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1. Logic Meets Information Processing

A noticeable tendency in current logical research is the move away from still
reflection of abstract truth to a concern with the structure of information and the
mechanism of its processing. Thus, two aspects come to the fore which used to be
thought largely irrelevant for logical analysis, namely the actual linguistic detail of
presentation of premises and the actual procedures for setting up arguments.
Accordingly, logical analyses will now have to operate at a level where, e.g., the
syntax of occurrences of propositions matters - and likewise it will be occupied, not
just with declarative structure, but also with matters of argumentive control.

In the form of a slogan, many people nowadays believe that

Natural Language is a Programming Language
for effecting cognitive transitions between information states of its users.

What we can observe in the literature is a number of independent attempts to
create conceptual frameworks allowing us to capture significant features at this level,
while still retaining a workable logical theory. One thing which many of these newer
approaches have in common is the failure of certain so-called structural rules found in
standard logic, such as

. . X=A
Monotonicity: ————
X,Y=> A
or even
. XY, Y=A
Contraction: ————o
X, Y => A

In standard calculi, these seem harmless, and evident, book-keeping rules: now, their
failure becomes a very general symptom (though by no means the essence) of operating
at a finer-grained level of logical analysis. Thus, we shall be exploring a landscape, so
to speak, of logic underneath the usual classical or intuitionistic base systems.

The sources of these newer systems are diverse. Some motivations are proof-
theoretic, with prime examples in Relevance Logic (cf. Dunn 1985), which drops
Monotonicity, or Linear Logic (cf. Girard 1987), which also drops Contraction of
premises. Even more radically, from a linguistic perspective, one must also drop the
structural rule licensing Permutation of premises (cf. Lambek 1958). Put differently,
Relevant Logic is still concerned with sets of premises, Linear Logic with bags (or
'multi-sets'), and a congenial linguistic paradigm like Categorial Grammar (cf. van
Benthem 1988A) in general with ordered sequences of premises. And the latter level of
detail also arises with motivations of a more computational nature, in what may be
called the Dynamic Logic of inference and interpretation (cf. Harel 1984, van Benthem
1988B). More information on these various approaches will be found in the course of
this paper. ‘

Now, the purpose of this work is not to start with any sacrosanct calculus of
'sub-standard inference’, trying to understand its secrets, but rather to explore a
number of models for the structure of information and its processing, reflecting various
intuitions that we have about the latter. These will come in the following forms. First
we consider language models ('L-models' ) focussing on syntax and occurrence.
Then, we move on to more abstract information models ('I-models' ), arising from



L-models through a certain measure of collapse of syntactic detail. Alternatively, this
part may be seen as broadening the scope of Intuitionistic Logic, being the traditional
'guardian’ of information and verification in the setting of the foundations of
mathematics. Finally, processing of information will be central in more 'dynamic’
relational models ('R-models') reflecting the control structures of programming
transitions between information states.

In all these cases, some common logical issues arise. Most conspicuously,
there is a proliferation of logical constants, beyond the classical core, and a
corresponding number of options for designing logical calculi of inference and notions
of valid consequence. We shall propose some systematic perspectives on the options
involved - whilst also investigating the potential of existing research programs
(Categorial Grammar, Modal Logic, Relation Algebra) to adapt to this wider purpose.

The various kinds of model will be compared and integrated at the end, in an
attempt to create one basic picture, or framework for a logical theory of information.
The resulting system is a 'dynamic logic' of information processing, inspired by
similar calculi in the semantics of programs - an analogy which seems only natural,
given the earlier conception of natural language as a vehicle for cognitive programming.
In particular, this system allows for coexistence of earlier 'static' views of propositions
and the newer 'dynamic' ones. But again, the proposal made here does not stand or fall
with the adoption of some unique preferred 'base calculus' of information-processing
oriented logic.

To return to our opening sentence, there are many observable 'tendencies’ in
any given science at any given time: and most of them prove ephemeral fashions.
Nevertheless, there is some reason to believe that we are better off here. Basing logic
on the processing of information merely continues a historical development already
begun in constructive logics, be it in a more radical manner. Moreover, it is a good
sign that the new perspective, once grasped, allows one to make sense of various
scattered precursors in the literature, including such diverse topics as Quantum Logic
(cf. Dalla Chiara 1985), where testing one occurrence of a premise may not yield the
same result as testing another - or the study of the Paradoxes (cf. Fitch 1952), where
problematic arguments rest essentially on such classical structural rules as Contraction
on Liar sentences at different stages of the paradoxical reasoning.

So, to summarize the purpose of this paper:

We want to signal an emerging shift of emphasis in current logical research toward the
phenomenon of information processing, then extract various analogies among different
strands involved here, and finally propose a suitable general perspective.

2. The Language Paradigm

Allthough information is certainly something more abstract than concrete
linguistic form, it nevertheless proves useful to start with a study of Syntax in order to
get below the surface of standard logic.



2.1 Categorial Grammar

In the research program of Categorial Grammar, natural language is described
by an assignment of types to expressions, which are constructed from certain primitive
types (representing, e.g., truth values, entities or states) by further operations such as

a\b (left-looking functor)
b/a (right-looking functor)
aeb (concatenation product)

The basic idea is then that an expression can be recognized in type a if the
corresponding sequence of types for its component words admits of a derivation to the
type a. (Extensive motivation for this linguistic paradigm may be found in the
anthologies Buszkowski, Marciszewski & van Benthem, eds., 1988 and Oechrle, Bach
& Wheeler, eds., 1988.) What counts as an admissible derivation here may be
specified as follows:

a\b, b/a satisfy the obvious laws of function/argument application,
asin

t ()t =2t (8) >t,
and aeb satisfies the obvious laws of concatenation.

An elegant powerful calculus to this effect was proposed already in Lambek
1958. It may be described as a system of Gentzen sequents having the usual logical
rules while lacking all the structural rules of standard logic. Here are the basic laws of
this 'Lambek Calculus':

axiom: a = a

rules: X=>a Y,b,Z=c¢ a,X=>b
Y,.X,a\b,Z = ¢ X = a\b
X=>a Y,b,Z>=>c X,a=b
Y,b/a,X,Z = ¢ X = b/a

X=>a Y=0»> X,a,b,Y=c¢

X,Y = aeb X,aeb,Y = ¢

That none of the usual structural rules should hold is easily seen by keeping the
intended linguistic interpretation in mind.

There is also an 'undirected' variant of this calculus, in which we allow the
structural rule of Permutation of premises, whilst collapsing the two directed functors
a\b, b/a into one:

a—>b.

The latter notation is not arbitrary: there is an obvious analogy between function types
and logical implications. Thus, parsing natural language expressions with the help of
categorial grammars is a form of implicational deduction, bringing together grammatical
parse trees and logical proof trees. And this phenomenon of 'Parsing as Deduction'
even induces a further equation, namely that of 'Formal Linguistics as Proof Theory'.
For, as was already shown by Lambek, the new weaker categorial calculi can still be
studied by the usual logical proof-theoretic methods as to their mathematical properties.
(On the resulting research program, see Buszkowski 1982, van Benthem 1986, 1987.)



