Institute for Language, Logic and Information

538

CATEGORIAL GRAMMAR
AND TYPE THEORY

Johan van Benthem

ITLI Prepublication Series 87-07

University of Amsterdam

Institute for Language, Logic and Information
Instituut voor Taal, Logica en Informatie

CATEGORIAL GRAMMAR
AND TYPE THEORY

Johan van Benthem
Department of Mathematics and Computer Science
University of Amsterdam

Received October 1987 to appear in Linguistics eand Philosophy

Correspondence to:
Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte

(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 Grimburgwal 10

1018WB Amsterdam 1012GA Amsterdam

. Reunion of Relatives

Categorial Grammar and the Theory of Types are two channels of the same
stream, originating in Frege's and Husserl's ideas on categorial structure in
human thought. One has become a linguistic paradigm in the hands of
Ajdukiewicz, Bar-Hillel and later authors, the other has been a standard logical
approach ever since Russell's work in the foundations of mathematics. The two
can still be viewed with profit as being complementary, as will be illustrated in
this paper. In mathematical logic, 'theory of types' denotes a certain kind of
approach, rather than one single monolithic system: our perspective on
'categorial grammar' in linguistics is in the same spirit.

The basic idea in Categorial Grammar has been to associate syntactic
categories of expression with semantic types, in such a way that syntactic
construction mirrors semantic combination. In this paper, we shall use
Montagovian types, generated as follows:

e and t are basic types (entity, truth value);
if a and b are types, then so is (a,b).

Later on, another basic type s (for sense, or situation) will be considered too.
Semantically, e stands for the individual objects, t for the truth values, and (a,b)
for functions taking a-objects to b-objects. This gives us such familiar
correspondence as:

category type

proper name ¢
intransitive verb (e.t)
transitive verb (e,(e,t)
(complex) noun phrase ((e,t),t)
adverb ((e,t),(e51)
binary connective (t,(t,0)

Categories need not correspond one-to-one with types. This slack enables us to
model certain semantic similarities between different categories of expression;
witness

common noun (e,t)
adjective ((e ,t) 9(e ,t))

The mechanism of categorial combination may be illustrated by the
following standard example, which gives two scope readings for a propositional
formula:

- p A q
(t,t) t (t,(t,t)) t
()
t
t ("~ (AQ"
) } Gy 1
t (t,0)
t C(=p)ag")

Note how meanings are built up through successive functional application.

To get a closer fit with the syntax of natural language, where restrictions on
order are (usually) important, categorial grammarians have also introduced
directed slashes:

a\b (a'left-searching' functor)
b/a (a'right-searching' functor)

Despite its descriptive, combinatorial importance, this refinement will play only
a marginal r6le in what follows.

In the initial phase of Categorial Grammar, its envisaged use consisted in
assigning one or more types to basic expressions (‘words'), so as to make the
computed combinations match actual grammatical strings. Over the last decade,
however, various proposals have been made for adding a mechanism of zype
changing, or alternatively, more liberal modes of type combination. There are
many kinds of motivation for this move. For instance, Geach 1972 used it to
account for the polymorphism of negation, introducing his recursive rule:

an expression occurring in type (a,b)
may also occur in type ((c,a), (c,b)) (for any c).

This rule raises the basic type (t,t) for negation to ((e.t), (e,t)) (intransitive verb
negation), ((e,(e,t)),(e,(e,t))) (transitive verb negation), etcetera. But the same

move also accounted for quite different facts, such as the notorious difficulty in
getting transitive verbs to accept complex noun phrase objects:

(e.(e.1) ((e,0),t)

? [no function application is possible]

Geach's solution is to let the direct object expression 'adapt to context':

(e,(e.1) ((eﬂt),t)
((e,(e,))s(es1))

(et

Alternatively, this transition may be described as allowing Composition (in
addition to Application) of functions:

(e,(et)Y (et)t) = (ep)

Many other rules of type change have been proposed since in syntax and
morphology. These concern such diverse purposes as describing coordination,
morphological argument inheritance, parasitic gaps, etcetera - with important
contributions by Bach 1984, Steedman 1985, Moortgat, 1984, and many
others.Here is a sample:

e = ((e,n),1) (‘type raising'; Montague 1974)
and more generally
a = ((ab)b)

(((e,r),t),t) = (e,t) (‘argument lowering'; Partee & Rooth1983)
and more generally

(((a,b),b)).c) = (a,c)

For a fuller survey of recent developments, see Bach, Oehrle & Wheeler, eds,
1987; Buszkowski, Marciszewski & van Benthem, eds, 1987, and Klein &
van Benthem, eds, 1987.

To illustrate the flexibility of these approaches, here is one more example.
Let a prepositional phrase ("'to Palo Alto") have the adverbial type ((e.t),(e,t)).
(In general, prepositions by themselves will have type (((e,t),t),((e,t).(e,t))) to
accomplish this.) This gives us a classical analysis for combination with
intransitive verbs:

"walk to Palo Alto"
(e.(ed) ((e.),(e,) = (e,t)

But, how to drive to Palo Alto? For this purpose, the Geach rule may be used,
adapting adverbials to transitive verbs:

"drive to Palo Alto"
(ex(e.t)) ((ed)s(es1)) = (e,(e.)

And finally, to take another well-known issue in standard Categorial Grammar,
stacking of prepositional phrases is easy too:

"from Los Altos to Palo Alto"
(CAIECRY)) (ed,(er) = ((e,t),(est)

In view of all this permissiveness, it may be appropriate to point at some type
changes that are definitely not admissible. One example is a would-be converse
to the Partee & Rooth rule:

(ac) = (((a,b),b),c) (‘argument raising").

Some special cases of this rule are in fact admissible, for various reasons. (E.g.,
(e,t) = (((e,t),t),t) by the Montague Rule. Cf. also van Benthem 1987c on a
proposal by Groenendijk & Stokhof 1987b.) But the general schema is invalid;
in a sense to be explained now.

. A Logical Perspective

A more systematic perspective upon the various proposals made for
adopting type changes may be found in Logic. As it happens, there is a strong
formal analogy between function types and logical implications:

(a,b) a—b

This analogy was first exploited for linguistic purposes in Lambek 1958, who
set up a calculus of sequents

X=b
('type sequence X combines to/derives type b')

The idea here is that type combination is very much like derivation in an
implicational logic. (Parsing as Deduction'!) Thus, one can set up a system of
logical axioms and rules for categorial combination. Here, we shall present one
of the many possible formats:

Axiom : a=a

Rules : XbY =c

Xa(ab)Y=c (Modus Ponens)
Xa=b
X = (a,b) (Conditionalization)
Xa=b Y=a

XY =b (Cut)

These rules produce derivations for the earlier proposals.
Example (‘'Geach"):

t =t

) t = t
(tt) (el e = t
t.t) (et) = (et

t) = (&, (&)

In practice, a Natural Deduction format is much easier to use (see van
Benthem 1986a, chapter 7). But, we retain the present approach here for its
theoretical perspicuity.

These were the logical rules of the Lambek system. But, there is another
degree of freedom in setting up such logical calculi, being the so-called
structural rules for handling premises. For instance, the following conventions
would turn the above set of rules into the standard Intuitionistic Implicational
Logic:

Permutation (P) :
if X = b,then w[X] =D,
for any permutation 7 of the premises X

Contraction (C):
if Xaa=b, thenXa=b

Monotonicity (M) :
ifX=Db, thenXa =b.

Note: the full formulation of C and M should be more complex in the absence of
Permutation.

