
Readtable-Macro Transducer-Chain Parsing

MSc Thesis (Afstudeerscriptie)

written by

Eli T. Drumm
(born June 27th, 1989 in New Orleans, Louisiana, USA)

under the supervision of Dr Bruno Loff and Dr Leen Torenvliet, and
submitted to the Board of Examiners in partial fulfillment of the requirements

for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
July 4th, 2016 Prof Dr Ronald M. de Wolf (chair)

Dr Bruno Loff
Dr Leen Torenvliet
Prof Dr J.J. Vinju
Prof Dr Jan van Eijck



Abstract

While extending the semantics of programming languages is commonplace, ex-
tending their syntax is usually not possible. In this thesis, we are concerned
with the problem of parsing programming languages that are simultaneously
syntactically extensible and human-readable. The quintessential extensible pro-
gramming language, Lisp, can be extended by two separate macro systems that
allow user-defined syntactic features to be integrated naturally and directly into
the parser. However, the default syntax of Lisp is notoriously unreadable. Other
languages, such as Python, are highly readable, but are designed and parsed in
ways that leave the syntax essentially frozen from the user’s perspective.

We will propose a new parsing method, called Readtable-Macro Transducer-
Chain parsing, that is inspired by Lisp’s reader algorithm. This algorithm is
naively extended to add support for readable syntactic structures (such as infix
notation), while retaining the spirit of simplicity and modularity that is its
characteristic.

As a proof-of-concept, we implement a compiler for a new programming
language called Anoky — essentially an alternative syntax for Python.
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Chapter 1

Towards a Readable,
Extensible Syntax

Extensibility is an indispensable part of modern programming languages. Vari-
able definitions, user-defined types and classes, libraries, modules and import
systems, interfaces with other languages, are all extensions in some form or
another.

Our concern in this thesis is syntactic extensibility of programming lan-
guages. This is not a new idea. Many languages incorporate features that give
users limited ways to modify the default syntax, for example defining custom
operators. Usually, though, syntax is one of the unprogrammable parts of a
programming language. A programmer (or group, or community) may want or
need to add or customize

• new control structures or abbreviations for frequently-used patterns (foreach
, parallel-for, ...)

• new notation for a new kind of data-type (GObjects, . . . )

• new notation for literals (regexps, . . . )

• annotations for a certain purpose (documentation, contracts, . . . )

• alternative parsing at the top level (for literate programming, mathemat-
ical notebooks, . . . )

• support for embedding data, markup, or code written in domain-specific
languages (SQL, HTML, . . . )

But unless the language has implemented an explicit extension mechanism
for that particular situation, there is no way to do it, other than maybe writing
a compiler into the desired language.

A language’s syntax constrains how its users can express ideas, data, etc.
and influences how they think. Not all programmers will have the ability or
resources to create their own language according to their personal ideals and
way of thinking, but almost everyone has ideas, preferences, moments of “I love
this programming language, but...”.

3



The reasons for the commonly-seen inextensibility of syntax are mostly tech-
nical. Parsing is a difficult problem; creating an accurate, reasonably fast parser
for a given language requires specialized knowledge, and the design of program-
ming languages and syntax has historically been restricted to those with the
know-how: CS researchers, talented hobbyists and visionaries, professional soft-
ware engineers.

Modifying a working parser to correctly parse a new bit of syntax can be
a challenging experience, as even small extensions will sometimes require a lot
of work. Even using automatic parser-generating tools is not the user-friendly
experience it should be.

As a result, programming language design is usually restricted to a small
group of developers, and only they get to decide in what direction the pro-
gramming language gets to grow1. This is unfortunate, because it misses the
opportunity to use the distributed work of the entire community to enrich the
language with new features at the level of syntax [Ste12].

The motivation underlying our work is the need for parsing methods —
algorithms, paradigms, software, etc. — that are compatible with extensible
syntax. To this end, we will present a new parsing method, called Readtable-
Macro Transducer-Chain parsing.

In the next section, 1.1, we lay out the properties that we would like to have
in any extensible parsing method. Then in section 1.2 we turn our attention to
Lisp, the quintessential extensible language. We discuss the factors that con-
tribute to the intrinsic extensibility of the Lisp family, followed by descriptions of
the two main ways to extend the syntactic behavior of Lisp: macros and reader
macros. Section 1.3 is devoted to the topic of readability. Using Python as an
example, we focus on two features of Python’s syntax that influence its read-
ability, and which are relevant for the choice of parsing method, and contrast
Python’s example with Lisp. Finally, in section 1.3.3, we briefly describe the
“readable S-expressions” project [Whe], perhaps the most noteworthy attempt
to improve Lisp’s written syntax.

1.1 What we are looking for
To focus our discussion, let us start by identifying some desirable properties of
a parsing method that supports extensible syntax.

Simplicity of the algorithm

The algorithm should be simple to understand. Complexity is not an automatic
disqualifier, and is unavoidable to some extent given the inherent difficulty of
parsing. It is enough if the complexity of the parsing method is compartmen-
talized in a way that allows users to extend the programming language without
having learn the entire algorithm, or keeping the entire algorithm in mind.

1Some programming languages have democratic procedures for proposing changes to their
language, such as Python’s PEP system[War+00], but this is no substitute for direct extensi-
bility.
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Simplicity of the extension process

Modifying the language should be simple. Small tweaks should be quick to
implement. More significant changes should be within reach. The user should
not have to devote significantly more time to learning how the parser interface
works than actually working on the language.

Modularity

The user should be able to load syntactic extensions written by other users
in a modular fashion. Ideally, there will be some natural way to define what a
“module” is and what “loading” or “importing” entails in the context of the given
parsing method. The parser should require little or no additional configuration
in order for this to work, and there should be little potential for conflicts among
different imported features.

Compositionality

If our method can parse languages L1 and L2, it should be possible to produce
a language L3 that combines both languages. L3 may depend on the parser, the
user, or both.

A compositional parsing method allows the user to combine languages co-
herently. There should be a way for the user or designer to specify how to
use multiple languages in the same file, for example by way of meta-rules that
specify how to put the two syntactic structures together.

Generality

We want to give the user as much freedom as possible to extend the syntax in
arbitrary ways. Because we cannot anticipate the specific needs of users, the
parser should be designed so that it is customizable in any direction.

This means, for example, that the interface between user and parser has
to allow for more expressiveness than toggling prefabricated extensions from a
built-in set.

Readability

Representations and layouts that make a language easier for humans to read can
frequently require more sophisticated parsing techniques. An extensible parser
should be able to parse the kind of syntactic structures that make programming
languages readable.

Speed and efficiency

The parser should be as fast and efficient as possible. Speed can be sacrificed to
some extent in order to satisfy the above properties, but it cannot be entirely
neglected.

The quintessential example of an extensible programming language is Lisp,
which we discuss in depth in the following section. Lisp and its parser, the Lisp
reader, are simple, general, and modular.
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On the other side, we have Python, a language designed to be readable.
Python is extensible in many ways but not when it comes to syntax. We will
look at readability in section 1.3.

1.2 Extensibility in Lisp
Lisp is really a family of programming languages; the most popular of the Lisp
dialects in use today are Common Lisp, Scheme, Racket, Emacs Lisp, and Clo-
jure. For the most part, we can talk about Lisp in a monolithic sense because
the relatives all share similar principles, including a similar approach to parsing
and extensibility. When we need to be more specific, we will use the Common
Lisp Hyper Spec [Pit96] as a reference.

1.2.1 Why is Lisp so extensible?
There are several reasons, which we will outline here.

Lisp’s syntax is generic

Parsed Lisp code consists of forms, which are either atoms or compound forms.
Atoms are either symbols or self-evaluating objects (objects that evaluate to their
own value, e.g. numbers, strings), and compound forms are defined inductively
as lists of other forms.

Every instance of parsed lisp code is represented in this way (by atoms
and compound forms), regardless of whether the parsed code represents the
application of a control-structure, function call, or anything else. In this way
we can say that the syntax of Lisp is generic. Notably, this allows for a written
representation for the language, called symbolic expressions or S-expressions, so
simple that it can be completely described in one sentence: compound forms
are enclosed in parentheses and atoms are separated by whitespace.

(a 100 (b (c "d") e) f)

This choice of syntax, among other advantages, makes parsing very simple.
Genericity is also useful in simplifying the evaluation model and other core
language functionality.

Lisp’s syntax is homoiconic

By reading a line of written code we immediately know the abstract structure
of the parsed code. For example, we can identify (print (+ 1 4)) immedi-
ately as a compound form with two elements: the symbol print and another
compound form made up of three atoms.

This property of a language has been termed homoiconicity. In Lisp this
manifests as a direct correspondence between a form’s abstract tree structure
and its representation as an S-expression. Every pair of parentheses corresponds
to a compound form, the outermost parentheses correspond to the root of the
syntax tree, and the elements of a form are written in the same order.

As a contrast, consider the equivalent Python code print(1 + 4). If
we know Python, we know we are looking at a function call, the function has
one argument, and this argument is a binary arithmetic expression. We might
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guess that the abstract syntax tree for this code is something like in the Lisp
example, but to be sure we have to look up the documentation for Python’s
abstract syntax trees. We will find that these trees, even for small examples,
are significantly more complicated than the simple inductive definition of Lisp
forms.

It is easy to manipulate Lisp code using Lisp

A generic syntax makes the internal representation of code very simple. A
homoiconic syntax makes it easy to identify the internal representation of code
when looking at its written representation. It is then also easy to write programs
that perform various operations on this internal representation. This is called
meta-programming.

> (setq x ’(+ 5 5))
> (eval x)
10
> (setf (nth 0 x) ’*)
> (eval x)
25

Above we set the variable x to the form with three atoms (one symbol, +,
and two numbers). Then we evaluate it, change the first atom, and evaluate it
again.

The reader and evaluation algorithms are simple

Because both the written and abstract syntax is so generic, procedures for pro-
cessing arbitrary Lisp code mostly come down to a few case statements and
recursion. This includes core functionality like the read and eval procedures.

The user does not have to understand most details and subroutines in the
implementation in order to understand the evaluation model, or to extend it.
Additionally, these functions are implemented in Lisp itself; so extending Lisp
does not require learning a new language or configuration system.

These features give us almost everything we are looking for

These features together provide us with a simple, general, and modular way
of extending Lisp. Generic syntax, homoiconicity, and the code-manipulating
abilities of lisp make Lisp macros powerful and expressive. Most extensions that
are commonly desired can be implemented by Lisp macros (the same could not
be said of C macros, for example).

Full generality follows because almost all parsing tasks, even those very
different from Lisp’s methods, can be introduced via reader macros (we will see
an example of this in section 1.3.3). Macros and reader macros are modular by
nature: it is easy to import macros and reader macros from different libraries,
often even in cases when the writers of said libraries did not coordinate. And,
remarkably, using both of these features is simple, owing to the simplicity of the
reader and evaluation algorithms.

What is missing from Lisp, alas, is readability. We will discuss this in section
1.3. For the remainder of this section, let us describe macros and reader macros
in greater detail.
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1.2.2 Syntactic Macros
Lisp code can be created and manipulated as data. Lisp macros are functions
that operate on Lisp code. A macro is fed a Lisp form, performs some operations,
and returns some other Lisp form.

As an example,

(defmacro plus3 (x) ‘(+ 3 ,x))

defines a macro called plus3 that takes one parameter, x. To use this macro,
we can write, for instance, (plus3 3).

Lisp distinguishes macros from functions in the way macros are integrated
into the evaluation process and how they are used as a result of this. The
general idea is that macros are used to transform Lisp code in place during
evaluation. When evaluating code, some symbols will be associated with a macro
function. Lisp will maintain these associations in an implementation-dependent
way [Pit96, “Accessor MACRO-FUNCTION”]. If the head of a compound form
is a symbol associated with a macro, the respective macro function will be called
with the given unevaluated arguments and output some code; this process is
called macro expansion. The Lisp code it outputs will then be evaluated in
place of the original form.

Note that Lisp macros are not limited to simple replacement operations.
The macro function can execute arbitrary computation when expanding forms.
Compare this to C macros: Although they are both used to process code before
it is executed, Lisp macros are fundamentally different than those in C. A macro
in C is part of a separate preprocessor that modifies source code before it is given
to the “real” C compiler. This preprocessor has limited power, as it can only do
simple text replacement operations.

In Lisp, macros allow programmers to be more concise and to write clear
code that is expanded to longer and less readable code that performs the same
computation. But macros are not merely a convenience, they are a fundamental
component of both the use and implementation of the language.

Using macros, we can define new control structures that cannot be expressed
easily with functions. In fact, every control structure in Common Lisp can be
defined as a macro built up from 25 primitives, called special forms [Pit96,
“3.1.2.1.2.1 Special Forms”]. For example tagbody and go can be used to
define loop, which can be used to define do [Pit96, “Macro DO, DO*”].

Or consider, to give another example, the Common Lisp Object System
(CLOS). It adds object-oriented programming to Lisp, and it is largely imple-
mented using macros. Features like class definitions, method definitions, etc.
can be accessed via a special-purpose syntax that feels natural to the program-
mer. Yet CLOS can be imported just like any other package. This is impossible
to do in most programming languages.

1.2.3 Reader macros
Reader macros are distinct from macros in the previous section. Both types of
macros can extend syntax, but their function and mode of operation is com-
pletely different. Whereas macros operate on Lisp code during evaluation, a
reader macro operates on the input characters as they are read into Lisp.
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Certain characters of text are classified as macro characters. The Lisp reader
maintains a readtable that keeps track of the type and properties of every char-
acter it might encounter; for macro characters, the readtable will maintain as-
sociated reader macro functions.

When a macro character is encountered while reading input, the reader del-
egates processing of the input to the reader macro function, which is then re-
sponsible for reading and processing the input stream until it returns a form.
If the input stream is not exhausted, the calling reader may continue from that
point. The most familiar macro characters in Lisp are ( and ). The reader
macro function for ( accumulates a list of objects — by calling the default
reader repeatedly via the read function — until it finds a closing parenthesis.
It then returns a list with all the forms that were read.

To extend the written syntax of a Lisp program, we may write a reader
macro that converts text into the Lisp forms the text is supposed to represent
(according to the custom syntax being implemented). The generality of reader
macros comes from the fact that the active reader has complete control over the
stream, and — being a programmable procedure like any other — can parse the
input using any desired parsing method. We are free to write a reader macro
which processes input that looks absolutely nothing like Lisp, provided the end
result is still a form.

One common application for reader macros is adding notation. See [Hoy08,
chapter 4] for an example of adding Perl-like regular expression syntax to Lisp
(i.e., being able to use special purpose notation for regular expressions, as in
/abc/).2

1.3 Readability
Like extensibility, readability is an uncontroversially desirable property for a
programming language. Yet its desirability relative to other features, and even
the assessment of what readable code should look like, are matters of frequent
disagreement.

Without controlled, empirical studies, it is hard to justify a claim that Lan-
guage 1 or Notation X is more readable than Language 2 or Notation Y, and,
even then, it is hard to argue against personal preference.

However, Python is generally regarded as an example of a readable program-
ming language. In the following section (1.3.1) we discuss two central aspects of
Python’s syntax that help make Python highly readable, and that are relevant
to our discussion of parsing methods.

1.3.1 Why is Python so readable?
Readability is a core design principle of Python [Ros09].

A host of reasons contribute to the readability of Python, many of which
are not syntactic in nature. For example, its sparing use of punctuation, its
carefully chosen lexical scoping rules, or its culturally maintained notational
Catholicism. But the two central factors that concern us are Python’s use of

2In section 4.4 we will extend our own programming language to support Perl-like regular-
expression syntax. Incidentally, we will also use reader macros to add S-expression syntax to
our own language in §4.3.1).
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indentation for grouping blocks of code, and its use of infix and other specialized
syntax for various constructs.

