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Abstract

This thesis examines influence-based iterative opinion diffusion mechanisms
on social networks where agents update their opinions based on the opinions
of their influencers in the social network. We use tools from judgment aggre-
gation to analyse the strengths and weaknesses of an existing opinion diffusion
framework, Propositional Opinion Diffusion, and define a variant of this type
of diffusion mechanism, Propositionwise Opinion Diffusion, which guarantees
the rationality of agents’ opinions at every step of the diffusion process. We
compare the two variants of the mechanism, both by using an axiomatic ap-
proach, and by exploring when they might coincide or differ on the opinions
agents hold when the mechanisms terminate.
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1 | Introduction and Motivation

Judgment Aggregation [List and Pettit, 2002] studies how to take the opin-
ions of individual agents about some given set of issues or propositions and
aggregate them to find the group’s opinion, possibly in order to make some
collective decision. Take the following example: a hiring committee needs to
decide if a certain candidate is qualified for a position. There are three people
on the committee and hiring decisions are made based on the majority opin-
ion. Suppose each committee member needs to decide whether the candidate
has a suitable education (p) and whether the candidate has an appropriate
amount of experience (q). The only requirement for the committee members
is that if they are of the opinion that both p and q, then they must also want
the candidate to be hired for the position (r) – i.e. if a candidate both has
a suitable education and an appropriate amount of experience, she should be
hired. In other words, there is a constraint, (p∧ q)→ r, which all the agents
(or committee members) are required to satisfy. We can represent this in the
following table where a 0 means an agent rejects the proposition (i.e. accepts
the negation), and a 1 means she accepts it.

p q r

Agent 1 0 1 0
Agent 2 1 0 0
Agent 3 1 1 1
Majority 1 1 0

Notice that despite the fact that each individual agent satisfies the given con-
straint, taking the proposition-wise majority results in a collective opinion that
violates it – both p and q are accepted by a majority of agents, while r is not.
This is an example of the discursive dilemma, and is a commonly encountered
problem in judgment aggregation [List and Puppe, 2009]. One possible solu-
tion to counter such irrational collective opinions is to introduce interaction
or communication between agents into the decision making process; this is the
approach we will examine in this thesis.

What may happen if the committee members deliberate about each can-
didate before making a collective decision? This deliberation process can lead
to a change in the individuals’ opinions – and as a consequence the collective
opinion – depending on the dynamics of the group of agents. Perhaps there
is one senior member who influences all others’ opinions to change, perhaps
there are pairs of committee members who influence each other, or a cycle of
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1. Introduction and Motivation

influence between all three. Based on this influence relation and everyone’s
initial judgments, the opinions of agents might change several times during de-
liberation before they reach a stable point at which the committee can make
a final decision. This process of changing opinions based on social influence is
what Propositional Opinion Diffusion (POD) attempts to formalise.

In real life examples of opinion diffusion and social influence, it is rarely
the case that all agents in a network are influenced by – or even able to know –
all other agents’ opinions. This is especially true if we have a large number of
agents. To reflect this POD employs a social network which limits communi-
cation between agents and designates which agents are connected and thereby
able to influence one another. Thus, the particular type of communication we
model does not assume that a global discussion between all agents is always
possible. In this way, the structure of the social network is allowed to play a
significant role in the opinions that agents hold post-communication.

Models of social influence have been studied from many angles. DeGroot
[1974] and Werner and Wagner [1981] study opinion diffusion as a means of
reaching consensus within a group. Yet others, such as Miller [1992], Knight
and Johnson [1994] and Dryzek and List [2003], use the notion of inter-agent
communication as a means of reconciling ideas from deliberation theory with
those from social choice and judgment aggregation. Belief merging [Konieczny
and Pino Perez, 2002], provides an alternative approach to modeling social in-
fluence on a network. Schwind et al. [2015] use belief revision games as a way
of modeling how beliefs propagate in a social network of agents, and Schwind
et al. [2016] examine whether promoting a belief will always lead to wider
acceptance of the belief by agents in the network. We can also find social
networks playing a role in other game-theoretic studies of opinion diffusion.
Simon and Apt [2015] use threshold models on social networks where agents
choose to adopt certain products based on the ones adopted by the agents they
are connected to in the network, and show that on certain networks a product
can be adopted by the whole network. Apt and Markakis [2011] take these
threshold models a step further and explore the strategic interplay between
agents in such a network. Diffusion on social networks has also been studied
in logic by Christoff and Hansen [2015] who developed a dynamic modal logic
to reason about the diffusion of not just opinions but products, behaviors and
even diseases on a social netowork. Baltag et al. [2016] studied the epistemic
aspects of threshold models of social influence and explored these in a logical
framework. Here, we study a model of opinion diffusion based on social influ-
ence using tools from judgment aggregation [List, 2012]. The starting point
of our exploration is work by Grandi et al. [2015] and Brill et al. [2016], who
defined models of opinion diffusion on binary issues and preference diffusion,
respectively. Both use a social network as a central part of the diffusion mech-
anism.
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1. Introduction and Motivation

This thesis aims to expand upon work already done on models of influence and
the diffusion of opinions in a multi-agent system. The framework of Propo-
sitional Opinion Diffusion which is the basis of our work was introduced by
Grandi et al. [2015]. While their framework allowed for opinions on multiple
issues or propositions, the aggregation of opinions on multiple issues – with
the constraints that accompany them – was not extensively explored. This will
be the focus of this thesis. We aim to explore what type of decision a group
will land on following an opinion diffusion process based on social influence,
as well as how we can avoid agents being influenced to change from a rational
opinion to an irrational one.

1.1 Binary Aggregation with Integrity Constraints

To model opinion diffusion on a network, we will be using the framework of
Binary Aggregation with Integrity Constraints [Dokow and Holzman, 2010a],
[Grandi and Endriss, 2011]. We will see that the we can model judgment ag-
gregation problems – such as the example at the beginning of this chapter –
in the framework of binary aggregation. The type of aggregation problems we
will examine will be those where agents are asked to give a yes or no answer
over a set of related issues where a yes is encoded as a 1 and a no as a 0. When
there are multiple issues over which agents must give opinions, we assume that
these issues are interrelated in some way.

The formal framework consists of a finite set of m propositional variables or
issues, I = {p1, . . . ,pm}, where each issue represents a binary choice. We call
D = {0,1}I the domain associated with this set of issues. For a finite set of
agents, N = {1, . . . ,n} we call Bi ∈D the opinion or ballot of agent i ∈N over
each of the issues in I. A vector of all the ballots of agents in N , B ∈ DN
is a profile. Bi(p) is agent i’s judgment on p ∈ I in the profile B. We write
B =−i B′ to mean two profiles B and B′ are identical if we ignore agent i’s
ballot, and B =−p B′ to mean two profiles B and B′ are equal when we ignore
the judgments on p ∈ I. For a profile B and an issue p ∈ I, NB

p = {i ∈ N |
bi(p) = 1} is the set of agents who support p and NB

p = {i ∈ N | bi(p) = 0} is
the set of agents who do not support p. We say a profile is unanimous if every
ballot in the profile is the same.

Let LI be the propositional language corresponding to the set of issues I,
meaning LI is the set of propositional formulas which use only the proposi-
tions in I. For example, if I = {p,q,r} then p, (p∧r), (q→ p) and (p∧r↔ q)
are all formulas of LI . For any ϕ ∈ LI , let Mod(ϕ) be the set of models that
satisfy ϕ. An integrity constraint is formula IC ∈LI . Any integrity constraint
defines a domain of aggregation, Mod(IC), of the ballots (or models) which
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1. Introduction and Motivation

satisfy the integrity constraint. We can view these integrity constraints as
rationality requirements for the agents’ opinions, given the issues in I and the
problem at hand.

An example of a rationality requirement in judgment aggregation is that an
agent which accepts a formula p must reject the formula ¬p. In preference
aggregation a common rationality requirement is that each agent has transitive
preferences, meaning if she prefers an alternative a to alternative b, and prefers
b to a third alternative c, then she must also prefer a to c. Such rationality
requirements can be expressed with a formula – the integrity constraint –
ensuring that the agents which satisfy the formula are rational with regard to
the interdependencies of the propositions in I. These examples do not take
into account what the propositions mean for a given aggregation problem,
but we can also use integrity constraints to impose rationality requirements
which are specific to a concrete problem. Recall the example of the committee
at the beginning of this section. There, we required each agent to accept
(p∧q→ r), though this was not because of any logical connection between the
propositions, but rather a requirement for an opinion to be feasible for the
given problem and the given meaning of p, q, and r.

The benefit of representing the rationality requirements of agents as propo-
sitional formulas in the form of an integrity constraint is that we can analyse
the syntactic properties of constraints which behave in certain desirable ways,
or gain some insight into the common syntactic properties of constraints which
we find reasonable or useful. We find one example of this in the work of Grandi
and Endriss [2011], who characterize the class of integrity constraints that
guarantee that the outcome of a certain aggregation rule will be rational (i.e.
will satisfy the constraint), if each individual agent submits a rational opinion.

Formally, a binary aggregation problem J = 〈I,N , IC〉 is defined by a set of
issues I, a set of agents N and an integrity constraint IC. Thus, a binary
aggregation problem defines the space of possible collective decisions over the
set of issues I for the agents in N . Given a set of issues I and a set of agent
N , an aggregation rule F is defined as a function

F :DN →D

which maps each profile of ballots to an element in the domain (i.e. a ballot).
Most aggregation rules are defined for any possible profile of rational ballots
– when this is the case we say that the aggregation rule satisfies universal
domain.

The aggregation rule FMaj which accepts only the issues accepted by a (strict)
majority of agents is the majority rule, and is defined such that for any propo-
sition p, FMaj(B)(p) = 1 if and only if

∣∣∣NB
p

∣∣∣ > n
2 . In fact, some aggregation
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1. Introduction and Motivation

rules will not always output a single ballot, the definition we use is for the
resolute majority rule which only accepts an issue if there is a strict major-
ity of agents who accept the issue. If we use the non-resolute version of the
majority rule, there are cases where the outcome of the rule might be multi-
ple ballots. For example, if B = (B1,B2), where B1 = (000) and B2 = (111),
there is a (weak) majority for both three rejections and three acceptances.
Thus FMaj(B) = {(000),(111)}. To avoid such ties in the outcome, we use the
resolute version of the majority rule.1

Aggregation Rule Axioms

We can impose conditions on how an aggregation rule should behave. These
allow us to compare aggregation rules in a meaningful way and justify the
choice of one rule over another. Importantly, these conditions can also help us
prove results which hold for larger classes of rules – defined by the conditions
they satisfy – rather than for single rules, such as the majority rule. The
following conditions or axioms for judgment aggregation rules will be relevant
for us going forward. An aggregation rule or procedure F satisfies:

• Collective Rationality if and only if for any integrity constraint IC,
and any profile B ∈Mod(IC)N , F (B) ∈ Mod(IC).

• Consensus Preservation if and only if ∀B ∈ DN , ∀B∗ ∈ D : [∀i ∈N :
Bi =B∗]⇒ F (B) =B∗.

• Independence if and only if ∀p ∈ I : ∀B,B′ ∈ DN : [∀i ∈ N : Bi(p) =
B′i(p)]⇒ F (B)(p) = F (B′)(p).

Collective rationality says that if all agents submit rational ballots, the out-
come of an aggregation rule is always a rational ballot. Consensus preservation
states that if every agent submits the same ballot, then the outcome of an ag-
gregation rule should be that same ballot. Independence says that whether an
issue is accepted or rejected in the outcome depends only on agents’ judgments
on that particular issue. If an aggregation rule ignores all but one agent and
outputs this agent’s ballot as the collective opinion, we call the rule a dicta-
torship. More formally, an aggregation rule F is a dictatorship if ∃i ∈ N s.t.
∀B ∈ DN : F (B) =Bi.

The complexity of the set of issues is also relevant to whether certain ax-
ioms are satisfied in concrete instances. For example, if we know that the
agents are only expressing their opinion on a single issue, Independence will

1Another way to circumvent this problem is using a tie-breaking rule. For example, we
might use lexicographic tie-breaking which in this case would choose the ballot (000) over
(111).
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1. Introduction and Motivation

not be violated as there is no interplay between multiple issues. For a suffi-
ciently complex set of issues,2 Dietrich and List [2007a] introduce a generalisa-
tion of Arrow’s impossibility theorem [Arrow, 1950] in judgment aggregation,
which states that any aggregation function with a universal domain which
satisfies Collective Rationality, Consensus Preservation, and Independence is
a dictatorship.

1.2 Propositional Opinion Diffusion

Propositional Opinion Diffusion (POD) [Grandi et al., 2015] is an attempt to
combine ideas about opinion transformations and social influence on a net-
work. POD is an iterative process, where in each step agents in a social
network change their opinions based on the opinions of their influencers. The
main goal is to characterize when such an iterated diffusion process will ter-
minate, meaning when agents in a social network would stop being influenced
to update their opinions by others in the network, and reach a stable opinion.

Notation and Terminology

For a set of agents N , let E ⊆N ×N . Then G = (N ,E) is a directed graph
where (i, j) ∈ E means that agent i influences agent j. We call the set of all
influence networks G. For a network G= (N ,E)∈ G, Inf(i)G = {j ∈N | (j, i)∈
E} is the set of influencers of agent i on network G. When the network is clear
from the context, we will simply write Inf(i). An agent i such that Inf(i)G = ∅
is called a source in the network G.

