lemma 5.7 yields that depth(G) = 2 and G is uniquely rooted. As
depth(F) = m > 2, max(F) consists of n elements, and max(G) has no more than n elements,
G is isomorphic to a cofinal subframe of F.

Next supposeN ⊆ Y . It follows from Lemma 5.1 that the restriction g|N : N → G\max(G)
is an onto interior map. Moreover, N is closed in C, which is closed in XF, so N is closed in
XF. Therefore, N is also closed in Y . By the inductive hypothesis, G\max(G) is isomorphic
to a subframe of F \max(F). Thus, G is isomorphic to a cofinal subframe of F since max(F)
consists of n elements and max(G) has no more than n elements.

Finally, suppose N ∩ Z 6= ∅ and N ∩ Y 6= ∅. By Lemma 5.1, g|N : N → G \ max(G) is
an onto interior map. Let r denote a root of G and hence a root of G\max(G). Since N ∩Z
and N ∩ Y are clopen in N , both g|N(N ∩ Z) and g|N(N ∩ Y ) are R-upsets in G \max(G).
Either r ∈ g|N(N ∩ Z) or r ∈ g|N(N ∩ Y ).

If r ∈ g|N(N ∩ Z), then g|N(N ∩ Z) = G \max(G), so g|N∩Z is an interior mapping onto
G\max(G). Since N∩Z is nowhere dense in the nodec space Z, we have that N∩Z is discrete,
so ldim(N ∩ Z) = 0, and hence depth(G \ max(G)) = 1 by [3, Thm. 5.6]. Since discrete
spaces are irresolvable, G \max(G) is a singleton by [3, Lem. 7.17]. Thus, depth(G) = 2 and
G = max(G)r. Because depth(F) = m > 2, max(F) consists of n elements, depth(G) = 2,
and max(G) has no more than n elements, G is isomorphic to a cofinal subframe of F.

If r ∈ g|N(N ∩ Y ), then g|N(N ∩ Y ) = G \max(G), so g|N∩Y is an interior mapping onto
G \ max(G). Since C is closed in XF and N is closed in C, N is closed in XF. But Y is
also closed in XF, giving that N ∩ Y is closed in XF, and so N ∩ Y is closed in Y . By the
inductive hypothesis, G \ max(G) is isomorphic to a subframe of F \ max(F). Therefore, G
is isomorphic to a cofinal subframe of F since max(F) consists of n elements and max(G) has
no more than n elements.

Consequently, we have shown that G is isomorphic to a cofinal subframe of F whenever
C 6⊆ Y . If the interior of C is nonempty, then C 6⊆ Y since Y is nowhere dense in XF. Thus,
G is isomorphic to a cofinal subframe of F and the proof is complete. �

We conclude this section by the following consequence of Lemma 5.9, which will be utilized
in the last section.

Theorem 5.10. If a finite quasi-chain G is an interior image of an open subspace of XF,
then G is a p-morphic image of F.

Proof. Suppose that there exist an open subspace U of XF and an onto interior mapping
g : U → G. Since g is onto, for each v ∈ G, there is xv ∈ g−1(v). As XF is a Tychonoff
ED-space, XF is zero-dimensional. Therefore, for each v ∈ G, there is a clopen subset Uv of
XF such that xv ∈ Uv ⊆ U . Let C =

⋃
v∈G Uv. Since G is finite, C is a clopen subset of XF

contained in U . Because C is open in U , g|C is an interior mapping of C onto G. Since C
is closed in XF and has nonempty interior, it follows from Lemma 5.9 that G is isomorphic
to a cofinal subframe of F. Thus, G is a p-morphic image of F by Lemma 2.1. �

6. Main results

In this final section we will prove the main results of the paper. Our first result determines
the logic of XF. The proof utilizes a topological version of Fine’s theorem: for a finite rooted
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S4-frame F and a topological space X, we have X � χF iff F is not an interior image of an
open subspace of X [3, Lem. 5.5].

Theorem 6.1. Log(XF) = Log(F).

Proof. By Theorem 5.4, F is an interior image of XF. Therefore, since interior images preserve
validity, Log(XF) ⊆ Log(F). For the reverse inclusion, let G be a finite quasi-chain. By Fine’s
theorem [16, §2 Lem. 1], Lemma 2.3, Theorem 5.10, and [3, Lem. 5.5],

F � χG iff G is not a p-morphic image of a generated subframe of F

iff G is not a p-morphic image of F

iff G is not an interior image of an open subspace of XF

iff XF � χG.

Since Log(F) = S4.3 + {χG1 , . . . , χGn}, where min(Q \ FLog(F)) = {G1, . . . ,Gn}, we have
F � χGi

for each i. Therefore, XF � χGi
for each i. Thus, Log(XF) ` χGi

for each i, and so
Log(F) ⊆ Log(XF). �

Lemma 6.2. Let X be a nonempty topological space and F be a finite rooted S4-frame. If
F � Log(X), then F is an interior image of an open subspace of X.