Now, what distinguishes the calculus of type change from implicational
logic is precisely which of these structural rules (if any) are admissible. Without
them, the calculus records full information about which occurrences of which
premises were used in what order. With them, certain identifications become
possible (which may be described alternatively as 'transformations' on proof
trees : copying, deletion, etcetera).

Example (Conjunction). To derive polymorphic types for "and", Contraction
and Permutation are to be invoked. An ordinary deduction produces

GL) e (et) e (et) =t

and then,
t(tt) (et) ee =t (Permutation)
(t(t,) (et) (et) e = t (Contraction)

and by successive uses of Conditionalization,

ttD) = ((en.((en.en) .

Of course, some structural rules would produce rather implausible kinds of
type change; such as Monotonicity:

t =1
te=t
t = (et) : can sentences become intransitive verbs?

In any case, the point here is not to take a stand on such cases, but rather to
show how they become amenable to systematic discussion. Another example of
an inadmissible transition is the earlier-mentioned case (a,c) = (((a,b),b),c).
The reason is simply that a—c/((a—b)—b)—c is not a valid law of implication,
neither intuitionistically nor even classically.

Thus, below what is often regarded as the weakest natural implicational
logic, there lies a whole new wonderland; with a Categorial Hierarchy extending
from the basic Ajdukiewicz calculus to that of Lambek, and then, via various
systems of 'relevant logic' to the full intuitionistic system.

There are various possible linguistic uses for this hierarchy. One can
experiment with weaker and stronger systems for syntactic purposes, admitting
ever further constituent structures. (Some of the stronger calculi might also be
used, precisely because they 'over-generate', to explain our ability to still make
sense of slightly defective syntactic material - as with local permutations in
children's discourse.) One can also exploit the earlier-mentioned slack between
categories and types here, being stricter as to syntactic combination and having a
more liberal calculus producing semantic readings. And of course, as has been
observed by Oehrle, Zwarts, Szabolcsi and others, the present vista offers a lot
of parametric variation for describing natural languages, and formulating
significant linguistic universals based on human logical-combinatorial ability.

To conclude, here are a few additional remarks.
e Lambek also considered concatenation of expressions, with the following
logical analogy:

product type aeb conjunction aAb
The relevant derivation rules for sequents become:

X=a Y=b Xa bY=c
XY= aeb X aeb¥Y¥ =c¢

o There are also directed versions of all these calculi, with the earlier slashes,
involving rules such as:

XbY=c Xa=hb
Xaab Y=>c X = b/a
XbY=c¢c aX =b
Xb/aaY = ¢ X = a\b

Again, the latter will be more fundamental in detailed syntactic description.

e These 'subterranean’' implicational logics may have an interest for Logic
itself after all. For, many of the above structural rules have been challenged for
logics too: notably Monotonicity, but also Permutation (cf. Groenendijk &
Stokhof 1987a). In such a setting, even two 'directed implications' ("if A,B"
versus "B, if A") start making sense (cf. van Benthem 1988).

. Syntax and Proof Theory

Bringing together logical and linguistic perspectives as in the preceding
Sections has interesting consequences. Notably, questions of theoretical
Linguistics merge with questions of Logic; and tools from both sides may find
mutual application. For instance, calculi of sequents have been studied
extensively in logical Proof Theory, and grammars in Mathematical Linguistics.
In the realm of Categorial Grammar, these two research traditions meet.

One early example of this phenomenon is Lambek's proof that derivability
in his basic directional calculus is decidable; for which he used a Gentzen-type
Cut Elimination argument from Proof Theory. But, linguistic applications also
suggest many aspects of proof structure not yet considered by proof theorists.
For instance, the following simple question arises in the study of coordination
of linguistic expressions:

given any two type sequences X,Y,
when is there a single type a such that
X=a and Y = a are L-derivable?

It is an open question if this problem is decidable for the basic Lambek calculus.

Much research has been devoted to questions of recognizing power for
various more flexible categorial calculi. See Buszkowski 1982 for an extensive
study, as well as Friedman and Venkatesan 1986 for some results on weak
fragments of the Lambek system. The main question has been around since the
sixties already, being 'Chomsky's Conjecture':

Does L recognize only the context-free languages?

With one single slash, the answer is positive (Buszkowski). For non-directed
systems, some results have been obtained by standard proof-theoretic
techniques (van Benthem 1987c, van Benthem 1987e), analyzing 'normal
forms' of derivations:

e L + P recognizes all permutation closures of context-free languages
(these include non-context-free ones!)
e L + Crecognizes only regular languages.

A new impetus in syntactic studies derives from the current interest in
parsing with categorial grammars (see Moortgat 1987, Pareschi and Steedman
1987). Parsers have to build in various devices for reducing the search spaces
encountered in searching for logical proofs (cf. Moortgat's use of 'count’
invariants, from van Benthem 1986a), which themselves generate interesting
proof-theoretical questions. For instance, the Moortgat parser uses a modicum
of 'variable polymorphism': conjunction gets introduced with a variable type
(x,(x,X)) , which is instantiated to some specific type a in a suitable environment
a a. Again, the decidability of a Lambek calculus allowing such polymorphic
typing is still an open question.

Another interesting question in this connection concerns the relation
between directed and non-directed Lambek calculi. Moortgat 1985 uses the
directed L-calculus, with two slashes \ and /. But, at certain places, he needs to
recognize 'local permutations', which calls for type changes such as

((ab)lc) = (a\(b/c)).

It turns out that allowing this, or apparently more modest principles of
permutation tends to collapse the directed calculus into the non-directed one
presented above. Thus, one central question right now is:

Are there any useful but principled bounds on
permutation in categorial calculi?

The variety of questions raised here may have shown how Categorial
Grammar can serve as a source of problems enriching the traditional fund of
Proof Theory.

4. Semantics and Type Theory

In order to find one's way in the Categorial Hierarchy, it would be useful to
have a more semantic view of admissible type changes, supplementing the
earlier proof-theoretic considerations. One way of approaching this issue is by
establishing completeness theorems for various categorial calculi with respect to
some suitable generalization of intuitionistic semantics. Results of this kind have
been obtained by DoSen 1986, Buszkowski 1986. Another way, more relevant
here, is to study meanings of specific categorial derivations (‘readings’). For
this purpose, a general logical analogy may be invoked: there exists an effective
correspondence between categorial derivations and type-theoretical terms
describing denotations.

o The Basic Semantical Correspondence

In the Ajdukiewicz calculus, the only semantic operation involved is
functional application, as in the following example (cf. Section 1):

t.t t (t.(t.0) t
t (t.t)

x(t,t). ¥t Z(t,(t,t)) U,

x(y) z(u)

z(u) (x(y))
In general, a derivation for a Lambek sequent X = b is encoded in a term
Tl {u 1 xeX}].
T, can be viewed as a 'recipe’ for computing an object of type b from given
objects of the types x occurring in X. The new feature is now that instances of
Conditionalization are encoded by means of lambda abstraction..

Example. The 'canonical meaning' of the Geach rule may be read off from the
earlier derivation (Section 2):

y(t,t) (u (e,[) (Ve))

Av.e y (u(v))
My ® Avee y(u(v)

Thus, we are giving a precise logical procedure for effecting so-called
'type-driven translation'.