Propositional Opinion Diffusion is a discrete time iterative process. At
time t∈N each agent i updates her opinion by aggregating the opinions of her
influencers at time t− 1, using an aggregation rule Fi, which takes as input
a profile and returns a ballot, which is agent i’s updated opinion at time t.
Intuitively this rule tells us in which manner each agent performs her opinion
updates. POD uses the framework of binary aggregation to model agents’
opinions. We denote with Bt

i the opinion of agent i at time t over a set of
issues I, and let Bt = (Bt

1, . . . ,B
t
n) stand for the associated profile at time t.

We define the iterated process of POD as follows:

Bt
i =

B
t−1
i if Inf(i) = ∅

Fi(Bt−1
Inf(i)) otherwise

Where Bt−1
Inf(i) is the profile Bt−1 restricted to the set Inf(i) of influencers of

agent i, and Fi is the aggregation rule of agent i. If Fi = F for all agents
i ∈N , meaning all agents use the same aggregation rule, the process is called

2See definitions of even-number negatability [Dietrich and List, 2007a] and total-
blockedness [Nehring and Puppe, 2002].
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1. Introduction and Motivation

uniform-POD. The following is a simple example of POD on a social influence
network with three agents.

Example 1.1. Suppose we have three members of a family – agents a,b and
c who need to decide on a pet for their household. Their possible options
are to either get only a cat (p) or to get only a dog (q) (or choose neither).
In other words, their set of possible actions are constrained by the formula
IC = ¬(p∧ q). So for any Bi (where i is a family member), Bi ∈ Mod(IC)
= {01,10,00}. Consider what will happen if these agents are connected in the
social influence network below.

a:01b:00

c:10

Here agent a is influenced by only herself, agent b is influenced by agents a, c
and herself, while agent c is influenced only by a. Their initial opinions are
01 (getting only a dog), 00 (getting neither) and 10 (getting only a cat) (of a,
b and c respectively), meaning B1 = (01,00,10). We assume that each agent
uses the majority rule to update her opinions.

Since agent a is only influenced by herself, her opinion will be stable throughout
the diffusion process. Agent b will also not update her opinion in the first
iteration as agents a and c disagree on both propositions. Agent c however,
will update her opinion by copying the opinion of agent a, her only influencer.
Thus B2

c = B1
a = 01. At the second iteration, both agent a and c will have

stable opinions, and agent b will now update her opinion since there is now a
majority of agreeing influencers. Thus B3

b = 01 and POD will terminate on a
unanimous profile B3 = (01,01,01), meaning all three family members agree
that they should get only the dog.

Majority-POD for the (resolute) majority rule is defined formally in the fol-
lowing manner:

Definition 1.2 (Majority-POD).

Bt
i =

B
t−1
i if Inf(i) = ∅

FMaj(Bt−1
Inf(i)) otherwise
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1. Introduction and Motivation

Thus, for any agent i, if she has no influencers, she will not change her opinion.
This will be the case if the agent is a source in the network. However, if the
agent has at least one influencer, the agent will change her opinion to match
the majority opinion of her influencers.

1.3 Transformation of Opinion Profiles

Central to the idea of opinion diffusion is the manner in which the change
in agents’ opinions occurs. List [2011] introduces the concept of a judgment
transformation function as a way of modeling the change in agents’ opinions
or judgments. A more formal definition of such functions is given by Grossi
and Pigozzi [2014]. A transformation function takes as input a rational profile
of ballots and outputs a profile of ballots (which are not necessarily rational).
We can view the input profile as the pre-communication or pre-deliberation
profile, and the output as the opinions after agents are allowed to deliberate or
influence each others’ opinions. One reason to consider such transformation
functions is that they might be one way of achieving cohesion-generation,
meaning the application of a transformation function might turn a profile
which could not be aggregated using the majority rule into one where the
majority rule produces a collectively rational outcome.

Transformation Functions

Let J = 〈I,N , IC〉 be a binary aggregation problem, A judgment tranforma-
tion function for J is a function

T :DN →DN .

For an individual i and profile B, Ti(B) denotes the ith set in the transformed
profile T (B), i.e. agent i’s opinion in the transformed profile and Ti,p(B) for
p ∈ I denotes i’s opinion on p in the transformed profile. We will generally
assume that the input profile to a transformation function is in Mod(IC)N ,
meaning each of the ballots satisfies the integrity constraint. We can equiv-
alently state the transformation function as a tuple 〈Fi〉i∈N of judgment ag-
gregation rules where Fi is the aggregation rule associated with agent i, which
takes as input a profile of ballots and outputs a single ballot – the new opinion
of agent i.

One example of a transformation function – variants of which we will examine
further in later sections – is deference to majority:

Ti(B) = FMaj(B).

This is the transformation function where in the output, each agent accepts
those issues which a majority of agents accepted in the input profile (or the pre-
communication profile), meaning for any agent i, Fi = FMaj. A transformation
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1. Introduction and Motivation

function T is an opinion leader function if it assigns an opinion leader to each
agent, whose pre-communication opinion will become the post-communication
opinion of the agent. Thus for any profile B and any agent i, there is some
agent j such that Ti(B) = Bj . This is equivalent to saying that for every i,
Fi is a dictatorship. A transformation function satisfies universal domain if it
allows for any rational profile as input.

Conditions For Transformation Functions

For a set of issues I, a set of agents N , and an integrity constraint IC, let
J = 〈I,N , IC〉 be a binary aggregation problem. A transformation function
T for J satisfies:

• Rationality if and only if ∀i ∈N ,∀B ∈ Mod(IC)N : Ti(B) |= IC.

• Consensus Preservation if and only if ∀B ∈ DN ,∀B∗ ∈ D : [∀i ∈ N :
Bi =B∗]⇒ [∀i ∈N : Ti(B) =B∗].

• Minimal Relevance if and only if ∀i∈N : ∃B,B′ ∈DN s.t. B =−i B′,
Bi 6=B′i and Ti(B) 6= Ti(B′).

• Independence if and only if ∀p ∈ I,∀B,B′ ∈ DN : [∀i ∈ N : Bi(p) =
B′i(p)]⇒ [∀i ∈N : Ti,p(B) = Ti,p(B′)].

Rationality requires that each ballot in the outcome of a transformation func-
tion satisfies the integrity constraint. Consensus Preservation says that if every
agent submits the same ballot, then no one should change their opinion in the
outcome of the transformation function. Minimal Relevance states that an
agent’s own opinion should have some impact on her opinion in the outcome
of the transformation function. This means that agents will not always com-
pletely ignore their own opinions when performing an update. Independence
states that only the opinions on a proposition p should have any impact on
whether or not it is accepted by an agent in the outcome.

List [2011] showed that for a sufficiently complex set of issues, the only
transformation function with universal domain satisfying Rationality, Consen-
sus Preservation, Minimal Relevance and Independence is the identity func-
tion. If we relax the requirement for Minimal Relevance – meaning an agent is
free to always ignore her own pre-communication opinion – the results are not
much more encouraging. Then, instead of each agent being a dictator (so to
speak) of her own opinion change, the transformation function may pick any
agent whose pre-communication opinion will dictate her post-communication
opinion. Thus, dropping only Minimal Relevance still leaves us with an opin-
ion leader function. Both results rely on the generalisation of Arrows theorem
by Dietrich and List [2007a] which was mentioned in the previous section.

9



1. Introduction and Motivation

Since we are interested in looking at Majority-POD from the angle of trans-
formation functions and not only as an iterated diffusion process, it will be
useful to explicitly define the transformation function which each iteration of
the propositional opinion diffusion process gives rise to. The Maj-POD func-
tion will take as input a social influence network G, a profile B, and an agent
i. Doing this for each agent i ∈N (for the same network G and profile B) will
give us the transformed profile after one iteration of POD.

Definition 1.3 (Maj-POD Transformation Function).

Maj-POD(G,B, i) =
{
Bi if Inf(i) = ∅
FMaj(BInf(i)) otherwise.

1.4 Conclusion

In this chapter, we’ve introduced the terminology and notation for Binary
Aggregation with Integrity Constraints, which we will use in the following
chapters. We’ve also started drawing the connection between opinion diffu-
sion and transformation functions. While Propositional Opinion Diffusion is
concerned with designing a mechanism for the opinion changes of agents and
the role of social influence, the literature on transformation functions focuses
more on axiomatic analysis of such mechanisms. Nevertheless, POD, is a spe-
cific type of opinion profile transformation. It is therefore natural that we use
the framework of transformation functions to analyse how it measures up to
other transformations, whether it has certain desirable axiomatic properties
and whether it falls under the class of transformation functions covered by the
impossibility result in [List, 2011]. The following chapter will be dedicated to
taking a closer look at Majority-POD as a transformation function.
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2 | Opinion Transformations on a
Network

Though Majority-POD works well for opinion diffusion on a single issue, there
are several problems that arise when we want agents to give their opinions on
several interrelated issues. The main problem is related to what we saw in
the example at the beginning of Chapter 1. The outcome of the majority rule
does not always satisfy the integrity constraint, depending on the opinions
being aggregated. This is a problem in judgment aggregation in general –
when the outcome of the majority represents a collective opinion – but even
more problematic when it represents the updated opinion of a supposedly
rational agent. In addition to the Rationality Axiom, we want to explore
other properties which correspond to the axioms we’ve seen for transformation
functions in Chapter 1, but are adapted to transformation of opinion profiles
on a network. This will enable us to further explore Majority-POD from an
axiomatic point of view.

2.1 POD Transformation Function

We would like to check which of the axioms for transformation functions in
Section 1.3 are satisfied by the Majority-POD transformation function. Since
we know that the majority rule does not guarantee an outcome which satisfies
the integrity constraint and thus fails Collective Rationality, we already know
that Maj-POD does not fall under the class of functions covered by the impos-
sibility result by List [2011]. However, since each axiom is still independently
desirable, it would also be welcome news that any transformation function we
use does not violate too many of them. Since we are transforming opinions
on a network, our transformation functions will need to have the influence
network as an input in addition to the opinion profile. Thus, we define a
transformation function T on a network which takes as input a profile and a
network comprised of the same agents which appear in the profile.

T :DN ×2(N×N )→DN .

We first introduce a new axiom that is of relevance to social influence on a
network and captures some of the essence of how we want the POD mechanism
to work. Exclusiveness states that an agent’s change in opinion depends only
on the opinions of her influencers. This is so we can be sure that an agent is
only looking to her influencers before updating her opinion, and does not care

11



2. Opinion Transformations on a Network

about the opinions in the rest of the network. A transformation function T
satisfies Exclusiveness if and only if:

• ∀G,∀i∈N ,∀B,B′ ∈DN : [∀j ∈ Inf(i) : Bj =B′j ]⇒ [Ti(B,G) =Ti(B′,G)].

Proposition 2.1. Let J = 〈I,N , IC〉 be a binary aggregation problem on a
network G= (N ,E), and T a transformation function. Then the following are
equivalent:

(i) T satisifies Exclusiveness.

(ii) ∀i ∈N , ∃F s.t. ∀B : Ti(B,G) = F (BInf(i)).

Where BInf(i) is the profile B restricted to the set Inf(i), and F is an aggre-
gation rule.

Proof. (⇒) Suppose (i). Then for any two profiles B, B′ where Bj =B′j for
all j ∈ Inf(i): Ti(B,G) = Ti(B′,G). Since we know that we can state T
as a tuple of judgment aggregation functions, this means that Ti is the
judgment aggregation function for agent i. Since Ti ignores the opinions
of any j 6∈ Inf(i), we can easily define a restriction of Ti to only the agents
in Inf(j), and obtain an aggregation rule F s.t. F (BInf(j)) = Ti(B,G) =
Ti(B′,G).

(⇐) Suppose (i) does not hold. Then it must be the case that for all j ∈
Inf(i), Bj = B′j , yet Ti(B,G) 6= Ti(B′,G). Since no agent in Inf(i)
changes their ballot, any aggregation rule that is only limited to infor-
mation from the profile restricted to Inf(i) must give the same outcome
for both profiles: meaning for any F, F (BInf(i)) = F (B′Inf(i)), and thus
Ti(B,G) 6= F (BInf(i)).

We can see that Maj-POD must satisfy Exclusiveness, since each agent uses an
aggregation function which takes only the opinions of her influencers as input,
and thus (ii) is satisfied. Exclusiveness guarantees that only the influencers
of an agent can have an effect on how her opinion is changed. This ensures
that the social network does in fact play the role we want it to play in the
opinion diffusion process. A transformation function on a network which does
not satisfy Exclusiveness would, in a sense, be ignoring the network structure
and defeating the purpose of clearly defining an influence relation.

Before we can say anything about how Maj-POD fares with the rest of the
axioms we’ve encountered, the definitions for the axioms have to be slightly
altered to include the social network as part of the input to the transformation
function.

12
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Conditions for Transformation Functions on a Network

For a set of issues I, a set of agents N , and an integrity constraint IC, let
J = 〈I,N , IC〉 be a binary aggregation problem. A transformation function
T for J on a network satisfies:

• Rationality if and only if ∀G ∈ G,∀i ∈N ,∀B ∈Mod(IC)N : Ti(B,G) |=
IC.

• Consensus Preservation if and only if ∀G ∈ G, ∀B∗ ∈ D : [∀i ∈ N :
Bi =B∗]⇒ [∀i ∈N : Ti(B,G) =B∗].

• Minimal Relevance if and only if ∀G ∈ G,∀i ∈ N : ∃B,B′ ∈ DN such
that B =−i B′,Bi 6=B′i and Ti(B,G) 6= Ti(B′,G).

• Independence if and only if ∀G ∈ G,∀p ∈ I,∀B,B′ ∈ DN : [∀i ∈ N :
Bi(p) =B′i(p)]⇒ [∀i ∈N : Ti,p(B,G) = Ti,p(B′,G)].