Indentation

The original proposal for using indentation to denote program structure is found
in Landin’s landmark paper The Next 700 Programming Languages [Lan66].
There, Landin introduces what he calls the offside rule:

The southeast quadrant that just contains the phrase’s first sym-
bol must contain the entire phrase, except possibly for bracketed
subsegments.

This formalizes the intuitive idea that we can group together parts of a program
(lines, statements, etc.) by indenting them at least as much as the first part.

Landin presents the offside rule as an alternative format for writing code
that can be used alongside standard whitespace-insensitive notation, and this
is how most programming languages make use of it.

Indentation and other whitespace is consistently used in practice to add read-
ability to written programs in whitespace-insensitive languages. However, there
are relatively few programming languages where indentation is an integral part
of the syntax. Aside from Python, the exceptions tend to be special-purposes
languages for data and markup (YAML, Haml, reStructuredText, Markdown,
etc) which have a specific reason to prioritize readability.

In languages where indentation has no actual bearing on the meaning of
the code, a program with misleading indentation will compile just as well.
Some compilers can even verify that the layout of the written code matches its
parsed structure, even though the two are technically independent (e.g. GCC’s
-Wmisleading-indentation option).

The central argument for whitespace sensitivity is this: Indentation is the
best way to make code readable for humans, and if we can program a parser
that also uses indentation to discern grouping, using explicit markings on top
of the whitespace is unnecessary at best. Insisting on two grouping notations
requires additional effort to maintain consistency between the two, and adds to
the visual clutter, actively lowering readability.

Making indentation a part of the syntax allows programmers to write code
by sticking to common layout conventions which they would (or should) likely
have been using anyway. Additionally, because there is less punctuation there
are fewer permutations of prescribable punctuation placements, which increases
stylistic homogeneity across the community of users, and decreases the amount
of visual noise.3

Infix and special syntax

Almost all programming languages in use today support infix notation (the
extant members of the Lisp family are the rare exceptions). Almost all of them
make use to some extent of special syntax for keywords and core features of the
language. Python is solidly in both categories.

3https://docs.python.org/3.5/faq/design.html#why-does-python-use-
indentation-for-grouping-of-statements
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Without wading into a discussion of whether some syntaxes are more “natu-
ral” in some sense, it is certainly the case that most humans are more accustomed
to reading expressions as infix — from their education and culture generally —
than other forms of notation. Even if it is only sugar, this syntax is essential.

Infix notation is not restricted to mathematical expressions. Python makes
use of this fact in its notation for comprehensions, as the examples in the fol-
lowing section will illustrate.

For our purposes, we must then realize the following: The parsing method
should be powerful enough to properly parse infix and special-purpose syntax.

1.3.2 Python vs. Lisp by example
Python is the most prominent modern language where indentation is a core
component of the syntax and forced on the programmer. This takes away some
programmer freedom but ensures that the resulting code is more readable. Writ-
ten Lisp code, on the other hand, has no indentation specification and as a
result is notoriously parenthesis-heavy, which is unsurprising given that a pair
of parentheses enclose every non-atomic piece of syntax.

Here are two examples that illustrate the difference.

(defun f (a1 a2)
(let ((x 2) (y 3))

(+ (* a1 x) (g a2 y))))

def f(a1, a2):
x = 2
y = 3
return a1 * x + g(a2, y)

In the Python example, function calls, assignment targets, statement bound-
aries, etc. are all immediately recognizable. The Lisp example is full of syntactic
noise, and the important elements are harder to discern. Furthermore, the pre-
fix notation forces us to look around the individual forms to understand the
semantics.

Python, like most programming languages, has special-purpose syntax for
essential language constructs, and leverages infix as well as postfix notations.
This is illustrated in the example below. The syntax in the Lisp version is, as we
would expect, mostly uniform. It lacks flexibility in notation and demonstrates
many of the same problems as in the previous example.

(define (odds n)
(map (lambda (x) (+ (* x 2) 1))

(iota n)))

; returns all odd factors of 3 from between 0 and 40
(filter (lambda (x) (= (mod x 3) 0)) (odds 20))

def odds(n):
return [ x * 2 + 1 for x in range(n) ]

[x for x in odds(20) if x % 3 == 0]
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1.3.3 Alternative syntaxes for Lisp
Despite its history, there is no reason why Lisp’s code can only be rendered in
its own trademark symbolic expressions, or more generally why a written syntax
must respect the genericity of the syntax tree it represents.

The questions of how to go about improving or replacing Lisp’s syntax, what
alternative should supplement or supplant it, and whether such change would
really be an improvement at all, have come up several times in the history of the
Lisp family [Whe, page “Rationale”]. Most are proposals aimed at improving
S-expressions generally, although a few extended relatives in the Lisp family
have fully adopted a more standard written syntax 4.

M-expressions

During the development of Lisp, S-expressions were initially considered as a
mere transitional representation for programs that would one day be written in
a notation modeled after FORTRAN, called M-expressions.

But at some point in Lisp’s development, its programmers found that using
S-expressions directly had some advantages. As McCarthy describes,

a new generation of programmers appeared who preferred internal
notation to any FORTRAN-like or ALGOL-like notation that could
be devised. [McC79]

By the time Landin introduced the original offside rule, M-expressions were con-
sidered only an intermediate result in hand-preparing LISP programs [Lan66].
In the time since, the S-expression has retained its status as the written syntax
for languages in the Lisp family.

Gabriel and Steele [SG93] speculate that because manipulating Lisp code is
central to Lisp programming, alternative syntaxes have not caught on precisely
because they don’t express the internal syntactic structure, i.e. they are not
homoiconic. Yet, they also speculate that inventing and implementing new
syntaxes will always be an enticing open problem because of how easy Lisp makes
this Indeed, several projects have attempted to provide a better alternative. The
most complete such attempt comes from the Readable S-expressions project.

Readable S-expressions

One recent attempt to improve the written representation of Lisp code comes
from the “Readable Lisp S-expressions” project [Whe], which defines a new syn-
tax for Lisp, called “sweet expressions”. It adds rudimentary support for infix
notation, prefix notation, and grouping via indentation.

The authors of the project are keenly aware of the uniqueness of S-expressions
and offer a detailed rationale for each particular syntactic extension they pro-
pose, as well as a comprehensive rebuttal to the idea that Lisp’s syntax is fun-
damentally unimprovable. The stated objective of the project is to increase the
readability of Lisp with alternatives to S-expressions that retain their genericity
and homoiconicity.

To illustrate, let us rewrite the two examples of the previous section using
sweet expressions.

4http://opendylan.org/
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define odds(n)
map

lambda (x) {{x * 2} + 1}
iota(n)

; returns all odd factors of 3 from between 0 and 40
filter

lambda (x) {{x mod 3} = 0}
odds(20)

defun f(a1, a2)
let ((x 2) (y 3))

{{a1 * x} + g(a2, y)}
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Chapter 2

Parsing with Extensibility in
Mind

In this chapter we will overview several grammar-based parsing techniques, and
discuss some issues that these methods suffer from.

2.1 A brief review of parsing methods
A context-free grammar (CFG) is a set of terminal symbols T , nonterminal
symbols N of which one is specified as the start symbol S, and derivation rules
A → α where A ∈ N and α ∈ (T ∪ N)∗. If A → α, we can say A derives or
generates α. Rules A→ α, A→ β, etc. can be written at once as A→ α | β | ...
A derivation is starts from a sequence of terminals and nonterminals and at each
step replaces one nonterminal by applying a rule. For example, if we have a rule
A → xB, one step in a derivation is to rewrite wACz as wxBCz, where the
A has been replaced. We are interested in derivations starting with the start
symbol and ending with sentences, sequences containing only terminal symbols.
Such a derivation can be represented as a tree, called a parse tree — the leaves
are terminals and the intermediate nodes are non-terminals.

The language generated by a given grammar consists of all the sequences
of terminal symbols that can be generated from the start symbol. The goal of
a parser is, for a given grammar, when given a sequence of terminal symbols,
find a parse tree representing its derivation of the sequence by the grammar, or
signal when such a derivation does not exist.

2.1.1 Deterministic linear-time parsing
The two main traditions in programming language parsing originate in methods
developed in the 1960s. These are deterministic methods, in that the languages
they recognize can be generated by unambiguous grammars.

LL

LL parsers start at the left side of the input and progress rightwards, building
a tree for the sentence from the top down. The “top” is the start symbol of
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the grammar, and the parser’s goal is to find a derivation of the sequence of
terminals it reads as input.

At a nonterminal A, the parser has to consider the possible rules A → α
that could be applied. An LL parser must be able to decide which rule to apply
based on the symbol being read. To apply rule A → xBy, for example, the
parser reads an input symbol and compares it with x. If that matches, it tries
to match B using the procedure available for B. Finally, if the procedure for B
is found to match at that point in the input, the parser reads one more symbol
from the input and compares with y. Failure to match is signaled to the calling
procedure, and success creates a new intermediate node in the parse tree. If the
start rule fails to match, then the input is rejected, otherwise we have completed
a derivation.

Clearly such a method is unable to parse left-recursive rules, such as A→ Ax.
More generally, the parser may encounter situations where it cannot conclu-
sively determine which rule needs to be invoked. For example in the two rules
A → B|C, where B → xyB′ and C → xzC ′, it cannot be determined just by
reading the next symbol, whether to invoke the procedure for B or for C (though
the grammar may possibly be refactored to make this decision possible). The
deterministic LL parsers used in parsing programming languages cannot make
guesses, but they can be provided with a certain amount of lookahead, most
commonly one symbol. The lookahead is the number of unconsumed symbols
based on which the parser can decide which rule to apply. In the example above,
a lookahead of 2 would allow the parser to decide between B and C.

A grammar that can be parsed by an LL parser with one symbol of looka-
head is said to be an LL(1) grammar; more generally, an LL(k) grammar can be
recognized with k symbols of lookahead. LL(k) also refers to a parser with this
much lookahead. The LL parsing method is a recursive descent algorithm: the
recognition process is separated into procedures for each nonterminal produc-
tion. During the parse, these procedures will recursively call each other to parse
the input. This makes the method relatively easy to understand and implement
by hand.

However, not all context-free languages are representable as an LL(1) (or
even LL) grammar [Ros70]. Even when such a grammar does exist for a lan-
guage, finding it can be difficult.

LR

The original LR algorithm (along with the minimalist abbreviation scheme) was
given by Knuth in 1965 [Knu65]. An LR parser moves through the elements in its
input from left to right, gradually filling out the parse tree structure of the input.
Unlike LL, the LR parsers operate “bottom-up”: smaller syntactic structures are
identified first, these isolated subtrees are then grouped into successively larger
trees, until the parser reaches the last symbol and completes the tree (if at all
possible).

The algorithm does this by making a single pass through the input, and
taking constant time at each step, hence being able to parse the input in linear
time. Formally, the parser is a pushdown automaton that maintains a stack of
symbols. Based on its internal state, and on a lookahead window over the input,
the automaton must decide whether to shift — pushing the next input symbol
onto the stack — or to reduce: replacing the symbols on top of the stack with

15



a single nonterminal symbol (which adds a new intermediate node to the parse
tree).

This strategy can recognize strictly more grammars than the LL method,
but it still cannot recognize all unambiguous grammars, much less all context-
free grammars. As in the case of LL grammars, even when an LR grammar
exist it may be difficult to produce.

2.1.2 Parsing Expression Grammars
Parsing Expression Grammars (PEGs) were introduced by [For04] where they
are presented as an alternative, recognition-based formal foundation for language
syntax. They are similar in appearance to CFGs: a PEG is defined by a sets of
terminals, nonterminals, and rules, and can be written in a EBNF-like format.
Unlike a traditional grammar, however, the rules of a PEG are not produc-
tions; instead, they are interpreted as instructions for recognizing symbols in
the grammar.

The most salient contrast between PEGs and CFGs is that each non-terminal
prioritizes the rules associated with it in a given order. Following [For04], let us
replace the notation |, used for CFGs above, and separate the different rules in
a PEG by the symbol /, in decreasing priority.

Then the difference between the CFG rule

A→ xx | x

and the PEG rule
A← xx / x

is that, in the CFG, there is no precedence attached to the nonterminal A — so
there are two possible derivations for the sequence “xx”; by contrast, the PEG
rule tells us explicitly to try to find two consecutive xs, and then if this fails to
find a single x — for “xx” the first case succeeds.

More generally, a PEG rule A ← α1 / . . . / αk is parsed by attempting to
match each αi in order; terminals in αi are matched by direct comparison with
the input, and non-terminals are matched by calling their associated matching
procedure. This gives a recursive-descent procedure for recognizing any PEG,
but a naive implementation may result in a parser that requires too much time
to recognize the language. Intuitively, the rule A← B / C can be described as
“attempt to match B, and if this fails, attempt to match C”. But determining
that B does not match at the current position might require parsing a good
amount of the input, far more than a few symbols of lookahead can provide.
Some grammars would require exponential time to be recognized in this naive
manner.

But actually, a method called packrat parsing can, for PEG with m rules,
parse a sequence of n symbols in O(mn) time, and using O(mn) space. The
method is simple: the outcome of attempting to match each rule at each po-
sition of the input is memoized, and this ensures that at most O(m) steps of
computation are spent at each position.

2.1.3 Generalized parsing
The idea of the Generalized LR parser was already described in 1974 [Lan74],
but was not presented in full detail until a decade later [Tom85]. Generalized
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versions of LL parsers were only developed relatively recently [SJ10; SJ13].
The GLL and GLR algorithms both share two ideas: they generalize the

stack structure to a graph structure, and they remember the outcome of previous
parsing steps, so they do not need to be executed more than once.

In the case of GLL, it is the call-stack which is generalized to a call-graph:
each node in the graph corresponds to a pair u = (L, k), where L is an execution
point in one of the parsing subroutines (we may think of it as a goto label), and
k is a position in the input stream. There will be an edge from (L′, k′) to (L, k)
if executing from L at position k resulted in a call to L′ at position k′.

The memoization is a set of triples (L, k, k′), where L is an execution point
that is known to return a successful match (of its associated terminal or non-
terminal) ending at position k′, if it begins execution at position k. This is
stored to quickly resolve any later calls to L at position k. In this aspect it
is similar to the packrat parsing algorithm outlined in section 2.1.2, with the
difference that triples (L, k, k′) can appear for more than a single value of k′.

The parsing is then carried out in an asynchronous fashion. In an LL parser,
the rule A → Bc, invoked at position k, would result in a direct call to the
procedure for B at k, followed by scanning the input to check for c at whichever
position B returned.

The issue is that now procedure B can return multiple times, as there can be
more than one match for B at position k. So the procedure for A is broken into
two execution points LA0 and LA1 . If we enter point LA0 at input position k,
before we request procedure B to be executed at k, we add an edge from (LA1

, k)
to (LB0

, k), and schedule an execution of LB0
which, upon a successful match,

should itself schedule execution to continue at LA1
, starting at the position

after the last consumed input symbol. Then every time that B returns a match,
execution will proceed from point LA1 , where we try to match the input against
non-terminal c; if this match is successful, then A must schedule its own caller to
continue its execution; a successful match will be memoized, so that any future
calls to A at the same position will be immediately answered.

Generalized LR and LL are capable of parsing all context-free languages,
much like the classic CFG parsing algorithms used for parsing natural lan-
guages (e.g. CYK, Earley). These algorithms are not linear-time in the worst
case, and any O(n3−ε)-time algorithm for CFL parsing, would give a O(n3−

ε
3 )-

time algorithm for for boolean matrix multiplication [Lee02].1 But since the
“generalized” machinery only kicks in when the parser encounters an ambiguous
state, for grammars that are mostly in LR or LL, the runtime of a GLR or GLL
parser will be acceptably close to linear.

2.1.4 Lisp’s reader algorithm
Lisp’s approach to parsing differs significantly from the grammar-based methods
described so far. Instead of formally defining the Lisp language and providing
this definition to a compatible parsing algorithm, the algorithm itself, the Lisp
reader, is defined explicitly.

