
1

DYNAMIC ODDS & ENDS

Johan van Benthem

ILLC, University of Amsterdam
July 1998

This is a bunch of papers devoted to various aspects of logical dynamics.

It is the 1998 sequel to last year's collection "Dynamic Bits and Pieces",

which appeared as ILLC Research Report LP–97–01.

Contents

1. Exploring Logical Dynamics: The Main Lines.
2. Process Operations in Extended Dynamic Logic.
3. Guarded Quantifiers: Questions and Variations.

4. A Beth Theorem for Process Operations?
5. Modal Fixed Points and Bisimulation.

6. Information Transfer across Chu Spaces.
7. Logical Constants as Evaluation Procedures.

8. Reasoning with Information Graphs.
9. Information Processing as a Social Activity.

10. Paralipomena.

2

3

1 Exploring Logical Dynamics: The Main Lines

"Exploring Logical Dynamics" consists of three, not tightly connected parts: a survey

of current trends in dynamic semantics (ch's 1–2), a process theory in extended modal

logic (ch's 4–9), a bunch of illustrations of these phenomena in various fields (ch's

≥10).This introduction sums up what I see as the main points of the ELD monograph.

1 The proposed paradigm: modal logics of process graphs
The core of the book are Chapters 4–9, which propose a mathematical paradigm for the
Dynamic Turn. Process theories can be designed as modal logics of process graphs, not via one
unique system, but as a family varying in expressive strength and deductive power. Thus,
between the lines, the book also presents 'modal logic in a new key' – with its repercussions for
standard parts of logic. In other words, the book basically proposes a general methodology for
the analysis and design of dynamic systems, with theorems backing up its viability and interest.

2 Three main methods: bisimulation, guards, and correspondence
Now, the question arises at once how one avoids a steaming jungle of new systems. What
provides uniformity in the theory? The answer lies in two general viewpoints and techniques,
which form an independent contribution of ELD, beyond 'dynamics'. The main innovations are
(1) systematic use of bisimulations (in a broad sense), which allows for a model theory on
classical lines, (2) syntactic guarded quantifier analysis, as a 'thermometer' for expressive
power and computational complexity. A third red thread through the book are (3) modal frame
correspondences (cf. my 1985 monograph "Modal Logic and Classical Logic"), which identify
the computational import of special axioms on top of the minimal logic for dynamic languages.

3 The tandem approach: both modal and classical
Typical for ELD is a duality between 'modal' and 'standard' viewpoints. These are two sides of
the same coin, modulo effective translation. (In particular, there is no need for choosing
between the two, as some puritans think.) This style of working again has more general import.
It allows us to use insights from standard logic in the new dynamic logic, instead of setting up
the cottage industries that make so much of computer science disconnected. It also suggests
new process logics that would not easily come up otherwise. A typical example are the new
logics for parallellism in LICS 98 (Section 2) – not discussed in ELD, which concentrates on
sequential actions. First, one finds more delicate simulations involved with operations for 'joint
action'. Next, guarded analysis shows how matching languages skirt the edge of undecidability.

4

4 The propositional core logic of dynamics: main themes, and repercussions
The ELD framework is an abstract 'propositional logic' of dynamics. This level is very poor.
All the greater the success if one finds significant questions here! By my count, these are four.

(1) General theory of semantic simulations and matching syntactic expressive power, with the
1976 bisimulation invariance theorem as a point of departure (Ch. 4). (2) Analysis of 'natural'
process operations (Ch. 5). Practising dynamic semanticists find this concern abstruse (some
computer scientist find it the outstanding question of their field). Noone knows how to address
this well. It is akin to the vexed question what are 'logical constants'. The ELD proposal reads:
'safety for (bi-)simulation', strengthening Tarski's 'permutation invariance'. The key result is the
1993 safety theorem, which cuts down the first-order operations to essentially obvious
dynamic readings of negation, conjunction and disjunction – and thus identifies a natural
'propositional core' for dynamics. In ELD methodology, this is not the end: as we seek
generality across many kinds of simulation. It is a pilot for a type of expressive completeness
result which I would like to put on the agenda. (3) Interplay between expressive
power/computational complexity for dynamic logics. Here the picture reverses. We use a
dynamic perspective to take a new look at standard logic, finding large decidable fragments.
Main result: decidability of the Guarded Fragment, as a pilot for other systems in Chapters 4,
9. (4) Modal/dynamic reinterpretation of standard logic (Chapters 8, 9). The general issue now
is identification of 'hidden parameters' in standard modeling: 'dependence' is a prime example.
The outcome is a new perspective on standard logic, which might change its teaching. Frame
correspondences determine surprising computational content for formerly 'anonymous'
standard laws of first-order logic. Over our generalized modal semantics, various dynamic
extensions for the classical language emerge.

5 Striking omissions
(1) No systematic analysis of complexity for decidable dynamic logics: deeper fine-structure
remains unexplored. (2) No fixed-point versions of systems, so that we miss operations crucial
to real computation. (3) No systematic exploration of additional axioms on top of the minimal
logics, as in standard modal logic. (4) No analysis of parallel or 'joint' action. Of course, these
are all obvious next agenda items – and we know more now, two years after ELD's appearance.

6 Relating other dynamic approaches
ELD proposes and develops a modal paradigm. It does not say that other approaches to
dynamics are wrong (linear logic, game theory, process algebra, &c). What I would claim, two
years later, is an additional virtue. One can often profitably analyze other approaches in the
ELD style. A good example is the modally inspired analysis of Chu Spaces (Section 6), and
another the modal analysis of game logics – which will be the subject of a later ILLC report.

5

2 Process Operations in Extended Dynamic Logic

This is an extended abstract for a tutorial at "Logic in Computer Science", LICS 98, Indianapolis,

which was delivered eventually by Maarten de Rijke(whose slides with additional material can be

obtained via email mdr@wins.uva.nl). The text outlines the main program of guarded first-order

analysis for process theories. Further clarifications of definitions and results are in Section 3.

Abstract

Modal

logic

becomes action logic by adding

programs as in propositional dynamic logic or the µ–

calculus. Modal languages can be

seen

as

decidable

fragments of first-order logic that admit a natural

bisimulation, and hence enjoy a good model theory.

Recently, much stronger 'guarded fragments' of first-

order logic have been identified that enjoy the same

pleasant features. The latter

can

serve

as

richer

action

languages

as well. We will develop the logic of

guarded fragments as a form of process theory. ln

particular, moving from sequential to parallel process

operations correlates with moving to first-order

fragments that are close to, or perhaps just over the

decidable–undecidable fence.

1 The modal dynamics of actions

We will start by reviewing the basics. Standard poly-

modal logic is a decidable fragment of the first-order

logic of process graphs (labeled transition systems,

Kripke models). It can be characterized semantically

as consisting, up to logical equivalence, of those first-

order formulas which are invariant for bisimulation.

Propositional dynamic logic turns this into an

explicit action language by treating propositions and

programs on a par, adding a syntactic component of

regular programs, including tests for all propositions.