• Influencer-Unanimity if and only if ∀G ∈ G, ∀B∗ ∈ D, ∀i ∈ N : [∀j ∈
Inf(i) :Bj =B∗]⇒ [Ti(B,G) =B∗].

• Influencer-Independence if and only if ∀G∈G,∀p∈I,∀i∈N ,∀B,B′ ∈
DN : [Bi =B′i and ∀j ∈ Inf(i) :Bj(p) =B′j(p)]⇒ Ti,p(B,G) = Ti,p(B′,G).

The first four axioms in this list are exactly the ones which appear in Sec-
tion 1.3, but have been adapted to include a network G in the input. The
fifth axiom – Influencer-Unanimity – states that if a profile B restricted to an
agent i’s influencers is unanimous, then the outcome of Fi should be the ballot
submitted by the influencers. This axiom is stronger than Consensus Preser-
vation, as it preserves consensus limited to the set of influencers of i, and does
not require global consensus. Influencer-Independence is a similar restriction
of Independence to the set of influencers of an agent i. Together with Exclu-
siveness, it implies Independence, as Exclusiveness guarantees that the only
agents who can influence the outcome of Fi are those in Inf(i). Influencer-
Independence on a complete directed graph G is equivalent to the classical
Independence axiom for transformation functions. This is, of course, because
a complete graph implies that for any i, Inf(i) =N .

Proposition 2.2. If for all agents i ∈N , Ti(B,G) = Maj-POD(G,B, i), then
T satisfies Influencer-Independence and Influencer-Unanimity, but fails Min-
imal Relevance and Rationality.1

Proof.
1Universal domain holds for any POD transformation function as we allow any profile of

rational ballots as input to the function.
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• For Influencer-Independence, suppose for some p ∈ I, i ∈ N and two
profiles B and B′ we have that ∀j ∈ Inf(i) :Bj(p) =B′j(p). If Inf(i) = ∅,
then Ti(B,G) = Ti(B′,G) = Bi. Otherwise, Ti(B,G) = FMaj(BInf(i)).
We know that ∀j ∈ Inf(i) :Bj(p) =B′j(p), and that the set of influencers
of i are the same in both profiles. It is also known that the majority
rule satisfies independence (see [List and Puppe, 2009]), so we know
FMaj(BInf(i))(p) = FMaj(B′Inf(i))(p). Since Ti,p(B,G) = Ti,p(B′,G) =
FMaj(BInf(i))(p), we conclude that T satisifies Influencer-Independence.

• For Influencer-Unanimity, suppose for an agent i ∈N that all her influ-
encers cast the same ballot, i.e. ∃B ∈ D such that ∀j ∈ Inf(i): Bj = B.
Then Ti(B,G) =FMaj(BInf(i)) =B, meaning the unanimously submitted
ballot will be the opinion of agent i in the updated profile T (B).

• Minimal Relevance fails on any network G where there is some agent
i, s.t. i 6∈ Inf(i). Since the POD function satisfies Exclusiveness, we
know that ∀B,B′ ∈ DN such that B =−i B′, it must be the case that
Ti(B,G) = Ti(B′,G). Thus there can be no two profiles which differ only
with regard to agent i’s opinion such that Maj-POD produces different
outcomes for i’s ballot in the output.

• Finally, and maybe most crucially, Maj-POD does not always produce
rational opinions for agents in the output of the transformation function,
as the majority rule does not satisfy Collective Rationality and thus may
give an outcome which does not satisfy the integrity constraint. So, for
|I|> 1, Rationality fails. A simple counterexample shows this.

i: 000

a : 110 b : 011 c : 101

For the network G above, where I = {p,q,r}, let IC = ¬(p∧q∧r), mean-
ing no agent can accept all of the three propositions. Let a,b and c be-
low be the influencers of some agent i. Then Ti(B,G) = FMaj(BInf(i)) =
(111) 6|= IC. Thus Rationality is violated.

Corollary 2.3. The Majority-POD transformation function satisfies Indepen-
dence and Consensus Preservation.
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Proof. The corollary is immediate from the fact that Majority-POD satis-
fies Exclusiveness, Independence, and Influencer-Unanimity. Since Maj-POD
satisfies Exclusiveness, we know that any agent not in Inf(i) cannot possible
influence the outcome of the transformation in any profile. Since we know
Influencer-Independence is satisfied, Independence must be satisfied as well,
as none of the opinions of non-influencers have any impact on the outcome
of the transformation of agent i’s opinion. Consensus Preservation is satisfied
because if every agent submits the same ballot B∗ then it must also be the
case that for any agent i, no matter who her influencers are, that they all have
submitted the ballot B∗. Since Influencer-Unanimity is satisfied, B∗ will be
the ballot of i in the outcome of the transformation, and this will hold for all
agents.

It is a problem that Majority-POD fails to satisfy Rationality because it allows
agents to hold opinions which do not satisfy the integrity constraint despite
the fact that a fundamental requirement in our framework is that agents in
the network are rational and hold rational opinions. Additionally, since POD
is an iterative process, agents’ irrational opinions will potentially need to be
aggregated anew in a future iteration of the diffusion process. This means that
not only will Majority-POD have irrational agent opinions in the outcome,
these outcomes will become inputs to the transformation function in another
step. Though the transformation function is defined for a universal domain,
it makes little sense when the input to the function is not rational, as the
individual aggregation rules are designed to aggregate rational opinions.

We can show that a similar result to the impossibility result in [List, 2011]
holds for opinion transformations on a network, where we do not assume that
each agent has access to the full information in the network. We do this by
replacing Independence with the two axioms of Exclusiveness and Influencer-
Independence and Consensus Preservation with Influencer-Unanimity.

Proposition 2.4. If a transformation function T = 〈Fi〉i∈N satisfies Universal
Domain, Rationality, Exclusiveness, Influencer-Independence and Influencer-
Unanimity, then for any i ∈ N , Fi satisfies Collective Rationality, Indepen-
dence and Consensus Preservation.

Proof. Suppose there is some T which satisfies Universal Domain, Rational-
ity, Exclusiveness, Influencer-Independence, and Influencer-Unanimity. Recall
that we can equivalently define T as a tuple 〈Fi〉i∈N where each Fi is a function,
which takes as input B and outputs a ballot. Since T satisfies Exclusivity, we
know from Proposition 2.1 that each Fi is equivalent to an aggregation function
which only takes as input the profile restricted to Inf(i). Thus we can assume
that Ti(B,G) = Fi(BInf(i)) for all agents i. Since T satisfies Universal Do-
main, Rationality, Influencer-Independence, and Influencer-Unanimity, each
Fi must satisfy Universal Domain, Collective Rationality, Independence, and
Consensus Preservation (defined for aggregation functions). This is immediate
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from the definitions of Rationality, Influencer-Independence and Influencer-
Unanimity.

Dietrich and List [2007a] tell us an aggregation rule defined for a universal
domain which satisfies Collective Rationality, Independence and Consensus
Preservation is a dictatorship of one individual.2 Thus a transformation func-
tion which satisfies the axioms in Proposition 2.4 must be an opinion leader
function, as each individual has a dictator whose pre-transformation opinion
becomes their post-transformation opinion. Proposition 2.4 emphasizes how
the impossibility result by List [2011] depends in large part on the axioms
satisfied by the individual aggregation rules used by the agents. Thus, even
though it, in a sense, generalizes the context in which the impossibility holds
– allowing agents to update their opinion based on local, and not global, in-
formation – it relies on the same principle as the original impossibility result
where each agents uses the information in the entire network. However, the
proposition also tells us that Maj-POD does not fall under the class of func-
tions covered by the impossibility, as it does not satisfy Rationality.

2.2 Domain Restrictions

One line of defence against opinions which do not satisfy the IC is to restrict
the domain of the aggregation function. This means restricting which profiles
are allowed for the initial opinion (of either all agents or a subset of them).
Domain restrictions such as single-peaked preferences [Black, 1948] have been
well-studied in Preference Aggregation, and have gotten some attention in
Judgment Aggregation as well [Dietrich and List, 2010]. The particular domain
restriction we will examine here is called unidimentional alignment of profiles
[List, 2003], and it is closely related to the notion of single-peakedness of
preference profiles in Preference Aggregation.

A profile B satisfies unidimentional alignment if there exists a strict linear
ordering ≺ such that for each p ∈ I either NB

p ≺ NB
p or NB

p ≺ NB
p (where

N ≺N ′ is shorthand for ∀i ∈N,∀i′ ∈N ′ : i≺ i′). Informally, this means that
there is a way of arranging the agents from left to right (or top to bottom)
such that for every proposition p ∈ I, the agents accepting p are either all to
the right or all to the left of those rejecting p. We call an agent m the median
agent wrt. ≺ if the sets {i ∈ N | i ≺m} and {i ∈ N |m ≺ i} are of the same
size. In our results, we will make the assumption that the number of agents
is odd to simplify the proofs.3 Example 2.5 shows a unidimentionally aligned
profile.

2As before, this holds for a sufficiently complex set of interrelated issues.
3Cases with an even number of agents lead to two median agents in the outcome and

differ only in that they require a tie-breaking procedure to choose one of the agents.
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Example 2.5.

p1 p2 p3
Agent 1 0 1 1
Agent 2 0 1 0
Agent 3 1 0 0

Unidimentionally aligned profiles are easier to handle, and lead to some posi-
tive results about the outcome of the majority rule.

Proposition 2.6 (List, 2003). Let F be the majority rule, and let B be a
profile with an odd number of agents such that B is unidimentionally aligned.
Then F (B) =Bm, where m is the median agent.

Let D = {0,1}I be the domain associated with a set of issues I. We say
D ⊆P(D) is a domain restriction for profiles. We write sat(B,D) to mean
that a profile B is in the restricted domain D. D is closed under majority
if sat(B,D) implies sat((FMaj(B),B),D), where (FMaj(B),B) is the profile
B with the added ballot FMaj(B). D is closed under subprofiles if sat(B,D)
implies sat(B′,D) for any B′ ⊂B. Where B′ ⊂B means B′ is the profile
B with one or more ballots removed. Note that domain restrictions allow
for profiles of different sizes. This is key since closure under majority and
subprofiles involves both adding and removing ballots while still remaining in
the restricted domain.

Proposition 2.7. Unidimentional alignment is closed under majority and
closed under subprofiles.

Proof. Let B be a unidimentionally aligned profile, meaning it is in the domain
of unidimentionally aligned profiles D. We first show that D is closed under
majority. By Proposition 2.6, FMaj(B) is the ballot of the median agent (or
one of the two medians if we don’t restrict ourselves to an odd number of
agents), meaning it is equal to one of the ballots already in B. We call this
ballot Bm, and the new profile obtained is B′ = (Bm,B). We know for any
p ∈ I either NB

p �NB
p or NB

p �NB
p . Suppose, without loss of generality, that

it is the former, meaning ∀i ∈ NB
p ,∀i′ ∈ NB

p : i � i′. Suppose (again without
loss of generality) that m ∈NB

p . Since ∀i ∈NB
p :m� i and none of the other

ballots change or are removed, it must remain the case thatNB′
p � NB′

p and
thus B′ is unidimentionally aligned.

Showing closure under subprofiles is a much simpler task. Let p ∈ I and
suppose, without loss of generality, that ∀i ∈NB

p ,∀i′ ∈NB
p : i� i′. Since this

is a universal statement about all agents, it will clearly still hold if any agents
are removed, so any subprofile of B is unidimentionally aligned.

Now we are prepared for the main result of this section. We combine our
knowledge about influence networks without cycles – directed acyclic graphs
– and unidimentionally aligned profiles, to obtain some positive termination
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results. We say the opinion of agent i is stable at time t if at any time t′ ≥ t,
Bt′
i =Bt

i . We say POD has terminated on a network if the opinion of all agents
is stable at time t. Let SG = {j ∈ N | Inf(j) = ∅} be the set of source agents
in G. Let diam(G) be the length of the longest path in G.

Theorem 2.8. For a profile B and a directed acyclic graph G, if BSG
is unidi-

mentionally aligned, then Majority-POD will terminate after at most diam(G)
steps, and the profile at termination will satisfy unidimentional alignment.

Proof. We assume for simplicity that all agents have an odd number of influ-
encers, to avoid dealing with more than one median agent. Let d(i) be the
maximal distance from i to a source node. Suppose BSG

satisfies unidimen-
tional alignment, meaning the profile restricted to the source nodes satisfy
unidimentional alignment. We assume that the number of influencers of an
agent are odd.

• If d(i) = 0, then i is a source node, and will not change her opinion as
she has no influencers.

• Assume that all nodes j s.t. d(j) ≤ k have stabilized at step k of the
diffusion process, and that the profile Bk at time k restricted to only
those agents j such that d(j)≤ k is unidimentionally aligned. Let i be an
agent s.t. d(i) = k+1. Since we are on a directed acyclic graph, it must
hold that for any j ∈ Inf(i) : d(j)≤ k, so all of agent i’s influencers must
have stabilized their opinion by step k+ 1. Further, we know that the
set of all agents j s.t. d(j)≤ k must satisfy unidimentional alignment, so
any subset of them (specifically Inf(i)) must also satisfy the condition,
since unidimentional alignment is closed under subprofiles. Since (by
assumption) i has an odd number of influencers, Fi(Bk+1

Inf(i)) =Bm where
Bm is the ballot of the median agent among Inf(i). After this step, the
profile Bk+1 restricted to agents i s.t. d(i) ≤ k+ 1 is unidimentionally
aligned, since unidimentional alignment is closed under majority.

For any agent i, d(i)≤ diam(G). Thus, at step diam(G), POD will terminate
on a unidimentionally aligned profile.