A good source for learning about this algorithm is Guy Steele’s book “Com-
mon Lisp, the Language” [Ste90, “22. Input/Output”]. A complete specification

1Which suggests that any such algorithms will be based on fast matrix multiplication. It is
currently a (vaguely defined) open problem to find a O(n3−ε)-time “combinatorial” algorithm
for boolean matrix multiplication, see, e.g. [Yu15].
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of the default reader algorithm can be found in the Common Lisp Hyper Spec
[Pit96, “2.2 Reader Algorithm”]. Steele describes the reader algorithm in the
following terms:

The reader is organized as a recursive-descent parser. Broadly speak-
ing, the reader operates by reading a character from the input stream
and treating it in one of three ways. Whitespace characters serve as
separators but are otherwise ignored. Constituent and escape char-
acters are accumulated to make a token, which is then interpreted
as a number or symbol. Macro characters trigger the invocation of
functions (possibly user-supplied) that can perform arbitrary parsing
actions, including recursive invocation of the reader.

As mentioned in section 1.2.3, the reader algorithm keeps track of character
types using a readtable. Common Lisp classifies characters as one of six types:
macro, constituent, single escape, multiple escape, whitespace, and invalid. For
each macro character, the readtable keeps an associated macro function.

The reader constructs objects of Lisp code directly. Constituent and escape
characters are grouped together and interpreted as symbols or numbers, and
macro characters delegate the parsing of strings, compound-forms, and other
objects, to the corresponding reader macro function. This function can freely
process the input, and is not restricted to having a specific form or behavior (as
in the case of the grammar-based methods we have seen).

2.2 The benefits and disadvantages of each method
We now revisit the various parsing methods in light of the criteria described in
section 1.1.

2.2.1 LL and LR
LLmethods are simple to understand and implement by hand in many cases, but
are not general, as they are unable to parse many natural syntactic structures.
LR methods are less restrictive, but only marginally, and it is difficult to follow
their execution.

These nongeneralized grammar-based methods make it very difficult or im-
possible to find a natural specification of a language that has a form compatible
with the parser. Often a non-LL/LR grammar can be factored into an equiv-
alent grammar that is LL/LR, but this process distorts the structure of the
grammar, and by the time a grammar is factorized into compliance, it may
barely resemble its original form.

Furthermore, even small changes to the language can require a dispropor-
tionately large refactoring of the grammar. The effect of small changes to the
grammar, in turn, can be non-obvious: the Python Developer’s Guide, for ex-
ample, reports that “it took well over a year before someone noticed that adding
the floor division operator (//) broke the parser module.” 2, and now recom-
mends a carefully curated process to be followed when making any changes to
the grammar. So LL/LR methods are not compositional, modular or simple to
extend.

2https://docs.python.org/devguide/grammar.html
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However, both algorithms are are very fast.

2.2.2 GLR and GLL
GLR/GLL parsers run in linear time on LR/LL grammars, and the algorithm
can be optimized to run fast for programming language grammars [MN04]
(which are “mostly” LR/LL). However there is no formal guarantee on the run-
time, and there is always a chance that clarity of the grammar must be sacrificed
if more speed is needed.

The algorithms are significantly more complicated than their nongeneralized
analogues. Although GLL is presented as an improvement on GLR in this
respect — combining the power of generalized techniques and the intuitiveness
of top-down parsing — it is still not a simple algorithm.

The generalized methods are strongly compositional. Because unambiguity
is not preserved by grammatical union (or even a decidable property of context-
free grammars), combining two grammars must be done carefully. If we want
to include Grammar 2 within Grammar 1, we may do so while preserving non-
ambiguity by enforcing a non-ambiguous way of delimiting the region where
Grammar 2 should be used. Some GLR/GLL-based parsing tools have a module
system: an SDF module, for example, can contain grammar rules that add
productions from nonterminals in an existing grammar, and full grammars can
be written in a modular fashion3.

It is also worth noting that general CFG parsers do not fully satisfy the
generality criterion, since some programming languages are in fact not context-
free. One approach to parsing context-sensitive syntactic constructs is to extend
CFGs with additional expressive power.4 Using such a system can also allow
using natural grammars that would normally be ambiguous. However, the al-
gorithms for parsing an extended CFG are no longer guaranteed to be O(n3).

2.2.3 PEGs
The packrat parsing algorithm runs in time linear on the length of the input,
though the linear factor is dependent on the number of grammar rules. The
algorithm also uses a linear amount of space, which would have been prohibitive
when the LR algorithm was invented, but which is considered OK nowadays,
when memory availability far surpasses the size of the files one typically wishes
to parse.

The algorithm is simple to understand, and its behavior is very directly
prescribed by the corresponding grammar rules.

The class of PEG-parsable languages has been shown to be incomparable
with context-free languages, i.e., there are context-free languages that cannot
be parsed by PEGs, and vice-versa [For04; Lee02].

Because we can modify the rules of a PEG without fear of rendering the
grammar unambiguous or unparsable in linear-time, it is easy to implement

3http://www.meta-environment.org/doc/books/syntax/sdf/sdf.html
4To parse indentation in programming languages, for example, Adams [Ada13] captures

block structure by annotating nonterminals, and Afroozeh and Izmaylova [AI15] use more
general data-dependent grammars that add arbitrary constraints to productions.
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a module system for PEG parsers5. Extending a PEG in this way is usually
a straightforward process, although some care must be taken so that a given
extension does not interfere with another (ensuring, for example, that no higher-
precedence rule matches a prefix of a lower-precedence one).

PEGs have been used as a formalism for several projects providing modular
syntax, most notably the (now defunct) Fortress programming language6.

2.2.4 Lisp’s readtable-macro algorithm
The Lisp reader algorithm, like other recursive-descent methods, is simple. The
parser is written in Lisp and extensible in Lisp, and is simple to extend.

The algorithm is intrinsically modular; importing syntax consists of add new
reader macros and characters to the readtable, which can be easily done in Lisp
with built-in functions. Changes in the readtable takes effect instantly, meaning
the syntax can be modified on-the-fly by reader macros or within a REPL.

Because reader macros can use arbitrary Lisp computation, the algorithm
is as general as possible. It is also compositional, in the sense that any reader
macro can be used as a component of different readtables, and will not interfere
with the way the rest of the readtable is defined. It also allows for a mod-
ular mechanism for extending the parser. However, although the parser can
be changed in arbitrary ways, some parsing features do not fit well with the
readtable-macro parsing algorithm. So it would not be easy or natural to ex-
tend the parser with features like infix operators, custom operator syntax, or
indentation. And so the resulting written syntax is notoriously unreadable.

2.2.5 A feature-comparison chart
The analysis above is summarized in the following table:

LL LR PEG GLR/GLL Lisp RM

simplicity of algorithm + - + - +

simplicity of extension - - + + ++

modularity - - + ++ +

compositionality - - + ++ +

generality - - - + ++

readability + + + + -

speed/efficiency ++ ++ + - +

Table 2.1: The relative strengths and weaknesses of the discussed methods.

5And in fact has been done, for example in the Rats! parsing library (https://cs.nyu.
edu/rgrimm/xtc/rats-intro.html).

6https://projectfortress.java.net/
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2.3 Transducer chains in Natural Language Pro-
cessing

One approach that has been applied to several problems in Natural Language
Processing (NLP) is to decompose complex transformations into a series of
simpler ones.

The essential notion of a “simple transformation” can be captured by a finite-
state transducer (FST). The traditional FST is an automata that transforms
strings into strings: the machine has a tape and a head, and its rules are map-
pings of states and local symbols on the tape to states and actions (move tape
head, write symbol). The rules are such that the tape head only moves in one
direction, meaning the transducer processes the input and writes back output
in one pass over the tape.

Finite-state transducers have found various applications in NLP, including
morphological and lexical analysis [Kar01], but have not seen wide adoption in
natural-language syntactic processing.

A classic example due to Chomsky [Cho57, Ch. 3] illustrates that English is
not a regular language, in that it cannot be recognized by a finite-state automa-
ton. The problem is that ambiguity is ubiquitous in natural-language syntax
[see MS99, p.410, for an illustrative example], but finite-automata based meth-
ods are too weak to express it. Context-free grammars, on the other hand, are
an excellent formalism for capturing ambiguity.

Chains of FSTs, called cascades in the NLP literature, have also been suc-
cessfully applied to several problems across NLP (for some examples, see [FM04,
§3]). Since FSTs are closed under composition, chaining two or more together
does not result in increased transduction power. However, cascades facilitate
breaking down complicated problems into discrete subtasks or levels. Taken
together, the outputs at each point in the chain can contain more information
than the final output of the chain by itself. If the chain is constructed appro-
priately, this can allow for “an efficient, systematic framework for characterizing
the relationships between different levels of analysis” [Woo80].

This approach has been successfully applied to syntax tree construction. The
CASS parser of [Abn96] constructs a syntax tree for an input string determin-
istically, by using a cascade of transducers to first “chunk” phrasal constituents
together at a low level and then group these chunks together into clauses and
sentences. Chunking is central to the philosophy underlying Abney’s parser.
The parsing method we introduce in Chapter 3 is motivated largely by the
same principle, as we will see.

Finite-state string transducers can be generalized to finite-state tree trans-
ducers (FSTTs). Instead specifying moving and writing on tapes, the movement
pattern of an FSTT through an input tree is fixed. The format of rules varies
between different types of FSTTs.

The original top-down tree transducers introduced by Rounds [Rou70] and
Thatcher [Tha70], for instance, start at the root node and work their way down-
wards; at every node N, they apply some rule R according to their current state
and N7, which may rearrange the subtrees immediately below the current node,
and then recursively process each subtree rooted at the children of N (the start-

7Also common are “extended” top-down tree transducers, that can additionally use nearby
descendant nodes in the tree in selecting rules to apply.
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ing states for these recursive calls are also specified by the rule R). Although we
will not describe this model of tree transducers in formal detail, the following
example illustrates the general idea. An example of a rule is:

q A(x0, x1) → B(q x0, C(r x1)).

This rule specifies that, if we are in state q over a node A with exactly two
children, we transform the A to a B, create a new node C between B and x1,
and then recursively process x0 in state q and x1 in state r. We may write such
a rule by drawing two trees; the tree on the left is transformed into the tree on
the right:

q A

x0 x1

B

q x0 C

r x1

Because they can transform trees at various depths, tree transducers are
able to process syntactic structures that their string-based counterparts cannot.
As a result, they have found use in areas where their additional “syntax-based”
power is needed. Transformations in machine translation, for example, can often
require high-level reorganization of phrases in the input: when translating from
English to Arabic, the subject-verb-object word order must be transformed to
a verb-subject-object form; whereas string transducers are not suited for this,
the transformation can be specified naturally using a FSTT rule as shown in
this example from [KG05]:

S

NP1

· · ·

VP

VB NP2

· · ·

S

VP NP1

· · ·

NP2

· · ·

Although most work on FSTTs has focused on single transducers and on
important classes of FSTTs and their properties, cascades of FSTTs have been
studied and applied to some NLP tasks. Yamada and Knight [YK01] present a
statistical machine translation model for transforming syntax trees in English
to Japanese using a 3-transducer cascade of FSTTs. The first level reorders the
tree structure, the second level inserts new words, and the third level performs
a direct translation at the leaves.

To our knowledge, transducer cascades have not thus far been applied to
the problem of parsing programming languages. Research on tree transducer
cascades has been almost exclusively concerned with so-called “tree-to-tree” and
“tree-to-string” models, as opposed to “string-to-tree” problems like parsing.
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Programming language parsing, on the other hand, has focused on methods
based on pushdown automata and recursive descent.

It is worth asking what properties a transducer-chain parser for programming
languages might have, and what it might look like in practice. In particular,
how would transducer-chain parsing compare with the methods surveyed above,
under the criteria laid out in §1.1? There are a few plausible reasons why such
a method might be extensible:

• The parser would only be as complicated as the individual transducers
comprising the chain, so if the transformations can be made simple enough,
the algorithm will remain simple.

• The algorithm is modular by design.

• Transducer cascades have been used to parse and translate natural lan-
guage, which strongly suggests they are powerful enough to parse a read-
able programming language syntax.

In the next chapter, we present a parsing method for programming languages
based on chains of transducers. Chapter 4 will discuss an implementation of the
method in Python, and Chapter 5 will conclude the thesis by evaluating the
merits and flaws of the method.
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Chapter 3

RMTC parsing

The readtable-macro transducer-chain method parses written code in two stages.
This separation is similar in form and function to the lexer/parser paradigm used
by traditional parsing methods, but the stages themselves work quite differently.

The first stage, the readtable-macro parser, functions as the lexer component
of our compiler1. Although the original readtable-macro algorithm is a full-
fledged recursive descent parser, our version constructs and returns sequences
of tokens instead of syntax trees (which is what Lisp’s reader returns).

The output of this stage is a sequence of tokens which is passed to the
next stage. This sequence can be seen as the leaves of a two-level tree. Then
the second stage, the transducer-chain parser, consists of a sequence of simple
transformations on trees: a chain of tree transducers. The parser sequentially
applies each transducer in the chain, to progressively modify the tree to the
desired form. The end result is the syntax tree for the given input.

In section 3.1 we describe our readtable-macro parsing algorithm, which ex-
tends the original reader algorithm of Lisp with support for indentation. In
section 3.2 we propose a formal model for representing the kind of transforma-
tions we are interested in, and give some basic theoretical results for it. We
then discuss how the formal model provides a foundation for a transducer-chain
parsing method.

3.1 Readtable-Macro Parsing
The Readtable-Macro parsing algorithm we provide here is an indentation-
sensitive adaptation of the default reader algorithm of Common Lisp.

To get an idea of how our extended algorithm works, let us imagine we are
parsing the nested indentation structure of a given piece of written code. We do
this by using a nested chain of coroutines, where each coroutine corresponds to
a single indentation level. The top-level coroutine reads characters directly from
the input and emits tokens to the output. Below the top level, each coroutine
reads characters from its parent and emits tokens back to that parent. Each
coroutine also yields characters to its children and captures tokens emitted by
those children, passing them along to the next level up.

1We will frequently refer to our readtable-macro parser as a tokenizer in light of this fact.
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The flow of characters is such that each coroutine should only be able to read
characters appearing at or after the column corresponding to its indentation
level, and should only yield those characters to its children which appear at or
after their indentation level. The following image illustrates the setup.

Figure 3.1: The extended readtable–macro parser.

The implementation must be done carefully, because passing characters and
tokens up and down the chain — through every coroutine — would be very
inefficient. While the indentation level visible by children is at the discretion
of the parent coroutine, the processing and bookkeeping that makes this work
should be done by a stream object, which is passed to the child when it is first
invoked.

A stack of column numbers corresponding to indentation levels is kept by
the stream object. When a coroutine reads from this stream object, the only
characters that are returned to it are those characters which appear at or after
the indentation level on top of the stack.

After every newline, the stream object throws away all whitespace up to the
current indentation level. Any subsequent character is visible to the invoking
coroutine. This coroutine may then decide to push a new indentation level onto
the stream, i.e., onto the stack of indentation levels held by the stream object.
When the stream encounters a non-whitespace character appearing before the
current indentation level, it will signal an EOF in response to any read request.
Presumably, at this point, the subroutine will return, and its parent can pop
the indentation stack, to the point when the stream will again return input
characters.

By using the stream as a kind of whitespace filter, we are then able to extend
the original reader algorithm in a way that preserves its overall structure. The
reader need only compare the two algorithms to find their obvious overlap.

3.1.1 The readtable
Similarly to the Lisp reader algorithm, we think of the input as organized into
sequences of one or more characters belonging to one of several types. For our
purposes, we use the following set of sequence types: WHITESPACE, NEW-
LINE, MACRO, CLOSING, CONSTITUENT, ISOLATED_CONSTITUENT,
and PUNCTUATION.