10

One telling illustration of this perspective is its use in 'deflating' complex
semantic truth conditions. A classical example is Montague's analysis of the
verb "be", which has been a sign-post to formalism for so many students. In its
extensional version, "be" denotes

AX () ® Me® '(¥) € X'

But, this is precisely what would be obtained by letting an ordinary transitive
verb in type (e,(e,t)) (here, simple identity between individuals) undergo the
earlier-mentioned Geach change for direct objects:

(e,(e.t) ((en)t) = (e.t)
(ee)) = ((en)t), (et)

Me®X (e Veeny O

lx((e,t),‘) °Ay, ® X (Veegen) (y)) ('x holds of (being y)')

Thus, Montague's celebrated uniform treatment of "be" for proper names and
complex noun phrases is an automatic result of our semantics for type change
applied to ordinary identity.

The precise correspondence employed above may be found in van Benthem
1986a (chapter 7). Various categorial calculi will have derivations encoded in
different fragments of the full lambda/application language. Notably, terms for
the basic Lambek calculus have the following two characteristic properties:

e each operator A binds exactly one free variable occurrence,

e each subterm has at least one free variable.

With further structural rules, other semantic patterns become admissible. For
instance, the term associated with the earlier LPC-derivation for raising sentence
conjunction to verb conjunction, will have one 'double bind':

Moy ® Mien ® M2e U) X(2) (¥((2)

Another way of viewing what is going on here emphasizes its 'dynamic’
potential. By providing lambda terms for various non-sentential expressions, we
can build up sentence meanings progressively in some processing order (say,
from left to right), thus providing an incremental semantics.

Finally, the basic semantic correspondence is easily extended to product
categories. It suffices to enrich the type-theoretic language with operations of
product on types (aeb describes the Cartesian product of 'a-objects cross
b-objects") and pairing plus projections in the language.

Example. Two derivations with product rules:

(a(bc) a b = ¢ x(a,(b,c)) (Ya) (Zb)

(a(bc)) asb = ¢ Xa o) T(Vaep) (R(V, 0 p)

(@(bc) = (aeb,c) Mg ab ® X (o oy (V) (Tp(¥))

1

e= () (&) =(END Ax,,*x(u,) Y(e.n.

ety = (EN.De (N <Axey ® X(Up), Ve >

e Practical Questions

Even with the above general semantics, many questions remain for practical
application. For instance, there may be an over-abundance of readings which is
to be curbed. ("Every boy loves a girl" gets four different readings in van
Benthem 1986a. See Hendriks 1987 for systematic pruning.) Also, special care
is needed as to argument order conventions. E.g., "John loves" should end up
denoting the property of being loved by John, rather than loving John. The latter
phenomena are handled in Bouma 1987 using type-theoretical terms assigned to
derivations in the directed Lambek calculus. For instance, the earlier-mentioned
argument-switching rule ((a\b)/c) = (a\(b/c)) would then denote conversion of
the relevant two-place predicate.

Another wide-spread temptation in the syntactic literature is to equate
different constituent structures with presumably different readings, without
exploring the precise correspondence. For instance, the otherwise quite
interesting paper Houtman 1987 notes an ambiguity in the phrase "radio and
television fan" (a slightly adapted example); which might mean "fan of both
radios and televions" or "fan of joint radio-television sets". He then produces
two distinct categorial analyses; which may be simplified for present purposes to
the following [with N for common nouns, (N,N) for adjectival uses -
conjunction being treated syncategorematically] :

radio and television fan

(N,N) (N,N)
(N,N) N
N
Versus
(N,N) (N,N) N
Ul (Montague raising)
(N,N) ((N,N),N)
N

But, calculation of the corresponding terms will give the same autcome in both
cases, being the first reading mentioned above. (To obtain the second reading,
one would have to conjoin "radio" and "television" in type N, and only then use
the result as an adjective.) On the other hand, with proper care, ambiguities in
conjunction can often be handled in our framework:

12

Example.
No man and child
N N
Det N
NP

The calculation for this standard analysis produces the reading "no male child".
To obtain the other possibility, being 'no man and no child', one must proceed
as follows:

N N
y l
(Det,NP) (Det,NP)
Det (Det,NP)
NP

A final practical question concemns the computational cost of generating all
the required lambda-terms. Once the basic principle is understood, of course,
one can devise various more efficient implementations, suppressing lambdas
whenever convenient, by performing appropriate substitutions of arguments on
the spot.

o Theoretical Questions

With our systematic semantic perspective, one can now start studying
peculiarities of various categorial calculi as systems of possible meanings for
natural language expressions. For instance, how many readings are assigned to
one given valid transition X = b (i.e., how many essentially different
derivations exist?) It is proved in van Benthem 1986a (chapter 7) that the
Lambek calculus produces only finitely many readings, up to logical
equivalence, for any given expression of a type b. By contrast, the full
intuitionistic calculus may generate infinitely many different ones; thus violating
our intuitions about what is reasonable for natural language. In other words, one
can try to locate the appropriate carriers of linguistic meanings in certain
fragments of the type-theoretical language.

One general question again emerges in this perspective:

What are 'admissible’ meaning changes for linguistic expressions?

We shall return to this issue in due course.

Nothing in the above, however, precludes consideration of richer notions of
type change, going beyond the lambda/application language. For instance, one
might add identity statements, allowing such type changes as

e =(et) Kx(e‘t) ex=u, .
This will send individuals to their singletons; as has been proposed by various
authors in the treatment of plurals (cf. van Eyck 1985.) Nevertheless, as a
methodological strategy, it is always wise to look for an explicit syntactic locus,
rather than a hidden mechanism, producing the identity - such as plural markers
or other particles of ‘collectivization'.

13

o Denotational Constraints

Perhaps the most important virtue of our type-theoretic semantics is that it
links up Categorial Grammar with ongoing research in logical semantics, where
Type Theory is still a 'lingua franca' providing a suitable setting for asking
general questions about natural language.

One such general question concerns denotational constraints governing
various classes of expressions (cf. Keenan and Faltz 1985, van Benthem
1986a.) 1t is convenient to view these matters in the present perspective; because
type changes and special denotational behaviour are often related. For instance,
as is well-known, individuals behave like Boolean homomorphisms in the noun
phrase domain of type ((e,t),t). But, this is entirely predictable from the
type-theoretic term effecting their meaning change; being kx(e o ® X(¥e)- All
terms of this form denote homomorphisms. Thus, 'plain’ objects in one type
may become embellished when changing to another.

There is also a converse to this observation. As a rule of thumb, nice
mathematical behaviour in one type may really be a sign of belonging to another,
simpler one. For instance, according to Keenan and Faltz, all prepositions are
homomorphisms with respect to their Noun Phrase arguments:

"to Palo Alto and Los Altos" <« "to Palo Alto and to Los Altos"
"to Palo Alto or Los Altos" > "to Palo Alto or to Los Altos"
"to every town" © "for every town: to it"

But, as is shown in van Benthem 1986a (chapter 3), the homomorphisms in
type (((e,t).t), ((e,t), (e,t))) are in canonical one-to-one correspondence with all
ordinary functions in type (e, ((e,t), (e,t))). Thus, an alternative would be
simply to demote prepositions to ordinary citizens of the latter type.

For a somewhat different example, consider the well-known distinction
between functors and adjoints. Is not Categorial Grammar committed to treating
all these on a par? Here, denotational constraints may make the difference.
Adjoints are special functors, satisfying additional conditions; for instance, in
the form of special inference patterns supported by them.

Example. An adjoint A in type ((e,t), (e,t)) will support the inferences

A (X) implies X
A (XuY) isequivalent with A(X) U A(Y) .

It may be shown (van Benthem 1986a, chapter 3), that these two conditions
suffice for representing A by means of some fixed set A* of individuals:

AX) = XNA* |

A case in point would be absolute adjectives, which reduce to unary predicates
in a natural sense.