Again, this system is decidable, its propositions are

invariant for bisimulation, while its programs are

what may be called 'safe for bisimulation'. (Roughly

speaking, transition relations for all programs enjoy

automatic zig-zag over any existing bisimulation).

To obtain the full power of fixed-point

operations over all syntactically positive predicate

transformers, however, one must move to the modal

µ-calculus. Again, the latter system is decidable, and

it consists of all bisimulation-invariant statements in a

first-order logic with fixed-point operators over

process graphs. (This convenient paraphrase of a

recent semantic characterization is equivalent to the

version involving monadic second-order logic.)

This line of logics runs into clear limitations, as

it does not handle joint or parallel action. But read on.

2 From modal to guarded logics

Modal logic behaves much like a miniature of first-

order logic in its main system properties (effective

axiomatizability, interpolation, preservation results).

The mechanism that drives this strong similarity is

essentially the following meta-equation:

ML : FOL = bisimulation : potential isomorphism

We will unpack this terse, but meaning-laden

statement somewhat in the tutorial. Of course, modal

6

logic achieves all this while staying decidable.

Recently, it has become clear these virtues are shared

by much larger decidable parts of first-order logic.

A typical example is the Guarded Fragment (GF),

allowing all existential quantifications of the form

∃y (G (x, y) & φ (x, y))

Here x, y are finite sequences of variables, and the

'guard' G (x, y) is an atom in which these variables all

occur, in any order or multiplicity of occurrence

(Rxy, Ryx, Rxyx, etc.). Also, GF has no restriction to

specifically designated predicates for guards – like the

special relational guard 'R' found in modal logic. The

matrix statement φ is again a guarded formula. GF

admits of a natural bisimulation analysis, and it is

decidable (complete for doubly-exponential time).

With designated guard predicates, one gets the

weaker but useful action-guarded fragment A-GF,

which makes a principled distinction between state

predicates and action predicates. A-GF enjoys the

same properties as GF (its natural decidability proof

is even somewhat more 'constructive'). Moreover,

both GF and A-GF have a standard model theory.

First-order

translation

from

modal

languages

into GF

explains

many known scattered decidability

results (minimal modal and tense logic, additional

frame conditions). A current focus are decidable

extensions, explaining even more. For instance,

decidability of Since/Until temporal logic reduces to

decidability of GF extended with guards that are

atomic conjunctions which

are 'pairwise guarded': that

is, any two variables from x, y occur together in at

least one guard atom.

The location of the 'undecidability threshold' for full

predicate logic is a subtle matter here. Allowing (1)

matrix statements introducing new free variables, or

(2) arbitrary conjunctions in guards, leads to

undecidable languages. Guards provide a new take on

decidable fragments of FOL, different from the usual

divisions (arities, prenex forms, finite variable sets).

They are rather related to general algebraic techniques

of 'relativization' for various undecidable logics.

Another way of pushing the threshold moves

beyond first-order logic to fixed-point extensions of

guarded fragments. For instance, while transitivity of

relations is non-guarded (and bad for decidability...),

the well-known decidability of modal S4 on transitive

models may be explained by translation into a fixed-

point extension of GF, generalizing the µ-calculus in

an obvious way. Decidability of these (modestly non-

first-order) systems remains a conjecture at present.

The tutorial will cover the basic theory of these

guarded fragments, as compared with full FOL.

3 Connection with process logics

Guarded languages evidently provide richer process

representations than standard modal ones. They allow

for complex states (through the use of tuples), and

thereby to more complex transitions between these.

Our main theme in this tutorial is loosely described by

the following general 'meta-equation':

PDL : ? = ML : GF

That is, how can we strengthen PDL to achieve the

benefits

that

t h e

guarded language offers over

standard modal logic? Read in another way, of

course, we have

GF : ? = ML : PDL

What is a good action view of guarded languages?

We can extend both questions to include fixed points.

The main aim of the tutorial is to demonstrate

how one can usefully think of process languages and

decidable fragments of standard logics in tandem. For

7

instance, the action-guarded fragment A-GF talks

about transitions between complex states where the

only evaluations that we make concern those states.

(My complaining about the noise changes the state

from one with a defective fan to one with a good fan.)

GF allows also comparisons across these states. (My

complaining made me happier now than I was then.)

In parallel action, we would also wish to decompose

what happens to components of the state, and hence

have non-atomic, conjunctive guards. (You complain

about the pump, and I'll deal with the fan - and who

knows, I'll be happier now than you were then.) The

pairwise guarded fragment urges us to state all cross-

comparisons between effects from input to output.

Actually, in this interplay, the difference between

special 'modal' or 'dynamic' formalisms and their first-

order guarded counterparts becomes slight. So there is

a real issue (familiar from other areas of applied

logic) why we could not use suitable fragments of

first-order logic directly, rather than go for new

language design.

4 Sequential action on multi-states

4.1 Joint Action over State Tuples
Collective states may have many components. This

can be represented by moving from binary transition

relations to general finitary relations Rxy between

finite sequences of individual states. One language for

this is a many-dimensional modal one, with two

components: state predicates, and action predicates.

This requires a two-level syntax, as for PDL, plus

some book-keeping of arities for both levels (position

numbers, or with variables themselves as 'positions').

We will discuss this use of variables in the tutorial.

We outline the main notions and results, skipping the

technicalities of formal notations or proofs.

Assertions. State atoms Px, all Boolean operations,

existential modal operators <R>x,y (taking y-state

formulas to x-state formulas) and 'lifters' [φ, T]z
(from x-state formulas φ to x+z-state ones).

Programs. Action atoms Rx,y, relation composition

(with arity fit), union (with arity fit), tests (φ)?,

projections Πx,y (from a larger x to a subset y).

Models

and a truth definition for this language are

like in many-dimensional modal languages. In

particular, the lifter holds at an x+z-tuple if φ holds

at its x-subtuple. That the above is a natural set of

operators shows, amongst others, in the later 'safety

analysis'.

T h e r e

exists

a

straightforward

effective

translation from this system taking both assertions

and programs to formulas of the action-guarded

fragment A-GF. (This extends the usual modal

translations.) So, we can either think of a modal

formalism, or of a piece of first-order logic,

whichever seems more convenient. Let us call this

language GSAL (Guarded Sequential Action Logic),

viewed either way. It is weaker than A-GF in that we

have fixed action predicates Rx,y: no permutation or

duplication of arguments allowed. One deviant

feature on the first-order side is its distinction

between two sorts of predicate on tuples: state versus

transition assertions. This distinction might seem

empty in standard logic, but we'll give a principled

account in terms of different semantic roles. One

other point. We assume that GSAL has identity, but

this is for convenience - and one can do without.

4.2 Bisimulation, Invariance and Safety
Bisimulations for GSAL are variations on 'potential

isomorphisms' for the full first-order language.

Guarded bisimulations are non-empty families E of

8

finite partial isomorphisms between two models M,

N with respect to the atomic state predicates, that are

closed under domain restriction to sub-isomorphisms,

and which satisfy zig-zag clauses along the atomic

action predicates.

E.g., using straightforward

sequence notation to denote partial isomorphisms, one

requires 'guarded choices' for any atomic action

predicate R :

If aEb , and RM a', c with a' contained in a,

then there exists d such that, for the b' contained

in b which matches a', both RN b', d and cEd.