Essentially what the theorem states is that on a directed acyclic graph, all we
need is for the source agents to agree on a linear ordering over the propositions
in order for this to propagate down the network and guarantee termination
on a rational profile. This result is encouraging not only because it prohibits
irrational ballots, but because we know that the unidimentionally aligned pro-
file we are left with at termination can be aggregated without problems using
the majority rule.

In fact the statement of Theorem 2.8 holds not just for unidimentionally
aligned profiles, but, as the proof suggests, for any domain restriction which
is closed under majority and under subprofiles. While restricting the domain
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is one way of avoiding agents ending up with opinions which are irrational,
agenda restrictions are in some cases not a very realistic assumption as they
limit the set of opinions we allow agent to have beyond simply disallowing
irrational ones. Additionally, the intuitive appeal of these domain restrictions
in judgment aggregation can be challenged, as they are not always as natural
to impose in our setting as they are in preference aggregation. However, if we
are working with all ballots which satisfy the IC (and not with a restricted
domain), we are bound to run into cases where the majority rule will give an
outcome which does not satisfy the integrity constraint.

2.3 Conclusion

We can see that analysing Majority-POD using an axiomatic approach can
give us some insight into how the Propositional Opinion Diffusion process
relates to other ways of transforming opinion profiles. In this chapter, we
have showed that the introduction of the social influence network does not rid
us of the impossibility result by List [2011], as the impossibility depends in
large part on the fact that each agent is using an aggregation rule to update her
opinion. Crucially, we’ve seen that Maj-POD does not satisfy the Rationality
axiom, which poses a problem to us as it leads to violation of the rationality
requirements we impose on agents opinions. We have also see one way to
avoid this difficulty, by restricting the domain of the aggregation rules used
by agents to update their opinions. Specifically, we’ve showed that if the
sources in a network belong to a domain which is closed under majority and
subprofiles, then this property will propagate through the network in directed
acyclic graphs and result in a profile which belongs to this same restricted
domain.
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sion

As we have seen, the majority rule in judgment aggregation may in some cases
produce inconsistent outcomes if we are allowing a universal domain. This is
problematic for many reasons even when using majority to reach a rational
collective decision, but for our purposes it poses an added problem since we
would like the outcome of the rule to be a permissible opinion which can be
aggregated in a future iteration of the opinion diffusion process. Thus, we are
faced with a problem that was not present when aggregating opinions on a
single issue. As we always require agents to be individually rational (i.e. have
their opinions satisfy the constraint), we cannot allow them to assume opinions
they know are not. Our only other option, then, is to block any change at all
if the outcome of the majority rule does not satisfy the constraints. However,
this is a quite limiting framework that excludes opinion updates that we might
intuitively want to allow.

When working with social influence networks, the structure of the network
plays a part in determining whether the majority outcome will be consistent.
If for example, we add the assumption that an agent’s influencers always have
similar opinions which can be aggregated in a consistent way, this is a possible
way to circumvent the problem, as we saw was the case with certain domain
restrictions. This approach does not allow for networks where we don’t nec-
essarily know the agents’ opinions ahead of time, however. If we allow for all
opinions in the initial profile however, then for some influence networks, the
integrity constraint will block all opinion updates if the POD framework will
not let an agent assume an opinion that does not meet the integrity constraint.
Consider for example the following network,

Example 3.1. Let I = {p,q,r}, N = {a,b,c, i}, and IC= ¬(p∧ q∧ r}.

i: 000

a:110 b:011 c:101

As agents a,b and c are sources, they have no influencers and their opinions
will not change under POD. However, agent i has an opinion that is exactly
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the opposite of the majority opinion of her influencers on all issues. It makes
sense, then, that there should be some change to i’s opinion if she is looking
to her influencers with the goal of updating her opinion. Clearly she cannot
simply assume the majority opinion as it does not satisfy the constraint, which
means if we block irrational updates, agent i can never change her opinion
and the termination profile will simply be the initial profile. In cases like this,
POD over multiple issues is too restrictive in terms of what opinion updates
it allows.

Most of us know that when we are influenced to change our opinion, it is
rare that we do so on all of our opinions. It makes intuitive sense therefore,
to allow agents to pick which issues they are willing to be influenced on at
any time, or rather, on which issues they will turn to their friends for advice
at any step of the opinion diffusion process. This is the main idea behind
Propositionwise Opinion Diffusion. Suppose for example I am entirely sure
about my opinion on some issue p and not willing to change my opinion on
this issue at this point in the deliberation. I am however, willing to look to
my friends for advice on some other (possibly related) issue q. Crucially, if the
aggregate opinion of my friends on q is not compatible with my own opinion on
p (meaning changing my opinion on only q and not p will violate the integrity
constraint), my own opinion on p will be given more weight. In other words, if
I either have to change my own belief on an issue other than q or not update
my opinion on q at all, I will always choose the latter option.

Propositionwise Opinion Diffusion (PWOD) models precisely this type of opin-
ion change where agents do not change their opinion over the entire set of
issues in each iteration. It is an iterative diffusion process where at each step,
agents are willing to look to their influencers opinions on only a subset of the
issues. In this thesis, we will only consider the case where agents ask advice
on a single proposition at each turn, but the framework can easily be ex-
tended to accommodate agents seeking advice on any number of issues at any
step of the diffusion process. A key difference between POD and PWOD is
that PWOD always blocks opinion updates where the outcome of the update
does not satisfy the integrity constraint. Thus, the guaranteed satisfaction of
the Rationality axiom for transformation functions is built into the diffusion
process itself.

Our examination will mainly focus on cases where agents would like to
attempt to update their opinion on all propositions, but differ in the order
they would like to do this. This allows for a comparison between POD and
PWOD, and allows us to tease out the strengths and weaknesses of each.
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3.1 Framework & Notation

As before we have a set of issues I, a set of agents N = {1, . . . ,n}, and an
influence network G= (N ,E) where (i, j) ∈ E means agent i influences agent
j and Inf(i)G = {j ∈ N | (j, i) ∈ E} is the set of influencers of agent i in the
network G. We again denote with Bt

i the opinion of agent i at time t, and let
Bt = (Bt

1, . . . ,B
t
n) stand for the associated profile at time t. We write B =−i B′

to mean the profiles B and B′ are identical if we ignore agent i’s ballot. We
write B =−p B′ to mean that the ballots B and B′ are identical on every issue
if we ignore the proposition p, i.e. ∀q 6= p ∈ I :B(q) =B′(q). We use the same
notation for profiles. Let flip(B,p) be the ballot resulting from changing the
judgment on p in the ballot B. For example, if B(p) = 0 and B′ = flip(B,p),
then B′ =−p B and B′(p) = 1.

We define a PWOD function, which takes as input a network G, a profile
of opinions B, an agent i, and the proposition p which agent i wants to
update. The function returns the updated opinion of i according to Fi – the
aggregation rule agent i is using – if such an update continues to satisfy the
integrity constraint.

Definition 3.2.

PWOD(G,B, i,p) =
{

flip(Bi,p) if Fi(BInf(i))(p) 6=Bi(p) and flip(Bi,p) |= IC
Bi otherwise.

The main difference between this type of opinion update and the one we’ve
see in POD is that the satisfaction of the integrity constraint is built into the
update function. Thus, we are guaranteed that no agent will hold an irrational
opinion at any point of the diffusion process.

A natural restriction to define is the one where every agent uses the majority
rule to aggregate the opinion of her influencers on a given issue p. We call
this function Majority-PWOD, or Maj-PWOD, and it will be the main point
of exploration in this thesis. The Maj-PWOD function is the PWOD function
we saw above, but with Fi = FMaj for all agents i ∈N .

Definition 3.3.
Maj-PWOD(G,B, i,p) ={

flip(Bi,p) if FMaj(BInf(i))(p) 6=Bi(p) and flip(Bi,p) |= IC
Bi otherwise.

Having defined how each agent makes changes to her opinion at any step, we
can now define when a transformation is permissible for a given aggregation
problem, meaning when a change in opinion will not violate the integrity con-
straint. For a given network G an integrity constraint IC, a set of Fi for i∈N ,
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and any two profiles B and B′, we say there is a permissible transformation
from B to B′ (on G) if: ∃S ⊆ N (where S 6= ∅) where ∀i ∈ S : ∃p ∈ I such
that PWOD(G,B, i,p) =B′i. We say the transformation is effective if there is
some i ∈ S such that Bi 6=B′i.

Informally this means that there is an (effective) permissible transformation
from the profile B to the profile B′ if we can find a nonempty subset of agents
who each change their opinion on one proposition in the profile B, and this
results in reaching the profile B′. The notion of a permissible transformation
is defined for a given integrity constraint and after fixing Fi for each agent i.

3.2 Termination of PWOD

For a given network G and an agent i ∈ N , we say agent i’s ballot Bt
i is

stable at time t if for all t′ ≥ t, ∀p ∈ I: PWOD(G,Bt′
, i,p) = Bt

i . If the only
permissible transformation from a profile B is mapping the profile to itself,
this means there are no agents who can change their opinion in this profile,
and thus that no effective transformation exists. This is equivalent to saying
that for every agent i ∈ N , i’s ballot in B is stable. If, during the diffusion
process, we reach such a profile, the opinion diffusion will have terminated, as
there are no more possible changes for any agent. We define termination as
a property of profiles on a given network. We call a profile B a termination
profile if there is no B′ 6= B such that there is a permissible transformation
from B to B′ (for some given network G) or equivalently, if all ballots in B
are stable.

Definition 3.4 (Asymptotic Termination of PWOD). For a set of agents N
a set of issues I, an integrity constraint IC and an aggregation rule Fi for
each i ∈N , we say there is asymptotic termination of PWOD on a network G
if for any profile B, there is a sequence of permissible transformations leading
from B to a termination profile.

Note that Asymptotic termination of PWOD does not guarantee that the
process will indeed always terminate on the network G.1 For example, if the
network is a cycle, there is certainly a choice of updates which would ensure
a termination profile is reached, but we cannot be sure that any order of
updates will lead to termination. Thus we have to define the stronger notion
of universal termination.

Definition 3.5 (Universal Termination of PWOD). For a set of agents N a
set of issues I, an integrity constraint IC and an aggregation rule Fi for each
i ∈N , we say there is universal termination of PWOD on a network G, if for

1Although if every permissible transformation has a nonzero probability, termination will
eventually occur with probability one.
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any profile B, any sequence of effective permissible transformations from B
leads to a termination profile.

For a set of agents N a set of issues I, an integrity constraint IC and an
aggregation rule Fi for each i ∈ N , we say PWOD converges to a unique
profile on a network G if for any two termination profiles B and B′, B = B′.
PWOD converges to a consensus on a network G (for set of Fi for i ∈ N ) if
for any termination profile B, ∀i, j ∈N :Bi =Bj .

Note that convergence to a unique profile and convergence to consensus
are both defined as properties of termination profiles, meaning they do not
require universal termination of PWOD, but rather that, there will be only
one termination profile (in the case of convergence to a unique profile), or
that all termination profiles will be unanimous (in the case of convergence
to consensus). We give an example of (universal) termination which neither
satisfies convergence to a unique profile, nor convergence to consensus.

Example 3.6. Recall Example 3.1 where I = {p,q,r}, N = {a,b,c, i}, and
IC= ¬(p∧ q∧ r}. In that case Maj-PWOD will terminate, though it will not
converge to a unique profile. Since agents a,b and c are sources, their opinions
are already stable. Agent i however has several termination profiles available
to her depending on which order she chooses to update her opinions. For ex-
ample, if she chooses to first update her opinion on p, then q then r, she will
first change her opinion to (100) (when updating on p), then to (110) (when
updating on q). At this stage however, she will be blocked if she tried to update
her opinion on r to match the majority of her influencers. Thus Maj-PWOD
will terminate on a profile where agent i’s opinion is (110). However, we can
see that if agent i chose to update in a different order, say r,q,p, then her
opinion would stabilise on a different ballot – (011). In either case we know
the process will terminate, but depending on the order of updates, the termi-
nation profile will differ.

Given this initial profile B on the network G, we can draw a corresponding
state transition graph for Maj-PWOD, which allows us to see the effective
transformations and the termination profiles. In such a state transition graph,
each node represents a different profile on the network G, with the underlined
node corresponds to the initial profile B on this network. An edge (S1, S2)
signifies that there is an effective transformation from the state S1 to the state
S2.

Since in this particular case G is a DAG, there will always be sources who
do not change their opinions. Thus, we omit the opinions of agents a,b and c
in our transition graph as they will never change throughout the Maj-PWOD
diffusion process. The thicker bordered nodes in the graph represent the ter-
mination states for the diffusion problem in the example above. We can also
see which states are termination states by checking that they do not have any
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outgoing edges, since a termination state is equivalent to a profile where there
are no further effective transformations available. Here we’ve chosen to use
thicker edges to show the transitions which will take place when agent i updates
her opinion in a lexicographic order (p,q,r). Note that for a different order of
updates, we would reach a different termination state. Note also that this is an
example of universal termination as any sequence of effective transformations
will lead to a termination profile.

i: 000

i:001

i:010

i:100

i:011

i:101

i:110

Below is an example of asymptotic termination of Majority-PWOD.