There are other aspects to the difference between functors and adjoints, such
as their relative difference in scopal behaviour, which could also be studied in
this setting. But for now, it will be sufficient to have established the possibility
of this line of investigation.

14

e General Semantic Mechanisms

As was stated before, the Theory of Types provides a convenient setting for
studying general semantic phenomena in natural language. But then, one
criterion for admissibility of type changes, or categorial combination generally,
might be how they interact with such phenomena. We shall consider two
prominent examples.

In the type-theoretic perspective, there is one feature which links
expressions across various categories, that we might want to call logical. (These
comprise verbs like "be", Boolean connectives like "and", or determiners like
"all", "some".) They are all permutation-invariant in the following general
sense.

Definition. Let {D,1a € TYPE} be a system of domains. Let 7 be a permutation
of the individual domain D.. The canonical lifting T turns 7 into a permutation
on all domains:

T, =T ; T, is the identity on Dy;
‘7-5(3 b)(f) = | (ﬁa(x)’ Ty) | xy)ef}, forfe D(a,b)'

An item x € D, is permutation-invariant if T (x) = x for all individual
permutations .

Now, one general constraint on admissible type-changes might be this:
'Logical items should remain logical in their new guise'.

But in fact, this is guaranteed for all type changes definable in the
lambda/application language ; even if we were to throw in identity as well (van
Benthem 19864, chapter 7).

There is also a converse, which may be worth stating.

Proposition. With a finite domain D, of individuals, all permutation-invariant
objects in any type can be defined uniquely by a term of the type-theoretic
language having lambdas, application and identity.

Proof: See Appendix 7.1

Another plausible candidate for constraining type changes concerns logical
inference. As is well-known, our type domains support a general notion of
Boolean inclusion , defined as follows:

E,is < is the identity on D;
f c:(a,b) g iff Vxe D LTX0E, gx)

Then, one might require general preservation of inferential relationships for type
changesa = b:

If u,
thentb[au] !:brb[u d -

In other words, the new semantic object T, should be monotone in its
a-parameter.

13

This requirement does have a bite (cf. van Benthem 19864, chapter 7). It
holds for the Geach rule, but not for Montague raising in general. Thus, one
might devise principled reasons for preferring more Geach-like,
composition-based fragments of the Lambek calculus over its full variants with
different forms of type raising. [Warning. We do not have 'full monotonicity',
however, for composition with two arguments. "Not" + "moving" combines to
"not moving", with types (t,t) (e,t) = (e,t). But, although "moving" implies
"awake" in type (e,t), and "not" naturally implies "not" itself, "not moving"
does not imply "not awake".]

There is a syntactic background to the previous observations. In the lambda
term for the Geach rule, being (in general)

;\'x(c,a) o 7»)’0 ® Ui (x(y)) ,

the parameter u,,, occurs po_sitively. And this fact alone explains the
monotonic behaviour. By contrast, there is no such positive occurrence for the
Montague rule, being (in general)

kx(a'b) * x (u,)

This brings in a general logical issue. Is there a so-called Preservation Theorem
for the type-theoretical language, characterizing the monotone type changes as
being those definable by a term in which the relevant parameter has only positive
occurrences? The answer depends on the particular fragment considered (van
Benthem 1987b). The equivalence does not hold for the full type-theoretical
language; but it does hold for its Lambek-fragment.

Thus, the present semantic setting also offers new employment for the
traditional concerns of logical Model Theory.

Appendix.

The preceding topic raises a very practical issue. How are we to set up
useful calculi of inference in the presence of type change?

As it happens, one can enrich the earlier categorial calculi with a mechanism
of monotonicity marking, which keeps track of inferential potential. In general,
there will be two sources then of monotone behaviour. One arises out of the
general categorial mechanism: functors occupy monotone positions. And also,
monotone behaviour may be encoded in arguments through Conditionalization.

Example. + - marking on the left-hand side of derivations:

.
t=t t

L)t =t (t+,_t) t
&) e @) =t @e €

Only those items having an unbroken string of + to the top occur in positive
position. This reflects an example like "not John comes", where only the
expression "not" admits replacement by a logically weaker one.

16

Now, continue as follows:
e (et) = ((tb),b)

The information that the withdrawn premise (t,t) occurred positively, can be
encoded in the resulting type:

(GRIRY
+

A second source of monotone behaviour are special lexical items, such as
monotone determiners, which grant (some of) their arguments special status,
whether "upward" or "downward" monotone. This information, too, can be
encoded - and it then interacts with the above process in an obvious way. (See
van Benthem 19864, chapter 6.)

Thus, categorial combination viewed as implicational inference, and
ordinary inference can co-exist in one natural calculus of deduction.

Variations

The account so far has given the 'standard picture' of Categorial Grammar
and Type Theory. Once this has been understood, of course, many
modifications are possible - and indeed even suggested by this formalism. To
show the wide range of possibilities, here is a brief survey of reasonable
alternatives.

5.1 Syntactic Variations

e Various authors have preferred an approach based on Combinatory Logic,
rather than Lambda Calculus, as in the above. (Cf.Steedman 1985, Szabolcsi
1987.) In principle, the two frame-works are equivalent, as is known from
general logic. The dominant tendency among logicians has been to employ the
type-theoretic lambda approach, if only for reasons of intelligibility in reading
the notation.

Nevertheless, extensionally equivalent frameworks may have interesting
intensional differences. For instance, in the Combinatory Logic approach, it is
natural to look for reasonable finite clusters of combinators. These would
correspond, in the earlier Categorial Hierarchy, to those systems which admit of
a finite Hilbert-style axiomatization. This question has been considered by
Zielonka and Buszkowski, with outcomes such as the following (cf.
Buszkowski 1987) :

Neither the directed Lambek calculus L nor its undirected variant LP has a

corresponding finite set of combinators.

On the other hand, there are cases of overlap too. Here is one semantically
interesting case.

Proposition. The categorial calculus LPC has its derivations encoded by the
following finite set of combinators:

Ix = X (Identity)

Pxy = yx (Permutation)

Sxyz = xy(xz) (Curry's S-combinator)
Cxy = yz(xz) (Composition)

Proof. See Appendix 7.1

17

e Another possible variant would be to change from functional types to
relational ones (as advocated in Muskens 1987). Again, there is an extensional
equivalence here between the two approaches (cf. Doets and van Benthem
1983). But this time, no intensional advantages are discernible at present. Even
s0, stating the framework may be of independent interest.

Types are constructed from e, using finite sequences. In general, e denotes
the individual objects, and a sequence (a,,...,a,) all n-ary relations on
D,ys....D,, (respectively) ; ie.,

D(al,...,an) =POW (Dal X.X Dan)’

Some specific types are as follows:

e : entities
() : truth values (the empty sequence)
(e) : 1-place predicates
(e.e) : 2-place predicates
()] : noun phrases
: 1-place connectives
(0X(0)) : 2-place connectives

This perspective suggests composition of relational types as a natural operation.
Also, application 1is definable in a natural sense, using 'projection' with respect
to the relevant argument position.

In this format, rules of type combination will look as follows:

XaY) a = XY)
X,a =0

X = ()b

Example ((t;t) = ((e,t)(e,t)):

(e) e = ()

) O = () , SO
NHEe)ye = () , and hence
() E) = (e) , and also

() = ((e).e)

Unfortunately, this framework seems to offer exactly the same
choice-points in setting up a Categorial Hierarchy as the earlier functional one.
So, it does not appear to be of novel interest for present purposes.

e Current versions of categorial grammar often employ a measure of
polymorphism in their basic type assignment, using types containing variables
whose values can still be determined. For instance, negation might be assigned
the polymorphic type ((x,t),(x,t)). (Cf. Zeevat, Klein and Calder 1987,
Uszkoreit 1986.) There is a trade-off here, between polymorphism right in the
initial assignment, and polymorphism as induced by our type change rules.
(E.g., (t,)) = ((x,1),(x,t)) is derivable in the Lambek system, for arbitrary x.)
The exact details of this trade-off remain to be understood.