What should be observed is that, from the linguistic perspective, there need
not be one single 'best' categorial calculus. Lambek's own system is certainly a natural
candidate, but various syntactic phenomena may require strengthenings or weakenings.
Thus, a better picture is that of a Categorial Hierarchy of calculi underneath, but
ascending up to the standard systems of logic. This variation is precisely an asset in
making intra-linguistic, or cross-linguistic, comparisons of complexity between
syntactic phenomena.

Still, viewed as systems of logic, these calculi are rather poor, employing only
a few of the basic logical constants. But there has been a tendency in the recent
linguistic literature to introduce further operations on types (cf. Moortgat 1988 on
gapped constituents; or the use of disjunction of the feature structures in recent
computational linguistics). We shall return to this issue of linguistically motivated
further operations on types presently.

2.2 Language Models

That a richer logic of types should lie behind Categorial Grammar becomes
clear once we realize that the basic structures in formal linguistics are families of
languages

{Lalae A}
over some finite alphabet of symbols, which are closed under certain natural operations
(cf. Hopcroft & Ullman 1979). The latter may be systematized roughly as follows:

Boolean operations: — N, U, 1,T

Order operations: o .\, /, 1, *
As for the latter , we have (with juxtaposition indicating concatenation)

LaeLpy = {xylx € La,ye Lp} (product)

La\ Lp = {x I Vye La:yx € Lp} (left inverse)

Ly/Ly = {x |Vye Ly:xye Ly} (right inverse)

L1 = {<>} (empty sequence)

and the Kleene star denotes finite iteration as usual.

These operations are natural, e.g., in the sense that the family of all regular
languages is closed under them. By an L-model we shall mean any family of
languages over some finite alphabet having this closure property. A sequent of types

X=a
will be called valid in such models if, for every interpretation [[ ]] sending primitive
types to arbitrary languages and complex types to the obvious compounds, it holds that

[eX 1 < [[all.

Here, 'eX' denotes the concatenation product of X (with the stipulation that
oJ=1).

Valid principles on this account will include all Boolean laws, as well as
typical Lambek principles such as

ae(a\b) > b, or a = (b/a)\b.

In fact, here is a straightforward observation:

Proposition. The Lambek Calculus is sound for interpretation in L-models.



The converse is still an open question: as we shall see later on.

Of course, the L-interpretation also produces further validities for other logical
constants. For instance, it is of interest to compare the behaviour of our two
'conjunctions'’: with e satisfying the Gentzen laws of the Lambek Calculus, and
Boolean A rather the following two:

X,A= B X=>A X=1B

X, ANC= B X = AAB

Note also that the Kleene star behaves somewhat like an S4 modality, in that
we have the validity of

a = a*, a*, a* = a*.

In fact, this operator licences a structural rule which is not valid as such in the Lambek
Calculus, viz. Contraction:
X,a*,a* => b
X,a* => b
The analogy with modality is not perfect, however, in that iteration respects neither
conjunction nor disjunction:

(aub)* # a*Ub*, a*Mb* 76 (anb)*.

Even so, whatever its precise family resemblances, the logic of L-models has
an independent interest as an object of investigation. For, the ordering operations seen
central to syntax, and even iteration becomes quite natural once we move from single
sentences to rexts. (E.g., texts themselves have the iterate t* of the sentence type t.)
Remark. In this connection, even logical proof-theoretical structures, such as the
above sequents are already text objects, with the comma as a separator. And the latter
operator itself needs interpretation before it makes sense to discuss validity or non-
validity of such principles as the usual structural rules. Thus, in a sense, the popular
observation about loss of these rules is too simple-minded. E.g., Contraction fails if
we interpret the comma as a concatenation product - but it would remain valid if we
had treated the comma via Boolean conjunction. @

Finally, it is also quite possible to introduce further operations on L-models.
For instance, two useful operations are

n (L) := all permutations of sequencesin L,

1 (L) := all mirror images of sequences in L.

These will again exemplify logical laws, such as
n(aub) < w(a)un(b), nn(a) & =n(a),
(—) & —(a), 11() & a .

2.3 Numerical Models

When full Permutation is allowed, the only information left about a string of
symbols is the number of occurrences of each basic symbol in it. Thus undirected
categorial calculi invite consideration of numerical models, defined as follows:

There is a family of sets of vectors in NK (where k is the size of the
alphabet) which is closed under the Boolean operations as well as vector addition and
its converses providing the obvious interpretation for the order operations. E.g., now

Lyep = {x+ylxel,,yeLp}.



If we want to have a smooth notion of L,y , however, we shall need
unlimited subtraction: which would require having the integers Z rather than the
natural numbers N (even though this move would lose us a straightforward linguistic
interpretation).

Again, the earlier soundness result extends to N-models, for categorial calculi
admitting a Permutation rule. For the special case of the undirected Lambek Calculus,
this observation generalizes the use of so-called primitive type counts (cf. van Benthem
1986) as a check on derivability. Thus, after all, the above, seemingly uninterpretable
mathematical generalization toward negative numbers makes sense: as type counts may
be negative.

Example. Consider two primitive types e, t . Assign the following two singleton sets
of vectors:

Le = {<1,0>}, L= {<0,1>}.

Then, for each complex type a, the inductively computed integer value of L,
becomes a singleton set {<x,y>} with

x is the e-countof a, y is the t-countof a.

E.g., ((e,(e,0),t) goesto {<+2,0>}, ((e,1),(e,e)) goes to {<+1,-1>}. @&

But also,we can quickly check further non-derivabilities which did not show
up in the pure count system.

Example. The sequent ((e,t),t) = t has equal counts on both sides: which is the
necessary condition for Lambek derivability induced by count. Nevertheless, it is not
derivable - as may be established by proof-theoretic analysis. But now, we can also
provide a counterexample, with

L.=N, Li=0.

(Observe that Le,n=D , Li(e,,n =N . ) Thus, the implicational logic on numerical
models has at least 'truth-value counterexamples' - and hence it must be contained in
the classical conditional logic. We conjecture that it is in fact equal to the conditional
logic axiomatized in the non-directed Lambek Calculus. &

It would be of interest to see if this numerical interpretation yields further
algorithms for reducing the Gentzen search spaces encountered in categorial parsing.
(See Moortgat 1988 on the use of the original counts for the latter purpose.)

2.4 Logical Issues

The above models suggest a number of systematic logical questions.
2.4.1 Calculi of Inference

Perhaps the most obvious formalism for describing L-models or N-models is
that of a standard first-order logic over the appropriate similarity type. For instance,
here are two relevant observations:

Proposition. The first-order theory of concatenation on expressions from a one-
symbol alphabet is equivalent to Additive Arithmetic.
The first-order theory on two symbols, however, becomes equivalent to the
True Arithmetic of addition and multiplication.