And vice versa with guarded choice from N to M.

A first-order formula φ (x) is invariant for guarded

bisimulations if, whenever a E b , then M |= φ (a)

iff N |= φ (b). We call a first-order formula π (x, y)

safe for guarded bisimulations if, whenever E is a

guarded bisimulation (zigzagging for the basic action

predicates of the language), the above zigzag clauses

hold automatically for the new relation defined by π

in the models M , N . Thus, safe formulas define

transition relations that 'stay inside' our simulation

semantics, i.e. our process realm. The basic property

of GSAL is proved by a simultaneous induction.

Proposition (1) All GSAL formulas are invariant for

guarded bisimulations. (2) All GSAL programs are

safe for guarded bisimulations.

An adaptation of a known model-theoretic argument

for modal logic shows a converse result as well.

Invariance Theorem For all first-order formulas,

the following two assertions are equivalent:

(1) φ is invariant for guarded bisimulations

(2) φ is definable in GSAL.

A more laborious argument, again following a modal

analogue, captures the safe operations. This amounts

to expressive completeness for our key operations.

Safety Theorem The safe operations are precisely

those definable using (1) atomic action predicates, (2)

tests for arbitrary state formulas, (3) projections, (4)

relation composition, (5) union.

We can vary a bit on this. Instead of all tests, atomic

ones will do, if one adds an 'impossibility negation' ~

on actions. Safe programs describe unions (OR-trees)

of finite sequences of multi-states linked by action

steps or projections, with test assertions interspersed.

4.3 Basic Model Theory
Guarded bisimulation is like standard bisimulation,

though technically a bit more difficult to visualize.

Bisimulations now match finite sequences of states.

There is a modified unraveling construction creating

tree models – by marking of objects via paths <atom

Ra, b, selected object bi , atom Sb', c, etcetera>.

This can be used for various purposes, amongst others

for interpolation and preservation properties. Here is a

sample case used in the proof of the Safety Theorem.

A formula φ(Q) is totally distributive in the displayed

state predicate if its truth for the union of any family

{Qi | i∈I} is equivalent to that for some Qi separately.

Distribution Theorem A GSAL formula is totally

distributive in the state predicate Qx iff it can be

defined in the form <π>Qx , where π is a safe

program as described above whose test conditions on

intermediate states do not involve the predicate Q.

The dual nature of GSAL invites comparison with

action predicates. A characterization for their total

distributivity looks rather different. The tutorial will

highlight such state-action differences occasionally.

9

4.4 Decidability and Axiomatization
GSAL is decidable, and it even has an effective Finite

Model Property, because the action-guarded fragment

h a s

(via

a

direct Reduction Lemma for valid

sequents).

Valid principles are much as in *-free PDL. For

completeness several proofs exist (many-dimensional

modal logic, other representation methods, proof-

theoretic modification of GF decidability arguments).

4.5 Iteration and Fixed Points
Computation has a special interest in fixed points that

can be reached in ω steps. In our first-order analysis,

PDL-style operators suffice for all ω–fixed points

µQ•φ(Q) that can be computed with a matrix φ(Q)

involving one suitable occurrence of the atom Qx.

Semantically, general ω-stability follows from Finite

Distribution (i.e., φ holds of Q iff it holds of some

finite

subpredicate

Q0).

The latter allows more

general forms of definition with a finite number of

suitable occurrences of Q. Full first-order logic has a

simple syntactic normal form for finite-distributive

operators:

µQ• φ(Q) where the occurrences of Q-atoms in φ

lie only in the scope of logical operators ∨, ∧, ∃

For GSAL, a similar syntactic classification exists. It

involves the existence of an AND-tree whose steps

are safe actions, and whose nodes may now carry

both Q-free test conditions and atomic tests involving

Q.

Finite Distribution Theorem For GSAL state-

formulas φ, the following are equivalent: (1) φ is

finitely distributive in Q, (2) φ states there exists one

out of some set of finite action trees as just described.

Finite distribution for action predicates is still open.

Notice that defining state assertions by fixed points is

not the same as defining new programs or actions by

fixed points. (E.g., µ-calculus only has the former.)

We have a proof on probation to the effect that

GSAL extended with fixed-point operators for state

predicates

defined

b

y

t

h

e

above

operations

is decidable.

(It generalizes the standard Fisher-Ladner filtration

argument for PDL.) This is one instance of a general

Conjecture GSAL with fixed-points is decidable.

Indeed, a similar conjecture is around for the full GF.

Finally, Lyndon-style preservation theorems for

monotonic operations also generalize to GSAL, as do

various Craig-style interpolation properties.

4.6 Moving to the full guarded fragment
The tutorial so far has developed the basic model

theory of action-guarded first-order logic with the

additional restrictions on guards imposed by GSAL.

One can do the same analysis, first for the extension

of GSAL which allows permutation and duplication

of arguments in action predicates. Then, new 'safe'

operations will appear, reflecting such permutations.

Next, one moves to the full Guarded Fragment,

whose quantification pattern ∃y (G (x, y) & φ (x, y))

allows assertions linking up input and output states. In

this case, partial isomorphisms will 'accumulate' in

the zig-zag conditions for bisimulation. This will

show in new 'safe' operations like cum(R) (x, yz)

defined by 'Rx, y & z=x'. But the main structure of

the preceding notions and results remains the same.

5 Parallel action, polyadic modality

5.1 Polyadic Modalities
The languages GSAL and GF were still sequential.

To describe parallel action, one needs conjunctions of

guard atoms, which are known to skirt the decidable-

10

undecidable boundary. Using conjunctions, one can

describe genuinely parallel actions, such as products:

RxS takes ab to cd when (1) aRc , (2) bSd

Many variations are possible here (including merges

as in Process Algebra). To describe such compound

transitions, GSAL must be extended at least to what

m a y

b e

called

GPAL

(Guarded Polyadic Action

Logic) with polyadic modalities <R, S>. GSAL can

express a local version viewing the two outcomes

separately:

<R, S> (A, B) = ∃zu (Rxz ∧ Syu ∧ A(z) ∧ B(u))

This reduces to a conjunction of GSAL formulas. But

we want to combine compound action with assertions

that describe the total result achieved, i.e. the stronger

<R, S> Q = ∃zu (Rxz ∧ Syu ∧ Qzu)

This format is not guarded, or even pairwise guarded.

(It is an interesting generalization of modal logic all

the same.) General decidability results do not apply.

We will present a simple example showing that

Proposition Allowing arbitrary conjunctions of

guards makes the guarded fragment GF undecidable.

Thus, at least in principle, parallel action is connected

with the decidability-undecidability frontier.

5.2 Complexity Thresholds
Closer analysis of the dangerous examples shows that

their syntactic forms mix state predicates with action

predicates. But this intuitive distinction seems equally

justified for parallel action. Hence, we must backtrack

from the current front-line in pushing decidability

upward from GF. Instead, retreating to the action-

guarded fragment A-GF, another way of striking out

from there is to keep the separation into two predicate

roles, but then, allow arbitrary guard conjunctions.