18

The mechanism for combining polymorphic types is a form of Resolution
in the simplest case, when added to the Ajdukiewicz system:

a (a*b) = o(b),
where o is a most general unifier of a and a*.

For the Lambek system in general, a similar generalization of its rules is
possible (cf. Van Benthem 1987a). Thus, systems in the Categorial Hierarchy
acquire a polymorphic 'second-order' version too. Many of the earlier questions
are still open in this new setting. For instance,

Is the polymorphic Lambek calculus still decidable?

5.2 Semantic variations

As is usual in semantics, having one formal framework at once stimulates
phantasy in setting up new ones. Although our type-theoretical semantics was
couched in terms of standard function hierarchies on base domains, this is by no
means the only possible interpretation for Categorial Grammar. It is important to
emphasize this point, because many authors seem to feel that frameworks in
formal semantics are 'package deals', where one has to buy all the components.

For instance, instead of having full function hierarchies, one can take
smaller ones, using Henkin's general models for the Theory of Types (cf.
Gallin 1975). Or, as Gordon Plotkin has suggested (private communication),
the limited expressive power of the Lambek system invites a restriction to only
linear functionals over some base lattice. Such sparser models can also come
with a different view of what functions are: witness the category -theoretic
models of Lambek 1987 which interpret type theory in suitable Cartesian-closed
categories.

A category-theoretic approach might be useful at another level too. Many
denotational constraints, as considered in Section 4, are formulated 'locally’,
within single models. But in general, meanings of linguistic expressions are
functors picking an object in each model - and the resulting family should obey
certain uniformities. For instance, if D, < D/, then denotations in the
h1era:rchy on D, should be the natural D, - restrictions of those in the model
on D /. Again, the most elegant way of statmg such uniformity may involve the
mathematical apparatus of Category Theory.

But, one can equally well go by a less standard route, and provide
type-theoretical formulas with associated discourse representations (cf. Klein
1987), or other recent 'dynamic' model structures. In this process, the use of
functions itself is not sacrosanct. For many purposes, functional types can be
viewed just as well as standing for parametrized objects. (In fact, a function
itself is a good mathematical model for what one might mean by a 'parametrized
object'. Cf. van Benthem 1986b.)

Other semantic variations concern such aspects as how to treat Booleans, or
other specific kinds of expression. For instance, our treatment of predicate
negation (type ((e,t),(e,t))) as being derived from sentence negation, gives it a
standard bivalent semantics induced by the usual truth tables. But undoubtedly,
there is a use of predicate negation which is at least trivalent: true, false,
undefined (cf. Horn 1987). There is no difficulty in principle, however, in
interpreting our type-theoretical language in three-valued, or other kinds of
partial models, to accommodate such observations.

19

Finally, one task which is still to be done concerns the additional structure
present in actual linguistic uses of Categorial Grammar. For instance, the
phenomenon of subcategorization demands the use of subtypes, with a
corresponding enrichment of our model structures and logics. We may need a
general logic of relations among types, encompassing Lambek-type derivability,
type inclusion, as well as substitutional specification (‘subsumption’).
Likewise, the general use of syntactic features suggests an eventual link up
between the above semantics and current logics of feature structures and
unification (cf. Kasper & Rounds 1987).

6. Intensionality

Among the many tasks in our program one stands out as being of particular
importance. Since Montague Grammar already covered intensional phenomena,
Categorial Grammar can do no less. Can the previous approach be generalized
to an intensional Type Theory, having an additional base domain D, for
'indices', 'possible worlds' or 'situations' ? Actually, there is a series of
questions here. Of course, the Categorial Hierarchy was already defined in such
a way that it does not depend on any particular choice of primitive types. But,
many of our specific questions were couched in terms of the specific base set
{e,t}.What will become of of these now?

o The Mechanism of Intensional Interpretation

As a general strategy of intensionalization, one can reinterpret the former
type t as standing for, not truth values, but propositions. By the familiar
reduction of the latter to sets of indices, then, these may be indentified with the
objects of type (s,t) (with 't' now taken again in its old sense). Thus, types
formerly assigned to expressions undergo a uniform innnntensionalization, via
the replacement

t* = (s,t).

This process is studied in van Benthem 1987d; which proves, amongst others,
that no new syntactic structures are created in this way:

For all extensional {e,t}-types X.a,
X =1 a ifand only if X* = a*

In a sense, the *-operation is a form of type change itself. Is there any
uniform meaning associated with it? This time, the picture seems diverse. Some
extensional items indeed become intensional by mere type changing. An
example is Boolean negation. (t,t)* is ((s,t),(s,t)), which gets its meaning
automatically via the ordinary categorial transition (t,t) = ((s,t)).

In general, however, there may be several options for items in intensional
contexts. For instance, the determiner "every" has its type ((e,t),((e,t),t))
intensionalized to

((e,(s,1)), ((e,(s:1)), (s,1)).

One 'conservative' option here is to employ again a derivation from the
extensional case:

20

((e1), ((e,), 1)) = ((es(s,1)), ((e, (s,1)), (s,1)) is derivable,
not in the base system L, but in the calculus LPC (with Contraction on index
parameters).The associated meaning will be the natural lifting:

M 5,00 ® Moy ® Ms ® EVERY ((e 0.t (X(2)(¥(2)-

(In general, type change calculi for s may be more liberal than those for just
e,t.) But, there could also be a truly intensional law-like' "every", quantifying
over more situations in D than just the actual one. An interesting general issue
here is to define a good notion of extensionality for items in such intensional
models (as being those which have remained pure {e,t}-objects at heart).

o [Invariance and Monotonicity

Another immediate question is what becomes of earlier general semantic
themes attached to Type Theory and hence to Categorial Grammar. Two
prominent examples are the earlier notions of logicality/permutation invariance
and monotonicity. We shall consider this matter for some special cases, rather
than in complete generality. The general outcome is this. Matters become more
complicated, as notions split up into several variants. They also become more
interesting, as we gain more power of discrimination.

One example (treated in van Benthem 1986a, chapter 5) is that of time.
Here, indices of type s may be taken to be points in time, and propositions can
vary their truth value along some temporal order. Propositional operators obtain
type ((s,t),(s,t)) in this setting, and one can investigate special classes of
denotations in this intensional type. Applying the old notion without any
changes has the following result:

the permutation-invariant operations on sets of points are precisely

the Boolean ones.

A larger class of truly temporal operators arises by requiring invariance only
with respect to automorphisms of the temporal order. Various forms of
monotonicity can then be used to classify the resulting 'tenses’, or operators of
temporal perspective.

Another example of a basic intensional setting is that of situations. Again,
these do not come as a bare set, but rather as a structure of partial objects,
ordered by inclusion. : (S,=). Propositional operators will again be functions
from sets of situations to sets of situations, which may satisfy certain
constraints. For instance, a reasonable general constraint might be invariance for
inclusion automorphisms T, in the following sense:

7t [f(X)] = f{(r[X]), forall X cS.

Again, the Boolean operations pass this test; but so do various 'modalities’,
such as 'definite truth':

OX)={se Sle’e S(ses'=s'e X)}.