Thus, the one-symbol case is decidable, whereas two symbols introduce highly non-
effective complexity.

Remark. Current practice in mathematical linguistics, of concentrating on one-symbol
'pilot cases', may therefore be misleading.

Proof. For the first assertion, it suffices to equate sequences with their length, and
observe that concatenation becomes addition then.

For the second assertion, it suffices to provide a first-order definable
encoding from (N,+,e) into the two symbol syntactic structure. (The converse
embedding from syntax into numbers is provided by the usual techniques of
arithmetization.) For the universe, take the subdomain of all sequences consisting only
of occurrences of the first symbol, say a . Then, addition has an obvious definition
via concatenation. As for multiplication, the following trick employs only
concatenation-definable notions:

for two a-sequences X,y , construct the sequence z as follows

—byb—byyb— by -y,

where the parts — stand for successive non-empty initial segments of x,

with the interleaved parts receiving an additional copy of y in each step.
The product value may then be read off at the end. &

Remark. As Kees Doets has pointed out, this result was already found by Quine
1946. &

By contrast, the first-order theory of N-models is embeddable into additive
arithmetic in an obvious way, and hence it is decidable.

Next, one can go up to higher formalisms, such as the monadic second-order
logic over L-models or N-models, allowing quantification over their subsets. This is
what is needed for expressing the earlier validity of propositional principles such as

ae(a\b) = b:
which corresponds to the validity of the second-order principle

VAVBVx: 3ydz(x = yz A Ay A VAu: Buz) — Bx.

But note that this is only a small Horn-type fragment of the full second-order
formalism, which need not be subject to general complexity results about the latter. For
instance, the question as to effective axiomatizability of the universal (Il 1)-fragment
of monadic second-order logic for \, /, ¢ over L-models appears to be open.

In any case, this type of logic seems to deserve investigation, also over
numerical N-models. For instance, how does it change across successive 'dimensions'
for our occurrence vectors?

Example. To get a feel for logics like this, it is useful to show, e.g., that the following
set of formulas is satisfiable in N:

{p, —(*p), pope—p}. @

Against this background, it is instructive to mention some completeness results
in the tradition of Categorial Grammar.

Categorial calculi like Lambek's may be modelled ‘cheaply’ via some suitable
notion of algebra (obtainable via a Lindenbaum construction). In particular, one may
use so-called 'residuate semigroups'. An improvement was obtained in Do¥en 1985,
using 'residuate semigroups spread over partially ordered semigroups', i.e., structures

M=(IM|, £, 0,\,/)
defined over some partially ordered semigroup (IGl, £, @) as follows :



M ={AclIGIl IVbeA,agh:acA}

AeB={ce |Gl | JaeA, beB: cLaeb}

AB ={ce |Gl | YacA: aeceB}

B/A ={celGl | YaeA: ceacB}
Next, Buszkowski 1986 did even better, by proving the equivalence between Lambek-
derivability and validity over 'residuate semigroups spread over semigroups', where
the partial order < is just identity. The latter kind of structure comes already quite
close to our L-models, which are spread over free semigroups. As Buszkowski has
shown, the \, / Lambek calculus is complete with respect to the latter L-models; but
the question is open when we add the product e . Moreover, no results seem to be
known for the case where we add the Boolean operators.

2.4.2 The Proper Logical Constants

What we can no longer assume in the new context is that the old set of logical
operators from standard logic will be sufficient. And in fact, we saw several variants
for the old conjunction, as well as various new kinds of operator. Now, can we find
some systematic perspective on this, which will allow us to formulate issues of
expressiveness and functional completeness?

One possible approach here is proof-theoretic. One can try to generalize the
analysis of general 'formats' of introduction rules for operators (as Zucker & Tragesser
1978), showing how some distinguished set of operators defines all possibilities. This
suggestion has been taken up in Wansing 1989.

Another approach is model-theoretic, referring to the earlier L- or N-models.
The set of all a priori possibilities may then be seen as embodied in the appropriate
first-order language of concatenation. For instance, the Booleans are definable via

ANB : AxeAxABx
and the ordering operations via, e.g.,

AeB : AxedyJdz(AyABzAax=yz).

In general, there will be infinitely many non-equivalent possibilites.

Nevertheless, there are some natural special classes to be considered. For
instance, we can look at special syntactic fragments of the relevant predicate logic. Just
as has proven useful in Modal Logic, we may view our types or propositions as
variable-free notations for first-order concatenation formules employing only some
fixed finite number of variables (cf. Gabbay, Pnueli, Shelah & Stavi 1980, Immerman
& Kozen 1987). In the above cases, this number was at most 3 . And such fragments,
at least for pure predicate-based first-order languages, always admit of some finite
functionally complete operator notation. In the present case, we should have to
introduce a ternary concatenation predicate then (see also below), and determine
successive complete operator sets for operations

Axe 9 (A,B,C,..5x%),
definable by a schema ¢ employing 1,2, 3 ... variables.

(E.g., the Booleans are complete for the case where @ uses only x itself.)

Another approach would be to locate some special semantic characteristics of
admissible logical constants, cutting down on the number of a priori possibilities.
We shall return to these options in the following Section.
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2.4.3. Meanings of Derivations

One basic tool in the study of categorial calculi, and indeed their application to
natural language semantics, is the correspondence between categorial derivations and
terms from a lambda calculus allowing function application and abstraction (as well as
pairing and projection). (See van Benthem 1989A for an exposition as well as some
basic questions arising in this perspective.)

From this viewpoint, we are not only interested in valid inferences, but also in
the different ways that may be available for deriving the inference (its 'readings’, to
extend a linguistic concept). As it stands, however, this correspondence only works for
functional and product types. Can it also be extended tot the other new logical operators
encountered above?

In fact, this can be done relatively easily, by extending the Lambda Calculus
with suitable operations matching additional operators such as Boolean conjunction or
disjunction. Thus, we can code up derivations, and bring out intuitive differences such
as that between the following two derivations for the same valid inference:

—AN(AUB), —A, —(AN—B)

—AN(AUB), B, —(An—B)

Nevertheless, there remains the problem that such enriched lambda calculi do not seem
to provide an independent intuition concerning our derivations: whence this
perspective may lack the appeal which it had in the more restricted case.

Remark. Other more linguistically inspired topics may have some meaning in this
wider setting too. For instance, what would be more general logical import of the
notion of recognizing power? ®

2.5 Linear Logic

An emphasis on computational processing and the proper level of syntactic
detail involved therein is also characteristic of the current research line of so-called
'Linear Logic'. This area shows a number of striking resemblances with Categorial
Grammar, especially in the extended sense developed here. Indeed, the latter may be
viewed as a linguistic paradigm taking a rather liberal view of syntax (in being willing
to countenance permutations) - while the former is a logical paradigm taking syntax
rather more seriously than is done in standard approaches: which explains their
rapprochement. The present Section will merely point at a number of analogies.