The character sequences, their types, and any additional information asso-
ciated with a sequence are all stored in a data structure called a readtable. For

25



a given readtable and a given input stream, reading a readtable sequence from
the stream is the process of reading one character at a time from the input and
identifying the longest contiguous sequence appearing in the readtable. The
Readtable-Macro algorithm will then read entire readtable sequences at a time
instead of single characters.

The contents of the readtable have great influence on the parsing procedure,
can be changed dynamically during parsing, and will depend on the language
one wishes to parse.

MACRO sequences are associated, in the readtable, with reader macro func-
tions. As we will describe below, when the readtable-macro algorithm finds a
macro sequence, it will delegate further reading of the input to the corresponding
macro function.

3.1.2 Output
The output of the Readtable-Macro algorithm consists of a sequence of tokens.
The specific types are not important — it is not necessary to include a specific
type for punctuation, for instance, and other token types (STRING, COMMENT,
etc.) can be created for use by certain read macros.

The Readtable-Macro algorithm will make use of the following token types:

• CONSTITUENT, an accumulation of constituent characters.

• BEGIN and END, mark the beginning and the end of code blocks.

• PUNCTUATION, a punctuation token.

• INDENT, marks a change in indentation level within a block.

Instead of a long and unintelligible description, we will illustrate the meaning
of each token in Figure 3.2, as well as the meaning of block and indentation level.

26



Figure 3.2: Blocks, indentation levels, and a sample output.
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3.1.3 The Readtable-Macro algorithm
The readtable-macro algorithm parses one block at a time in three distinct
stages. In Stage 0, it finds the start of the next block, Stage 1 tokenizes the
first line of the block, and Stage 2 parses the indented levels within the current
block by recursively calling itself.

The Readtable–Macro algorithm (with indentation)

All three stages below loop until the procedure returns. Each loop of the three
stages parses a single block.

Stage 0. Advance to the next block

• Read one readtable sequence from the stream at a time, until a non-
whitespace sequence is encountered.

• If the first (non-whitespace) sequence is EOF or a CLOSING sequence,
unread it back to the stream and return.

• Otherwise, unread the first (nw) sequence, and emit a BEGIN token.

• If the first (nw) sequence did not appear in the first column, signal an
error (unexpected indentation).

• Continue to Stage 1.

Stage 1. Parse the first line

Read one readtable sequence from the stream at a time. Depending on the
sequence’s type, select one of the following cases:

1.1 If the EOF was reached emit an END token and exit.

1.2 If a CLOSING sequence was read, it is unread, then an END token is
emitted and the procedure exits.

1.3 WHITESPACE is ignored.

1.4 A NEWLINE causes us to break the loop and go to Stage 2.

1.5 A CONSTITUENT sequence causes us to read additional sequences from
the stream until we find one that is not a CONSTITUENT. These are
concatenated and a CONSTITUENT token is emitted.

1.6 An ISOLATED_CONSTITUENT sequence causes us to emit a
CONSTITUENT token containing only the characters in the read sequence.

1.7 Seeing a PUNCTUATION sequence causes us to emit the corresponding
PUNCTUATION token.

1.8 A MACRO sequence triggers a recursive call. The readtable associates a
reader macro function with each MACRO sequence. We call this reader
macro function on the current stream. We forward all the tokens emitted
by the reader macro function.
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Stage 2. Offside content

We loop the following procedure repeatedly. Each loop parses an indented
sub-level.

2.1 Initialize i to +∞; i will hold the current indentation level.

2.2 Read one readtable sequence from the stream at a time, until a non-
whitespace sequence is encountered.

2.3 If the EOF is reached instead, emit an END token and return.

2.4 Otherwise, let s be the first non-whitespace sequence, and let c be the
column number of the first character in s; we begin by unreading s. Then:

2.4.1 If c is 1, emit an END token and break to Stage 0.

2.4.2 If c > i, signal an error. . . unless we found a CLOSING sequence, in
which case we emit an END token and return.

2.4.3 If c < i, emit an INDENT token and set c to i.

2.5 At this point c = i > 1. We then:

2.5.1 Push an indentation level onto the stream at the current position.

2.5.2 Recursively call this procedure on the indented input stream, for-
warding all emitted tokens. The call must return when the indenta-
tion level goes below c, because the indented stream will then signal
the EOF to the recursively called procedure.

2.5.3 Pop the indentation level from the stream, and continue the Stage
2 loop.

3.2 Parsing with transducers
After tokenization, the resulting sequence of tokens is transformed into a syntax
tree by a chain of transducers. Each transducer in the chain performs a simple
transformation, similarly to the transducer cascades described in section 2.3.

Our method organizes the blocks and indentation levels into subtrees, and
then the various infix operators and special notations are recognized and pro-
cessed within those subtrees. Parsing this way is similar to how humans parse
code themselves: it reflects the process of first recognizing the overall structure
of the code first, and then breaking it down locally.

Remarkably, although we devised this parsing strategy independently, a sim-
ilar strategy has been used to parse the syntactic structures of natural language.
Abney’s conception of “chunking” [Abn91] is based on the intuition that humans
read natural language by identifying small segments of phrases first, and then
fitting these segments together from the bottom up. He slightly refines this idea
in describing the strategy used by the transducer-chain parser.

The philosophy is easy-first parsing — we make the easy calls first,
whittling away at the harder decisions in the process. [. . . ] Easy-
first parsing means that we do not build a parse tree systematically
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from bottom to top, but rather recognize those features of structure
that we can. Where reliable markers for high level boundaries are
recognized, uncertain intermediate level structure can be skipped
over [. . . ]

Our transducer-chain parser operates in this way. For programming lan-
guages, high-level structure is almost always explicitly marked (by indented
blocks and pairs of delimiters), and can be processed first. After this high-level
structure is known, the remaining structure can be parsed easily in decreasing
order of precedence.

In §4.2.2, we describe how a chain of transducers is put together for parsing
a programming language similar to Python. In this section, we are instead
interested in giving a precise, formal definition of a machine model to process
labeled graphs, which will serve as our conceptual guideline for the kind of
operations that can be performed at each level in the chain.

The model can be described roughly as a Turing machine where the tape is
replaced by a graph structure. On top of this, we impose a simple restriction
on the behavior of the machines. From this restriction it will follow that any
fixed chain of (restricted) transformations can be simulated by a random-access
machine in linear-time. We then give some theorems and conjectures regarding
the computational power of the restricted model. The next section (3.3) will
show how a chain of these machines can be used for parsing a toy language (a
more complicated chain will be given in §4.2.2).

3.2.1 Finite pointer machines
The model we will propose is a generalization of Turing Machines, with the
following modifications:

• The tape, which can be thought of as a graph with a linear structure, is
replaced with a general bounded-degree graph.

• The machine has multiple heads pointing to nodes in the graph, which
can move around along the graph’s edges.

• The instructions can not only change the symbols written at each graph
node, they can also change the structure of the graph.

Formally, a finite pointer machine2 (FPM) is specified by a tuple (Q, q0, qf ,Σ, k, d, δ),
where:

• Q is a set of states,

• q0 ∈ Q is the initial state,

• qf ∈ Q is the final state,

• Σ is a finite alphabet,

• k ∈ N is the number of pointers3,

• D ∈ N is a maximum degree, and
2The machine is called finite because it has a finite control.
3Each pointer is analogous to a tape head.

30



• δ : Q× Σk → Q× instructions is a transition function.

Let Gd denote the class of directed graphs of maximum out-degree d ≤ D,
whose nodes are labeled by symbols in Σ — with the node’s edges numbered
from 1 to ≤ d — and where one node — the root — has been singled out. The
input to an FPM is a graph in Gd. At any time step, each of the pointers is
pointing to one node in the graph and can read the symbol stored there.

Let i, j ∈ [k] denote pointers, and l,m ∈ [d] denote edge numbers. Then
each instruction is one among the following:

1. S(i) := σ, write symbol σ in node i.

2. i := N (i, `), set pointer i to the `-th neighbor of node j.

3. N (i, `) := N (j,m), point the `-th edge of node i to the m-th neighbor of
node j.

4. new N (i, `), create a new node u, and point the `-th edge of node i to u.

5. del N (i, `), remove the `-th neighbor of node i.

An FPM M computes a transformation F : Gd → Gd if for any graph
G ∈ Gd, runningM in its initial state with all pointers over the root of G, will
cause the computation to halt in the final state with graph F (G), having all
pointers pointing to the root of F (G).

3.2.2 The linear-time restriction
We now devise a simple restriction that will ensure that all functions computed
by a restricted FPM on a graph G will be computable by a random-access
machine (RAM) using time linear in the number of nodes of G.

For a node i, the offspring of i are the nodes created in operations of the
form n ewN (i, `). Note that even if the edge from i to the new node is later
removed, the node will always be considered to be offspring of i.

Each step in an FPM computation is the application of one of the five
types of instructions. Each type of instruction involves certain nodes as par-
ticipants. Identifying the nodes that participate in each instruction should be
self-explanatory; for example, nodes i and j participate in instructions of the
third type (N (i, `) := N (j,m)).

Our restriction will prevent the FPM from being able to spend more than a
finite amount of time interacting with each node, or its offspring.

A finite pointer machineM obeys our restriction if the following holds:
There is some constant cM such that, on any input given to the

machine, the total number of times a given node participates in in-
structions plus the total number of times its offspring participates in
instructions, throughout the entire computation, is at most cM.

We can now define:

Definition 1. LFPM is the class of transformations computable by some FPM
that satisfies our restriction.

It is not hard to see that the class LFPM is a syntactic complexity class, in
the following sense:
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Theorem 2. There is an effective enumeration of FPMs satisfying our re-
striction, such that any LFPM-computable transformation is computed by some
machine in the enumeration4.

This can be shown by having machines in the enumeration use a working
alphabet which encodes a finite counter, and by adding one extra edge in each
node to point to an auxiliary node holding the counter (every original node and
its offspring will point to the same auxiliary node).

3.2.3 Theorems and conjectures
Let RAM-DTIME(t) denote the class of transformations F : Gd → Gd which
can be computed by a Random-Access Machine in time O(t(n)), where n is the
number of nodes in the input graph.

Theorem 3. LFPM ⊆ RAM-DTIME(n).

A RAM can simulate a computation of a given LFPM machine in linear
time, as follows. We can store the information for each possible node in a
data structure of bounded size. The data structure contains the node’s current
symbol, and the (finite) list of nodes that it connects to. The machine has a
fixed number of pointers. For each pointer, we store the memory position of
the data structure for the node to which it is currently pointing. The RAM can
simulate each step in constant time — we can check this by verifying for each
instruction type. Now clearly the entire computation can be simulated in linear
time, as the LFPM executes O(n) instructions before halting.

Theorem 4. The class LFPM is closed under composition.

For any two machines that compute transformations in LFPM, there is a
machine that computes the first transformation followed by the second. All of
the relevant properties of the two machines are finite. The composed transfor-
mation is thus also in LFPM.

Although we did not work out all the details, we are fairly confident that
the following is true:

Conjecture 5. Any transformation F : Gd → Gd computed in linear time by
a multi-tape Turing machine can be computed by an LFPM.

The broad idea is to first traverse the graph to create a pool of unused nodes,
which we will use to simulate tape cells. Note that this class includes the LL
and LR algorithms.

We also expect something like the following to be true:

Conjecture 6. RAM-DTIME( n
logn) ⊆ LFPM.

The intuition here is that we should be able to use the graph as a sparse
array data structure with O(log n) update and query time. This data structure
will be used to simulate the RAM’s memory.

4This stands in contrast to semantic complexity classes, such as BPP, for which such a
computable enumeration does not exist.
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3.3 RMTC parsing of a toy language
In this section we will illustrate how the RMTC method would be implemented
for the task of parsing a small toy language for simple arithmetic, which we will
denote by CA5.

We begin with an informal description. The language is made of expressions,
and blocks of expressions. Expressions can be written on a single line as sequence
of numbers, binary operators, and other expressions enclosed in parentheses. For
example:

(10 + 3) - 4 * (6 + 10) * 5

The correct syntax tree for an expression is determined by the usual order of
precedence, where parenthesized sub-expressions are grouped first, multiplica-
tion and division operations are grouped next from left to right, and finally
addition and subtraction operations are grouped, also left to right. Inciden-
tally, this will be the very same strategy used by the transducer chain to parse
expressions.

Alternatively, a single operation can also be written using a block notation.
We write the operator (the head) on the first line, then write its arguments,
which can themselves be in block form, on the following lines indented by spaces.
For example:

-
10 + 3
*

4
6 + 10
5

Formally, the alphabet for our language consists of the digits 0 through 9, the
operator symbols +, -, *, and /, ( and ), a single space , and a new-line symbol
\n. CA is a set of sentences inductively defined as follows:

NUMBER A sentence in CA can be a number, which is a sequence of one or
more digits.

FACTOR It can also be a factor, which is either a number or a sequence ‘(’ e ‘)’,
where e is an expression (defined below).

TERM A sequence of one or more FACTORs where each pair is separated by a
single * or / symbol is a sentence called a term.

EXPR Expressions are defined similarly, but as sequences of TERMs separated
by + and - symbols.

5for “Calculator Anoky”
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BLOCK A block is either an expression, or one of the four operator characters,
followed by an indented sequence of blocks6, as in:

+
BLOCK_1
BLOCK_2
...

BLOCKSEQ A BLOCKSEQ is a finite sequence of non-indented BLOCKs b1b2 . . . .

3.3.1 Correct parsing of CA
Before we define the readtable and transducer chain for parsing CA, let us define
what we mean by a correct parse of a CA sentence.

The correct parse ϕ(s) of a sentence s in CA is the labeled tree defined
inductively as follows:

• If s is a NUMBER, ϕ(s) is a single node, labeled “NUMBER”.

• If a FACTOR is a NUMBER, it should parsed in the same way. If it is a
parenthesized EXPR, then ϕ(‘(’ e ‘)’) = ϕ(e).

• The correct parse of a TERM, ϕ(f0 α1 f1 α2 · · · αn fn), is the left-
associative tree: (αn (αn−1 . . . ϕ(fn−1)) ϕ(fn)):

αn

αn−1

· · ·
ϕ(fn−1)

ϕ(fn)

• An EXPR t0 α1 t1 α2 · · · αn tn should be parsed in the same way as a
TERM, but with TERMs ti in place of FACTORs fi.

• A BLOCK that is an EXPR should be parsed into the same tree.

• An indented BLOCK with operator α and sub-blocks b1, b2, . . . should be
parsed into a tree with the operator as the first child and ϕ(b1), ϕ(b2), etc.
are the remaining children.

• A BLOCKSEQ b1 b2 . . . should be parsed as a tree with children ϕ(b1), ϕ(b2),
etc.

6By indented sequence, we mean that each line in each sub-block is preceeded by the same
number of characters.
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3.3.2 Defining an RMTC parser
We will now define a parser for CA which uses the readtable-macro transducer-
chain method.

We have already described readtable-macro parsing in detail. The default
reader of our CA parser uses the extended RM algorithm; we need to specify a
set of readtable sequence types and a set of token types, define a readtable, and
define any custom reader macro functions.

For the transducer-chain parser, we will need to define the transducers that
make up the chain and how each moves through and transforms the parse tree.

The readtable and reader macros

The written code is tokenized with the extended readtable–macro algorithm
from §3.1.3. We define a readtable suitable for parsing CA.

sequence type macro function

0–9 MACRO NumberTokenizer

+, -, *, / ISOLATED_CONSTITUENT

( MACRO ExpressionTokenizer

) CLOSING

SPACE

\n NEWLINE

The ExpressionTokenizer reader-macro function first emits a BEGIN token,
and then executes the Stage 1 loop from the RM algorithm (§3.1.3 in page
28), with the difference that a CLOSING sequence is checked to see if it is the
matching closing parenthesis (otherwise an error is raised).