Example 3.7. Consider the following network G′, and initial profile B for
agents {a,b} and I = {p,q}. Let us call this state S1.

a: 10 b: 01

The network above is a two-cycle comprising of two agents who are each other’s
only influencer. This diffusion problem on the social influence graph G′ gives
rise to the following – more complex – state transition graph. Again the initial
profile on G is underlined.
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a: 10, b:01

a: 11, b: 11

a:00, b: 00

a: 11, b: 00

a: 00, b: 11

a: 01, b: 10

a: 01, b: 01 a: 10, b: 10

This state transition graph shows us that on the network G, we have asymp-
totic termination of Maj-PWOD. At any state, there is some sequence of
effective transformations which will lead to one of the four termination states.
However, we do not have universal termination, as it is possible to perform
an effective transformation at each iteration of the process, while never reach-
ing a termination state. Note that for each effective transformation from a
state S to another state S′ (which is not a termination state), there is also
an effective transformation from S′ to S. Further, this transition graph shows
us that for this particular problem, Maj-PWOD converges to consensus. This
is because in all four termination profiles, agents a and b have identical ballots.

Finally, we explicitly define the iterative process of PWOD. We will first need
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to define two functions. Let turn: N→ 2N be a turn function which tells us
which individudals are updating their opinions at any time t. Let propi :N→I
be function which tells us which proposition agent i updates at any time t.

On a network G, for a given turn function and a function propi for each i∈N :

Bt
i =

{
Bt−1
i if i 6∈ turn(t)

PWOD(G,B, i,propi(t)) otherwise.

3.3 Conclusion

In this chapter, we presented an alternative to the POD transformation func-
tion we saw in the previous chapters, which emphasises the rationality of
agents’ post-update opinions and allows for a more nuanced way of chang-
ing opinions. We defined the formal framework, notation and terminology for
Propositionwise Opinion Diffusion, and presented some ways to think about
termination of such a process. Mainly, we defined and saw examples of univer-
sal and asymptotic termination of PWOD. Finally, we saw that the iterative
PWOD process can be defined in a manner similar to POD. We have yet to
present any concrete termination results. This will be the focus of the next
chapter, where we will explore the role of the integrity constraint in determin-
ing what the termination profiles will look like for Majority-PWOD.
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4 | Majority PWOD

Part of the reason for wanting to model asynchronous updates on one propo-
sition at a time is to ensure updates will still be possible in cases where the
majority of an agent’s influencers does not satisfy the integrity constraint. In
theory however, we don’t know ahead of time whether the IC will be satisfied
for every profile just by looking at the network. Since termination profiles are
those profiles which tell us the result of the diffusion process if each agent is
given the chance to update her opinion on all propositions, we would like to
know when the proposition-wise process will give the same result as perform-
ing the updates on the entire ballot in one step, even when we don’t know
the particular profile of opinions. More specifically, we would like to ensure
that if the outcome of the majority did satisfy the integrity constraints, then
the propositionwise diffusion process should end up with the same termina-
tion profiles as standard POD. We will see that this is not always the case,
meaning it is not always possible to update and move towards the majority by
changing one proposition at a time, even if the majority satisfies the integrity
constraint.
Example 4.1. The following is an example of an integrity constraint which
blocks opinion updates. In this example we have four agents a,b,c and i. Let
I = {p,q,r} and IC = ¬(p∧¬q∧¬r)∧¬(q∧¬p∧¬r)∧¬(r∧¬p∧¬q), meaning
no agent can accept only one of the three propositions.

a : 110 b : 101 c : 011

i : 000

Here a,b and c are source nodes and Inf(i) = {a,b,c}. If agent i is updating
one proposition at a time, then the only opinions, or ballots, she can reach by
updating according to the majority opinion of her influencers are (100), (010)
or (001). All of which violate the IC. Thus each of these updates will be blocked
by the integrity constraint and agent i’s ballot will never move closer to the
majority.
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In Example 4.1 agent i cannot change her opinion at all. In other cases an
agent might be allowed to update her opinion towards some majority opinions
and not others. Whether updates are going to be allowed or blocked depends
in large part on the structure of the integrity constraint.

4.1 Characterization of Integrity Constraints

In this section we present a syntactic characterization of the integrity con-
straints which do not block opinion updates in the manner we saw in the
example above. The integrity constrains we define are precisely those which
allow PWOD updates on single issues. This means that if an agents opinion
disagrees with the majority opinion of her influencers, she will be able to find
one proposition on which they disagree and the integrity constraint will allow
her to update her opinion on that proposition to match the opinion of the
majority.

We first define the distance between two ballots, and between two formulas.
Given two ballots B and B′ ∈ D, the Hamming distance between them is
H(B,B′) = Σp∈I |B(p)−B′(p)|. We can extend this definition to apply to the
distance between two formulas which are conjunctions of literals and use the
same propositional variables. To distinguish between when we are discussing
the distance between these types of formulas (conjunctions of literals) and bal-
lots, we will denote the distance between two formulas φ and ψ as D(φ,ψ). For
two conjunctions φ and ψ which use exactly the same propositional symbols,
we say D(φ,ψ) = H(Bφ,Bψ), where Bφ is the unique model of the formula
φ, restricted to the propositions which occur in φ (and ψ). For example, if
φ= p∧q and ψ = p∧¬q, then Bφ is the model in which p and q hold, and Bψ
is the model in which p holds but q does not. In this case D(φ,ψ) = 1.

In order to give a syntactic characterization of the integrity constraints
which do not block opinion updates, we transform the formula IC into full
disjunctive normal form. A formula φ is in disjunctive normal form if it is a
disjunction of conjunctions of literals. In our case a literal is any proposition
p ∈ I, or its negation. A formula is in full disjunctive normal form if each
clause uses exactly the same literals [Hein, 2003]. For example, the formula
(p∧ q)∨ (q∧ r) is in disjunctive normal form, but not in full disjunctive nor-
mal form, whereas the formula (p∧ q)∨ (¬p∧¬q) is in full disjunctive normal
form, as the same propositions (or their negations) appear in all clauses of
the formula. Any formula of propositional logic can be transformed into (full)
disjunctive normal form and for any formula, there might be several equivalent
full disjunctive normal form formulas. For example, let φ= p∧(q∨¬q). Then,
both p and (p∧ q)∨ (p∧¬q) are full disjunctive normal forms of φ.

Definition 4.2. Let IC be an integrity constraint, and ICDNF = φ1∨·· ·∨φm
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a full disjunctive normal form version of IC. We say IC has an open structure
if

• for any two disjuncts φ, φ′ of IC there is some sequence φ1, ...,φk of
(distinct) disjuncts of ICDNF such that φ1 = φ, φk = φ′, and for 0< i< k,
D(φi,φi+1) = 1 and

• D(φ1,φk) = k−1.

Note that each disjunct does not necessarily determine the acceptance or re-
jection of every issue in I. This is because there is no requirement for the IC
to include every proposition in the set of issues. However, we can expand an
integrity constraint which does not use all propositions to one which does. For
example, if ICDNF = (p∧ q) and I = {p,q,r}, we can equivalently state that
ICDNF = (p∧q∧r)∨ (p∧q∧¬r). Given a set of propositions I = {p1, . . . ,pm},
and a formula IC in full DNF which uses k <m of these propositions, we can
always expand it to a formula which uses all m of the propositions. We say
these formulas are in complete full DNF. If it is the case that for any two
conjuncts φ, φ′ of IC there is a full DNF of IC where is always some path
of (distinct) disjuncts φ1, ...,φk such that φ1 = φ, φk = φ′, and for 0 < i < k,
D(φi,φi+1) = 1, then this will also hold for the formula in complete full DNF
which uses all propositions in I. The key reason for this is that given a number
of propositions k <m, there is only one full DNF version which uses exactly k
of the propositions in I. Thus an equivalent DNF formula with k+ 1 propo-
sitions simply has more conjuncts, none of which will increase the distance
between disjuncts to more than one. An example makes this clearer. Let IC
φ∨ψ and suppose IC has an open structure. Expanding it to include another
proposition p we get IC = (φ∧ p)∨ (φ∧¬p)∨ (ψ ∧ p)∨ (ψ ∧¬p). Clearly if
D(φ,ψ) = 1, then D((φ∧ p),(φ∧¬p)) = 1 and D((φ∧ p),(ψ ∧ p)) = 1. So it
will still be the case that a path exists between any two disjuncts. We will
make use of the complete full DNF of formulas in this chapter. Note though
that this is simply to avoid overcomplicating our proofs, and is not a necessary
requirement for the results to hold.

The idea behind having an integrity constraint with an open structure, is that
it allows for movement between the ballots which satisfy the constraint, when
we are using Majority-PWOD. For an integrity constraint with three proposi-
tions, p,q and r, we can visualise this connectivity of the models of the IC as
a cube. Here, the nodes of the cube represent models, and the edges between
them tell us whether it is possible to move from one model to the other by
changing the judgment on just one proposition. The cube below shows full
mobility between all the nodes, so the integrity constraint is simply >, mean-
ing all ballots are allowed by the constraint.
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000

001

010

011

100

101

110

111

Note that if we cut some of the edges between the nodes in the cube, we
cannot always move freely between the models. This becomes clear in the
following example. The dashed edges show which movements are blocked by
the integrity constraint, and the dashed nodes show which ballots are not per-
mitted.

000

001

010

011

100

101

110

111

We can deduce the integrity constraint from looking at the cube, in this case,
IC = ¬(¬p∧¬q∧r)∧¬(¬p∧q∧¬r), meaning q or r cannot be accepted alone.
Note that we do not only have to find a path between any two nodes, but a
path such that the length of the path is not greater than the distance between
the start node and end node plus one. For example, if we start at (000) and
our goal is (011), the distance between (100) (underlined) and the end goal of
(011), is larger than the distance between (000) and (011). D(000,011) = 2,
but D(100,011) = 3. Thus any path from (000) to (011) which includes the
node (100) will be longer than D(000,011)+1. Therefore, we can deduce from
this cube that IC does not have an open structure.

In this case PWOD would not allow for the node (100) to be used, even as
as a temporary resting point, as we are always limited to changes that reduce
the distance between the current ballot and the end goal. Why is this the
case? Imagine (011) is the outcome of the majority rule among an agent’s
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influencers and her own ballot is (000). In order for her to update her opinion
using Majority-PWOD, she will have to adopt the opinion of her influencers
on some proposition. This means she will have to perform a flip to match the
majority. Changing her opinion from (000) to (100) is simply not possible in
this case, as she already agrees with the majority on the first proposition. The
change in opinion must therefore be on a propositions on which the agents and
the majority of her influencers disagree, but as we can see, the only ballots
which qualify are the two blocked by the integrity constraint.
Since we are working with the full disjunctive normal form of the integrity
constraint, we know that each disjunct will be a conjunction which uses the
same propositional atoms and that each proposition which appears in IC will
appear once in each disjunct of ICDNF. The following result will therefore be
helpful going forward.

Lemma 4.3. For a set of agents N and a set of issues I, if IC is a conjunction
of literals, then IC has an open structure and for any B,B′ ∈ Mod(IC), where
B 6=B′, there is some p ∈ I such that B(p) 6=B′(p) and flip(B,p) |= IC.

Proof. A conjunction of literals means that the disjunctive normal form of
IC has only one disjunct – the conjunction itself. So IC must have an open
structure.

We now show the latter part of the lemma. Suppose that B and B′ are
two ballots s.t. B 6= B′ and B,B′ ∈ Mod(IC). Since both ballots are models
of the IC, they must both accept all propositions that appear as conjuncts in
IC. Thus, since B 6= B′, they must differ in their judgment on at least one
proposition p ∈ I, where p does not appear in IC. This means that there is no
constraint on judgments on p and that whether a ballot accepts or rejects p
has no bearing on whether the constraint is satisfied. Thus, if B |= Mod(IC),
then it must also be the case that flip(B,p) |= IC.

Since we have showed that an IC which is a conjunction of literals is always
open structured, each conjunct of an IC in full disjunctive normal form will
always have an open structure, since by definition, each disjunct will be a
conjunction of literals. In fact, the open structure of an integrity constraint is
what determines whether such flips are permissible in general.

Theorem 4.4. For a set of agents N and a set of issues I, IC has an open
structure if and only if for any B,B′ ∈ Mod(IC), where B 6=B′, there is some
p ∈ I such that B(p) 6=B′(p) and flip(B,p) |= IC.

Proof. Suppose IC has an open structure and ICDNF = φ1 ∨ ·· · ∨ φm is the
integrity constraint in (complete) full disjunctive normal form, which uses all
propositions in I . Remember we can do this as if IC has an open structure,
then it does not matter which DNF version we are using as the property we
are interested in will hold for all of them. Let B,B′ ∈Mod(IC) be two rational
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ballots. Then it must be the case that they are also each a model of one of
the disjuncts of ICDNF.

For the left to right direction, suppose IC has an open structure. If B,B′ ∈
Mod(φ), then B = B′ since ICDNF is the integrity constraint in complete full
disjunctive normal form. So suppose that B ∈ Mod(φ) and B′ ∈ Mod(ψ).
Where φ and ψ are distinct disjuncts of ICDNFand D(φ,ψ) = k. Since IC uses
all the propositions in I, there is only one model of each disjunct of ICDNF.
Since IC has an open structure, the exists a path of disjuncts φ1, . . . ,φk+1
where φ1 = φ and φk+1 = ψ, and for any i: D(φi+1,φi) = 1. Since each dis-
junct uses each of the propositions in I, they each have a corresponding ballot.
This implies there is a series of (distinct) ballots B1, . . . ,Bk+1 such that for all
i :H(Bi+1,Bi) = 1. Thus, there must be some ballotB∗ ∈Mod(IC) which mod-
els the disjunct φ∗ of ICDNF, where D(φ,φ∗) = 1. Since each disjunct only has
one model, we can be sure that H(B,B∗) = 1. So there must be some propo-
sition p ∈ I s.t. B∗ = flip(B,p). Since we know that D(φ,ψ) = D(φ∗,ψ) + 1,
we can conclude that H(B∗,B′) = H(B,B′)−1. This implies that B and B′

must differ on their judgment on p, as otherwise we would not have moved
”closer” to B′ by flipping the judgment on p in B. In other words, we have
that B(p) 6=B′(p) and since B∗ = flip(B,p), we also have that flip(B,p) |= IC.