First, we need some concrete system for the purpose of comparison.

Instead of providing a full motivation here, we refer to Girard 1987, Lafont
1988 for the proof-theoretical and computational background of the following basic
calculus (which allows Permutation of premises):

axioms; A=A =1 X, 1l=>A A=T
X=>A Y= B X,A,B=C
rules: —_—
X,Y = AeB X,AeB = C
X, A= B X=>A X=>8B

X, AnC=B X = ANnB
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Note that these two conjunctions would collapse in the presence of the structural rules

of standard logic.
X,A=>B X,C=> B X= A X= A
X, AUC=B X = AUB X = BUA
X=>A YB=C X,A=>B
X, Y, A-B=C X = A-B

Next comes Girard's 'modality’, allowing for a translation from classical logics into
linear systems (by absorbing some behaviour of the earlier structural rules into their

logical rules):

X = A X,!B,!B= A
X,'B= A X,IB= A
X,A=>B 'A= B
X,!/A=B A= !B

The intuitive motivation is that !A stands for arbitrary finite iterations of A-type
propositions. (We skip the rules here for the dual operator ? .) Finally we add
X= A

X,1=> A

This calculus as well as several variants has been under intensive investigation
recently (cf. Abrusci 1988A, Sambin 1988). For present purposes, it will suffice to
note the obvious resemblance, and indeed identity, of its e, — fragment with that of
the undirected Lambek Calculus. This analogy can be extended, as it turns out, to a
useful comparison between the existing proof theory for categorial grammar and that
for linear logic. (For a first survey, see Ono 1988.)

A case in point are the earlier completeness theorems for categorial calculi (cf.
Section 2.4.1). Roughly speaking, the completeness results in Sambin 1988, Abrusci
1988A seen comparable to DoSen's kind of theorem, be it for a richer kind of language.
(Note their use of 'closure’ in the definition of a product.) It seems that one cannot do
better than this in general, because of an example in Abrusci 1988A: which gives a
distributivity principle that is non-derivable in the basic linear logic, even though it is
valid in every 'simple’ intuitionistic topophase structure (with the identity closure).

The exact extent of the analogies between the metatheory of categorial
grammar and linear logics remains to be established.

To conclude here, it may be of interest to observe a connection with our earlier
L-models.

Proposition. The following correspondence provides a sound interpretation for

(part of) linear logic:
(Boolean) L1l:1, T:T, n:Nn, uv:U,
(order) e :eo 1:1.

There is no direct analogue of linear — here : but \ and / are just right for
the directed, non-permuted calculus of linear logic proposed in Abrusci 1988B.
Moreover, there is no analogue for linear ! as it stands, although Kleene iteration
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seems to have a similar infinitary flavour, while validating the structural rule of
Contraction - as was already observed before. Nevertheless, * failed to validate some
of the necessary laws for modalities. But probably, some suitable defined iterative
operator on languages will do the job.

3. The Information Paradigm

Now, let us abstract away from syntactic occurrences, and move to a level of
analysis which is traditionally considered appropriate for locating information
structures.

3.1 Information Models

Here, we can take a lead from the tradition - as there are already established
systems of logic based on information structures, a noteworthy example being
Intuitionistic Logic. Again, disregarding any particular calculus to be modelled, the
simplest structures to be described are partial orders

d, &)
of 'information states' or stages ordered by 'inclusion’ ('possible growth'). (See
Troelstra & van Dalen 1988.) In a somewhat richer perspective, the also information-
oriented Relevance Logic has even lattices

Iai,c, N, V)
which also include suprema ('sums') and infima of information stages.

Another way of arriving at these I-models would start from the earlier L- or
N-models, and impose successive conditions on their binary operation. In particular,
writing the supremum U as addition +:

X+y = y+x

X+X = X,
so that it will induce a partial order in the usual way:

xSy iff x+y =y.

Now, a number of questions arises similar to those encountered in Section 2.
For a start,

What kind of logical operators are suitable here?

As before, we can think of propositions as denoting sets of information stages: and
logical operators are to relate these. Thus, a natural format of semantic truth conditions
becomes a first-order language referring to the binary order & as well as having
unary predicates over stages.

Example. The usual modalities are expressible as follows:

&p: AxeJy (xSyAPy)

©p: AxeJy(ySxAPy)

But we can also introduce more complex binary operators on propositions, such as, in
particular, two relatives of conjunction and disjunction, respectively:

pUq : AxeJy 3z (Py A Qz A 'x is the supremum of {y,z}")

pNq : Axedy 3z (Py A Qz A 'x is the infimum of {y,z}")
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And using U , which reflects 'addition’ of information stages (as far as defined), a
notion of implication may be defined as before. @

Thus, there is a rich structure of logical constants, even on information models
collapsing addition of identical states.

Remark. In this perspective, Intuitionistic Logic has no favoured status as a logic of
information, as it treats only part of the relevant operators. The reason why it does not
'see’ these additional possibilities is that only upward hereditary propositions are
considered intuitionistically (it is a 'logic of progress'), so that , e.g., pUq and

pAq will collapse. But, e.g., the above operator © also envisages retraction of
information. @&

The next general question is this:

What calculi of inference are appropriate over these information models?
Whatever choice is made, note that the analysis given in Section 2.4.1 still applies here:
such calculi are likely to be fragments of the universal monadic second-order logic over
lattices. As the latter form an elementary class, their universal second-order theory must
be recursively enumerable (by a simple logical argument), and hence so are logics of
I-models. Now, this a priori observation does not provide explicit useful
axiomatizations. But in fact, of course, some calculi corresponding to the earlier
categorial systems lie at hand: we can start with the usual systems of intuitionistic or
relevant logic, and then enrich them with further suitable operators.

3.2 A Modal Perspective

With information models in the above sense, we are back with standard logics,
now not viewed as embodied in any particular proof calculus, but as a description for
types of information. Thus, we can raise questions of design: did the founding fathers
of Intuitionistic Logic, or Relevant Logic, really pick the appropriate logical constants?
But also conversely, techniques developed for these systems may turn out to have
wider applicability.

In fact, one obvious flexible formalism over information models is that of
Modal Logic, whose theory on partial orders is S4 (if one considers the upward
direction only). In general, again, the semantic format behind this is a first-order
language over & and unary predicates mirroring propositions. We shall use this
format here to arrive at a more general technical perspective on the logic of information
models. (See van Benthem 1989C for further details.)