The NumberTokenizer reader-macro function will read sequences until it en-
counters a sequence that is not a digit. It then concatenates the read digits into
a single NUMBER token, unreads the terminating non-digit sequence, emits the
token, and exits.

Encoding syntax trees in G6

We will explicitly explain how a syntax tree is represented as a rooted graph
of maximum degree 6 (G6), which clarifies how the transducers we will define
below can be implemented by FPMs.

A syntax tree is a type of directed graph with labeled edges. The nodes
are labeled using the symbols ∅,+,−, ∗, /, NUMBER, BEGIN, END, and INDENT.
The edges, or pointers, are labeled prev, next, first, last, parent and end ; and
we write next(x) for the neighbor of x along its next edge. The children of a
node form a doubly-linked sequence, where each has a next and prev edge to
and from the next node in the sequence. If a node has any children, there is
a first edge to the first and a last edge to the last (which might be the same
node), but no other edges. If a node is either the first or last child of another
node, its parent edge points to its parent node. The end edge will be used to
pair BEGIN tokens with their corresponding END tokens.
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The syntax tree which is input to the chain

We can then encode the token sequence — which is the input to the transducer
chain — as a two-level syntax tree with a root node labeled ∅ and children
corresponding to the tokens emitted by the RM parser. Each child in this tree
is labeled with one of the symbols NUMBER, +, -, *, /, BEGIN, END, and INDENT,
and each BEGIN token has its end edge pointing to its corresponding END token.

We are now ready to describe the different transducers in the chain.

Basic building blocks

Suppose that at some point in our algorithm we have pointers that are pointing
to the nodes a, b and c. Then the following operations can be carried out by
an FPM in a constant number of steps. We will give some operations in detail,
but they should be otherwise self-explanatory.

• replace a with b: replaces node a and its sub-tree with node b and its
sub-tree. In full detail: (1) follow any pref, next and parent edges in a to
find the next, prev, first and last edges directed at a, and redirect them
to b; (2) direct the prev, next and parent edges of b to the same nodes as
the corresponding edges in a, and (3) remove the prev, next and parent
edges from a.

• remove a: removes node a, and connects the two adjacent nodes to a, if
any, to each other.

• transpose a and b: switches two adjacent nodes a and b.

• wrap from a to b: create new node c, to be the new parent of all nodes
between a and b. As in the following picture:

p

· · · a · · · b · · ·

p

· · · c

a · · · b

· · ·

Top-down transducers defined by an arrangement

The transducers we will define are specified by an arrangement. The arrange-
ment defines a condition and a procedure for locally transforming the tree.

Given an arrangement, the transducer begins at the root node, and traverses
the tree top-down, breadth-first, from left to right, as follows. At every traversed
node the transducer checks if the associated condition is satisfied at the current
node. If the condition is found to hold, then its procedure will be applied to
the tree. This procedure will transform the tree, and indicate the node where
the scanning of the current level should continue. The transducer proceeds by
scanning the current level from that node onwards. After having scanned the
level once, it will do it again, this time recursively calling itself on each child.
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The transducer chain for CA

The chain for CA consists of four transducers:

1. PRIMARY

2. MULTIPLICATION

3. ADDITION

4. UNWRAP_EXPRS

The PRIMARY transducer has only one arrangement, which is triggered at
every BEGIN node. At such a node, it will remove an INDENT node if one is found
at the node after the next node, and wrap everything up to, but excluding, the
corresponding END token, and then remove the BEGIN and END. For example:

· · · BEGIN a · · · b END · · ·

· · ·

a · · · b

· · ·

The MULTIPLICATION transducer has one arrangement: if the current
node is labeled with * or /, wrap prev(x) to next(x) and transpose prev(x) and
next(x). The ADDITION transducer works in the same way, with respect to +
and -.

· · · a * b · · ·

· · ·

* a b

· · ·

The first three transducers process graphs top-down. The final transducer
in the chain, UNWRAP_EXPRS, processes trees bottom-up. At a node x, a
bottom-up transducer performs the same two steps as in the top-down case,
but in reverse: the subtrees under each of its children are processed, and then
children of x themselves.

We use an UNWRAP_EXPRS transducer to remove superfluous grouping
structure in the syntax tree. For example, in written CA, ((((4)))) is a valid
sentence, but it should have the same parsed syntax as (4). At a node x,
UNWRAP_EXPRS will check if x has exactly one child. If so, it replaces x
with its child.

3.3.3 Correctness of the algorithm on valid sentences
The RMTC parser defined above produces some transformation from a given
CA sentence into the set of syntax trees. Let ρ be this map. We will show that
the parsing algorithm correctly parses every sentence in CA.

Theorem 7. For every sentence s in CA, ρ(s) = ϕ(s).
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Tokenization

Let tk(s) be the token sequence obtained by running the tokenizer on the string
s. We also define three functions corresponding to the stages of the RM algo-
rithm.

• tk0 is tk.

• tk1(s) is the token sequence resulting of running the algorithm starting at
the beginning of the Stage 1 loop, but not including the END token that
is emitted when encountering EOF (step 1.2).

• tk2(s) is the result of running the algorithm on s starting at the beginning
of the Stage 2 loop up to but not including the first END token resulting
from either EOF (step 2.3) or a line starting at the first column (step 2.4.1).

Observation 1. If the RM algorithm is in Stage 1, the only situations
where it exits the loop are if it reads an EOF, a CLOSING sequence, or a
NEWLINE sequence. END tokens resulting from NEWLINEs and EOFs are only
found in BLOCKs, and if we are parsing the text via the ExpressionTokenizer and
a CLOSING parenthesis is encountered, then the tokenizer will return control
to its parent tokenizer, which must be in Stage 1. Therefore, if the algorithm is
started in Stage 1 on a NUMBER, FACTOR, TERM, or EXPR, it also ends in Stage
1. This means that when s is one of these four types, tk1(s t) = tk1(s) tk1(t).

Observation 2. For sentences s, tk(s) = BEGIN tk1(s) END. We can see this
by following the algorithm as it starts from Stage 0. Regardless of the next
character in the stream, it triggers a BEGIN token and the tokenizer enters the
Stage 1 loop. The next tokens emitted are precisely tk1(s). The tokenizer emits
an additional END token in response to the EOF or a CLOSING parenthesis.7

Notice this is only true for sentences of CA and not for arbitrary subexpres-
sions of sentences.

Now we can determine what the result of tokenization is for each possible s.
In order to carry out the inductive argument, we will need to figure out tk1(s)
for every sentence type other than BLOCK and BLOCKSEQ. Observation 2 then
gives us tk(s) for these types.

NUMBER tk1(n) of a number n, is just NUMBER. Started in Stage 1, a digit is
found, and the NumberTokenizer is called immediately. It reads in the number,
emits a NUMBER token, and returns.

FACTOR A FACTOR f is either a number or a parenthesized expression. If it is
a number, we have shown tk1(f) is NUMBER.

Tokenization of a parenthesized expression ‘(’ e ‘)’ is straightforward. En-
countering an open parenthesis will cause the current tokenizer to delegate to
the ExpressionTokenizer. This tokenizer emits a BEGIN token and starts to pro-
cess e in the Stage 1 loop.8 The tokens tk1(e) are emitted. The tokenizer

7The tk1 function by definition includes everything up to but not including that END.
8For well-formed sentences in CA, an expression will never contain \n or a premature

closing parenthesis, which are the only sequences that the ExpressionTokenizer treats
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then encounters the CLOSING sequence ), emits an END token, and returns.
Therefore,

tk1(f) = tk1(‘(’ e ‘)’) = BEGIN tk1(e) END

(Note that for f = ‘(’ e ‘)’, tk(f) = BEGIN BEGIN tk1(e) END END. This double-
wrapping will be collapsed later by the UNWRAP_EXPRS transducer.)

TERM If s is a TERM, it is a sequence of FACTORs f0, . . . , fn separated by
operators α1, . . . , αn where each operator is either * or /:

t = f0 α1 f1 α2 · · · αn fn.

By Observation 1, since f0 is a prefix of t, tk1(f0) is an initial sequence of
tk1(t) and after tokenizing this prefix, the algorithm is again in Stage 1. The
first operator α1 is tokenized into a CONSTITUENT token. The rest of t is processed
in the same way, alternating between factors and operators. Therefore,

tk1(t) = tk1(f0 α1 f1 α2 · · · αn fn)

= tk1(f0) CONSTα1 tk1(f1) CONSTα2 · · · CONSTαn tk1(fn))

(above, CONST denotes a CONSTITUENT token).

EXPR If e is an EXPR, it is a sequence of TERMs t0, . . . , tn separated by operators
α1, . . . , αn where each operator is either + or -. The same argument as in the
TERM case works here. We then have:

tk1(e) = tk1(t0 α1 t1 α2 · · · αn tn)

= tk1(t0) CONSTα1
tk1(t1) CONSTα2

· · · CONSTαn
tk1(tn)

BLOCK and BLOCKSEQ Let b be a block. b is either an expression e or a single
operator α followed by equally-indented subblocks b0, . . . , bn.

We have already considered the case above when b is an expression. So,
consider b of the form

α

b0

b1

...
bn

We will denote the constant whitespace before each subblock as 99K.9 We
can then write b explicitly as α \n 99K b0 \n 99K b1 \n · · · 99K bn.

differently from the default Stage 1 loop. Whereas in general a correctness proof would have
to treat each reader macro function R individually—working out tkR(x) for every x that R
might encounter—for CA this is not necessary.

9For CA, where all subblocks of a block have the same indentation level, the number of
characters in each “99K” is the same for every sub-block. In the general case there could be
several indented sub-levels, and the proof would be more complicated.
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To determine tk(b), we start in Stage 0. The operator is detected, so a
BEGIN token is emitted and the algorithm moves to Stage 1. α is then read and
a CONSTITUENT token is emitted. When the NEWLINE sequence is encountered,
the algorithm jumps to Stage 2. Hence,

tk(b) = BEGIN CONSTITUENT tk2(99Kb0 \n · · · \n 99Kbn)

At this point, the tokenizer reads and discards until it finds a non-whitespace
sequence, which is the first character of b0 (an operator, digit, or open parenthe-
sis). It emits an INDENT token and pushes a new level onto the stream, then re-
cursively calls itself (starting anew in Stage 0) to continue processing the input.
To the recursively called tokenization, the input appears to be b0 \n · · · \n bn,
i.e., a BLOCKSEQ. If the EOF is reached, or the indentation level decreases to
0, the subcall is fed EOF (which eventually causes it to return), the indentation
level is decreased, and an END token is emitted (step 2.3 if EOF is found, or step
2.4.1 if indentation level decreased). And so,

tk(b) = BEGIN CONSTITUENT INDENT tk(b0 \n · · · \n bn) END

If the indentation level has decreased to 0, the block we are tokenizing is itself
part of a BLOCKSEQ; the algorithm will then reset to Stage 0 to tokenize the
next block (step 2.4.1). It then follows that

tk(b0 \n · · · \n bn) = tk(b0) tk(b1) · · · tk(bn)

We can then conclude by induction that for a single block:

tk(b) = BEGIN CONSTITUENT INDENT tk(b0) tk(b1) · · · tk(bn) END

Transducing

Instead of drawing trees at every step, we will represent a node as a parenthe-
sized list of its children, e.g.

•

a b c

is written 〚 a b c 〛.

We define tr1(t) to be the result of applying the PRIMARY transducer to the
tree t, and likewise tr2, tr3, and tr4 for the MULTIPLICATION, ADDITION,
and UNWRAP_EXPRS. We also define tr0 on token sequences τ such that
tr0(τ) is the corresponding tree that is given to the transducer chain: the entire
token sequence wrapped under a single top-level node.

Additionally, we define (for convenience) functions t̄rk, where t̄rk(τ) is the
result of applying the transducer chain in order up to the kth transducer. So,
t̄r1 is just tr1, t̄r2 is tr2 ◦ tr1, t̄r3 is tr3 ◦t̄r2, and tr4 is ρ.

PRIMARY The only actions of the PRIMARY transducer are rearrange-
ments triggered by BEGIN tokens.
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BLOCK and BLOCKSEQ We have already shown that regardless of the type
of block, it is tokenized into a sequence starting with BEGIN, ending with END,
and potentially with an INDENT token.

So, for all blocks, the INDENT is removed if it exists, everything after the
BEGIN and before the END is wrapped under a new node, and finally the BEGIN
and END themselves are removed.

t̄r1(tk(b)) = 〚 t̄r1(CONSTITUENT tk(b0) tk(b1) · · · tk(bn)) 〛

The PRIMARY transducer then moves on to process each of the children
of the new node. Since each tk(bi) is a disjoint sequence beginning and ending
with a BEGIN/END pair, we can consider the action of this transducer on each of
them individually. So,

t̄r1(tk(b)) = 〚 t̄r1(CONSTITUENT) t̄r1(tk(b0)) t̄r1(tk(b1)) · · · t̄r1(tk(bn)) 〛

This same consideration applies to BLOCKSEQs (each block in the sequence
will be processed individually). It then holds that tr1(〚 tr0(b1) tr0(b2) . . . tr0(bn) 〛)
is 〚 tr1(b1) tr1(b2) . . . tr1(bn) 〛.

NUMBER For a number n, tk1(n) = NUMBER, and t̄r1(tk1(n)) = NUMBER.10
At the block level, tk(n) = BEGIN NUMBER END, so t̄r1(tk(n)) = 〚 NUMBER 〛.

TERM As we have shown, for a term t,

tk1(t) = tk1(f0) CONSTα1
tk1(f1) CONSTα2

· · · CONSTαn
tk1(fn).

Since the only BEGIN/END pairs are within the factors, the PRIMARY trans-
ducer may rearrange items within each tk1(fi), but the structure of the TERM
is preserved:

t̄r1(tk1(t)) = t̄r1(tk1(f0)) α1 t̄r1(tk1(f1)) α2 · · · αn t̄r1(tk1(fn))

If t is at the block level, the PRIMARY transducer will first rearrange the
top-level BEGIN/END, but otherwise acts the same as on TERMs within EXPRs.

tk(t) = BEGIN tk1(t) END

t̄r1(tk(t)) = 〚 t̄r1(tk1(t)) 〛

EXPR The situation for EXPRs is the same as for TERMs, but with TERMs
instead of FACTORs.

FACTOR If a FACTOR f is a NUMBER, see above. If f is a parenthesized
EXPR e and appears within a TERM, we have seen tk1(f) = BEGIN tk1(e) END,
and so t̄r1(tk1(f)) = 〚 t̄r1(tk1(e)) 〛.

For parenthesized expressions appearing at block level:

tk(f) = BEGIN BEGIN tk1(e) END END

so
t̄r1(tk(f)) = 〚〚 t̄r1(tk1(e)) 〛〛 = 〚 t̄r1(tk1(f)) 〛.

10We are overloading symbols here: a NUMBER is either a syntax type of CA or it is a type
of node in a syntax tree corresponding to this type.
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MULTIPLICATION

NUMBER t̄r2(tk1(n)) is still just a single node for the number n.

BLOCK If BLOCK b is an EXPR, e,

t̄r1(tk(b)) = 〚 t̄r1(tk1(e)) 〛, and so
t̄r2(tk(b)) = 〚 t̄r2(tk1(e)) 〛.

If b is an indented block,

t̄r1(tk(b)) = 〚 α t̄r1(tk(sb1)) t̄r1(tk(sb2)) · · · t̄r1(tk(sbn)) 〛

so
t̄r2(tk(b)) = 〚 α t̄r2(tk(sb1)) t̄r2(tk(sb2)) · · · t̄r2(tk(sbn)) 〛.

It is important to note that the α might be a ∗ or /, but the MULTIPLICATION
transducer will not apply because there is no item before α.

BLOCKSEQ Each block is transduced individually. Thus,

t̄r2(〚 tk(b1) · · · tk(b1) 〛) = 〚 t̄r2(tk(b1)) · · · t̄r2(tk(b1)) 〛.