Proof. Suppose that F is not an interior image of an open subspace of X. By [3, Lem. 5.5],
X � χF, so Log(X) ` χF. Therefore, since F � Log(X), we have F � χF. The obtained
contradiction proves that F is an interior image of an open subspace of X. �

Theorem 6.3. [Main Theorem] Let L ⊇ S4.3 be consistent. Then L is the logic of a
Tychonoff HED-space iff L is Zemanian.

Proof. First suppose that L is the logic of a Tychonoff HED-space X. Let F ∈ FL be non-
uniquely rooted. By Lemma 6.2, F is an interior image of an open subspace U of X . Since
X is Tychonoff, U is T1. Therefore, by Lemma 5.3, Fr is an interior image of U . Because
open subspaces and interior images preserve validity, Fr ∈ FL. Thus, L is Zemanian.

Conversely, suppose L is Zemanian. If L ` p → �p, then L is the logic of a singleton
space X, and hence the logic of a Tychonoff HED-space. Suppose L 6` p → �p. Then FL
contains a quasi-chain consisting of more than a single point. Therefore, since L is Zemanian,
there is F ∈ UL \ {C1}. By Lemma 3.6, L = Log(UL) ⊆ Log(UL \ {C1}). Because C1 is a
p-morphic image of F, we have that F can refute any formula refuted on C1, and hence
Log(UL) ⊇ Log(UL \ {C1}). Let X be the topological sum of the XF where F ∈ UL \ {C1}.
Since the logic of a topological sum is the intersection of the logics of the summands, by
Theorem 6.1,

Log(X) =
⋂
{Log(XF) | F ∈ UL \ {C1}}

=
⋂
{Log(F) | F ∈ UL \ {C1}} = Log(UL \ {C1}) = Log(UL) = L.

As each XF is a Tychonoff HED-space, X is a Tychonoff HED-space. Thus, L is the logic of
a Tychonoff HED-space. �

Remark 6.4.
(1) The Tychonoff HED-space X built in the proof of Theorem 6.3 is countable because

in the case when L ` p → �p, X is a singleton; and in the case when L 6` p → �p,
since UL is countable, X is a countable topological sum of countable spaces, hence
X is countable. On the other hand, since a countable Tychonoff ED-space is HED,
the only logics above S4.2 that have the countable model property with respect to
Tychonoff spaces are Zemanian extensions of S4.3.
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(2) Since S4.3 is Zemanian, by Theorem 6.3, S4.3 is the logic of a countable crowded
Tychonoff HED-space X. A different construction of such an X was given in [2], where
X was constructed as a subspace of the Gleason cover E(I) of the real unit interval
I = [0, 1]. The recursive process of [2] constructing X is based on nesting ω copies of
E(I) within itself by first selecting a countable ω-resolvable dense subspace X1 of E(I)
such that a homeomorphic copy E1 of E(I) is contained in E(I) \X1, then repeating
the base step in each En giving Xn+1 and En+1 ⊆ En \ Xn+1, and finally setting
X =

⋃∞
i=1Xi. Comparing the construction of [2] to the construction of Section 4,

we note that the current construction builds ‘upwards from the bottom’ whereas the
previous construction builds ‘downwards from the top’. Also, the current construction
provides control over the resolvability at each stage, while the previous one does not.
On the other hand, the previous construction does not require topological sums.

(3) Instead of nesting ω copies of E(I) within itself we can nest ω copies of βω within
itself as follows. Observe that there is a subspace of βω\ω homeomorphic to βω. Let
βn be homeomorphic to βω and Dn be the isolated points of βn for n ≥ 1. Embed
βn+1 in βn \ Dn and set X =

⋃∞
n=1Dn. Then X a countable scattered Tychonoff

HED-space, and hence Log(X) = Grz.3. If we nest only n + 1 copies of βω within
itself, then the logic of the so obtained X is Grz.3.Zn := Grz.3 + zemn (note that
Grz.3.Zn = Grz.3 + bdn+1).

(4) In contrast to (4), the Tychonoff HED-space X built in the proof of Theorem 6.3
for the case when L 6` p → �p is crowded since XF is crowded for each F ∈ UL of
depth > 1. If the uniquely rooted F is such that it has a unique maximal point (and
depth(F) > 2), a slight modification of the construction of Section 4 can produce a
Tychonoff HED-space XF in which the isolated points are dense. Let Y = XF\max(F)

be as in the recursive step defining XF. Up to homeomorphism, Y is a subspace of
βω \ ω (see Figure 7). Identify D with ω and cE(2c)(D) with βω. Take XF to be the
subspace Y ∪ ω of βω. Then the isolated points of XF are dense.
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