First, on the issue of selection of appropriate logical constants, we can use the
earlier method of fixed variable fragments. For instance, at the lowest levels, there is a
simple classification. To see this, fix any I-model. All possibilities may be enumerated
as follows:

Proposition. All operations of the form Ax « @(x; A, B, C, ...) employing only one
variable are definable by means of Boolean combination of the predicates
A, B, C, .... With two variables, the following set of modal operators is
functionally complete:
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Op: AxeJy(xGyAPy)
Op: Axedy (yExAPy)
Ip: Axedy(xdyaydxaPy).

In general, however, no finite functionally complete set of operators exists -
as may be shown using the methods of Immerman & Kozen 1987.

Now, the usual modal formalism may be translated into the two-variable
fragment of this first-order language. But even there, it distinguishes itself by further
special semantic behaviour, which has some independent interest. This takes the form
of invariances for modal formulas @(x) .

e  @(x) is invariant in passing from any model tot the generated submodel
containing x and being closed under &-successors and -predecessors.
This seems reasonable from the viewpoint of 'search' through information patterns.
Note that it rules out the above 'incomparability' operator I.

Another invariant of the modal formalism brings out a question which ought
to arise with any kind of semantic modelling. It is one thing to introduce a general class
of information structures, but it remains to provide them with a suitable criterion of
identity: Which models are really 'the same'? What the model theory of Modal Logic
suggests here is in fact quite close to a notion which has recently become prominent in
the algebra of processes in computer science (and even in non-standard set theories),
namely 'bisimulation’. Let us say that a relation C between two models M1, M2
(with the latter being viewed as families of propositions spread over a pattern of
information states) is a bisimulation if it satisfies the following conditions:

i C-correlated states verify the same propositions,
iia if wiCwy and w1 E vy,
then there exists vp with wpEvy viCvap,
iib likewise, in the opposite direction,
iii and analogously for & -predecessors .

Then, modal formulas ¢ have this property:
e  (x) isinvariant for bisimulations,

ie., if wiCwsy,then M1 F ¢ [w;] iff M2E ¢ [wo].

Together, these two invariances pick out precisely the modal formulas inside
the full first-order language, as is proved in van Benthem 1985.

What will happen next is that we can turn up the magnification of our 'logical
lenses', so to speak, by moving on to richer modal formalisms: using 3-configurations
of states in the first-order description language.

Example. As in Temporal Logic, operators are possible of the Since/Until type:
"until verifying p, q was encountered".

Upq: AxeIyxEYyAPYyAVzxESzESy — Qz)).

This requires essentially 3 variables instead of 2 . Clauses of this level of complexity
occur, e.g., in the process of updating information states, when we want to make
assertions q about the first state including the present one where some proposition p
has become true:

U(arg—p. @
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The latter fragment of the first-order language over I-models has its
characteristic semantic invariance too: this time, in terms of 'strong bisimulations'
respecting also the relation of betweenness among states.

Example. Increased Discrimination.
The following two I-patterns are bisimulation equivalent, but no strong bisimulation
connects them:

I/ .

o At @ ¢— @

¢

Finally, the full framework introduced in Section 3.1 naturally calls for
configurations of 4 variables. This shows when we introduce binary modalities
ﬂ, U as follows:

Upaq: Ax edydz (Py A Qz A x = sup(y,2z)) .

(The intuitive motivation here is like that for the 'information piece’' semantics of
Relevant Logic proposed in Urquhart 1972.) These are genuine modalities, in that,
e.g., Distribution holds:

Upvpya & Upiq v Upg

Up @vay © Upaiv Upq,
Here too, there is a suitable notion of simulation invariance. As the language has
become stronger, requirements on identification will go up too. What is needed now is
a bisimulation satisfying two further back-and-forth clauses:

if xRx! and x = sup(y,z) , then there exist yl, z1

such that x!=sup (y!,z!) and yRy!, zRz!;

and analogously in the opposite direction.

As above, one can prove a general characterization result here (witness the earlier
reference van Benthem 1989C).

Thus, the modal perspective gives us a hierarchy of ever finer-grained
descriptions of information patterns.

Again, given any choice of modal operators, there is the matter of
axiomatization of valid consequence. Actually, there are various options as to the latter
notion. On the usual modal account, validity of a sequent X = ¢ would be explained
as follows:

e  Inall information models, at all states verifying each formula in X,
¢ is verified too.
The resulting notion satisfies the classical structural rules, such as Monotonicity and
Contraction: because it treats its premises as a Boolean conjunction. But, another
notion of validity would be more in line with the spirit of Section 2, taking a more
'dynamic' view of adding the information supporting the premises:
e  In all information models, for all sets of information pieces
{ix| xe X} verifying the corresponding formulas in X,
the sum +{ix| xe X} verifies @.
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The latter notion of consequence loses some structural rules: in particular,
Monotonicity. The reason is that it treats its premises via non-Boolean additive
conjunction.

Nevertheless, there is no compelling reason to axiomatize two notions of
consequence here. For, the second approach may be defined in terms of the first:
via the standard validity of

Ux=e¢.
Thus, complete axiomatizations for even dynamic notions of consequence may be
sought using standard methods from Modal Logic and Relevance Logic: provided that
we take those earlier enterprises in a suitably liberal spirit.

4 The Dynamic Paradigm

Now, we turn from information structures to information processing. Again,
logical phenomena will turn up similar to those encountered before.

4.1 Cognitive Transitions

In many recent publications, one can find attempts at formulating logics
reflecting more dynamic procedural aspects of interpretation and inference, thus mixing
'declarative’ and 'imperative' aspects within a single system of deduction. Examples
are Girdenfors 1988, Groenendijk & Stokhof 1988, Veltman 1989 (see also the survey
in van Benthem 1988B).

One way of describing the underlying patterns here is as follows. In standard
logic, propositions stand for sets of possible worlds, or more generally, situations
verifying them. Put differently, they are properties of information states. But now, we
look at the effects of adding a proposition to an information state. Thus, dynamically, a
proposition acts as a transformer on states, and its denotation will now rather be a
binary relation (its 'succesful transitions'). The latter pattern can be discerned across
various proposals.

Example 1. In the semantics of programming languages, a program 7 denotes a
binary relation between computer states. Traditional logical formalisms still serve here
as a means of making static assertions about such states (witness the usual 'correctness
assertions' in the theory of program behaviour).

Example 2. But, following Barwise 1987 or Groenendijk & Stokhof 1988, one can
also interpret the latter formalisms dynamically, as transition relations between
assignments which may change in the course of evaluation.