For the right to left direction, we suppose IC does not have an open structure,
and present a counterexample to show that it will not hold for any B,B′ ∈
Mod(IC), where B 6= B′, that there is always a p ∈ I such that B(p) 6= B′(p)
and flip(B,p) |= IC. We again assume that the ICDNF is in complete full DNF
and uses all propositions in I. Since IC does not have an open structure,
it must be the case that for any sequence φ, . . . ,φ′ of length k, there must
be at least two consecutive disjuncts in the sequence such that the distance
between then is greater than one. Suppose without loss of generality that
these are φ and φ′, and that D(φ,φ′) = 2.1 Note that this means there is no
disjunct ψ of ICDNF such that we can construct the sequence (φ,ψ,φ′), where
D(φ,ψ) = 1 and D(ψ,φ′) = 1. Since there is a one-to-one correspondence
between the disjuncts and the models of the IC, there must be two ballots
B and B′ such that B |= φ, B′ |= φ′ and H(B,B′) = 2. Since there is no
disjunct ψ which falls between φ and φ′, we can conclude that there is no
ballot B∗ s.t. H(B,B∗) = 1 and H(B∗,B′) = 1. This means there can be no
p ∈ I such that flip(B,p) ∈ Mod(IC) and B(p) 6= B′(p), as this would mean
H(B,flip(B,p)) =H(flip(B,p),B′) = 1.

Corollary 4.5. IC has an open structure if and only if for any two ballots
B,B′ ∈ Mod(IC) such that H(B,B′) = k, there exists a sequence of ballots

1This is the minimal possible distance between the two disjuncts, and in other words, the
best scenario case. If we suppose D(φ,φ′)> 2, the proof would proceed in a similar way.
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B1, . . . ,Bk+1 such that B1 = B, Bk+1 = B′, each ballot in the sequence is a
model of the constraint, and for all i: Bi+1 = flip(Bi,p) for some p ∈ I.

Proof. We prove the left to right direction by induction on the Hamming
distance between B and B′. We know by Theorem 4.4 that if IC has an
open structure, then for any two ballots B,B′ ∈Mod(IC), there is some p ∈ I
such that B(p) 6= B′(p) and flip(B,p) ∈ Mod(IC). We prove that this implies
there is a sequence of (distinct) ballots B1, . . . ,Bk such that B1 =B, Bk =B′,
where each ballot in the sequence is a model of the constraint, and for all i:
Bi+1 = flip(Bi,p) for some p ∈ I.

If H(B,B′) = 1, then clearly there is only one proposition p on which they
disagree, meaning there is a sequence B,B′ of length two, where B′= flip(B,p).

Suppose H(B,B′) = k+ 1. By our inductive hypothesis, it holds for any
ballot B∗ ∈ Mod(IC), where H(B,B∗) = k (and H(B∗,B′) = 1) that there is
a sequence of ballots B1, . . . ,Bk+1 such that B1 = B, Bk+1 = B∗, where each
ballot in the sequence is a model of the constraint, and for all i: Bi+1 =
flip(Bi,p) for some p ∈ I. Since we know there must be some proposition p
s.t. B(p) = B∗(p) 6= B′(p), and flip(B∗,p) = B′, this implies that we have a
sequence B1, . . . ,Bk+2 of length k+ 2, where B1 = B and Bk+2 = B′ and it
hold that for any two consecutive ballots Bi,Bi+1 that Bi+1 = flip(Bi,p).

For the right to left direction suppose that for ballots B,B′ ∈ Mod(IC), we
know there is a sequence of ballots B1, . . . ,Bk+1, where B1 =B and Bk+1 =B′

and the Hamming distance between any two consecutive ballots is 1. We
simply want to show that there must be some p ∈ I such that B(p) 6= B′(p)
and flip(B,p) |= IC, since by Theorem 4.4, this implies that IC has an open
structure. We know that B2 = flip(B,p) for some p ∈ I, so all we have to do is
show that B(p) 6= B′(p). Since we know H(B,B′) = k, H(B,B2) = 1 implies
that H(B2,B

′) = H(B,B′)− 1. Of course, the only way this is possible is if
B2(p) = B′(p), or in other words B(p) 6= B′(p). So IC must have an open
structure.

The following is an example of an integrity constraint with open structure,
which allows for this type of movement between any ballots which satisfy the
given integrity constraint.

Example 4.6. Let I = {p,q,r} and IC = (p∧ q)→ r, meaning no agent can
accept both propositions p and q and reject r.2 Then ICDNF = (p∧q∧r)∨ (p∧
¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧¬r)∨(¬p∧q∧¬r)∨(¬p∧¬q∧r)∨(¬p∧¬q∧¬r)
is the complete full DNF of IC.

2Note that this is the same example we saw in the introductory chapter, with the admis-
sions committee.
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a : 101 b : 101 c : 011

i : 000

In this network, agents a, b and c are sources and Inf(i) = {a,b,c}. Note that
aggregating the opinions of a, b and c using the majority rule on all issues,
will produce an outcome that satisfies the integrity constraint – (101). Further,
we can see that at any step of a diffusion process, there will be an issue that
agent i can update that will move her closer to the majority of her influencers,
and at each step, her opinion will be a model of IC.

Note that if agent i’s opinion is (010), she will not be able to update her
opinion on p in the first step as this will be blocked by the IC. However once
she has updated her opinion on q towards the majority of her influencers, she
will be free to accept both p and r.

At first glance, the condition for an integrity constraint to have an open struc-
ture may seem somewhat strict and unnatural. In fact, some examination
shows us that it there are several quite reasonable and intuitively justifiable
integrity constraints which meet our requirements. We’ve seen that IC which
are conjunctions of literals or disjunctions of literals both have an open struc-
ture. For example, the integrity constraint which states that an agent must
accept at least one of the issues is exactly the one which is a disjunction of
literals. We can imagine a scenario where this would be a useful constraint.
Suppose for example a set of agents have co-authored a paper and it has been
accepted to a conference. They each have to say which of the authors they
would like to attend the conference, but of course, it is required that at least
one author attend. Thus, they must accept at least one author who should go
to the conference, and they are free to have the opinion that more than one
author should attend. Another large class of problems for which the integrity
constraint has an open structure are preference aggregation problems.

4.1.1 Preference Aggregation

In preference aggregation, each agent is asked to provide an ordering over a set
of alternatives. The rankings provided by the agents are then aggregated into
a collective ordering which represents the preferences of the group as a whole.
The type of constraint which models such a preference aggregation problem
in our binary aggregation framework are perhaps among the most intuitively
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appealing open structured integrity constraints. To show that this indeed is
the case, we first have to provide the translation from preference aggregation
to binary aggregation with integrity constraints.

Given a preference aggregation problem defined by a set of alternatives A of
alternatives and a set of agents N , we can translate A into a set of binary
issues IA = {pab | (a,b) ∈ A×A}.3 A ballot Bi of agent i ∈ N corresponds to
a preference relation (in our case, a strict linear order) �i, s.t. Bi(pab) = 1 if
and only if a�i b. Each ballot must satisfy the following integrity constaints
(IC<):

• Irreflexivity: ¬paa for all a ∈A.

• Transitivity: pab∧pbc→ pac for a,b,c ∈ A (where a,b and c are pairwise
distinct).

The integrity constraint IC< is the conjunction of the two constraints above.
All strict preference orders, or linear orders, satisfy IC<. Further, we know
that if two agents have distinct preference orders over a set of alternatives,
then it must be the case that they disagree on at least one pair of alternatives
where one of the agents can flip her preference over these two alternatives to
agree with the second agent, while her preferences over all other alternatives
remain the same. For example, if agent i’s preference order is a > b > c and
agent i′’s preference order is c > b> a, then agent i can flip her preference a> b
to agree with i′, and still prefer both a and b to alternative c. In fact, the
following propositions show that will always be possible for any two distinct
ilinear orders.

Proposition 4.7. Let � and �′ be two distinct linear orders on a set of alter-
natives A. Then � and �′ must disagree on at least one pair of alternatives
that are adjacent in �.4

We rephrase the proposition into the notation of the binary aggregation frame-
work.

Proposition 4.8. Let B and B′ be two distinct ballots over a preference
agenda IA, s.t. both B |= IC< and B′ |= IC<. Then B and B′ must disagree
on at least one proposition pab where:

• either B(pab) = 1 and there is no c ∈A s.t. B(pac) = 1 and B(pbc) = 0,

• or B(pab) = 0 and there is no c ∈A s.t. B(pac) = 0 and B(pbc) = 1.
3for each pair (a,b), we only include one of pab and pba in the set of issues, as rejecting

pab is equivalent to accepting pba and vice versa.
4This proposition is folklore in the literature, though it has been proved formally by

Elkind et al. [2009].
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Corollary 4.9. The integrity constraint IC< has an open structure.

Proof. By Theorem 4.4 we know that if for any B,B′ ∈ Mod(IC<), there is
some p∈ I such that B(p) 6=B′(p) and flip(B,p) |= IC then the IC has an open
structure. So let B,B′ be two ballots in Mod(IC<). Then, by Proposition 4.8,
we know they must disagree on some proposition such that either B(pab) = 1
and there is no c ∈ A s.t. B(pac) = 1 and B(pcb) = 1 or B(pab) = 0 and there
is no c ∈A s.t. B(pac) = 0 and B(pcb) = 0. Without loss of generality, suppose
it is the former. Let B∗ = flip(B,pab). We now show that B∗ must satisfy
the IC. First, we know irreflexivity is satisified as B′(pab) =B∗(pab) and B′ ∈
Mod(IC<). To see that transitivity holds, we need to check that pba∧pac→ pbc
is satisfied by B∗.5 Since B∗ and B agree on all propositions but pab, we know
by Proposition 4.8 that there is no c such that B∗(pac) = 1 and B∗(pbc) = 0.
So B∗ |= IC<, meaning IC< has an open structure.

4.1.2 Convergence to Majority

In addition to the notion of convergence to consensus which we defined in
Chapter 3, we define a characteristic of termination profiles which is especially
desirable for Maj-PWOD.

Definition 4.10. We say PWOD will converge to majority on a network G if
for a termination profile B it is the case that for any i∈N , Bi =FMaj(BInf(i)).

This is again a requirement for termination profiles, and does not require
universal termination. Convergence to Majority turns out to be a fairly strong
requirement, and can only be guaranteed if we know that any majority opinion
will satisfy the integrity constraint. Fortunately, we know when this is the
case. We say an integrity constraint is lifted by a certain aggregation rule
if the outcome of the rule will always satisfy the constraint, as long as each
individual opinion being aggregated is a model of the integrity constraint.
Grandi and Endriss [2011] showed that an integrity constraint IC is lifted
by the majority rule if and only if IC is a conjunction of 2-clauses, i.e. a
conjunction of disjunctions of size two.

The class of integrity constraints for which the majority opinion always
satisfies the constraint and the class of integrity constraints which have an
open structure are distinct, but have a non-empty intersection. First, we can
show that the set of integrity constraints which are lifted by the majority do
not necessarily all have an open structure. Consider the following example.

Example 4.11. Let IC = (p∨ q)∧ (¬p∨¬q).

5More precicely, since pba is not formally in the set of issues, we must check that ¬pab ∧
pac → pbc is satisfied.
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Then ICDNF = (p∧¬q)∨(¬p∧q). We can see that the distance between (p∧¬q)
and (¬p∧q) is larger than 1, so an agent could never move from a ballot (10)∈
Mod(p∧¬q) to a ballot (01)∈ Mod(¬p∧q) updating one proposition at a time.
Put differently, this integrity constraint blocks both (p∧q) and (¬p∧¬q). It is
also easy to see that IC is a conjunction of 2-clauses, and is therefore lifted by
the majority rule.

So we can say for certain that IC being lifted by the majority rule does not
imply that it has an open structure. We now show an example of an integrity
constraint which has an open structure but is in fact not lifted by the majority
rule to show that the converse does not hold either.

Example 4.12. Let IC = p∨ q∨ r. Then clearly IC is not lifted by the ma-
jority, as it is conjunction of a single 3-clause.

However, IC has an open structure. Too see that this is the case, note that we
can transform it from DNF (as it is currently a disjunction of conjunctions of
size one), to full DNF. This would mean that we expand the disjunct p into
(p∧q∧r)∨ (p∧¬q∧¬r)∨ (p∧¬q∧r)∨ (p∧q∧¬r) and similarly with q and r.
6Then for any disjuncts where p holds, there is certainly a path of disjuncts
to every other disjunct where p holds, and we can go between the disjuncts
where p holds and those where q holds via the ones they have in common –
(p∧ q∧¬r) and (p∧ q∧ r).

We can visualise this better on the cube:

000

001

010

011

100

101

110

111

Since the only ballot excluded by the integrity constraint is (000), the remainder
of the cube is still fully connected. And, equally importantly, for any two nodes,
and any path between them which utilises the node (000), there is a path of
equal distance which does not need to use the blocked node.