(See Section 3 for sharpenedup syntax definitions.)

Conjecture The action-guarded fragment with

separate action and state predicates, but extended

with arbitrary conjunctive guards is decidable.

A natural proof strategy is the usual modal unraveling

via finite tree models. In its wake, PGAL with

polyadic modalities using any conjunctions of action

guards would be decidable. Next, what happens if we

add fixed point operators to this parallel action logic,

o n

state or action predicates. Do we keep

decidability? And, is there a difference between the

two versions?

5.3 Parallel Bisimulation
Guarded bisimulations for GSAL can be extended to

stricter bisimulations for the richer language PGAL.

This requires additional zig-zags for joint actions.

E.g.

 If a E b , and Ra'c', S a''c'', there must be d', d''

with Rb'd', S b''d'' such that c'c'' E d'd''

This combines the results of two actions undertaken

from a single collective state. We will discuss the fate

of the earlier key results on invariance and safety in

this setting. In particular, can we find expressively

complete sets of operations for parallel actions?

Some Relevant References

[1] H. Andréka, J.van Benthem, & I. Németi, 1998,
'Modal Languages and Bounded Fragments of
Predicate Logic', J. of Phil. Logic 27, 217 – 274.

[2] J. van Benthem, 1996, Exploring Logical
Dynamics, CSLI Publications, Stanford.

[3] E. Grädel, 1997, 'On the Complexity of the
Guarded Fragment', preprint, Dept. of Informatics
and Mathematics, RWTH Aachen.

[4] Marco Hollenberg, 1998, Logic and Bisimulation,
Ph.D. Thesis, Philosophical Institute, Utrecht.

[5] M. Marx & Y. Venema, 1996, Multi-Dimensional
Modal Logic, Kluwer, Dordrecht.

[6] M. de Rijke, 1993, Extending Modal Logics, Ph.D.
Thesis, ILLC, University of Amsterdam.

11

3 Guarded Quantifiers: Questions and Variations

The Guarded Fragment is a large modally inspired decidable part of first-order logic,

whose 'instrument of variation' is bounding of the range of quantifiers by atoms.

We consider some natural variations on the original Guarded Fragment,

and present a number of new observations plus open questions.

3.1 Decidable fragments: extending GF
The Guarded Fragment of first-order logic allows only the bounded quantifier pattern

∃y (R(x, y) & φ(x, y))

where the 'guard atom' G may have occurrences of the variables in the finite sequences
x, y in any order and multiplicity. GF is decidable (Andréka, van Benthem & Németi
1998), indeed complete for doubly exponential time (Grädel 1997). This generalizes
many standard modal logics. But, in order to translate, e.g., Since/Until temporal logic,
or pair-arrow logic, one needs the larger Loosely-Guarded fragment (LGF) of first-
order logic, which allows

conjunctions of atomic guards in the above position R(x, y), provided
each pair of distinct variables from x, y occur together in some guard.

(Pairs taken from the parameters x may have their co-occurrence outside of the scope
of the existential quantification, as this may be imported up to equivalence.) LGF is
decidable as well, by an extension of the original quasi-model argument for GF (van
Benthem 1997A). Given its description, a better name for LGF might be the Pairwise
Guarded Fragment. (Maarten Marx has suggested Packed Fragment as a better name.)

With pairwise guarded conjunctions, we seem to reach a clear complexity threshold.
Not admissible, on pain of undecidability, are arbitrary conjunctions of guards:

Proposition GF extended with arbitrary conjunctions of guards is undecidable.

Proof (van Benthem 1997B) The 3-variable fragment of first-order logic is undecidable.
Here is an effective reduction. Any 3-variable formula φ is satisfiable iff its guarded
relativization (φ)U to some new ternary predicate U is satisfiable in a full Cartesian
product U = DxDxD. The latter can be expressed as the satisfiability of a formula

12

(φ)U & CART(U)

where CART(U) =def (i) ∃xyz Uxyz & (ii) ∀xyz (Uxyz → & U-followed-by "all
permutations and identifications among {x, y, z}") & (iii) ∀xyzuvw ((Uxyz & Uuvw)
→ & U-followed-by "all selections of three variables from among {x, y, z, u, v, w}").
Note that the latter formula is in GF with added conjunctions of guards. !

3.2 Decidable parallel action fragments: backtracking from GF
As we saw in Section 2, process logics may suggest other useful decidable fragments,
which backtrack from GF, so to speak. Basic modal logic has a distinction between
what may be called 'action predicates' Rxy that jump across accessibility links (from x
to y), and 'state predicates' Px making some static assertion about the current state x.
This distinction is obliterated in GF, whose predicates may be viewed indifferently as
describing moves between states, or as descriptions of fixed states. Now, our idea is
that by maintaining such a distinction, we can be more liberal with quantifier bounds –
and in the limit, allow any conjunction at all. The motivation for making this extension
in Section 2 was the study of parallel processes over tuples of local states. In this
setting, we can interpret the negative result in Section 3.1 as saying that unconstrained
parallellism leads to undecidability. But what if we design things more delicately?

Thus, we distinguish between state atoms Qx and action atoms Rx, y from the start.
The comma in action atoms serves to separate input states on the left from output
states on the right. The total language will have both 'action formulas' and 'state
formulas', whose syntax can be manipulated independently. Here are some options.

GSAL1 Action formulas Rx,y
State formulas Qx, Booleans, ∃y (Rx, y & φ(y))

This 'guarded state-action language' describes transitions from an old state to a new one,
without cross-comparison between old states and new ones (as in a GF matrix φ(x, y)).
The input-output distinction has various effects. E.g., action atoms Rx, y are very
different from their converses Ry, x. Moreover, the above restriction to only action-
guarded quantifiers has the effect of making every formula depend on some initial
tuple of free variables. Thus, all formulas in GSAL1 are 'local': one cannot form closed
sentences. As in ordinary modal logic, the natural definition of 'satisfiability' then refers
to local truth at some tuple of states in a model. 'Global satisfiability', in the sense of
truth at all tuples in a model, will turn out to be a much more powerful notion.

13

If some input states are to persist as output, we need further atoms like Rx, yx, while
quantifiers ∃y only range over the new components of the output state. Naturally, a
matrix statement may now refer to these new y plus the persistent x. Allowing all this
turns GSAL1 into GSAL2 . Both languages are effective parts of GF, and thus inherit
its decidability. Note that their syntax has no explicit operations on action predicates.
Section 2 shows which safe operations can be added, however – mainly suitable 'choice'
and 'composition' – without increasing the expressive resources of these fragments.

This is all 'sequential' action. Genuinely parallel versions enrich the action formulas by
(unsafe!) conjunctions, while imposing various constraints on quantifier patterns.
Quantifiers then collect all output states mentioned in conjunctions of atoms &Rx, y .
Moreover, to emphasize that the new objects form a coherent state, one may require the
occurrnce of an atomic guard, either over the new y, or over the new y plus the
persistent x. We list some options. But before proceeding, a warning may be in order.
The purpose of all this variation is not to create a boring catalogue of formal languages
– but rather, to demonstrate the effect of various expressive resources on decidability.