As in earlier Sections, this perspective brings up the question as to selection of
an appropriate set of logical operators, which is going to be richer than that of standard
logic. For instance, there are two options for 'conjunction’ of propositions now: one is
sequential composition of relations, the other is Boolean intersection, which has a more
parallel flavour. Moreover, again, new operators may arise, such as a modality looking
forward:

[[O¢ll = {(a,a)lforall assignments b:(a,b)e [[¢]]}.
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In addition, there is the issue of an appropriate definition of valid
consequence. For instance, one possibilitiy would be to have the composed transition
relation for the premises be part of that for the conclusion:

1, ., P ElY : ([ @1® ... #9511 < [[W]] .
Another option is to 'process the premises, and then see':
@1, o » O E2y ¢ if x;y)e [[@1®...00,41],

then (y,z) € [[y]] foratleastone z.
Note that, as before, such notions of consequence will tend to lose classical structural
rules: e.g., F2 does not satisfy Permutation or Monotonicity.
Example 3. Assignments are not the only possible 'states'. In the folklore idea of
propositions as transformations, states might be sets of models or possible worlds,
and each successivve proposition picks out some further subset of the current one. This
idea was taken up formally in Heim 1982 or in Veltman's recent update system.
Again, we find a proliferation of useful logical constants as well as notions of
inference, each with different formal properties.
Remark. The diversity of logical constants may now be understood as the effect of
having both more purely descriptive notions and operations of control.
Remark. The proliferation of notions of inference may be curbed again by trying to
locate some reasonable base conditions which any sensible notion of 'inference’ should
satisfy: in the spirit of the program of Makinson 1988. In fact, one reason for the
diversity here is that we are mixing notions of inference with other cognitive activities.

4.2 Relational Algebra

The above analysis gives us what might be called R-models for new logical
formalisms: i.e., families of transition relations on some carrier set of states, closed
under suitable operations.

But then, we can use the existing work on Relational Algebra to get a better
grasp of the logical structure here (cf. Jonsson 1984). In the theory of binary relations,
one tries to generalize the Boolean Algebra of unary propositions by creating a suitable
richer similarity type. Notably one has

Boolean operations: - Nu, 1T

Order operations: e as well as converse v
and one special relation, viz. identity: id.

But, one can introduce also other operations, such as analogues of our earlier slashes

R\S = {(xy) | Vz: (z,x) eR = (z,y) €S}
S/R = {(x,y) | Vz: (y,z) eR = (x,2) €S}
Here are the basic laws of relation algebras:
i all Boolean identities
ii (RUS)Y = RvUSY
(R¥ = —Rv
Rw = R

v = id
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il (RUS)eT = ReT U SeT
Re(SUT) = ReS UReT
Re(SeT) = (ReS)eT
Reid = ideR = R
iv (ReS)v SveRv

Rve_(ReS) < -S

This framework may be used to analyze the earlier systems.
First, interpreting validity of sequents now as

X = a is valid if, for all relational interpretations [[]],

[[eX1lc(lall,
one gets failures of all the structural rules of standard logic: Monotonicity, Permutation
or Contraction. (E.g., a,a = a is only valid for transitive relations.) Moreover,
again, alternatives may be defined here. For instance, a modality <OR may be
introduced as follows:

TeRV
defines {(x,y) | 3z: (y,z) eR} . But then, the notion F2 introduced earlier on can be
reduced to

X = a.
Remark. The operation of converse ¥ does not seem to have any reasonable
analogue at the level of types or propositions. Nevertheless, it does occur at the level of
texts, and conscious operations on information states: witness the 'revisions' and
'contractions' of Girdenfors & Makinson 1988. Moreover, even the model class
semantics of Veltman invites consideration of further operations than just 'updating’,
rather requiring 'stepping back' undoing the effects of some earlier transformation. @&

Now the proposed use of this framework vis-a-vis concrete systems of
dynamic interpretation and inference is as follows. It provides a basic level common to
all approaches, enabling us to theorize about their general structure. On top of this, one
can then determine which additional properties of some proposed system are due to
further special features (e.g., the use of special types of transition relation only, or the
selection of some special format of inference).

4.3 Logical Issues

As before, there are some broad logical issues now which deserve
investigation.
First, there is the issue of functional completeness. In fact, the above similarity
type for relational algebra is well-chosen in the following sense (cf. Maddux 1983):
each first-order definable operation Axy e ¢(x, y, R) on binary relations
employing only three variables {x,y,z} can be written using only
- N, id, e, v
Of course, this still leaves many related questions; but it does show some stability.
Next, there is the matter of logical calculi of inference. At least, we have an
observation similar to those made in Section 2:
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Proposition. Under the relational Boolean/order interpretation, both the Lambek
Calculus and (the relevant part of) Linear Logic are sound.

What this amounts to is an embedding of these calculi into Relational Algebra.
It is an open question, however, if this interpretation is complete, even for the Lambek
Calculus.

One problem with this reduction is that Relational Algebra itself has its
problems. Notably, the earlier set of basic principles is not a complete axiomatization of
the class of all validities on set-representable relation algebras (the latter class is known
to be non-finitely axiomatizable). In view of these, and other technical complications, it
may be useful eventually to adopt a somewhat less orthodox form of Relational
Algebra. In particular, one might think of transition relations more abstractly, as being
sets of 'arrows', not necessarily to be identified with their end-points. And if we do
that, an earlier perspective returns (cf. Section 3.2).

The point is that the calculus of Boolean operations, composition e and
converse “ may be viewed as a modal logic. (Note that e and “ both satisfy
Distribution.) So, we can introduce corresponding relations

Cxyz : ‘arrow z is the composition of x and y'
Fxy : 'arrow y is the converse of x'

as well as a special property
Ix : 'x is an identity arrow' .

The various axioms of Relational Algebra then express conditions on what may be
called 'arrow frames'

(W,.LFQC.
Example. Here is the list of relevant correspondences:
(RNS)» =2 RvN Sv : Vxyz(FxyAaFxz—»>y=1z)

(—R)» 2 —Rv: Vxdy Fxy
i.e., F is a function;
Rw < R : Vxy (Fxy — Fyx)
i.e., F is idempotent.
Then, C is associative:
((ReS)eT) = (Re(SeT)) : Vxyzuv (Cxyz A Czuv — Iw ( Cyuw A Cxwv))
Vxyzuv (Cyzu A Cxuv — Iw ( Cxyw A Cwzv ))
Moreover, it interacts with F as follows:

(ReS)~v = SveRv : Vxyz (Cxyz — C F(y) F(x) F(z)) ,
and the rather forbidding final axiom expresses a principle in the same vein:
Rve_(ReS) < —S : Vxyz (Cxyz— CFx)zF(y)). @&

At least, these correspondences give us a more concrete view of the meaning
of the earlier set of basic axioms for Relational Algebra.

Again, this modal logic of relations can be studied in greater technical detail
(cf. van Benthem 1989B). For instance, the preceding example is a special case of a
general definability theorem for modal formulas expressing first-order conditions on
relational frames.

The exact connection between the modal perspective on information structures
and that on transition relations remains to be explored.
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5 Comparisons

The emergence of various formal analogies between the earlier kinds of
models invites comparison.
First, in one direction, there is a natural embedding.