EXPR For EXPR e,

t̄r1(tk1(e)) = t̄r1(tk1(t0)) α1 t̄r1(tk1(t1)) α2 · · · αn t̄r1(tk1(tn))

so
t̄r2(tk1(e)) = t̄r2(tk1(t0)) α1 t̄r2(tk1(t1)) α2 · · · αn t̄r2(tk1(tn)).

At the block level,

t̄r1(tk(e)) = 〚 t̄r1(tk1(e)) 〛, so
t̄r2(tk(e)) = 〚 t̄r2(tk1(e)) 〛.

FACTOR If FACTOR f is a number, the MULTIPLICATION transducer
leaves it untouched. If f is a parenthesized expression, the MULTIPLICATION
transducer will proceed downwards, doing nothing at this level:

t̄r2(tk1(f)) = 〚 t̄r2(tk1(e)) 〛.

And at the block level:

t̄r2(tk(f)) = 〚〚 t̄r2(tk1(e)) 〛〛
= 〚 t̄r2(tk1(f)) 〛.
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TERM Here is the important case for MULTIPLICATION. We have for a
TERM t that

t̄r1(tk1(t)) = t̄r1(tk1(f0)) α1 t̄r1(tk1(f1)) α2 · · · αn t̄r1(tk1(fn))

where each fi is a FACTOR. Now, for each fi it holds that t̄r1(tk1(fi)) is a single
node:

• If fi is a NUMBER, t̄r1(tk1(fi)) is already one node (a leaf).

• If fi is a parenthesized EXPR (a FACTOR), the PRIMARY transducer will
have wrapped everything between the BEGIN and END under a single new
node.

The MULTIPLICATION transducer begins from the left. t̄r1(tk1(f0)) is not ∗
or /, so it moves on. When it encounters α1, it sees that there is a node before
and after the current node and the current node is ∗ or /, so it transforms

t̄r1(tk1(f0)) α1 t̄r1(tk1(f1)) α2 · · · αn t̄r1(tk1(fn))

into
〚 α1 t̄r1(tk1(f0)) t̄r1(tk1(f1)) 〛 α2 · · · αn t̄r1(tk1(fn)).

It then proceeds to the next symbol, α2, which leads to another transforma-
tion. The node before the current node in this case is the new node created in
the first transformation.

〚 α2 〚 α1 t̄r1(tk1(f0)) t̄r1(tk1(f1)) 〛 t̄r1(tk1(f2)) 〛 α3

t̄r1(tk1(f3)) · · · αn t̄r1(tk1(fn))

This continues until the entire term is completed. The result of this is

〚 αn 〚 αn−1 〚 · · · 〚 α2 〚 α1 t̄r1(tk1(f0)) t̄r1(tk1(f1)) 〛 t̄r1(tk1(f2))〛
t̄r1(tk1(f3)) 〛 · · · 〛 t̄r1(tk1(fn−1)) 〛 t̄r1(tk1(fn)) 〛.

Finally, the children are recursively processed by the MULTIPLICATION
transducer. The final result:

t̄r2(tk1(t)) = 〚 αn 〚 αn−1 〚 · · · 〚 α2 〚 α1 t̄r2(tk1(f0)) t̄r2(tk1(f1)) 〛
t̄r2(tk1(f2)) 〛 t̄r2(tk1(f3)) 〛 · · · 〛 t̄r2(tk1(fn−1)) 〛 t̄r2(tk1(fn)) 〛.

ADDITION The same arguments as with the MULTIPLICATION trans-
ducer work in this case. The nontrivial case here is EXPR rather than TERM,
where by the same reasoning,

t̄r2(tk1(e)) = t̄r2(tk1(t0)) α1 t̄r2(tk1(t1)) α2 · · · αn t̄r2(tk1(tn))

becomes

t̄r3(tk1(e)) = 〚 αn 〚 αn−1 〚 · · · 〚 α2 〚 α1 t̄r3(tk1(t0)) t̄r3(tk1(t1)) 〛
t̄r3(tk1(t2)) 〛 t̄r3(tk1(t3)) 〛 · · · 〛 t̄r3(tk1(tn−1)) 〛 t̄r3(tk1(tn)) 〛.
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UNWRAP_EXPRS Finally, the bottom-up UNWRAP_EXPRS transducer
is applied. At this point, all syntax types have been transduced into single tree,
with one root node. NUMBERs are still one node. TERMs were processed during
MULTIPLICATION, EXPRs were processed during ADDITION, and FACTORs
are either numbers or a node containing an EXPR.

Any of these occurring at the block level will be wrapped under an extra
node. When UNWRAP_EXPRS processes these, it will remove this unneces-
sary node. For example, if one of the subblocks of a block b is a single number
n, that subblock will be parsed into t̄r3(tk(b)), which will be a subtree con-
sisting of a single node with a single child, n. That is, t̄r3(tk(n)) = 〚 n 〛.
UNWRAP_EXPRS will proceed upwards, processing the child node n before
its parent. It finds that n is an only child, and replaces the parent with its child.
So, t̄r4(tk(n)) = n. The case is analogous for the other types.

We will show below that t̄r4(tk(s)) = t̄r4(tk1(s)) = ϕ(s) for any sentence
s in CA, except for BLOCK and BLOCKSEQ sentences, where we will show only
that t̄r4(tk(s)) = ϕ(s). This concludes the proof of Theorem 7.

NUMBER For a NUMBER n, t̄r4(tk(n)) = tr4(〚 tk1(n)〛) = NUMBER = ϕ(n),
and t̄r4(tk1(n)) = NUMBER also.

FACTOR t̄r4(tk(n)) = t̄r4(tk1(n)) = NUMBER as above.
If f is ‘(’ e ‘)’, then t̄r3(tk(f)) = 〚〚 t̄r3(tk1(e)) 〛〛 = 〚 t̄r3(tk1(f)) 〛. Here

UNWRAP_EXPRS applies twice, first removing the lower wrapping node, then
removing the top node. Hence t̄r4(tk(f)) = t̄r4(tk1(e)). This equals ϕ(e) by
induction hypothesis, which in turn is exactly ϕ(f). The result for t̄r4(tk1(f))
is identical, although only one unwrapping is carried out.

TERM If t is f0 α1 f1 α2 · · · αn fn, then

t̄r4(tk1(t)) = 〚 αn 〚 · · · 〚 α1 t̄r4(tk1(f0)) t̄r4(tk1(f1)) 〛 · · · 〛 t̄r4(tk1(fn)) 〛

By induction hypothesis this equals 〚 αn 〚 · · · 〚 α1 ϕ(f0) ϕ(f1) 〛 · · · 〛 ϕ(fn) 〛,
which in turn is exactly ϕ(t). The outcome of t̄r4(tk(t)) is the same, after tr4
unwraps the outermost node.

EXPR The same reasoning for TERM applies to EXPR.

BLOCK If b is an indented block α b1 . . . bn, then:

t̄r4(tk(b)) = 〚 α t̄r4(tk1(b1)) · · · t̄r4(tk1(bn)) 〛
IH
= 〚 α ϕ(b0) · · · ϕ(bn) 〛 = ϕ(b)

BLOCKSEQ If b is a block sequence b1 . . . bn, then:

t̄r4(tk(b)) = 〚 t̄r4(tk1(b1)) · · · t̄r4(tk1(bn)) 〛
IH
= 〚 ϕ(b0) · · · ϕ(bn) 〛 = ϕ(b)
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3.3.4 A limitation of RMTC parsing
In this subsection, we will illustrate the difficulties encountered when trying to
extend the syntax of CA with a unary - (minus) operator. We will find we need
to provide some way of explicitly disambiguating the binary - from its unary
analogue.

The problem

The natural way of introducing a unary minus operator is by adding a new
UNARY_MINUS transducer to the transducer chain. Thinking naively, we
may first think that the unary minus should have a higher precedence than
addition, otherwise the sentence A + −B would be parsed as 〚〚+ A − 〛 B 〛.
So it should be grouped by a transducer earlier in the chain than ADDITION.
We should then insert the UNARY_MINUS transducer into the chain between
PRIMARY and MULTIPLICATION11, but defining the conditions for applying
the unary minus arrangement is not obvious.

We recall that the binary minus operator is processed by the ADDITION
transducer. This transducer has an arrangement rule that will be applied if the
current node is -, there is a node immediately before the current node, and there
is a node immediately after. As a first guess, then, we might stipulate that the
unary minus transducer should be applied if the current node is - and there is
a next node. So CONSTITUENT− x should be wrapped into 〚 CONSTITUENT− x 〛.

However, this presents a problem if we consider an expression such as y - x.
As the unary minus has higher precedence, the UNARY_MINUS transducer
appears earlier in the chain than the ADDITION transducer. But in this case,
the new transducer applies when it finds the minus operator that has a next
node. The outcome is then 〚 y 〚 CONSTITUENT− x 〛〛.

We can remedy this first problem by specifying that the unary minus re-
arrangement should only apply if there is a following node and there is not a
previous node. Here we also immediately run into a problem. Consider the
input y - - x, which should be parsed into 〚 CONSTITUENT− y 〚 CONSTITUENT−
x 〛 〛. With the new rule, UNARY_MINUS will now skip both minus signs, as
they both have a previous node; the output we are left with is 〚 y CONSTITUENT−
CONSTITUENT− x 〛.

One approach at this point would be to further specify that the unary minus
arrangement should only apply if there is a following node and there is not a
previous node unless this previous node is also an operator that has a lower (or
equal) precedence. However, this requires us to keep some sort of precedence
table, and may lead to problems if another transducer were inserted between
the ADDITION and UNARY_MINUS transducers.

This kind of problem arises when we apply the RMTC method to parse
overloaded syntax. This is not a rare feature in programming languages, and
other parsing methods are able to handle it. Python, in fact, does correctly
parse -3, 4 - 3, 4 - - 3, and even expressions like - - 3 and 4 - - - 3, with
or without spacing.

The solution we ended up adopting for Anoky (the programming language
presented in the next chapter), was to disambiguate unary minus with binary

11For CA it is easy to find the right position in the chain to insert new transducers; we
would expect this to be a more delicate matter for real languages.
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minus by requiring that binary minuses be surrounded by whitespace, and unary
minuses have no whitespace between the operator - and the operand.

This kind of difficulty seems to be unavoidable with our parsing method,
and may be considered a serious limitation.
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Chapter 4

Anoky

The Anoky language is an alternative syntax for the semantics of Python. Writ-
ten Anoky code is parsed using the RMTC parsing method, and a Python syn-
tax tree is generated and compiled directly from this code by interfacing with
Python’s built-in ast module.

We begin this chapter by describing Anoky syntax trees, and comparing them
to their Lisp equivalents. We describe the four stages of the Anoky compiler:
tokenization, transducer-chain parsing, macro expansion, and code generation.
Finally, we provide some examples of using Anoky in practice, including how to
extend its parser.

4.1 Anoky syntax
Anoky uses a generic syntax tree, similar to Lisp forms described in section
1.2.1. This is done with the intention of leveraging the benefits of Lisp syntax,
benefits which were also described in that section.

The syntactic units of written Lisp code are forms, which are defined induc-
tively as being either atoms or compound forms (lists of forms). Anoky’s syntax
follows this generic example, while being only slightly less ascetic. There are
two atomic types and two compound types:

• Identifiers play the same role as Lisp’s symbols1.

• Literals play the same role as Lisp’s self-evaluating objects2.

• Forms play the same role as Lisp’s compound forms3.

• Seqs have no syntactic equivalent in Lisp.

Identifiers

Identifiers play the same role in Anoky syntax as symbols in Lisp. The role of
identifiers is to name objects. These objects can exist at compile-time — as
in the case of macros and special forms — or at run-time — as in the case of
variables, function arguments, etc.

1http://clhs.lisp.se/Body/26_glo_s.htm#symbol
2http://clhs.lisp.se/Body/26_glo_s.htm#self-evaluating_object
3http://clhs.lisp.se/Body/26_glo_c.htm#compound_form
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Literals

Anoky literals are elements of code that represent a value. A literal plays
same role in Anoky as a Lisp self-evaluating object. In Lisp, written code is
sometimes parsed directly into so-called self-evaluating objects, which evaluate
to themselves. For example (+ 1 3) is read in as a form with three elements:
the first is a symbol and the other are integers. In Anoky, the analogous written
code (1 + 3 or \#(+ 1 3)) will parse 1 and 3 into literals containing the integer
values, instead of the bare integers themselves. Wrapping all values with literals
ensures that all code objects inherit a single parent class. This is currently used
to store positional information, but may later make it easy to extend code with
other metadata.

Nodes: forms and seqs

Nodes are ordered sequences of elements. Anoky nodes play a similar role as
lists do in Lisp syntax. However, the underlying data structure of a node is a
doubly-linked list instead of a singly-linked list. 4

In Anoky, a node is almost always one of two types, a form or a seq.
Anoky’s forms fulfill the same role as compound forms in Lisp. The first

element of a form is its head the remaining elements are arguments or just args.
A form is intended to represent the application (in some sense) of the head,
parameterized by the args, if any exist.

A seq5 represents an ordered sequence of two or more code elements. The
elements of a seq are called items. A seq does not carry with it the notion
that the first element is being applied to the rest. Including seqs as a type of
code in Anoky means the distinction between sequences that represent a head
applied to arguments and sequences that represent ordered data is moved from
the semantics to the syntax of the language.

A UML diagram

Figure 4.1 shows the UML diagram for the various types described above

4.2 Overview of the Anoky compiler
The Anoky compiler takes as input a sequence of characters, and outputs a
Python syntax tree. The compilation process is organized into four distinct
stages:

Tokenization A readtable-macro parser processes the sequence of characters
into a sequence of tokens.

Transducer-chain parsing A chain of transducers takes this sequence of to-
kens and produce an Anoky syntax tree.

4Lisp technically implements a list as nested pairs with a nil terminator. Doubly linked
lists allow for transducers to proceed through the elements of a node just as easily in either
direction.

5The term seq was chosen to avoid conflict with list or tuple, which are part of Python’s
semantics.
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Figure 4.1: UML for code types.

Macro expansion A compile-time macro system processes this tree.

Code generation A code-generation system translates the macro-expanded
tree into a Python syntax tree.

The resulting Python syntax tree can be compiled and executed using the
facilities that Python provides.

4.2.1 Tokenization
The Anoky tokenizer uses the extended readtable-macro parsing algorithm de-
scribed in 3.1. As described previously, the algorithm has a readtable that
classifies characters or sequences of characters as one of a number of types.
Sequences are classified in the Anoky readtable as follows:

• Operators (e.g. +, *, <=, /) are classified as ISOLATED_CONSTITUENT
sequences.

• ), ], and } are CLOSING sequences.

• , and : are PUNCTUATION sequences.

• Spaces, tabs, and other non-printing characters are WHITESPACE se-
quences.

• The newline and carriage return are NEWLINE sequences.

• MACRO sequences will be listed below.

• By default, any other sequence of characters is classified as a CONSTITUENT.
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The #, (, [, {, #(, ‘ (backtick), ’ (single quote), ’’’ (3 times single quote), "
(double quote) and """ (3 times double quote) sequences are MACRO sequences
in the readtable. They are associated with reader macro functions as described
below.

• # As in Python, the hash character signals a comment. The comment
tokenizer will emit a BEGIN_MACRO, collect every following line with a higher
indentation level into a COMMENT token, emit an END_MACRO, and return.

• [, {, (, and ‘ Opening delimiters are tokenized by a similar procedure.
In each case, the procedure first emits a BEGIN_MACRO token. It then finds
the first non-whitespace, non-newline sequence, pushes the indentation
level at that point, and recursively calls the default tokenizer. When the
default tokenizer returns, the procedure emits an END_MACRO token, pops
the stream, and returns.