It would be of interest to delimit a natural class of modalities in this setting,
using automorphism invariance plus some strong forms of monotonicity.

For the moment, we just point out some new distinction which arise here.
In particular, some care is needed with common notions like 'monotonicity’' or
'‘persistence’. As they were used before, these referred to Boolean inclusion
within one single model (or world). E.g. "every" is (upward) monotone in its
right-hand argument:

21

EVERY (A,B), Bc Bt implies EVERY (A,B™).

What this does not mean, however, is that "every" is persistent in the sense that
universal statements true in one situation are also true in larger situations. Thus,
having the additional -structure on the domain S really adds new semantic
notions.

For instance, propositions themselves may come in different classes of
closure behaviour with respect to inclusion. Some propositions are persistent, in
the above sense of being upward preserved under inclusion. It has even been
proposed that all propositions might be convex, in the sense of containing all
situations in between situations belonging to them. One general question here is
how propositions acquire or lose such properties by their construction. For
instance, on the first reading presented above for "every", propositions of the
form "every AB" are not persistent. They would be persistent, however, with a
more law-like "every" quantifying over all extensions of a given situation.

Actually, the best perspective for studying these matters would be a
three-valued semantics, as mentioned in Section 5.2. A thorough logical study
of first-order predicate logic in this setting may be found in Langholm 1987;
which characterizes, e.g., exactly those first-order-formulas defining persistent
proposi;ions. Can the same be done for arbitrary formulas of type (s,t) in Type
Theory?

The intensional perspective does not just bring a proliferation of semantic
notions. It also brings the potential for new applications. For instance, this new
setting is required if one wants to extend our earlier comparison between natural
languages (as described in Categorial Grammar) and formal languages (as
employed in Type Theory), to the realm of programming languages :

e Programs and Operational Semantics

The preceding analysis can also be applied to 'dynamic logic', where
programs are naturally viewed as being of type (s,s) : i.e., functions from states
to states of some computer. Or, more generally, allowing undefined or
multi-valued (indeterministic) cases, one may use the relational type (s,(s,t))
eventually. (Cf. Harel 1984.) On such programs, there are certain natural
operations, such as Composition (;) , Boolean Choice (IF THEN ELSE) or
Iteration (WHILE DO) . For instance, Composition has the following type

((s,8), ((s,8), (5,9))),

and Iteration has

((s,1), ((5.9), (8.9))).

(Note the propositional type (s,t), needed for testing a controlling assertion in
different states.)

Interestingly, basic operations in this setting are again logical, in the earlier
sense of permutation invariance. Conversely, Logicality provides a uniformity
in programming notions across different categories. Classifying all
permutation-invariant items in given types is a problem of already considerable
complexity here; witness Plotkin 1980. We shall consider some examples.

Starting with pure s-types, there is only one logical item in type (s,s), viz.
the identity function. (One supposes the ground domain D to be large enough
to exclude 'accidental' candidates, such as 'reversal' on Dy = {1,2}.) This is

22

the familiar instruction SKIP. As for operations on programs, it can still be
shown that the only logical candidates are Composition and its iterations. (For
a check, one can see at least that all items in, e.g., ((s,s), ((s,S), (s,8))) which
are definable in our earlier lambda/application language must be of this kind. See
Appendix 7.) Thus, composition deserved its central role in the above.

When control is exercised, types will also contain the Boolean t. For
instance, a type like ((s,s),t) will already have many logical items, including
all classes of programs definable by some condition expressible in the
lambda/application/identity language (cf. Section 4). An example is the formula
I!x f(x) =x ('f has exactly one fixed point'). The basic operation of control in
the above, however, is the conditional choice IF THEN ELSE. Its meaning may
be expressed as follows:

lx(s,t)o ly(s,s)o ?»z(s’s)o Aue tve ((x(u) A v=y() v (Ix(u) A v=2z()))

As in an earlier passage, there is an ‘inflated' intensional meaning here, derived
from a simpler 'local ' type

. (s, (s,9))) -

Le., given a truth value, being the outcome of a test on the current situation, and
two possible goal states, one resulting state is to be selected. The logical items in
this type are easily classified (see Appendix 7), with IF THEN ELSE being the
only non-trivial candidate.

Another reason for introducing mixed s,t-types arises with programs
viewed as relations. Then, even basic operations on programs will involve
Boolean structure, and a richer picture arises, where more of our earlier notions
make sense. For instance, logical binary operations on relations in type (s,(s,t))
include both Boolean ones (compare Section 4) and relational Composition, as
well as more complex cases. Moreover, such operations can be monotone in
our earlier sense. For instance, composition satisfies double monotonicity:

RcR,Sc S imply RoS cR'eS'.

And stronger constraints may be used too, in describing important special
classes of operations. For instance, composition is also continuous in both of
its arguments:

URlieT} o u(SljeT} = U(R0S;|ieLjeT).

As an illustration, the continuous logical items in the simpler type of operations
on programs (being ((s,(st)), (s,(s,t)))) may be classified:

Proposition. The continuous logical operations on programs are those definable
in the following form:

AR g ;.n® Ax;® Ay ® Juge Jv e < Boolean combination of
identities in x,y,u, v>

Proof. See Appendix7. ®

These operations include as major examples: Identity, Converse, Diagonal
and Projection. (Further applications, and generalizations, of logical invariance
in the semantics of programming languages are found in Trakhtenbrot 1987.)

23

We conclude with another analogy to previous themes in this paper. The
phenomenon of type change occurs naturally in programming languages too,
for reasons similar to those encountered in natural language. For instance,
ordinary composition can extend its action through type change. When a binary
function composes with two unary ones (as in notations for Recursion Theory),
the underlying type change is as follows:

((s,8), ((5,8), (5:8))) = ((s, (8,9)), ((8.8), ((5.8), (8,9))))-

This transition is not derivable in Lambek's L; but it is derivable in LPC. (Recall
an earlier remark about greater freedom for manipulating intensional types s.)
The associated meaning of Section 4 will match the intended interpretation:

Axe 2(gl(x)) (k'(x))

(See Appendix 7 for details.)

This analogy brings us to the general comparison of natural languages and
programming languages in this framework. We have found similarities in
general semantic questions. Are there also similarities in the structure of specific
types? This question is not easy to answer, as the intensional type s has a rather
different motivation in both cases. Nevertheless, in recent 'dynamic' theories of
meaning, propositions themselves are viewed as transformations on
(knowledge) states. In that light, one might study the natural language
counterpart of the programming notion of control, as well as other dynamic
features in computation. Again, there may be limits here. Does natural language
have any built-in counterpart to, say, iteration or recursion ?

In the other direction, many questions may be formulated too. We saw how
semantic analyses in terms of denotational constraints can be applied to
programming notions too. But perhaps, the same holds for syntax. For
instance, how does type change affect recognition and complexity of
programming languages? Is the frequent occurrence of LPC (with its threat of
collapse to regular languages; cf. Section 3) significant in this respect?

The very formulation of these various questions shows how Categorial
Grammar and Type Theory provide a suitable framework for discussing
common features of natural languages and programming languages.

Appendix
I. Proof of the Proposition in Section 4
The language with application, lambda abstraction and identity can
define all the usual logical operators —, A, v, V, 3 (cf. Gallin 1975).
This will make the following construction possible.
First, here is a general result about interpretation in type-theoretic models M.

Lemma : For any term T, and any assignment A to its free variables,
the following identity holds for all permutations 7:

T {t0A = 0tD50A -

The proof is by induction on the construction of 7.