6The end result will be the formula (p∧ q∧ r) ∨ (p∧ ¬q∧ ¬r) ∨ (p∧ ¬q∧ r) ∨ (p∧ q∧ ¬r) ∨
(¬p∧ q∧ ¬r) ∨ (¬p∧ q∧ r) ∨ (p∧ ¬q∧ r) ∨ (¬p∧ ¬q∧ r).
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Recall we also said that the intersection of open structured integrity con-
straints and those lifted by the majority rule was nonempty. A familiar ex-
ample shows this. If IC is a conjunction of literals then it both has an open
structure and is lifted by the majority rule. As we’ve seen already, an integrity
constraint that is a conjunction of literals always has an open structure, and
since it is clearly a conjunction of 2-clauses (in fact, each conjunct is simply a
propositional atom), it must also be lifted by the majority rule.

4.2 Termination Results for Open Structured IC

If we know that our integrity constraint is open structured, this gives us a
lot more information about what a possible termination profile will look like,
given certain types of networks.

Definition 4.13 (Chain Graph). A graph G= (N ,E) is a chain if and only
if for any i, i′ ∈N = {1, . . . ,n}: (i, i′) ∈ E⇔ i′ = i+ 1.

Theorem 4.14. Let G be a chain. Then for any set of issues I and any set
of agents N : if IC has an open structure Maj-PWOD converges to consensus
on G.

Proof. Suppose we have a set of issues I, and a chain graph G= (N ,E), which
defines for each i ∈ N , her set of influencers Inf(i) = {i−1}. Let IC be open
structured. Suppose for contradiction that Maj-PWOD terminates on a profile
B which is not unanimous. Then there must be at least two agents i, i′ such
that Bi 6=Bi′ and i′ ∈ Inf(i). Then since IC has an open structure, there must
be some p ∈ I s.t. B(p) 6=B′(p) and flip(Bi,p) |= IC. Thus, there is a possible
transformation, where agent i changes her opinion, and the process has not
terminated on B.

A similar result holds for Maj-PWOD on any directed graph G.

Theorem 4.15. For an IC which is lifted by the majority rule, Maj-PWOD
will converge to majority on any G = (N ,E) if and only if IC has an open
structure.

Proof. Let G= (N ,E) be a social influence network, N a set of agents, and I
a set of issues. Let IC be such that it is lifted by the majority rule.

For the left to right direction, suppose IC does not have an open structure.
Then, by Theorem 4.4, it must be the case that there are two ballots B,B′
such that there is no p∈ I where B(p) 6=B′(p) and flip(B,p) |= IC. Since both
B and B′ are models of IC, this means H(B,B′) > 1. Let B = Bi for some
agent i in the profile B, and B′ =FMaj(BInf(i)). We can always construct such
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a profile on G, for example by fixing the ballots such that ∀j 6= i∈N :Bj =B′.
Then, for agent i, her opinion will be stable on the ballot Bi, as there will be
no single proposition which she is able to update, given the opinions of her
influencers. Thus, agent i’s opinion at termination Bi 6=B′, and B is the ter-
mination profile. So Maj-PWOD has not converged to majority on G.

For the right to left direction, suppose IC has an open structure. Given some
inititial profile B, we want to show that Maj-PWOD will terminate on a profile
B∗ such that for any agent i ∈N : B∗i = FMaj(B∗Inf(i)), i.e. that Maj-PWOD
will converge to majority on G. Suppose for contradiction that this is not the
case, meaning Maj-PWOD will terminate on a profile B′ 6= B∗. Then there
is some agent i ∈ N such that B′i 6= FMaj(B′Inf(i)). Since the IC is lifted by
the majority, we know FMaj(B′Inf(i)) |= IC. Thus, by Theorem 4.4, there must
be some p ∈ I s.t. FMaj(B′Inf(i))(p) 6=B′i(p) and flip(B′i,p) |= IC. This means
there is a possible transformation, where agent i changes her opinion, so B′

is not a termination profile.

Example 4.16. Let N = {a,b,c, i}, I = {p,q,r,s} and IC = p∧ s. Let the
following be the initial profile on a social influence network G. Note that this
IC is an example of one which is both lifted by the majority rule and has an
open structure.

i: 1001

a:1101 b:1011 c:1111

For Maj-PWOD we obtain the state transition graph below.

i: 1001

i: 1101

i: 1011

i: 1111
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Note that there is a single termination state, which corresponds to the profile
where agent i’s ballot is the outcome of the majority rule on BInf(i). Thus this
is an example of convergence to majority.

In practice, social network which include cycles can cause troubles very easily.
Consider for example a network with two agents who perform simultaneous
updates and always influence each other on the same issues. We can easily
see that what will occur is an infinite swapping of opinions between the two
agents. However, on simple cycles, we show that we can still say something
about the termination profiles which arise for Majority-PWOD. Note that
this result says something about the termination profile itself and not the ease
with which the diffusion process will reach it. As we’ve seen in Example 3.7,
there are many permissible transformations on cycles which do not lead to
termination profiles.

Definition 4.17 (Simple Cycle). A graph G= (N ,E) is a simple cycle if and
only if for any i, i′ ∈N = {1, . . . ,n}: (i, i′)∈E⇔ i′ = i+1 or (i= k and i′ = 1).

Proposition 4.18. Let G be a simple cycle. Then Maj-PWOD will converge
to consensus if IC has an open structure.

Proof. Suppose for contradiction that Maj-PWOD has terminated on a simple
cycle G, on a termination profile B which is not unanimous. Then there
must be some i, j ∈ N such that (i, j) ∈ E and Bi 6= Bj . Since IC has an
open structure, we know there must be some p ∈ I such that Bi(p) 6= Bj(p)
and flip(Bj ,p) |= IC. This means the opinion of agent j is not stable. But
then there is a permissible transformation from B to B′ where B =−j B′ and
B′j = flip(Bj ,p). This contradicts our initial supposition. So Maj-PWOD must
converge to consensus of G.

4.3 Conclusion

In this chapter, we have provided a syntactic characterization of the class of
integrity constraints which allow Propositionwise Opinion Diffusion to pro-
ceed without being blocked by the constraint – the constraints which have an
open structure. We have shown several termination results, including for chain
graphs and cycles. The results in this section are encouraging for aggregation
problems where the IC has an open structure. The reasoning behind designing
a mechanism like PWOD is to ensure that when the collective majority opinion
does not meet rationality requirements, opinion diffusion can still proceed. As
we’ve argued, is is also a more intuitive way of modeling how agents change
their opinions based on social influence because it both takes each agent’s own
opinion into account before they change their opinion, and it puts the ratio-
nality of opinions front and center. In addition to these intuitively appealing
conditions, our results show that Majority-PWOD retains the strengths of its
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predecessor Majority-POD when the majority does actually satisfy the con-
straint. When the constraint is not satisfied by a majority, PWOD avoids
the trapfalls of POD, where no opinion update could take place, and gives a
justifiable outcome that is as close to the majority as the integrity constraint
allows.
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One of our starting points in this thesis was the impossibility result by List
[2011] regarding the transformation of opinion profiles. Since PWOD is one
way of transforming a profile of opinions, we can in fact view Maj-PWOD (and
PWOD in general) as a type of transformation function. In order to give a
proper analysis of Propositionwise Opinion Diffusion we examine which of the
axioms in Chapter 2 are satisfied by the Maj-PWOD transformation function.

Crucially, since the blocking of opinion updates which do not satisfy the
integrity constraint is built into the Maj-PWOD transformation function, we
know it must satisfy Rationality at the expense of the Independence axiom.
Often, Independence is relaxed at the cost of leaving the transformation func-
tion open to strategic manipulation by agents. List [2011] argues for relax-
ing Independence and adopting a more holistic way of transforming opinions,
which looks at the agents opinions over the whole set of issues before updating
ballots. This way of relaxing independence however, leaves the transformation
vulnerable to reasoning about the interplay between issues, which is one reason
functions which fail Independence can be manipulated. We will see that al-
though Maj-PWOD fails Independence, the propositionwise aspect of PWOD
is a way of avoiding the types of manipulation most commonly excluded by
satisfying Independence.

5.1 PWOD Transformation Function

For Maj-PWOD, given a binary aggregation problem J = 〈I,N , IC〉 and an
influence network G = (N ,E), we can define any iteration of the diffusion
process as a transformation function. Thus, for a set of agents S ⊆N and a
proposition prop(i) = p ∈ I which is the proposition agent i ∈ N is updating
at the current iteration, we can define a transformation function T where:

Ti(B,G) =
{
Bi if i 6∈ S
Maj-PWOD(G,B, i,prop(i)) otherwise.

Proposition 5.1. If a transformation function T is the Maj-PWOD trans-
formation function, then T satisfies Rationality, Consensus Preservation and
Minimal Relevance. It also satisfies Influencer-Independence while it fails to
satisfy Exclusiveness, Independence and Influencer-Unanimity.1

1Again, Universal Domain is always satisfied by any PWOD function as we allow any
profile of rational ballots as input.
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Proof.

• Rationality is satisfied since if i 6∈ S, then agent i does not make any
changes to her ballot, and Ti(B,G) =Bi |= IC. If i∈ S, then Ti(B,G) =
Maj-PWOD(G,B, i,p), which by definition of Maj-PWOD, models the
integrity constraint, since a flip is only performed if the resulting profile
satisfies the constraint.

• For Consensus Preservation, suppose B is the profile where every agent
submits the same ballot B. Let i be an arbitrary agent, and p the
proposition she is updating. If i 6∈ S, then Ti(B,G) = Bi = B. If i ∈ S,
then Ti(B,G) = Maj-PWOD(G,B, i,p) = Bi since every agent in the
network agrees with i on p, and thus, there cannot be a majority among
her influencers who reject p and agent i will not change her opinion.

• For Minimal Relevance, we can simply note that agent i must always
take into account her own ballot to ensure that changes can be made to
her opinion on a subset of I while still satisfying the constraint.

• Influencer-Independence is satisfied as well. For profile B, issue p and
an agent i, if p is not the issue she is updating, or if an update to p
is blocked by her opinion on the other issues, then Ti,p(B,G) = Bi(p)
and the ballots of all influencers are ignored. So suppose p is the
proposition agent i is updating, and flip(Bi,p) |= IC. Let B′ be a pro-
file where Bi = B′i and suppose for all j ∈ Inf(i) Bj(p) = B′j(p). Then
FMaj(BInf(i))(p) = FMaj(B′Inf(i))(p), by the definition of the majority
rule. Then the definition of Maj-PWOD tells us (since flip(Bi,p) |= IC)
if FMaj(BInf(i))(p) = Bi(p), then Ti,p(B,G) = Ti,p(B′,G) = Bi(p). And
if FMaj(BInf(i))(p) 6= Bi(p), then, since BInf(i) = B′Inf(i), Ti,p(B,G) =
Ti,p(B′,G) = FMaj(BInf(i))(p).

• We give a counterexample to show that Exclusiveness, Independence and
Influencer-Unanimity fail. Suppose IC = p→ q. Let G be the following
network and B the profile shown in the network. Let p be the proposition
agent i is updating.

i: 00

a:11 b:11 c:11
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Then Ti(B,G) =Bi as an update to p would lead to a ballot which does
not satisfy the constraint. Therefore, Influencer-Unanimity fails. Sup-
pose now B′i = (11) in a profile B′, such that B =−i B′, then Ti(B′,G) =
B′i. Thus, Exclusiveness fails, as Ti(B,G) 6=Ti(B′,G). Suppose now that
B′i = (01) and again B =−i B′. Then Ti,p(B,G) = 0, while Ti,p(B′,G) = 1
so Independence fails as well.

This is good news in relation to Proposition 2.4 as it means Maj-PWOD will
avoid the traps of the impossibility result by List [2011]. The failure of Ex-
clusiveness and Independence is caused by the fact that it is built into the
definition of Maj-PWOD that it will block any irrational opinion updates.
Thus, it is necessary for an agent to always take into account her own opin-
ion even if she is not in her own set of influencers. This guarantees that
Maj-PWOD satisfies Minimal Relevance, which is a very intuitively appeal-
ing axiom as it states that an agent should at least take her own opinion
into consideration before updating her ballot. When Minimal Relevance fails,
this allows for agents who would let an influencer decide what their opinion
should be post-transformation, while completely ignoring their own existing
opinion. Influencer-Unanimity of course fails as the updates are proposition-
wise, and thus there is no way to guarantee an entire ballot will be copied in
one iteration of the process. Overall however, Maj-PWOD satisfies most of
the important axioms we’ve discussed, and preserves many of the qualities of
the majority rule. The axioms which fails do so because the transformation is
defined with the Rationality axiom in mind. In general, the axiomatic analysis
of Maj-PWOD paints a picture of an appealing opinion diffusion mechanism
which satisfies many desirable conditions for opinion transformations.

5.2 Strategic Agents

One reason Independence is such a desirable condition for judgment aggrega-
tion rules is that it is a requirement for strategy-proofness [Dietrich and List,
2007b]. This means that no agent can influence the outcome of the rule in her
favor by reporting a ballot which does not represent her truthful judgments.
This holds for agents who have what are called closeness-respecting prefer-
ences. A ballot B is at least as close to the ballot B∗ as B′ is, if for all issues
p ∈ I where B∗(p) =B′(p), it is also the case that B(p) =B∗(p). For agent i,
we say her preference relation �i respects closeness to Bi if for any two ballots
B, B′: if B is at least as close to Bi as B′, then B �i B′. A well-known ex-
ample of closeness respecting preferences are Hamming preferences. An agent
i with Hamming preferences and the preference relation � will weakly prefer
a ballot B to the ballot B′ (B � B′) if and only if H(B,Bi)≤H(B′,Bi), i.e.
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when the Hamming distance between her true opinion Bi and the ballot B is
less than or equal to the distance between her true opinion and the ballot B′.