• ’, ", ’’’, """ Like Python, Anoky allows quotation with either single
quotation marks or double quotation marks. The reader macro function
for these consumes characters and collects them as a string until it en-
counters a matching closing quotation mark, at which point it returns the
collected string and exits.
When the string tokenizer receives a dispatch, it emits a BEGIN_MACRO
token and begins consuming characters from the stream. It accumulates
everything into a single value until it encounters the designated closing
delimiter, whereupon it wraps the string value in a STRING token, emits
this, emits an END_MACRO, and returns.

• #( As we have seen, by dispatching to a new tokenizer the current tok-
enizer relinquishes control over the output token stream, and this can be
used to embed DSLs, literate documentation, and other forms of nested
syntax. We use this feature of reader macros now to supplement Anoky
with an alternative written notation, namely S-expressions. A hash char-
acter immediately followed with an open parenthesis dispatches to the
“Lisp mode” tokenizer until the matching close parenthesis. Newlines and
indentation are ignored.

4.2.2 Transducer-chain parsing
The end result of tokenization is a sequence of tokens. We can think of this
sequence of tokens as a two-level tree with one root node whose children are the
tokens of the sequence. This tree is then processed by a chain of transformations.
We will say that each such transformation is a tree transducer, or simply a
transducer. The transducer chain transforms the simple two-level tree into a
fully-fledged Anoky syntax tree: made up of identifiers and literals at the leaves
and forms and seqs at the inner nodes.

Most transducers that make up the transducer chain of the Anoky parser
scan the tree from top to bottom: each level of the tree is scanned from left to
right (or reversely in some cases), and the transducers manipulate the scanned
nodes according to so-called arrangement rules; then the level is scanned again,
recursively applying the transducer at each node.6

6While in practice we use the call stack, and FPMs were defined with a finite state and no
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The Anoky transducer chain

1. CONSTITUENT

2. PRIMARY

3. INFIX-SPECIAL-OPS

4. PUNCTUATION

5. UNARY-MINUS

6. EXPONENTIATION

7. TILDE

8. MULTIPLICATION

9. ADDITION

10. STAR-ARGUMENTS

11. BIT-SHIFT

12. BITWISE-AND

13. BITWISE-XOR

14. BITWISE-OR

15. AS

16. COMPARISONS

17. NOT

18. AND

19. OR

20. ASSIGNMENT

The function of many of the transducers in the chain is straightforward. For
example, the ADDITION transducer walks down the tree and groups + and -
signs surrounded by an element on each side into a new node at that location
with the sign as its head.

The transducers corresponding to binary operators (MULTIPLICATION,
EXPONENTIATION, BIT-SHIFT, BITWISE-*, AND, OR) are all parsed in a
similar fashion, and other binary operators (ASSIGNMENT) are parsed simi-
larly but right-to-left instead of left-to-right. The transducers handling unary
operators (TILDE, NOT, STAR-ARGUMENTS) follow an analogous strategy.
Chains of operators (COMPARISONS) are only slightly more sophisticated.

Parts of the chain mirror Python’s own operator precedence table7.
Let us now describe the remaining transducers:

CONSTITUENT

The first transducer goes through the token sequence and replaces CONSTITUENT
tokens with identifiers or literals. This transducer attempts to interpret a con-
stituent as a Python integer. If it succeeds, the token is replaced with an integer
literal; if it fails, the token will be replaced by an identifier.

PRIMARY

Before it deals with individual operators and keywords, the parser needs to
process the large-scale structure of the code. A single “primary” transducer is

stack, this use can be completely avoided by using the graph structure as the stack. When we
are doing the second scan and we want to recursively apply the transducer one level down, we
restart execution at that level, and this execution is expected to return to its parent level and
continue the scan; once this second scan finishes, the transducer returns to the level above,
so that it can continue its scan.

7https://docs.python.org/3/reference/expressions.html#operator-
precedence
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responsible for doing this.
Essentially, this task consists of translating the implicit structure in the

various tokens (most notably BEGIN, END, BEGIN_MACRO, and END_MACRO)
into Forms and Seqs. In Anoky there are many ways of representing the same
Form or Seq — this will be described in section §4.3. As a result, the rules that
govern the PRIMARY transducer include many cases, and we will not describe
them extensively.

The attribute accessor operator (the dot, .) must also be handled by this
transducer, as it has a similar level of precedence. Indeed, a.b(c) parses as
((. a b)c) and not (. a (b c)).

INFIX-SPECIAL-OPS

Keywords such as return and yield have special grouping behavior. The INFIX-
SPECIAL-OPS transducer performs the necessary rearrangements so that these
are not parsed as regular syntax.

When it finds a return statement, the transducer will wrap everything after
the return keyword into one form. This ensures, for example, that return a b,
c: d, e is parsed as (return (a (b, c)d e) and not (return ((a, b), c)d e
(which would be the default parse if “return” was a normal function).

PUNCTUATION

After the form head, commas serve to separate groups of arguments. Each group
is wrapped together into a seq. All the seqs between the head of a form and a
colon are further wrapped into a single seq.

For example, (head a1 a2, b, c1 c2: ...) becomes head ((a1, a2), b, (
c1, c2))...) The PUNCTUATION transducer scans each node from left to
right and applies these groupings.

Certain form heads will trigger a different punctuation arrangement, de-
signed especially for them. The for form, for example, gives a special meaning
to the first occurrence of the in identifier, so that (for a, b in c: ...) becomes
for ((a, b), c)...).

4.2.3 Macro expansion
After the transducer chain completes its parse, control is handed to Anoky’s
macro expansion system. This system is meant to play the same role as Lisp
macros, although all macro expansion in Anoky happens at compile-time (Lisp’s
macro expansion happens at evaluation time8, even though modern Lisp compil-
ers know how to optimize this in some cases, by applying the macro at compile
time).

Macro expansion works via a recursive procedure which modifies the code
destructively. The process is governed by a certain default procedure, called
the default macro expander. The action of this procedure on an element is
dependent on the type the code being expanded, and also on the contents of
two tables, called macro table and identifier-macro table, which associate macro
functions with certain identifiers. The behavior of the default macro expander
can be described as follows:

8See http://clhs.lisp.se/Body/03_aba.htm.
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• When encountering a literal, it does nothing.

• When encountering a seq, it expands each child element.

• When encountering an identifier, it checks if it appears in the identifier-
macro table, and if this is the case it delegates macro expansion to the
macro function associated with this identifier. Otherwise, it does nothing.

• When encountering a form, it checks if the form’s head is an identifier
appearing in the macro table. If this is the case, macro expansion is
delegated to the macro function associated with this identifier. If the
form’s head is not an identifier, or it is an identifier which does not appear
in the macro table, then each child element of the form is recursively macro
expanded (by the default macro expander).

An important point to note is that if a macro function is applied to a form,
expansion does not by default continue downwards after the macro function
returns. Macro functions have complete control over the macro expansion pro-
cess within the form where they are applied, and this includes control over how
(and whether) the form’s children are macro-expanded. This means that macros
which want these children to be expanded must themselves explicitly call the
default expander.

As example of why this is a desirable feature, consider the quote special
form.9 The ability to quote code underlies one of the most powerful features of
Lisp (see section 1.2.1). The quote special form should generate Python code
that represents the code being quoted, instead of whatever meaning that code
usually has. For example, the form (+ a b) will usually generate the Python
code a + b, but the form (quote (+ a b)) will generate instead the Python code
Form(Symbol(’+’), Symbol(’a’), Symbol(’b’)).

To see why special care is needed in macro-expanding quoted Anoky code,
consider expanding (quote\ (f a\ b\ \~{}(g\ c))). If the default expander
continued expanding all code after encountering a quote form, then the f, a
, etc. would be expanded (if they appeared in the macro or identifier macro
tables), which is not what we want. The point of quoting code is that we want
to return that code. However, we do want the g and the c to be checked by the
expander, since that code appears within the unquote operator \~. Thus, the
macro expansion process for quote proceeds through the syntax tree and does
nothing unless it encounters a form headed by the unquote operator \~{}, at
which point it recursively calls the default macro expander.

4.2.4 Code generation
At this point the Anoky code is fully parsed and macro-expanded. In order to
compile and execute it, we convert the Anoky syntax tree into a Python syntax
tree, which can then be compiled and executed.

Python makes it possible to work directly with syntax trees via the stan-
dard library module ast. The module provides an interface to dynamically
build a Python syntax tree node by node (starting with nodes corresponding to

9A special form is both a macro and a code generator (it knows how to generate its own
Python code).
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numbers, strings, etc., and then grouping those within nodes for lists, tuples,
statements, etc.). The built-in compile function can compile a Python syntax
tree into Python bytecode, which can then be stored and/or executed.

The code generation process is very similar to how macro expansion works.
The behavior of the default code generator depends on list of so-called special
forms (analogous to the macro tables of the default macro expander), and on
a context variable which identifies the current code generation domain. This
domain is dependent on whether the code is being used in a statement, an
expression, an assignment target, or a deletion statement.

• When the default code generator encounters a literal, it converts it to a
Python literal (an ast.Str or ast.Num node).

• When it encounters an identifier, it checks if the identifier is True, False,
or None, which result in ast.NameConstant nodes being generated; for all
other identifiers, it will generate a Python identifier (ast.Name node).

• When it encounters a seq, it will generate a Python tuple (ast.Tuple
node), and will recursively call itself to generate the elements of the tuple.

• When it encounters a form, it checks if the head of the form names a
special form and in this case it delegates generation to it. Otherwise it
generates an ast.Call node and recursively calls itself to generate nodes
for each of the given arguments.

The special forms

A special form10 is a function that corresponds to a syntactic construction in
Python. It generates a Python ast node from its elements according to its own
unique rules. In order to cover the entire Python AST specification, we require
roughly one special form for each of the possible node types. The default special
forms table includes include special forms for

• all of the operators, such as + and +=,

• control flow statements, such as if,

• Python keywords, such as class and global, and

• some of the default macros in Anoky, such as quote.

Except for the Anoky macros, each of these is responsible for generating a
specific Python node11, for example the + special form generates an ast.Add
node.

4.3 Writing Anoky code
Now that we have broadly outlined how the Anoky compiler is structured, let
us show how to write Anoky code.

10We adapt this terminology from Lisp. A “special form” is a form that is treated in a
nonstandard way in the evaluation process; for Anoky, the analogous process is Python code
generation.

11The Python documentation for the ast module does not give many details about the
different types of nodes or how to generate full trees from scratch; the best reference is
https://greentreesnakes.readthedocs.io.
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4.3.1 Lisp mode
Via the Lisp-mode reader macro, it is possible to write Anoky code in a way that
makes the tree-structure very obvious. The macro is triggered by the character
sequence #(.

The Lisp-mode reader macro completely ignores indentation. Forms are
parenthesis-delimited with whitespace-separated args, and seqs are parenthesis-
delimited with comma-separated items (a seq must have two or more elements,
so a comma must always be present).
#(head form_arg_1 form_arg_2 (seq_item_1, seq_item_2))

For example, here is how we use the Lisp-mode macro to write code for
defining the Fibonacci function:
#(def (fib n)

(= (a, b) (1, 1))
(for i (range (- n 1))

(= (a, b) (b, (+ a b))))
(return a))

As described in §1.3.2, the downside to this way of writing code is that
it can become hard to read, and lacks convenient notational features such as
indentation (unless we keep the indentation in sync manually), infix operators,
etc. These problems are already apparent in the simple example shown above,
and they become very tiresome in more complex programs.

However, as its name suggests, Lisp mode provides Anoky with a homoiconic
syntax that can be used wherever this is beneficial. It is additionally useful in
explaining the syntax of parsed Anoky code without going into the full detail
of §4.1.

4.3.2 Blocks and indentation levels
Let us show by example how written Anoky code is structured by whitespace.

1 f(a, b, c):
2 d(d1, d2):
3 e(e1)
4 g(g1, g2, g3)
5 h: h1

In the example above, lines 1-5, 2-4 and 3 form indentation levels, and lines 1-4,
2-3, 3, 4 and 5 form blocks. Formally, we specify the following:

• By line we mean a single line of written code.

• An indentation level is a group of contiguous lines, where the first non-
whitespace character of the first line appears at column c (henceforth we
will say the line starts at column c), and all subsequent lines are either
empty, or start at column c or greater.

• A block is defined in the same way, but where subsequent non-empty lines
must start at a column strictly greater than c.

If a block has indentation levels within it, their starting column must then be
strictly greater than the starting column of the block’s first line. See Figure 3.2
for another example.
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4.3.3 How blocks and indentation levels get parsed into
forms and seqs

Lists of arguments and lists of forms

Most syntactic constructs of programming languages follow one of two patterns.
We either have a certain operation applied to a list of expressions, or we have a
certain meta-operation, possibly parameterized by a list of expressions, applied
to a list of statements.

Anoky has two parsing modes, so to speak, suitable for each of these two situ-
ations. In list-of-args mode, the blocks in a given indentation level are treated as
parts of a comma-separated sequence of code elements. This provides a suitable
way of factoring several function arguments over multiple lines. For example,
the inner indentation level of the following block is parsed in list-of-args mode:
func

arg1 arg2, arg3
"very long arg"
arg5

The form generated by the above code, when written in Lisp mode, is:
#(func (arg1, arg2) arg3 "very long arg" arg5)

In list-of-forms mode, each block in a given indentation level is processed
as a form, meaning that if it contains more than one element, it is parsed into
a form having the first element as a head. For example, the inner indentation
level of the following block is parsed in list-of-args mode:
macro:

arg1 arg2, arg3
"very long arg"
arg5

Notice that the only difference, when compared with the previous example,
is the use of the colon :. This is how one indicates if the following indentation
level should be parsed in list-of-args or list-of-forms mode.

The form generated by the above code, when written in Lisp mode, is:
#(macro (arg1 arg2 arg3) "very long arg" arg5)

The difference is that the arg1 arg2, arg3 block is parsed into the form #(arg1
arg2 arg3), instead of the seq #(arg1, arg2) and the identifier arg3.

Typically we will use list-of-args mode to parse long lists expressions passed
as arguments to a funtion, and list-of-forms mode to parse lists of statements
passed as arguments to a macro or special form. But there is nothing forcing
us to do so, as long as we understand what syntactic structure results from the
code we have written.

One thing should be noted: a colon or an extra indentation will always cause
the containing block to be parsed as a form, even in list-of-args mode. So the
difference between list-of-args and list-of-forms mode is how single-line blocks
get parsed. For example:
func

list of, args
but this is a: form
and this, is
also a, form
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#(func (list, of) args
(but (this, is, a) form)
(and this is (also, a) form))

Before-colon grouping and double indentation

A common programming pattern is illustrated by the following code (first ex-
ample is Lisp, second is python):
(do ((temp-one 1 (1+ temp-one))

(temp-two 0 (1- temp-two)))
((> (- temp-one temp-two) 5) temp-one)) ; => 4

if y > 2:
return (x + 2) * y

In both examples we have a certain meta-operation (do and if) parameter-
ized by expressions and applied statements. We would ideally like to parse the
expressions in list-of-args mode, and the statements in list-of-forms mode.

Anoky provides two special syntaxes for writing code in this pattern. The
easy way is by listing items between the head of a form and a colon.
head a1, a2, a3:
f a4, a5
g a6

#(head (a1, a2, a3) (f a4 a5) (g a6))

The head, items list, and colon must all be on the same line.
Sometimes we would like to break down the list of arguments. Even a short

list can become visually cumbersome when restricted to one line. Anoky has
a special double indentation syntax to help with this case. If a block has two
different indentation levels within it, the first indentation level will be parsed
in list-of-args mode, and the second indentation level (whose starting column
must necessarily be smaller) will be parsed in list of forms mode.
head a1, a2

b1 b2, b3
c c1, c2

#(head (a1, a2, (b1, b2), b3)
(c c1 c2))

Self-delimited nodes

Finally, Anoky supports writing certain forms a la Python where non-head args
are given as a comma-separated list in parentheses appearing after the head.
There cannot be any whitespace between the head and open parenthesis, unlike
in Python (although this is already a de facto stylistic rule).