P-GSAL1 Action formulas Rx,y, conjunctions
State formulas Qx, Booleans, ∃y (&Rx, y & φ(y))

P-GSAL1* Action formulas Rx,y, conjunctions
State formulas Qx, Booleans, ∃y (&Rx, y & Qy & φ(y))

As before, both languages allow only 'local' formulas, describing some tuple of states.
The second fragment is obviously a part of the first. P-GSAL2 and P-GSAL2* are
defined analogously, but now allowing input states from x to reappear as output states.
None of these languages lies inside GF (even though P-GSAL2* adds strong guards):

∃y1y2 (Rx1, y1 & Rx2, y2 & Qy1y2) is in P-GSAL1*, but not in GF
∃y1y2 (Rx1, y1 & Sx2, x2y2 & Qx2y1y2) is in P-GSAL2*, but not in GF

Now we make some observations about decidability.

Proposition Satisfiability in P-GSAL1* is decidable.

Proof We start from the original quasi-model decidability proof for GF (cf. Andréka,
van Benthem & Németi 1998, van Benthem 1997A), with a universe of 'types' (sets
taken from the finite family of relevant formulas) satisfying suitable closure conditions.
From this, we constructed paths of types recording which formulas are true at any stage.

14

We modify this idea slightly, allowing types that describe desired behaviour on only
some subset of the variables. Transitions extending a path are triggered explicitly by
existential formulas ∃y (&Rx, y & φ(y)) occurring in the last type so far, with the y
'changing their values' – while the new end-type only has formulas with free variables
among the y . As a result, the 'life-time' of the input variables x ends at such a step.
In the model construction, we use objects (π, x) as before, where x is among the active
variables at the end of the path π . For the interpretation of predicates, we set

(a) a state atom Qd is only true of a tuple of objects if these lie on the same path,
and were introduced simultaneously at the final transition, whose result-type
contains the atom with the variables of the d (in the same order)

(b) an action atom Ad, e is only true if all its objects lie on the same path,
and the atom with the corresponding variables plugged in (as in (a))
occurred in the conjunctive action prefix of some transition.

Each path has an associated assignment sπ defined on the variables in the last and one-
but-last types of the path, sending x to the object (π*, x) , where π* is that subpath of
π in which x was changed last. Clearly, action atoms will only hold between objects
in the one-but-last and last stages. The Truth Lemma then says that

a (relevant) state formula φ holds under the assignment
of a path iff φ literally occurs in the last type of that path

As in the original decidability argument for GF, there are two cases of major interest.
(1) First, consider state atoms Qx . If Qx is in the last type of π , then – by our
restriction on result-types of path transitions – its variables were among those affected
by the final change. So, we have the above condition for truth of the atom. Conversely,
if Qx is true under sπ , this can only have happened by a simultaneous introduction
on π , with Qx explicitly present. (2) Now consider existential quantifiers ∃y (&Rx, y
& Qy & φ(y)). If the latter occurs in the final type, then it is true – by an argument as
for GF: one looks at the obvious path extension triggered by the existential formula.
The crucial case is when such a formula is true under sπ : while it should occur in the
last type of π . Let some tuple d of objects satisfy the specified action predicates, plus
the state guard Qy and the matrix statement φ(y) . By the definition of true action
predicates, the d must have been introduced following the end of the current path.
Moreover, as the state atom Qy holds, they were introduced together in one transition,
resulting in one final type Δ (i.e., they do not lie on separate forks) containing Qy .
Call this extended path π+ . Its s-assignment sends the variables y to the objects d .

15

By the inductive hypothesis then, φ(y) occurs in Δ , the last type of π+ . But then, by
an obvious existential closure condition on quasi-models, ∃y (&Rx, y & Qy & φ(y))
occurred in the type before that, which was the final type of π . !

We think that P-GSAL1 (without the guard condition on new state tuples) is decidable,
too. But the above proof method does not work, since there is no guarantee that the new
states introduced by a true existential quantifier ∃y (&Rx, y & form a 'simultaneous set'
introduced in one parallel action step. (Different y might come from different steps.)
On the other hand, various parts of the above argument seem to admit of generalisation.
As for the two stronger languages P-GSAL2 and P-GSAL2*, we leave their decidability
as an open question. Finally, note that the above proof is about local satisfiability only.
It does not settle the decidability of global satisfiability. This issue will return below.

3.3 The danger zone: encoding tiling problems
Let us now approach these issues from a different angle, and see where undecidability
strikes for sure. Consider the embedding of tiling problems. The undecidable task is to
put coloured tiles on the infinite grid NxN, with some finite set of colours, and tiles
having four coloured edges, subject to the constraint that adjacent tiles have the same
colour along their boundary. First-order formulas expressing the relevant constraints
have a definite P-GSAL flavour, with actions N (go one step north), E (go one step
east) and state predicates Cx for the colours. Here are some examples. Adjacency of
colours can be expressed by straightforward universal conditions of the form

∀x: ∀y (Nx, y → (C1x → ∨ C2y))
∀x: ∀y (Ex, y → (C1x → ∨ C2y))

where the unary predicates Ci describe the various possible kinds of tiles. General
behaviour of colours is expressed by conditions of the form

∀x: "at least and at most one C holds of x"

Next, the crucial grid pattern seen from x is expressed by the assertions

∀x: ∃y Nx, y ∀x: ∃y Ex, y

and more importantly,

∀x: ∀yz ((Nx, y & Ex, z) → ∃u (Ey, u & Nz, u))

16

These assertions lie in P-GSAL1, modulo one unbounded universal quantifier in front.
Let us call their conjunction TILE. Now it is not hard to prove the following

Fact NxN has a tiling iff TILE is satisfiable.

Proof Here is a sketch (for detailed arguments of this kind, cf. Spaan 1993, Blackburn,
de Rijke & Venema 1998). Clearly, if a tiling exists, NxN itself, suitably expanded,
verifies TILE. Conversely, consider any model for TILE. It is easy to define a map f
from NxN, sending the origin to any point in the model, with the following property:

if y is a northern (eastern) neighbour of x, then N f(x), f(y) (E f(x), f(y))

To see this, use the last three formulas above repeatedly to construct a grid of squares
x N y E u, x E z N u, which provides all necessary f-values. Then, a colouring for
NxN meeting all constraints can be copied from the C-behaviour of the f-values. !

3.4 Analysis: what causes undecidability?
What does this tell us? First, the expressive power of parallellism comes close to
encoding grids, and hence undecidable tiling problems may arise. But the undecidable
encoding does not quite lie in P-GSAL1. We need one unbounded universal quantifier
in front to make TILE work – whose dangers are well-known. Spaan 1993 shows how
decidable modal logics can become undecidable with this simple addition. She states
this in terms of adding a 'universal modality' to the logic, but also observes that one
such modality in front, i.e., our earlier global satisfiability, would do the harm already.
An alternative would use only those points (in models for TILE) reachable from some
fixed origin by a finite number of E, N steps. This uses transitive closure of the relation
N∪E, which is again outside our fragments – and even more dangerous for decidability.
Spaan 1993 shows that the latter can embed the Σ11-hard problem of 'recurrent tiling'.
(For later use in Section 3.5, note that transitive closure is a fixed-point operator on
relations, not on propositions.) Thus, a mixture of encoding grids plus some weak form
of universal prefix quantification will make process logics undecidable.