24

Now, if ¢@(x,) defines an object f of type a uniquely, then - since 7i(f)
satisfies ¢ in M when f does (by the Lemma) - T(f) =f for all x. So, all
type-theoretic terms define invariant denotations, on all models, finite or infinite.

As for the converse, we can use a standard model-theoretic argument,
which works on finite, but also on suitably saturated infinite models. The
argument depends on the following

Lemma :If f,ge D, , and (M,f) = (M.,g), then there exists a permutation 7 of
D, with R(f) = g

Then, a logical f e D, can be defined uniquely as follows. For every
g#fe D,, there exists some formula o_(x,) with (M, Do, (M,g)l:l:ocg
(Otherw1se (M,f) = (M,g); and hence, by the Lemma, some 7 would map f
onto g; which contradicts the permutation invariance of f.) Now, f is uniquely

defined by the conjunction

A{a |ge D, g#f}.

Finally, the second Lemma is proved by a standard zigzag-argument,
finding increasing sequences 2, b such that (M 3), (M,b) always remain
elementarily equivalent. When the relevant portion of the hierarchy has been
exhausted (i.e., the transitive closure of D)), one can read off the desired
permutation on the ground domain D, and show that its canonical lifting
respects the correspondence between afl items in the matching sequences; in
particular, that betweenf and g. 8

II. Proof of the Proposition in Section 5.1

First, one shows that the following axioms H give an alternative
Hilbert-style axiomatization of derivability in LPC:

X =X

x> Y=>2)->F->E—>2)
x=>F—=2)>(x->y)>E—>12)
x-=y)->(y—>2->Ex—>12)

AN -

Lemma: A sequent X = b is derivable in LPC if and only if there exists a
derivation of b from X using axioms from H and the rule of Modus
Ponens only, in which each premise from X is used at least once.

Proof. The main task is to show that H admits of Conditionalization.
This calls for a somewhat closer inspection of the usual proof: with the above
axioms needed to push through the various cases for Modus Ponens. B

Next, there is a well-known correspondence between such Hilbert-style
proofs and terms with combinators. For the typed case considered here, we can
think, either of typed combinators, or of polymorphic ones adapting to context.
Some illustrations of the principle are as follows:

25

o e=((et)t)

H-proof: i ((e,t), (e,t) ,axiom 1
ii (e,((e,0),1) ,Modus Ponens (i,axiom 2)
iii e ,assumption
v ((e,t),t) ,Modus Ponens (iii,ii)

Combinatory term: P(I)(v,) :=
Ax e Ayz e x(z)y (Aueu)(v,)=

Ayz o z(y) (v,) =
Az e z(v,)
* (efen) = (est)
H-proof: i (e,(e,n)) ,assumption
i ((ee)((ee)(eD)) ,axiom 3
iii ((e.,e),(e,t) ,Modus Ponens (i,ii)
iv (e,e) ,axiom 1
\ (e,t) ,Modus Ponens (iv,iii)

Combinatory term: SWie ey D =
Ax # AyZ ¢ X@HY(@) (Vo o) (Rutow) =
AYZ ® Vi ey @ @) (Ruow) =
Aze Ve) (2) (2).

III. Proofs of some Assertions in Section 6

o Functions in ((s,s),((s,s),(s,s))) which are lambda/application definable
have a definition in normal form, in which all possible lambda conversions have
been performed. In particular also, all types occurring as subscripts of variables
in the definition must be proper subtypes of the above. Some argument about
the shape of this normal form will show that it must look like this:

Kx(s’s) . ?»y(s,s) e Az, <applications of x,y,z>.
. Logical terms in type (t, (s,(s,s))) consist of two functions in (s,(s,s))
(one for t = 0, the other for t = 1), both of which are permutation-invariant
themselves (as D; cannot be permuted). And of the latter items, there are only
two, being

Ax,e Ay ex, and Ax e Ay ey, .

To see this, consider two objects a,b in D, together with f(a,b), where f is
the invariant function. Logicality has two kinds of effect. One is Locality :

f(a,b) € {a,b}.

(Otherwise, we could keep a,b fixed, while permuting f(a,b) to some other
object - thus disturbing f by a permutation). The other effect is Uniformity :

26

If f(a,b)=a forsome a,b (with a #b)
then f(x,y)=x forall x,y.

The reason is this. If x =y, then f(x,y) =x =y, by Locality. If x #y, then
some permutation 7 sends a to X, b to y, and by the invariance of f, it
follows that f(x,y) = f(r(a),n(b)) = n(f(a,b)) = n(a) = x. So, the choice of
projection is made uniformly.

e Continuous operations f in type ((s,(s,t)), (s,(s;t))) have the following
property. Since any argument R is the union of its singleton subsets, f(R)
equals the union of all f({<x,y>}) (with Rxy). This explains the form of the
definition

AR 5.0 ® AXg® Ay e Ju e v e
Next, it suffices to consider the admissible patterns of the form

{<uv>} x vy
Using permutation invariance, the only distinguishable cases are those definable
by Boolean combination of identities among these objects. (E.g., if x is distinct
from u,v and y, any such distinct x' will be admissible in f(R) : using a
permutation leaving u,v,y fixed, while sending x to x'.)

o A derivation for binary composition in LPC which produces the intended
meaning. A natural deduction format will be used for ease of presentation:

%

(s8) s
(s. (5.8)) S
((s.8). ((s.8). (s.8)) (s.8)
((s.8).(s.8)) (s.8) =
(s.8) S
—S__ withdraw *
(s,8)

Acknowledgement

I would like to thank Wojciech Buszkowski, Joyce Friedman, Aravind
Joshi, Michael Moortgat, Gordon Plotkin, Mark Steedman and Anna Szabolcsi
for stimulating conversations.

27

8. References

A. Ades and M. Steedman, 1982, 'On the Order of Words',
Linguistics and Philosophy 4,517-558.

E. Bach, 1984, 'Some Generalizations of Categorial Grammars',
in F. Landman and F. Veltman, eds, 1984, 1-23.

E. Bach, R. Oehrle and D. Wheeler, eds, 1987,
Categorial Grammars and Natural Language Structures,
Reidel, Dordrecht and Boston.

R. Béuerle, C. Schwarze and A. von Stechow, eds, 1983,
Meaning, Use and Interpretation of Language,
De Gruyter, Berlin.

J. van Benthem, 1986a, Essays in Logical Semantics,
Reidel, Dordrecht and Boston.

J. van Benthem, 1986b, 'The Relational Theory of Meaning',
Logique et Analyse 29,251-273.

J. van Benthem, 1987a, 'Categorial Equations’,
Faculteit Wiskunde en Informatica, University of Amsterdam .
(To appear in Klein and van Benthem, eds, 1987.)

J. van Benthem, 1987b, 'Categorial Grammar and Lambda Calculus',
to appear in D. Skordev, ed, 1987.

J. van Benthem, 1987c, 'Semantic Type Change and Syntactic
Recognition', to appear in Chierchia, Partee and Turner, eds, 1987.

J. van Benthem, 1987d, 'Strategies of Intensionalisation’,
to appear in L. P6los, ed, Festschrift for Imre Ruzsa, 1987,
Filozdfiai Figyelo, L. E6tvos University, Budapest.

J. van Benthem, 1987¢, 'The Lambek Calculus',
to appear in Bach, Oehrle and Wheeler, eds, 1987.

J. van Benthem, 1988, 'Parallels in the Semantics of Natural
and Programming Languages', to appear in M. Garrido et al., eds, 1988.