For one thing, this allows small forms to be written concisely on one line. In
simple cases we can also use a colon to do this (f: a, b). Delimited forms offer
additional precision outside of Lisp mode, e.g. f(a)(g(b(c)(e))).

Operators and keywords have their own rules in Python syntax and their own
representation in Python ASTs. In Anoky, though, the syntax for = and while
is the same as for any function. x = 3 + y + z can be written =(x, +(3, y, z).
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Seqs also can be explicitly delimited by including some whitespace before
the open parentheses.

For both forms and seqs written in this way, the code inside the parentheses
must belong to the a single indentation level, which is parsed in list-of-args
mode. For example:
func( a, b

c: c1 )

#(func a b (c c1))

( d e, f
g
g1, g2 )

#((d, e), f, (g g1 g2))

Special syntax

Certain forms, such as the assignment = and the for operators:
a = func:

arg1
arg2

#(= a (func arg1, arg2)

The for operator uses the identifier in as a separator for its first arg:
for a, b in c:

d

#(for ((a, b), c) d)

It is easy to modify the chain to allow for such custom behavior. All it
requires is that the custom behavior be parsed with higher precedence than the
default.

Multiple realization of code

From lines 13 and 14 of “The Zen of Python”12:

There should be one — and preferably only one — obvious way to
do it. Although that way may not be obvious at first unless you’re
Dutch.

This imperative makes a statement both about variability in code that performs
a given function and the number of options to express a given piece of parsed
code in written code.

In Anoky, by contrast, there are often plenty of ways to write the same
thing.13 The programmer is encouraged to write code in the most readable way,
but certain circumstances may call for code to be expressed in other represen-
tations, and Anoky’s syntax allows for this.

12the this in import this
13Incidentally, we aren’t Dutch!
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f(a, b, c)

#(f a b c)

f a, b, c # if in list-of-forms

f:
a
b
c

4.4 Extending Anoky
Extensions to an RMTC parser can take a variety of forms: defining new tok-
enizers, modifying the readtable, defining new arrangement rules, modifying the
transducer chain, adding arrangement rules to tokenizers already in the chain,
etc. As discussed in §1.1, though, the power and flexibility of an extensible
parsing method also needs to be accessible. How can a user actually make these
modifications, and how simple is the process in practice?

In the case of Anoky, new arrangement rules, tokenizers, macros, etc. can
be written as Python modules and added to the appropriate directories in the
source. But it is also possible to use Anoky to extend itself, by writing new
rules and tokenizers directly as Anoky modules. Additionally, users can modify
the readtable and transducer chain of an Anoky program as it is compiled or
during an interactive session.

For a concrete example of extending Anoky’s syntax we will adapt an exam-
ple from [Hoy08], in which a syntax for regular expressions as in Perl is added
to Lisp using a reader macro. In Anoky this is slightly more complicated than
in Lisp, but still straightforward. To extend Anoky in this way, we will do the
following:

• Define a reader macro, which entails defining a new class RegexpTokenizer
extending the Tokenizer class. The run method of this class will proceed
through the input and collect everything into a single string until it finds
an unescaped / character, at which point it returns the accumulated string
as a STRING token and exits.

• Associate this tokenizer in the readtable with the MACRO sequence r/.

• Define an arrangement rule, RegexpArrangement, that transforms nodes
containing token sequences output by the regexp tokenizer into a single
node containing Anoky code that compiles the regular expression given by
the STRING token emitted by the reader macro. For this we make use of
Python’s standard re module. Specifically, this removes the BEGIN_MACRO
and END_MACRO tokens from the sequence, leaving only the token containing
the regular expression, then replaces this token with code that, when exe-
cuted, imports the regular expression module re from Python’s standard
library and compiles the original contents of the token.

• We insert this arrangement rule into the PRIMARY transducer in the
chain.
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We also define a custom infix operator for matching regular expressions, also
inspired by Perl. To do this,

• We add our operator to the readtable as an ISOLATED_CONSTITUENT.

• We define a new transducer that identifies processes our operator as a
binary operator.

• We insert this transducer into the active transducer chain.

• We specify how our operator should work by defining a new macro and
adding it to the active macro table.

Because Anoky’s syntax is very similar to Python’s, we must emphasize that
all the code below is written in Anoky, parsed via the RMTC method which
was implemented in Python, and compiled into Python before being executed.

4.4.1 Adding a syntax for regular expressions
Defining and adding a tokenizer

To define a new tokenizer, we define a new class that inherits from the base
tokenizer class.
class RegexpTokenizer(Tokenizer):

A new instance of this class will be created whenever the default tokenizer
encounters the r/ readtable sequence. When this instance is initialized, it will
check that it has indeed been started on the right sequence, and then record the
position (row and column number) of this sequence.

def __init__( self, context, opening_delimiter,
opening_delimiter_position,
opening_delimiter_position_after ):

Tokenizer.__init__(self, context)
assert opening_delimiter == "r/"
self.opening_delimiter_position = opening_delimiter_position
self.opening_delimiter_position_after =

opening_delimiter_position_after

The rest of the definition of the tokenizer consists in writing its reader macro
function. We bind the stream locally, check that we are not already looking at
an EOF character, then push the current indentation level onto the stream.

def run(self):
stream = self.context.stream

if stream.next_is_EOF():
yield Tokens.ERROR:

"r/"
self.opening_delimiter_position
self.opening_delimiter_position_after
"No characters found after opening delimiter ’r/’."

return

stream.push()

seen_escape = False
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Before we start consuming characters of the regexp, we emit a BEGIN_MACRO
token, which is paramaterized by its opening delimiter (in this case r/) and
position.

begin_macro_token = Tokens.BEGIN_MACRO:
"r/"
self.opening_delimiter_position
self.opening_delimiter_position_after

yield begin_macro_token

We now create an empty string that will be used to store the regexp.
value = ""
value_first_position = stream.copy_absolute_position()

The main loop of the macro function reads in characters from the input and
accumulates them into the value string. This proceeds until it finds a closing
character /, that is not preceded by the escape character \\; after we find this, it
will emit its accumulated regexp as a STRING token, emit an END_MACRO token with
a link to the BEGIN_MACRO token emitted previously, pop the indentation level
from the stream, and return. If we run into an EOF character, we immediately
pop the stream and exit with an error.

while True:
if stream.next_is_EOF():

stream.pop()
yield Tokens.ERROR

"", stream.copy_absolute_position(),
stream.copy_absolute_position(),
% "Expected closing regexp-delimiter ’/’, \

matching opening delimiter ’r/’ \
at position %s.":
self.opening_delimiter_position.nameless_str

return

char = stream.read()
if char == ’\\’:

if seen_escape:
seen_escape = False
value += ’\\’

else: seen_escape = True
else:

if seen_escape:
if char == ’/’: value += char
else: value += ’\\’ + char
seen_escape = False

else:
if char == ’/’:

closing_delimiter_first_position =
stream.absolute_position_of_unread()

yield Tokens.STRING:
value
value_first_position
closing_delimiter_first_position

yield Tokens.END_MACRO:
begin_macro_token,
’/’
closing_delimiter_first_position
stream.copy_absolute_position()

stream.pop()
return
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else:
value += char

stream.pop()

Defining a new arrangement rule

We define a new class that inherits from the base arrangement rule class. Ini-
tialization only consists of setting its name.
class RegexpArrangement(ArrangementRule):

def __init__(self):
ArrangementRule.__init__(self, "Regexp")

At every step in walking the tree, a transducer will call the applies method of
each of its arrangement rules, which returns True if the arrangement should be
applied at the current location. In our case, the regexp arrangement should be
applied whenever it is over a series of tokens produced by the tokenizer defined
above, so we define applies to check that the current element is a BEGIN_MACRO
token and that its opening delimiter is r/.

def applies(self, element):
return is_token(element, Tokens.BEGIN_MACRO, token_text="r/")

The actual rearrangement operation is performed by the apply method.
def apply(self, begin_macro):

end_macro = begin_macro.end
parent = begin_macro.parent

If the regexp is empty, as in r//, its value is None.
if begin_macro.next is end_macro:

parent.remove(end_macro)
begin_macro.code = ‘None‘
return begin_macro.next

Otherwise, we have something like r/abc/, where “abc” is tokenized into a
STRING token, and is the only token between the BEGIN_MACRO and END_MACRO
tokens.

assert is_token(begin_macro.next, Tokens.STRING)
regexp = begin_macro.next
assert regexp.next is end_macro

If we have gotten this far, we then remove the BEGIN_MACRO and END_MACRO tokens
and replace the STRING token’s original code with the code __compile_regexp__
("abc"). Notice here we use the tilde for code interpolation (i.e. unquoting).
This inserts the actual regexp from the STRING token directly into the new code.

parent.remove(begin_macro)
parent.remove(end_macro)
regexp.code = ‘__compile_regexp__(~regexp.value)‘
return regexp.next

Outside the definition of the class, we have to define the compile_regexp
function. Given a string, this function will import Python’s re module if it is
not already imported, and then use the compile function defined in that module
to compile the regexp contained in its input string. We then add this to the
top-level dictionary for the module.
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def compile_regexp(regexp_str):
import re
return re.compile(regexp_str)

__builtins__["__compile_regexp__"] = compile_regexp

Adding an arrangement rule to a transducer

Finally, we add this arrangement rule to the PRIMARY transducer.
__parser__.get_transducer("Primary").insert_rule

"Strings", RegexpArrangement()

Defining and adding a new transducer

We also define a new transducer that allows us to use =~ as a binary operator
for regexp matching.

We specify that =~ should be interpreted as an operator by adding it as an
ISOLATED_CONSTITUENT sequence in the readtable.
__parser__.set_readtable_entry("=~", type=RT.ISOLATED_CONSTITUENT)

We define a new transducer, REGEXP-MATCH-OPERATOR, and specify that
it should apply the default left-to-right binary operator arrangement rule: when-
ever it finds a =~ surrounded by two elements.
RegexpMatchOperatorTransducer = TopDownTreeTransducer:

"Regexp Match Operator"
Arrangement [LeftRightBinaryOperator({’=~’})]

We then add this transducer to the chain between the AS and COMPARISONS
transducers.
__parser__.insert_transducer_before

"Compare", RegexpMatchOperatorTransducer

Now we have to actually specify how the match operator should work.
We can use rawmacro to define a macro for =~ from within Anoky itself and

automatically add it to the current macro table. rawmacro is both a macro and
a special form: as a macro, it continues expansion of its child elements, and as
a special form, it generates the Python code that defines a new macro subclass
whose expand method will performs the actions defined by the Anoky code in
its body.
rawmacro =~(element, EC):

parent = element.parent
regexp = element.code[1].code
arg = element.code[2].code

match = ‘(~regexp).match(~arg)‘
parent.replace(element, match)

Example usage

Let us illustrate what is happening by going through the entire compilation
chain for the following example:
>>> if r/(.*)abc(.*)/ =~ "testabcxyz": print("yes!")
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First the Readtable-Macro algorithm produces the following sequence of to-
kens:
BEGIN

CONSTITUENT(if)
BEGIN_MACRO(r/)

STRING((.*)abc(.*))
END_MACRO(/)
CONSTITUENT(=~)
BEGIN_MACRO(")

STRING(testabcxyz)
END_MACRO(")
PUNCTUATION(:)
CONSTITUENT(print)
BEGIN_MACRO(()

BEGIN
BEGIN_MACRO(")

STRING(yes!)
END_MACRO(")

END
END_MACRO())

END

The transducer chain then converts this to the following form:
(if (=~ (__compile_regexp__ "(.*)abc(.*)")

"testabcxyz")
(print "yes!"))

During the macro-expansion phase, this gets converted to:
(if ((. (__compile_regexp__ "(.*)abc(.*)") match)

"testabcxyz")
(print "yes!"))

The code generation stage will produce a syntax tree, which corresponds to
the following Python code:
if __compile_regexp__(’(.*)abc(.*)’).match(’testabcxyz’):

print(’yes!’)

This code is compiled, and then executed. The outcome is the expected:
yes!
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Chapter 5

Conclusion

After implementing the Anoky compiler, designing the language, adding as-
sorted features, etc. we are in a position to assess the RMTC parsing method
on our criteria described in section 1.1.

The simplicity of the algorithm was a core motivation in developing and
realizing the method. The parsing method has two stages: readtable–macro
parsing and the transducer chain. Both stages are composed of smaller compo-
nents: respectively reader macros, and simple tree transducers. In both cases,
the low-level components are themselves composed of simple operations. In
both cases, the smaller components are combined in a simple and intuitive way:
recursive descent, and sequential application. So the algorithm is conceptually
very simple.

When writing new components and adding them to the readtable or chain,
the user does not need to rework other parts of the language. In our extension
to the Anoky parser (§4.4), we added support for regular expressions by writing
only code that related to our new syntax.

What is unclear is how much a user will need to know before they are able
to apply these modifications. We expect the process can be made much simpler
than it currently is, by implementing the appropriate syntactic sugar, but it
seems unavoidable that users need to understand, at least to some extent, how
the default transducers process the tree.

The extension we presented in §4.4 illustrates that, as expected, RMTC can
be extended in a modular fashion. Implementing a better interface for extending
Anoky in such a way should be straightforward.

Currently, there is no way to control the scope of transducers. This presents a
problem for composing RMTC-parsed languages: regardless of how we combine
the chains of two RMTC parsers, every transducer in the new chain will apply to
all code in a tree, not just the code of the respective language. It may be possible
to remedy this by extending the transducer-chain algorithm without adding
significant complexity, but in its present form the method is not compositional.

RMTC incorporates Lisp’s reader-macro mechanism, and so is fully general
in the same sense. However, because it includes native support for parsing in-
dentation, infix syntax, and other syntactic features, it is a suitable parsing
method for a readable programming language. Anoky attests to this by mim-
icking Python’s written syntax.

We anticipated speed would not be one of the RMTC’s strong points relative
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to other methods, given that each transducer in the chain must scan the entire
syntax tree (i.e. we expect the linear factor in the algorithm’s time bound to be
fairly large). However, we cannot say for certain. Our implementation of the
method is extremely slow; this could be simply because Python is a fairly slow
language, and/or because we did not try to optimize it properly.

Abney’s parser performs well in this regard, as each transducer is a finite-
state lexical analyzer [Abn96]. We have shown (§3.2.3) that our FPM transduc-
ers run in linear time, but it is not clear if the runtime of an individual transducer
in practice can be made small enough to render the method competitive with
grammar-based parsers.

We may now compare RMTC parsing with the methods previously surveyed.

LL LR PEG GLR/GLL Lisp RM RMTC

simplicity of algorithm + - + - + +

simplicity of extension - - + + ++ +

modularity - - + ++ + ++

compositionality - - + ++ + -

generality - - - + ++ ++

readability + + + + - +

speed/efficiency ++ ++ + - + ?

Table 5.1: The relative strengths and weaknesses of the discussed methods.
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Changes in revised thesis

• The set of criteria in section 1.1 has been restructured and the criteria
themselves made more precise.

• The evaluation of parsing methods (§2.2) is now a more uniform overview
of the strengths and weaknesses of each parsing method with respect to
our criteria.

• The Lisp reader algorithm is now included in our description and review
of parsing methods (§2.1,2.2).

• A section (§2.3) has been added on the use of transducers and cascades in
natural language processing.

• The connection with Abney’s strategy and parser has been included (§3.2).

• The vague overview of parsing with FPMs at the conclusion of chapter
3 has been expanded into an illustration of an RMTC parser for a small
language, a proof of correctness of the method on this language, and an
example of its limitation.

• The introduction to section 4.4 has been expanded and clarified.

• An review of RMTC parsing with respect to our criteria and the methods
discussed in section 2.2 has been added as a conclusion (§5).
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