Nevertheless, things are a bit delicate. For instance, adding one universal quantifier up
front to the non-conjunctively-bounded Guarded Fragment does no harm! (Cf. van
Benthem 1997B for similar observations for 'Sofia fragments' in extended modal logic.)

Fact Satisfiability in the GF with one universal prefix quantifier is decidable.

17

Proof Start with any type containing a few universally quantified guarded formulas x
∀x φ (x) . Add all instances [u/x]φ (for the relevant variables u) to the types in the
quasi-model. The original tree-model construction will still work as it stands – and it is
easy to show that φ will hold for all tuples of 'path objects' of the form (π, u). !

Recall that minimal modal logic plus a 'universal modality' remains decidable. Thus, it
is the mixture of parallellism and universal quantification that generates undecidability.
As to extensions of our observation about GF, Marx 1997 presents undecidable modal
logics with characteristic universal Horn frame conditions. Therefore, allowing
universal prefix quantification over larger tuples seems problematic already.

Excursion Maarten Marx has an interesting view of GF as a 'monadic language'
defining properties of 'generalized objects', which may clarify the general situation
discussed in this Section. The P-GSAL family generalizes the admissible 'properties'
while trying to stay away from having genuine 'relations' between generalized objects.

Finally, there is another feature to our tiling argument. The formulas in TILE did not
satisfy the syntactic constraint of the language PGSAL1 * , that new objects in
quantification must come simultaneously guarded by some state predicate Q. This
seems less serious. We can modify the definition of TILE by using a trivial unary
predicate P at all points, as well as a trivial binary predicate Q at all point pairs:

∀x: Px
∀xy: Qxy

Without the (double) universal prefix quantifiers allowing this trivial obedience, it is
unclear how to modify the necessary grid encoding, and get things right for proper
tiling within the syntactic constraint on outputs imposed by PGSAL1*.

Clearly, adding parallel constructions (through conjunctive guards) comes close to
undecidability. On the other hand, it need not do so in general (witness the decidability
of PGSAL1), and it seems harmful mainly in league with universal prefix quantifiers.
We leave the investigation of intermediate possibilities open. For the moment, we hope
the preceding has sufficiently illustrated our main concern: probing the effects of
expressive power on decidability in a sensitive manner, guided by guarded analysis.

Remark One can also investigate the above fragments for other nice logical properties.
Here we just recall a point about bisimulation. As stated in Section 2, the distinction
between state predicates and action predicates can be supported by assigning them two

18

different roles in the definition of guarded bisimulations. Action predicates regulate the
picking of suitable tuples of objects in back-and-forth moves, while state predicates
determine what counts as a 'partial isomorphism'. This has all kinds of effects on further
model-theoretic properties. E.g., we have two kinds of monotonicity now.

Remark The notion of 'partial isomorphism' may have to change, too, because of the
special status of identity in our fragments. Identity statements like ∃y (Rx1x2, y & ... &
y=x1 & ...) circumvent the distinction between input and output states, and their effect
is therefore hard to predict. But without identity, the characteristic bisimulation must be
adjusted, even for the guarded fragment GF itself. The basic building blocks will now
be binary relations between finite tuples of objects of the same length (which do not
necessarily decompose into functions, or even binary relations as sets of ordered pairs)
– or alternatively, binary relations between finite variable assignments.

3.5 Fixed-point extensions
Even strong guarded langauges like GF or LGF leave the decidability of several well-
known decidable modal logics unaccounted for. The key example is modal K4.
Transitivity of frames, expressed by the first-order formula

∀xyz ((Rxy & Ryz) → Rxz))

is not pairwise guarded, as the variable combination xz is not guarded anywhere. Also,
results like the decidability of the two-variable first-order fragment L2 do not apply:
transitivity needs essentially three variables. Then why is K4 (even easily) decidable?
There are two possible lines of attack here. One extends the syntactic scope of GF and
its ilk, to find still broader decidability results. We doubt this is feasible. Transitivity is
dangerous: it is known to make first-order fragments undecidable (Börger, Grädel &
Gurevich 1996). But there is a way-out, by an alternative diagnosis of K4's decidability,
transcending first-order logic, while retaining the key role of bisimulation invariance.
Recall that propositional dynamic logic (or the µ–calculus) is decidable. Now it is easy
to see that K4 is precisely the logic of any iteration modality [a*] , on which we do
not impose any special frame restrictions at all. This is a genuinely different strategy.
For, the PDL-language does not define transitivity! Like the basic modal language, it is
invariant for bisimulation (the infinitary conjunctions needed to define iteration do not
affect this), while transitivity is not. So we would need a counterpart to the µ–calculus.

Question Find decidable fixed-point extensions of the Guarded Fragment.

19

The current conjecture is that these exist, generalizing the modal µ–calculus, perhaps
using the 'tree model property' highlighted by Moshe Vardi. But there is a subtlety here.
The µ–calculus has only part of its possible fixed points, viz. those defined by recursion
over state predicates! But one can also use fixed points for new program constructions,
recursing over action predicates. E.g., transitive closure <a*>p is mimicked by setting

µq• <a>p ∨ <a>q

But the natural recursion a* = a ∪ a;a* over binary relations is not expressed directly.
I do not know if the µ–calculus remains decidable when adding the latter version.
Likewise, state recursion and action recursion are two different ways of adding fixed
points to GF and its ilk. For instance, the finite approximations for state predicate-based
fixed point equations remain inside GF, whereas those for action predicates need not.
To see the latter, note that substituting an arbitrary guarded formula for a guard atom
need not produce a guarded formula (substitute ¬ Rxy for Axy in ∃y (Axy & Qy)).
Only 'safe' formats ∃y (α(x, y) & ...) have this substitution property, which unpack into
iterated guarded quantifications. In this connection, recall the above discussion of tiling
problems, where a transitive closure of action predicates N, E led to undecidability.

On a simpler note, for many practical purposes, it suffices to use finitely distributive
operators, whose smallest fixed point occurs uniformly after at most ω iteration steps
(cf. Sections 2 and 4, 7 below, which claim decidability for the state predicate case).

3.6 Finite models
Another topic of interest is the behaviour of GF and its variations on finite models.
Andréka, van Benthem & Németi 1998 show that GF has many of the 'nice' properties
of first-order logic. Typically, such properties are lost for full first-order logic in Finite
Model Theory. But for GF, some of them transfer immediately to finite models,
because of its finite model property. Indeed, for basic modal logic, we know all its nice
meta-properties hold on finite models. Which general transfer principle is at work here?

3.7 Interpolation
Maarten Marx and Eva Hoogland have just shown that GF lacks Craig Interpolation.
(It does have generalized interpolation in the sense of Barwise & van Benthem 1996.)
This raises the issue what interpolation behaviour is exhibited by the above fragments –
and whether such behaviour may serve as a guide toward identifying useful ones.