G. Bouma, 1987, 'Flexible Phrase Structure Grammars and
Categorial Unification Grammars', Institut fiir Romanistik/Linguistik,
University of Stuttgart. (To appear in Klein and van Benthem, eds, 1987.)

W. Buszkowski, 1982, Lambek’s Categorial Grammars,
dissertation, Mathematical Institute, Adam Mickiewicz University, Poznan.

W. Buszkowski, 1986, 'Completeness Results for Lambek Syntactic
Calculus', Zeitschrift fiir mathematische Logik und Grundlagen der
Mathematik 32, 13-28.

W. Buszkowski, 1987, 'Hilbert-style Axiomatization for the Lambek-
van Benthem Calculus', Mathematical Institute, Adam Mickiewicz
University, Poznén.

28

'W. Buszkowski, W. Marciszewski and J. van Benthem, eds, 1987,
Categorial Grammar , John Benjamin, Amsterdam and Philadelphia.

G. Chierchia, B. Partee and R. Turmner, eds, 1987, Categories, Types and
Semantics, Reidel, Dordrecht and Boston.

D. Davidson and G. Harman, eds, 1972, Semantics of Natural Language,
Reidel, Dordrecht and Boston.

H. Doets and J. van Benthem, 1983, 'Higher-Order Logic',
in D. Gabbay and F. Guenther, eds, 1983, 275-329.

K. DoSen, 1986, Sequent Systems and Groupoid Models,
Mathematical Institute, Serbian Academy of Sciences, Belgrade.

J. van Eyck, 1985, Aspects of Quantification in Natural Language,
dissertation, Filosofisch Instituut, Rijksuniversiteit Groningen.
(To appear with Reidel, Dordrecht and Boston.)

J. Friedman and R. Venkatesan, 1986, Categorial and Non-Categorial
Languages, Technical Report 86/005, Computer Science Department,
Boston University.

D. Gabbay and F. Guenther, eds, 1983, Handbook of Philosophical
Logic, vol. I, Reidel, Dordrecht and Boston.

D. Gabbay and F. Guenther, eds, 1984, Handbook of Philosophical
Logic, vol. II, Reidel, Dordrecht and Boston.

D. Gallin, 1975, Intensional and Higher-Order Modal Logic,
North-Holland, Amsterdam.

M. Garrido et al., eds, 1988, Logic Colloquium. Granada 1987,
North-Holland, Amsterdam.

P. Geach, 1972, 'A Program for Syntax',
in D. Davidson and G. Harman, eds, 1972, 483-497.

J. Groenendijk and M. Stokhof, 1987a, 'Dynamic Predicate Logic',
Filosofisch Instituut, University of Amsterdam.

J. Groenendijk and M. Stokhof, 1987b, Type-shifting Rules and the
Semantics of Interrogatives, teport 87-01, Institute for Language, Logic and
Information, University of Amsterdam.

(To appear in Chierchia, Partee and Turner, eds, 1987.)

N. Haddock et al., eds, 1987, Categorial Grammar, Unification Grammar
and Parsing, Centre for Cognitive Science, University of Edinburgh.

D. Harel, 1984, 'Dynamic Logic',
in D. Gabbay and F. Guenthner, eds, 1984, 497-604.

H. Hendriks, 1987, 'Type-driven Translation, Type-Ambiguity, and the
Lambek Calculus', Filosofisch Instituut, Universiteit van Amsterdam .
(To appear in Klein and van Benthem, eds, 1987.)

29

L. Horn, 1987, 'Aristotle as a Montague Grammarian',
talk presented at the ASL/LSA Colloquium on Logic and Linguistics,
Stanford, July 1987.

J. Houtman, 1987, 'Coordination in Dutch’,
Nederlands Instituut, Rijksuniversiteit Groningen.
(To appear in Klein and van Benthem, eds, 1987.)

R. Kasper and W. Rounds, 1987, 'The Logic of Unification in
Grammar', to appear in Linguistics and Philosophy.

E. Keenan & L. Faltz, 1985, Boolean Semantics for Natural Language,
Reidel, Dordrecht and Boston.

E. Klein, 1987, 'DRT in Unification Categorial Grammar',
Centre for Cognitive Science, University of Edinburgh.

E. Klein and J. van Benthem, eds, 1987, Categories, Polymorphism and
Unification, Centre for Cognitive Science (University of Edinburgh)
and Institute for Language, Logic and Information (University of Amsterdam).

J. Lambek, 1958, 'The Mathematics of Sentence Structure',
American Mathematical Monthly 65, 154-170.

J. Lambek, 1987, 'Categorial and Categorical Grammars',
to appear in Bach, Oehrle and Wheeler, eds, 1987.

F. Landman and F. Veltman, eds, 1984, Varieties of Formal Semantics,
Foris, Dordrecht and Cinnaminson, (GRASS series, vol. 3).

T. Langholm, 1987, Partiality, Truth and Persistence,
dissertation, Department of Philosophy, Stanford University.
(To appear in CSLI Lecture Notes, Chicago University Press.)

R. Montague, 1974, Formal Philosophy,
Yale University Press, New Haven, (R. Thomason, ed.).

M. Moortgat, 1984, 'Functional Composition and Complement
Inheritance', in Proceedings of Conference on Meaning and the Lexicon.
Cleves 1983, Nijmegen.

M. Moortgat, 1985, 'Mixed Composition and Discontinuous
Dependencies', Instituut voor Nederlandse Lexicologie, Leiden.
(To appear in Bach, Oehrle and Wheeler, eds, 1987.)

M. Moortgat, 1987, 'Lambek Theorem Proving',
to appear in Klein and van Benthem, eds, 1987.

R. Muskens, 1986, 'A Relational Formulation of the Theory of Types',
Report 86-04, Institute for Language, Logic and Information,
University of Amsterdam. (To appear in Linguistics and Philosophy.)

R. Pareschi and M. Steedman, 1987, 'A Lazy Way to Chart-Parse with
Categorial Grammars', to appear in Proccedings 25th Annual Meeting of
the Association for Computational Linguistics, Stanford, July 1987.

39

B. Partee and M. Rooth, 1983, 'Generalized Conjunction and Type
Ambiguity', in Béuerle, Schwarze and von Stechow, eds, 1983, 361-383.

G. Plotkin, 1980, 'Lambda Definability in the full Type Hierarchy',
in J. Seldin and J. Hindley, eds, 1980, 363-373.

J. Seldin and J. Hindley, eds, 1980, To H.B. Curry. Essays on
Combinatory Logic, Lambda Calculus and Formalism,
Academic Press, New York.

D. Skordev, ed, 1987, Druzhba Summer School in Applied Logic,
Plenum Press, New York.

M. Steedman, 1985, Dependency and Coordination in the Grammar of
Dutch and English', Language 61, 523-568.

A. Szabolcsi, 1987, 'Bound Variables in Syntax (Are there Any?)',
Research Institute for Linguistics, Hungarian Academy of Sciences.

B. Trakhtenbrot, 1986, 'Using Logical Relations in Programming
Semantics', to appear in D. Skordev, ed, 1987.

H. Uszkoreit, 1986, 'Categorial Unification Grammars',
in Proceedings of the 11th International Conference on Computational
Linguistics, Bonrn, August 1986, 187-194.

H. Zeevat, E. Kiein and J. Calder, 'An Introduction to Unification
Categorial Grammar', in N. Haddock et al., eds, 1987.

F. Zwarts, 1986, Categoriaie Grammatica en Algebraische Semantick,
dissertation, Nederlands Instituut, Rijksuniversiteit Groningen.
(To appear with Reidel or Foris.)