5.1 From L-Models to R-Models

Given a family of languages on a universe of expressions, one can map each
language to a binary relation as follows
pLy = { (xxy)lyel,}.
Moreover, let us restrict the universe of admissible pairs to those of the form (x,y)
where x is an initial segment of y . Then, we can make the following observation:
p is a homomorphism with respectto —, M, ®, o and /.
Ilustration:
P(La~w) = PLanLy) = {(x.xy) | yeLa & yeLy) = p(La) N p(Le) ,
for the case of p(L.,) , the special restriction on admissible pairs is needed,
P(Laeb) = {(x,xyz) | ye L,, z€ Ly} = p(LaepLy),
p(Lap) = {(xxy) | yeLpn} = p(Lp)/ p(La), by a simple calculation,
p({o}) ={(x,x)|allexpressions x} = id. &
Since p is also injective, this yields an isomorphic embedding, and we have
found a

Proposition. Forthe {—, N, e, <>, /} fragment, the universal first-order theory of
R-models is contained in that of L-models.

One immediate question is if this result can be extended so as to include the
converse implication \ , for which the above representation does not work.
Moreover, the analogy does not necessarily extend to additional operators.
Example. If we map the earlier inversion on languages to relational converse,
then, e.g., (xey)” = yvexV will be valid in both cases,
but, e.g., xve—(xey) <_—y will not:
a linguistic counter-example is x = {a}, y={b,ab}. ®
Next, we consider the opposite direction.

5.2 From R-Models to L.-Models

Given any relation, we can choose to re-interpret it as a set of 'symbols'
(x,y) , which can be 'concatenated' in the usual way. But, no homomorphic
preservation of structure takes place here. Typically, the problem is that the
composition ReS will not correspond to the concatenation product of R and S : as
certain arrows may not match. Therefore, a representation will only succeed for very
special 'uniform’ relations. Or on the other side, one might have to consider syntax
models allowing for possible restrictions on concatenation (certain symbols would not
admit of juxtaposition). The latter idea might have some independent interest all the
same.
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In any case, there are principles which are valid on all L-models, but not on
all R-models, reflecting the above difference.

L.eLy, =< implies that L.=0 or Ly=9
but

R,*Rp = does not imply R.=9 or Ry=9.
Now this is still a 'higher' example, above the level of algebraic identities. (We can
make our model comparisons, of course, at different levels of their logical 'description
languages'.) But, given the earlier emphasis on Gentzen sequents, i.e., Horn clauses,
i.e., algebraic identities, here is a more telling illustration.
Example. The following principle is valid in all L-models, but not in all R-models:

((—(xox)Nx) ® (—(xex)Nx)) Nid =1 .
On L-models. Suppose that some string a is in the intersection. Le.,
a=<>e€ (— (xox) Nx)® (— (x®x) NX) : sothat <>e€ — (x®x) Nx : <>€EX:
whence <> = <> <> € x®x , which is a contradiction.
On R-models. Here is a relational counter-example:

R =1{<1,2>,<2,1>}, id = {<1,1>,<22>}.
In fact, it is possible to rework this example into one not containing id : so that it is
already the combination of e with Boolean operations which creates the difficulty.
<

The upshot of this discussion seems to be that R-models form the more
general class of structures for our analysis of information and its processing.
Remark. It would be of interest, nevertheless, to extend the above comparisons so as
to include the case of N-models, and I-models. A case in point are the earlier
analogies between the previous uses of Modal Logic: once as a theory of information
models, and once as a generalized form of Relation Algebra. @

6 Combination: Dynamic Logic of Information

Despite its technical interest, the preceding Section does not reflect the point of
view advocated in this paper. In fact, there seems to be little evidence in favour of a
reductionist stance, trying to reduce one intuitive perspective on information to another.
Therefore, our final offering is a paradigm allowing for the coexistence of several
strands in the story so far.

6.1 Intensional Type Theory

Consider a standard type theory, with primitive types

t (truth values)
S (indices, states, possible worlds)
e (entities)

allowing for the formation of functional and product types.
First, take the s, t fragment only (‘propositional dynamic logic' in higher
orders). Classical propositions have type

(s,0) ,
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being 'static' sets of states, whereas dynamic relational propositions have the type
(s,(s,1)) .
Now, instead of choosing between these two perspectives, we can have both, and
study transformations between them.
For instance, there is an obvious map from D sy) t0 Dy,
being the diagonal function
AR) = {xIxx) eR}
mapping R to its fixed points, which serve as the obvious associated truth set.
And conversely, each static proposition gives rise to a test relation
72(P) = {(xx)Ixe P}.
Note, e.g., that the composition A ? cancels out to identity on D). Moreover, these
maps preserve a good deal of structure on their domains: for instance, A is a Boolean
homomorphism and ? at least 'continuous' in a sense to be explained below.
Thus, the better perspective is rather to accept two distinct domains, and study

two additional types:
((s,(s,1)), (s,t)) static "projections’' for dynamic propositions ,
((s,0), (5,(s,1))) dynamic 'modes' of using static propositions .

It is precisely this interplay between the two perspectives (‘proposition as descriptions'
versus 'propositions as programs’) which gives Dynamic Logic its utility - e.g., when
proving correctness assertions about program behaviour. And the same interaction
seems useful for 'cognitive programming'. Thus, our world picture becomes this:

projections
static < dynamic
logical C o O logical
operators > operators
modes

(S,t) (S,(S,t))

More interesting examples will only come to the fore, however, if we endow
the base domain Dg with additional structure: say, at least the information ordering &
of Section 3. Then we also get dynamic modes such as the following:

AxseAyse xSy A P(y) 'indeterministic update'

Axs e Ayse YEX A —P(y) 'indeterministic downdate'

AXsoAyse XSy A3z (xGzEy AP(z)) 'minimal update'

The resulting structure may be studied in a modal dynamic logic, having enough type-
theoretical structure.

To repeat, the point here is not that propositions really 'are' dynamic entities.
In fact, if static propositions did not exist already, they would have to be invented, in
order to account for the common core in certain dynamic operations like updating,
revision or querying. The present type-theoretical perspective allows us to study all
possible semantic mechanisms involved here, without becoming committed to
exclusive claims.
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6.2  Logical Issues

There is much fine-structure to be investigated in the above general
framework. The following discussion may serve as a first illustration (for more detail,
as well as technical proofs, see van Benthem 1989C).

In general, it will become preferable now to formulate our semantic notions in
a way which will apply to all relevant types at once, so as not to miss useful analogies.
For instance, the earlier concern with logical constants can now be approached quite
generally, using the notion of invariance for permutations of the individual states in D
(cf. van Benthem 1986). With operators on (s,t) , this will leave just the Booleans: but
already with operators on (s,(s,t)) , all the usual notions from Relation Algebra pass
the test. But other items can be 'logical' in this sense too: for instance, the earlier-
mentioned transformations A and ? both are.