20

21

4 A Beth Theorem for Process Operations?

Here are some speculations about process operations by entirely classical means.

The setting is not relational algebra (as in safety theorems), which stays inside

single process graphs – but rather model constructions over process graphs.

1 Operations on process graphs
Think of processes as represented by process graphs (LTSs, polymodal Kripke models).
Process operations are defined as operations F (A, B, ...) creating new graphs out of old
ones, which must respect bisimulation. That is,

if A bis A', B bis B', ..., then F (A, B, ...) bis F (A', B', ...) .

Examples are addition A+B (joint rooting, offering the options of both), sequential
product A•B (substitution at the end, continuing with B after A has been completed),
or parallel products AxB

(performing

both

processes

simultaneously in the left and right
components of ordered pairs). Further examples abound (polarity flip, merge, iteration).

One

would

like

to

find

restricted

natural

spaces

of process operations, preferably through
some kind of semantic invariance, invoking a version of the Beth Definability Theorem.
Thus, standard model theory would apply, as happens in Marco Hollenberg's 1998
Ph.D. thesis "Logic and Bisimulation" (Philosophical Institute, Universiteit Utrecht).

2 Defining operations by first-order theories
To represent matters in standard model theory, take models with new unary predicates
A, B, ... for disjoint argument domains (with a union O (= 'old')) and a predicate N (=
'new') describing a disjoint value domain. Together, O and N exhaust the whole
domain. The A, B, .. and N-components may be viewed as submodels for some
language L describing the internal structure of the process graphs. In addition, to
describe relevant relations between the argument and value domains, we add new
predicates C 'connecting' objects in O to those in N . The latter may be identical with
old objects (as happened in the above sum + and sequential product •), but they may
also be new things, created by some construction (such as the ordered pairs in a parallel
product x). Thus, we view the operation F as given by a class of models of this
similarity type, where the additional vocabulary may satisfy a number of constraints.
The above process operations may then all be specified in the following format:

22

I uniform first-order definition of the new objects in the value graph
involving finite sets of objects in the arguments (possibly with some
new object with a unique function, such as the new root added in A+B),

II uniform

first-order

definition

of the L-predicates among the new objects in
terms

of

the

L-predicates

among

the

old

objects related to them in clause I .

Thus, F is defined by some first-order theory TF whose models allow for this schema.
Let us say, in this case, that T has CDP, the constructive definition property. When
do first-order theories have this definitory character? We want a semantic criterion,
matching some natural way of thinking about process operations.

3 Unique extension properties
Instead of bisimulation, let us first look at isomorphism. The semantic feature matching
the above intuitive formulation seems to be this:

Any partial L-isomorphism f matching the O-parts of two T-models
has a unique extension to some total bijection f+ between these models
which is even an isomorphism with respect to the full language L+C.

Let us say, in this case, that T has IEP, the 'unique isomorphism extension property'.
This says, more informally, that the semantic behaviour of the old objects 'enforces' that
of the new objects introduced by the operation.

4 A Beth-type theorem?
Our natural conjecture would be the following kind of Beth theorem:

A first-order theory has CDP if and only if it has IEP.

Although I got some way toward proving this, I did not yet arrive. We are trying to turn
'dependence' (in the sense of IEP) into explicit definability (in the sense of CDP). But
what we have seems weaker than Beth's implicit definability. (For instance, even with a
fixed

O-part, the root in the construction can be chosen in different ways, and therefore,
different isomorphic 'superstructures' are possible.) One technical trick uses (suitably)
saturated models of T . The identity on the O-part must have a unique extension to the
whole model. This implies that there cannot be non-trivial automorphisms of the value
part extending the identity on the argument part. By familiar arguments, it then follows
that objects must have unique definitions in the full language

–

allowing arbitrary sets of
parameters in the O-part. This seems to tell us something about the above parts I and II.

23

But these definitions may still be 'local' in one single given model for T . Is then the
additional force of the Unique Isomorphism Extension Property across different models
that it enforces more uniformity on these definitions?

5 From isomorphism to bisimulation
I would also be happy with strengthened forms of IEP toward an equivalence with
CDP. One natural strategy for this purpose would use potential L-isomorphisms instead
of complete isomorphisms. Also, going back to the original motivation on process
graphs, one would like to have good variants with bisimulation instead of (total or
potential) isomorphism. Unfortunately, then, no unicity seems left (because of the much
rougher identifications allowed in bisimulations) – as may be seen from inspection of
the earlier examples of sum and products. What might still hold as a constraint is the
existence of some unique minimal extension for the component bisimulations.

6 More general uses
This analysis might have several benefits. It would make the standard format for
specifying

process-algebraic

operations

more

uniform from a model-theoretic viewpoint.
Moreover, it would make the route taken in Marco Hollenberg's dissertation less ad-
hoc. Its author assumes (with some pangs of conscience) that new process constructions
involve states which are finite sequences of old objects, with some uniform finite bound
on their length. It might be that this is an inevitable feature of any first-order treatment.

Addendum

This sketchy promissory note was written in early 1998. Sol Feferman has informed me
in the meantime about two relevant earlier papers. (1) S. Feferman & R. Vaught, 1959,
'First-Order Properties of Products of Algebraic Systems', Fundamenta Mathematicae
47, 57–103. (2) S. Feferman, 1972, 'Infinitary Properties, Local Functors, and Systems
of Ordinal Functions', in Conference in Mathematical Logic, London '70, Lecture Notes
in Mathematics 255, Springer, Berlin, 63–97. In particular, (2) introduces an extension
property for potential isomorphisms, while (1) studies when elementary equivalence for
arguments implies elementary equivalence for values of model constructions. Algebraic
products turn out to be a counter-example. By contrast, the usual operations in Process
Algebra (including both its products!) all have this first-order preservation property.
Thus, one may get a handle on different complexities for proposed process operations.

24

25

5 Modal Fixed Points and Bisimulation

These are some thoughts on Jon Barwise & Larry Moss' intriguing book Vicious Circles

(CSLI Publications, Stanford, 1996) including a proposed simplification of their proofs,

a mysterious analogy, and speculations about a broader moral. Larry Moss has some

new

results that seem relevant to our discussion – but they have not yet been referenced here.

1 Characteristic Modal Formulas for Bisimulation Equivalence Classes

Barwise & Moss show that each modal model M, s has a characteristic formula φM in
an infinitary modal language with all set conjunctions and disjunctions. I.e., for all
models N, t, we have an equivalence between the following two assertions:

(1) N, t |= φM

(ii) there exists a bisimulation between M, s and N, t (connecting s to t)

This is a variation on the well-known Scott Theorem for infinitary logic, with
bisimulation

taking

the

role of potential isomorphism, and the modal fragment that of
the full first-order repertoire. (The same characterization was proved independently for
countable models only in van Benthem & Bergstra 1995.) The method of proof goes as
follows.