For opinion diffusion processes, we would like to define agents’ preferences
over opinion profiles. Since the agents are influencing opinion changes in each
other, it makes sense for each agent to have preferences over what the opinions
of the others in the network are. This allows us to talk about goals such
as having as many others in the network with the same opinion as you, or
preferences over the ballots of the agents you influence. In particular, we want
to say something about agents’ goal to spread their opinion in the network.
We define closeness-respecting preferences for opinion profiles in the following
manner. For S ⊆ N and agent i, we say her preference relation over profiles
�′i respects closeness to Bi if her preference relation over ballots �i respects
closeness to Bi and if for any two profiles B, B′: if B =−S B′ and for all j ∈ S
Bj �i B′j , then B �′i B′.

If an agent can manipulate the opinion change of just one agent in the net-
work towards a ballot which is closer to her own, she will be able to perform
a successful manipulation. There is therefore an intimate connection between
strategy-proofness of transformation functions, and strategy-proofness of the
aggregation rules used by the agents in the network. Since strategy-proofness
of aggregation rules requires an additional axiom, Monotonicity, we need a
corresponding Monotonicity axiom for transformation functions. A transfor-
mation function T satisfies Monotonicity if and only if for two opinion profiles
B and B′ and for all p∈ I: if for i, j ∈N , B =−j B′, Bj =−p B′j , B(p) = 0 and
B′(p) = 1, then Ti(B)(p) = 1⇒ Ti(B′(p) = 1. In other words, for any agent i,
if they accepted a proposition p in the outcome of a transformation function
T applied to a profile B, then added support to this proposition in a profile
B′ should imply that p is accepted by agent i in the outcome of T .

We also define a variant of the Exclusiveness axiom in Chapter 2, which
allows for an agent to influence her own opinion in the outcome of a transfor-
mation. We say a transformation function satisfies Almost-Exclusiveness if an
only if:

• ∀G ∈ G,∀i ∈ N ,∀B,B′ ∈ DN : [(∀j ∈ Inf(i) : Bj = B′j) and Bi = B′i]⇒
[Ti(B,G) = Ti(B′,G)].

The fact that Almost-Exclusiveness is satisified by Maj-PWOD is clear from
the definition. An agent’s post transformation opinion is determined by only
the opinions of her influencers, and whether her own ballot in the input profile
will lead to the update being blocked. Additionally the Maj-PWOD transfor-
mation function also satisfies the second axiom needed for strategy-proofness.

Proposition 5.2. The Maj-PWOD transformation function satisfies Mono-
tonicity.
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Proof. Suppose for a network G and two opinion profiles B and B′ that for
i, j ∈ N , B =−j B′, Bj =−p B′j , Bj(p) = 0 and B′j(p) = 1, and further, that
Ti,p(B,G) = 1.

First suppose j 6= i. If j 6∈ Inf(i) we know Ti,p(B′,G) = Ti,p(B,G) because
Maj-PWOD only takes into account the ballots of agents in Inf(i). So we
assume j ∈ Inf(i). Then if Ti,p(B,G) = 1, this means either that there was a
majority of acceptances for p among agent i’s influencers, or that there was a
majority of rejections but a change in opinion was blocked by the IC. If the
former holds, we know, since agent j is the only one changing her opinion, and
only changes her opinion on p, that an additional acceptance for p in B′ means
Ti,p(B′,G) = 1. If the latter holds, then agent i’s opinion on p will remain the
same regardless of her influencers opinions, as her opinions on other issues
are the reason for this blocking. As we know that the update was blocked
and Ti,p(B,G) = 1, then it must have been the case that Bi(p) = 1 and thus
B′i(p) = Ti,p(B′,G) = 1.

Now suppose i = j. The only way Ti,p(B′,G) = 0 is if there is a majority
of rejections for p among agent i’s influencers. If i 6∈ Inf(i), then the only way
she can influence the outcome of T is if the update is blocked. But since by
assumption Bi(p) = 0 and Ti,p(B,G) = 1 we know this cannot be the case,
as the blocking of an update would mean the outcome of T is the same for
both profiles. If i ∈ Inf(i) and the update is not blocked then, since there was
is majority among i’s influencers who accept p in B, there is a majority of
acceptances in B′ as well. So the Maj-PWOD transformation function satisfies
Monotonicity.

We now define strategy-proofness for transformation functions. Let (B−i,B′i)
be the profile which is identical to B but with Bi replaced by B′i. A trans-
formation function T is strategy-proof if there is no network G and no agents
i ∈ N such that T ((B−i,B′i),G) �i T (B,G), where Bi is agent i’s truthful
opinion.
Theorem 5.3. Let G be a network such that (i, i) 6∈ E. Any transformation
function which satisfies Monotonicity, Influencer-Independence and Almost-
Exclusiveness is strategy-proof for Hamming preferences on G.
Proof. Let T be a Monotonic, Almost-Exclusive and Influencer-Independent
transformation function. Recall that for any network G= (N ,E), it holds that
∀i : (i, i) 6∈ E. Suppose agents all have Hamming preferences.

For an arbitrary agent i, if j 6∈ Inf(i), we know by Almost-Exclusiveness
that she cannot influencer i’s opinion at all, so suppose j ∈ Inf(i). By Influencer-
Independence, for any proposition p, agent j can only influence agent i’s opin-
ion on p in the outcome by altering her pre-transformation opinion on p. There
are then two possible cases:
• Bj(p) = 0 and B′j(p) = 1. If Ti,p(B,G) = 1, then we know by Monotonic-

ity that additional support for p will not change the outcome of Ti. If
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Ti,p(B,G) = 0 then either the outcome of Ti does not change, in which
case j will be indifferent between then two outcomes, or Ti,p((B−i,B′i),G) =
1, which is less preferred by j than the outcome were she to truthfully
report her opinion.

• Bj(p) = 1 and B′j(p) = 0. Again there are two possible outcomes: either
no change will occur to the ballot of agent i, and again agent j will be
indifferent between the outcome in the two profiles, or Ti,p(B,G) = 1
and Ti,p((B−i,B′i),G) = 0, in which case agent j’s best strategy would
be to report her truthful opinion.

An agent also cannot manipulate her own opinion. The only way i can
influence her own opinion is by blocking an update for a single proposition,
i.e. by ensuring that T ((B−i,B′i),G) = B′i. If B′i 6= Bi, then in the best case
for agent i, H(Bi,B′i) = 1. However, agent i would only change one propo-
sition if her opinion update was not blocked, and thus it is guaranteed that
H(Bi,Ti(B,G)) = 1, meaning if she has Hamming preferences, it cannot be
the case that T ((B−i,B′i),G)�i T (B,G).

Corollary 5.4. The Maj-PWOD transformation function is strategy-proof for
Hamming preferences.

Since Maj-PWOD satisifies Almost-Exclusiveness, Influencer-Independence and
Monotonicity, it falls under the class of transformation functions which is
strategy-proof for Hamming preferences. However, although each iteration of
PWOD is strategy-proof, there are other types of manipulation that it may in
fact susceptible to, depending on the level of information available to agents.
While each round of opinion updates cannot be strategically manipulated, an
agent might have a more long-term manipulation strategy available to her.
Consider the following example.

Example 5.5. Suppose we have a binary aggregation problem with I = {p,q,r}
and IC = p→ (q↔ r), meaning if p is accepted, then either both q and r must
be accepted or rejected together. Suppose now we have the following social in-
fluence network G, with the initial profile B.

i: 000

a:111 b:011 c:100
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Suppose further that we are using Maj-PWOD, and agents have Hamming
preferences. Suppose also that agent i updates her opinion on the propositions
in a lexicographic order. So the first proposition agent i wants to update is p,
then she will go on to update q and finally r. If agent a is aware that this is the
order in which agent i is updating her preferences, she will have an incentive
to misreport her true opinion.

Consider first what will happen if she announces her true opinion (i.e.
accepting all three propositions). Since there will be a majority among i’s
influencers for p, agent i will change her opinion in the first round of updates
to the ballot (100). But since the integrity constraint now blocks any changes
to q or r (since IC = p→ (q↔ r)), the diffusion process will terminate.

Now consider what will happen if agent a strategically reports the ballot
B′a = (011) on the same network G, let’s call this initial profile B′. In the first
round of updates, there will no longer be a majority for p, meaning agent i will
not change her opinion. This leaves her open to accept both q and r in the next
two rounds of updates. Thus, the diffusion process will terminate on a profile
where agent i’s ballot is (011). Since agent a has Hamming Preferences over
ballots, we know (011) �a (100), and thus, the resulting termination profile
will be preferred by agent a over the termination profile which results from her
reporting her true ballot.

Note that agent a’s preferences in this example are closeness-respecting. (both
for profiles and individual ballots). Despite this, such a manipulation of
Maj-PWOD is possible (and, as so much else when it comes to propositionwise
opinion diffusion, depends in large part on the integrity constraint). Another
necessary condition for this type of manipulation is that the order of updates
for agents are determined beforehand and that this information is available to
their influencers. If the issue agent i will update at any step of the diffusion
process is chosen from the issues in I uniformly at random, for example, then
it will not be possible for agents to manipulate in this way.

5.3 Conclusion

In this chapter, we have given an axiomatic analysis of the Maj-PWOD trans-
formation function, and found that the diffusion mechanism satisfies several
desirable properties. Notably, it guarantees the rationality of all ballots in
every iteration of the opinion diffusion, which was one of the main problems
with Majority-POD. We’ve also started to explore the effect of strategic agents
and showed that while Maj-PWOD does not satisfy Independence – which is
commonly needed in judgment aggregation to ensure agents cannot manipu-
late – each iteration of the diffusion still remains strategy-proof for Hamming
preferences. Further, we’ve seen that the strategy-proofness of each iteration
does not extend to the iterative diffusion process as a whole if the order in
which an agent updates her opinions is known to her influencers.
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In this thesis we have examined influence-based opinion diffusion mechanism
on social networks using axioms for transformation functions. Central to our
examination was the role of the integrity constraint in binary aggregation. The
basis for our work was the Propositional Opinion Diffusion (POD) mechanism
by Grandi et al. [2015]. In Chapter 2 we provided an axiomatic analysis of
the strengths and weaknesses of POD, using the framework of transformation
functions which take as input a social network and a profile of opinions and
gives the updated opinions on the same network. We found that the Majority-
POD transformation function satisfies several important conditions, but has a
weakness in that it sometimes will give irrational ballots in the output of the
function. In the following chapters we designed a new mechanism, Proposi-
tionwise Opinion Diffusion (PWOD) which avoided the main problem of POD
– irrational ballots. PWOD enables agents to update opinions on a single
issue at a time, and requires that agents take their own opinion into account
before being influenced to change their opinion, to ensure that the integrity
constraints always remain satisfied. This is key to assuring that no irrational
updates will occur. Our main results show that for a small class of integrity
constraints – those with an open structure – PWOD terminates on the same
profiles as POD when the majority rule outputs only rational opinions on the
network. In Chapter 5 we examined the conditions satisfied by the Majority-
PWOD transformation function, we found that in addition to Rationality,
it satisfies many of the other central axioms we have discussed. Importantly,
PWOD satisfies Influencer-Independence, which is the central reason why each
iteration of Maj-PWOD is not susceptible to strategic manipulation by agents
with Hamming preferences. However, we saw that PWOD is susceptible to
a more long term manipulation strategy if agents know the order in which
others are updating their opinions. In this respect, POD outperforms PWOD,
as is it not susceptible to this type of manipulation.

On one hand, we can interpret our main result in Chapter 4 as positive –
they tell us that there is some connection between the termination profiles for
POD applied to entire ballots and PWOD applied to individual propositions.
On the other hand, since the requirements for an integrity constraint to have
an open structure are very strict, this connection is only guaranteed for a
small class of constraints. This does give us a point of exploration however,
since we know that convergence to majority for all networks and all profiles
is not easy to obtain, we might want to ask what types of profiles make this
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requirement easier to achieve. For example, what happens on networks where
agents are only connected to others with similar opinions? In these cases, the
majority opinion of an agents influencers would also be closer to her own, and
convergence to majority on certain graphs might be possible for a larger class
of integrity constraints.

The results in Chapter 4 hold only when all agents want to update their
opinion on all propositions in the set of issues. Still, another benefit of a mech-
anism like PWOD is that the framework easily allows for agents who might
be certain about some opinions and only open to influence on a subset of the
issues at hand. Suppose for example a group of friends are deciding on a menu
for a dinner. It could easily be the case that some are dead-set on their dessert
opinions (”tiramisu or nothing!”) but willing to be influenced on what they eat
for the main course (”I said no to bacalao initially, but my friends are actually
making a good point...”). This type of opinion change would result in a differ-
ent set of termination profiles that the ones we’ve seen in this thesis. If agents
are generally sure about their opinions on different propositions, we might
imagine that the opinion diffusion process will terminate on a compromising
profile. Further, we have not said much about what a termination profile will
look like if the majority does not satisfy the integrity constraint. Although we
know that PWOD is able to update opinions on single propositions in some
cases where the majority does not satisfy the constraint,1 In fact, it is still an
open problem whether this is possible for Majority-PWOD in all cases, and
how close to the majority an agent’s opinion can go if there are models of the
integrity constraint that are closer to the majority than the current ballot of
the agent.

We have also left many types of strategic behaviour unexplored. Grandi
et al. [2016] studied the strategic aspects of social influence networks using
games of influence, where agents can choose to hide or reveal their opin-
ions to others in the network. Additionally, we might want to examine if an
agent could manipulate even when there is some randomness involved in which
propositions are updated by agents in the network. Allowing these and other
types of strategic behavior might lead us to discover what type of strategies
agents can use to successfully manipulate the PWOD mechanism.

1Recall Example 3.1.
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