Then, given the importance of Boolean structure, it makes sense, €.g., to
locate all Boolean homomorphisms in our transformer types.

Example. There is exactly one permutation-invariant homomorphic projection, namely
the diagonal A . There are exactly two permutation-invariant homomorphic modes, viz.
AP 1) e Axs e Ays o P(x) , APty » Axsedys e P(y) . ¢

A more liberal requirement would be continuity, in the sense of commuting with
arbitrary unions of arguments (a notion which is ubiquitous in computational
information-oriented settings). Then, e.g., also projections like domain or range of
relations, and modes like the test ? qualify.

To arrive at a more genuinely modal analysis, one will have to take the
inclusion structure on Dy seriously. Permutation invariance does not hold for modal
operators, like < , or modal modes, like updating. The reason is that they may
destroy all information about the ordering pattern < . Truly modal notions will only
be invariant, then, for inclusion automorphisms of Dy.

On the other hand, one can also strengthen modal invariances, by developing
proper type-theoretical generalizations of the various notions of bisimulation found in
Section 3. For instance, van Benthem 1989C has one such proposal for bisimulation
invariance across all types, which allows us to locate the analogues of the basic modal
operators among transformers, and other relevant types.

Another general perspective from earlier Sections was the use of a first-order
description language in the background. This is also quite possible here. In fact, at least
the move from (s,t) to also including (s,(s,t)) type entities is entirely natural from the
point of view of the earlier monadic &-language. One now merely admits formulas
having two free variables instead of one: a move which had already been considered in
the area for various technical reasons. And then, many of the earlier notions and results
apply without any great effort.

The possibility of transcription into first-order formalisms, then, which has
always been well-known for ordinary Intensional Logic, is not affected at all by
including the new dynamic perspective. Hence, despite frequent misconceptions on this
score, at least technical reductions to classical 'static' systems are always possible.

On the other hand, the new setting certainly suggests many new questions
which would not easily have come up without it. For instance, one might be interested
in classifying propositions as to their 'informational content' (upward persistent, closed
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under sums, etcetera) or propositional relations as to their various kinds of behaviour
along the information ordering (upward looking, idempotent, or other important special
classes).

Finally, as another item for the agenda, an eventual system will also have to
incorporate the individual domain D, needed to get at individual predication and
quantification. What remains to be seen, however, is whether any essentially new
dynamic phenomena will come to light here. One possible relevant example is the
notion of querying, where our information state increases by growing acquaintance
with individuals and their relationships.

7 Conclusions

A number of general points behind the story of this paper may be worth setting
out separately, now that we have come to the end.

There is perhaps one obvious omission to be addressed right away. Although
the word "information" has occurred throughout this paper, it must have struck the
reader that we have had nothing to say on what information is. In this respect, our
theories may be like those in physics: which do not explain what "energy" is (a notion
which seems quite similar to "information" in several ways), but only give some basic
laws about its behaviour and transmission.

The eventual recommendation made here has been to use a broad type-theoretic
framework for studying various more classical and more dynamic notions of
proposition in their interaction. This is not quite the viewpoint advocated by many
current authors in the area, who argue for a whole-sale switch from a 'static' to a
'dynamic' perspective on propositions. This is not the place, however, to survey the
conceptual arguments for and against such a more radical move.

This still leaves many questions about possible reductions from one perspecive
to another. For instance, it would seem that classical systems ought to serve as a
'limiting case', which should still be valid after procedural details of some cognitive
process have been forgotten. There are various ways of implementing the desired
correspondence: e.g. by considering extreme cases with & equal to identity, or, in the
pure relational algebra framework by considering only pairs (x,x) . What we shall
want then are reductions of dynamic logics, in those special cases, to classical logic.
But perhaps also, more sophisticated views are possible. How do we take a piece of
'dynamic' prose, remove control instructions and the like, and obtain a piece of
'classical’ text, suitable for inference 'in the light of eternity'?

There is also a more technical side to the matter of ‘reduction’. By now, Logic
has reached such a state of 'inter-translatability' that almost all known variant logics can
be embedded into each other, via suitable translations. In particular, once an adequate
semantic has been given for a new system, this usually induces an embedding into
standard logic: as we know, e.g., for the case of Modal Logic. Likewise, all systems
of dynamic interpretation or inference proposed so far admit of direct embedding into
an ordinary 'static' predicate logic having explicit transition predicates (cf. van
Benthem 1988B). Thus, our moral is this. The issue is not whether the new systems of
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information structure or processing are essentially beyond the expressive resources of
traditional logical systems: for, they are not. The issue is rather which interesting
phenomena and questions will be put into the right focus by them.

The next broad issue concerns the specific use of the perspective proposed
here, vis-a-vis concrete proposals for information-oriented or dynamic semantics. The
general strategy advocated here is to locate some suitable base calculus and then
consider which 'extras' are peculiar to the proposal. For instance, this is the spirit in
which modal S4 would be a base logic of information models, and intuitionistic logic
the special theory devoting itself to upward persistent propositions. Or, with the
examples in Section 4.1, the underlying base logic is our relational algebra, whereas,
say, ordinary updates then impose special properties, such as 'idempotence':

xRy = yRy.

Does this kind of application presuppose the existence of one distinguished base logic,
of which all others are extensions? This would be attractive - and some form of
relational algebra or linear logic might be a reasonable candidate. Nevertheless, the
enterprise does not rest on this outcome. What matters is an increased sensitivity to the
"landscape' of dynamic logics, just as with the 'Categorial Hierarchy' in Categorial
Grammar (cf. van Benthem 1989A) where the family of logics with their
interconnections seems more important than any specific patriarch.

Finally, perhaps the most important issue in the new framework is the
possibility of new kinds of questions arising precisely because of its differences from
standard logic. Notably, given the option of regarding propositions as programs, it will
be of interest to consider systematically which major questions about programming
languages now make sense inside logic too.

Example. Correctness. When do we have

(e CILAl) c([BII
for (s,t) propositions A, B and a dynamic (s,(s,t)) proposition 7 ?

Program Synthesis. Which dynamic proposition will take us from an
information state satisfying A to one satisfying B ? (This question needs refinement,
lest there be trivial answers.)

Determinism. Which propositions as programs are deterministic, in the sense
of defining single-valued functions from states to states?

Querying. What does it mean to ask for information in the present setting?
(Again, individual types referring to e will be crucial here.)

This is not merely an agenda for wishful thinking. Within Logic, there are
various ways of introducing such concerns into semantics, especially, using tools from
Automata Theory. (See van Benthem 1989C for further discussion of such
computational perspectives in 'cognitive programming'.) @&

At least if one believes that 'dynamics' is of the essence in cognition (rather
than a mere interfacing problem between the halls of eternal truth and the noisy streets
of reality), the true test for the present enterprise is the development of a significant
new research program not merely copying the questions of old.


Johan van Benthem
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