Starting

from atomic base descriptions, one works in ordinal rounds α . At
each round, partial descriptions δ(α, x) are generated for the worlds x in M . Let y
range over

all

 R–successors of x in M . Then the next description δ(α+1, x) is
defined to be

the conjunction of all statements <> δ(α, y)
together with the closure condition [] ∨ δ(α, y)

At limit ordinals,

one

takes

the

obvious

infinite

conjunction of everything obtained so
far. One can show that this construction will stabilize at some ordinal α* (depending
on the cardinality of M) after which no new descriptions are generated. The resulting
formula δ(α*, s) is the characteristic formula, defining the bisimulation equivalence
class.

2 Characteristic Modal Formulas via Fixed Points

What follows revolves around one simple observation. The above looks very much like
the construction of a fixed point. Its template is a description E(M) for any modal

26

model first given by Jankov and Fine in the 70s. 1 Here is the definition. Take a set of
new proposition letters (different from those in the initial modal language) px : one for
each world x in M . Moreover, for each x, let ATx be the conjunction of all literals
in the original language that hold at M, x . Here is the major tool in what follows:

 E(M) is the conjunction of all statements
px → ATx & env (M, x), where
env (M, x) is the formula & Rxy <> py & [] ∨ Rxy py

2.1 Computing uniform fixed points
Now, it is easy to establish the following description for all models of E(M) . Let the
symbol ≡ indicate the existence of a bisimulation between two rooted models.

Proposition 1
For any two modal models M, s and N, t the following are equivalent:
(1) M, s ≡ N, t
(2) N, t can be expanded to a model for E(M) (i.e., the latter statement

holds throughout M) such that the predicate ps holds at world t .

Note that this amounts to the truth of some monadic second-order formula in N, t .

Proof From (1) to (2). Define the predicates px in N, t by setting px (u) iff x≡u .
All clauses of E(M) hold, by the back-and-forth conditions of modal bisimulation.
From (2) to (1). Define a relation E between worlds in M and N by setting x E u iff
u satisfies px in the expanded model for E(M) . The latter's clauses ensure that u, x
satisfy

the same atoms, and that the back-and-forth conditions hold everywhere. !

Next, there is a well-known intimate connection between truth of existential second-
order formulas and the existence of fixed points. This suggest the following alternative
version of the preceding result. Note that E(M), whose 'minimal reading' can be seen as
an equivalence, may be viewed as a simultaneous inductive definition for the predicates
px , all of whose clauses are syntactically positive in all py . Thus, the associated
semantic approximation operator is monotone. Therefore, every modal model N, t has
a greatest fixed point for the latter operator – say, GFP(N, E(M)) – whose obvious
'projections' to the predicates px satisfy E(M).

1 These formulas were originally used to define axioms for special modal logics 'omitting' all p–

morphic pre-images of some fixed finite set of frames. Van Benthem 1985 has further applications.

27

Proposition 2
For any two modal models M, s and N, t the following are equivalent:
(1) M, s ≡ N, t
(2) N, t |= (GFP(N, E(M)))ps

From (2) to (1), this follows directly from Proposition 1. From (1) to (2), we must add
the observation that, if any set of predicates satisfies the implications E(M) in N, with
the root predicate ps holding at t , then so does the greatest fixed point.

2.2 Special classes and specific definitions
The

preceding

observations

have

further

implications.

We can analyse modal fixed
points in special cases of interest. In what follows, we use the basic modal language for
ease of exposition. But everything we say transfers to a polymodal logic with many
modalities. There are two directions here. Start with some class of models, and
determine its modal invariants – or start with some class of modal formulas, and find
the models which they can characterize up to bisimulation. We start with a
characterization of the finite models.

Proposition 3
Each finite model is characterized by a formula of propositional dynamic logic.

Proof Consider any finite model M . Without loss of generality, we can pass to its
contraction under the maximal bisimulation. The latter model has the following further
property. Two worlds satisfy the same finitary modal formulas iff they are equal
(otherwise, non-trivial bisimulations would occur after all). Therefore, by a standard
combinatorial

argument

on finite models, each world x has a unique modal definition
δx in M. But then, we can describe an explicit solution for the fixed point equations
E(M), by setting the px equal to δx . More precisely, let µM be the infinitary modal
formula

[]* Eδ & ps

where []* is the transitive reflexive closure of [] , and Eδ says that the δx satisfy
E(M) . (Note that this formula is immediately definable in propositional dynamic logic.)
It is evident from the above definition that M, s itself satisfies []* Eδ & ps . Hence,
any model bisimilar to it also does. Conversely, if an arbitrary model N, t satisfies µM
, then the δx describe a set of predicates px as meant in the preceding propositions,
which guarantee the existence of a bisimulation with M, s . (Incidentally, the prefix []*

only serves to guarantee that the δx solution works in the 'transitive closure' of the root
t , but not necessarily throughout N – but that is enough for the argument.) !

28

Remark One really needs an infinitary modal formula here. E.g., consider the single
reflexive

point.

Its

fixed

point

equation

is

merely

p

↔ <>p & []p . One can easily show
the

greatest

fixed

point

for this, in any model, is the set of worlds satisfying the
infinitary formula []*<>T . But the latter is not equivalent to a finite modal formula, as
is easily shown by considering suitably large Kripke models of the form ({1, .., n},
'successor'). Note that this solution is what automatically results from applying the
above general solution schema []* Eδ to the model consisting of a single reflexive
world.

It is also possible to derive a converse for the preceding proposition.

Proposition 4
Formulas from PDL characterize only finite models (up to bisimulation).

Proof Let φ characterize a model M, s . By the Finite Model Property for PDL, φ
then holds in some finite N, t . So N, t ≡ M, s, and φ characterizes a finite model. !

Theorem 5
The finite models are precisely those that are characterized by PDL-sentences. 2

This result can be improved to broader modal classes (e.g., ω–saturated ones). As an
illustration, here is an instant proof of one of Baltag's theorems in Barwise & Moss.
Here, the direction of interest reverses, going from some given class of modal formulas
(viz. the finitary ones) to a corresponding model class.

Proposition 6
The models characterized by finite modal formulas are precisely
the finite well-founded ones.

Proof Any finite well-founded model satisfies some modal formula of the special
form [] ...(k times)... [] ⊥ . Therefore, in the above formula []* Eδ & ps , the initial
modality []* may be replaced by that []k ⊥ , and we have found a finitary
characteristic formula. The converse is even faster. If a finitary modal formula φ
characterizes some model, then it is satisfiable, and – by a standard modal unraveling
argument – it must also be satisfied in some finite well-founded tree.

 !

2 A speculation about the broader thrust of this result. Only one fixed point iteration is involved in the
eventual characteristic formulas: namely, for the outermost reachability operator []* . This reflects the fact
that fixed-point logics can replace nested iterations by one 'grand loop'. There should be a connection
between the 'flatness' of the equations in E(M) and the well-known trick for coding subformulas by new
propositon letters in the usual way, which only requires equivalences of forms p ↔ <>q and p ↔ []q .

Johan van Benthem

Johan van Benthem

29

Here are some further general issues.

Questions Which formulas characterize the well-founded models (the ZF sets)? 3

When is the characteristic modal formula 'effective'?

There

are

also

some

further

general

questions,

about the whole point in describing models
or sets by modal formulas. Can we use known facts about modal logic to get interesting
new lines on sets? For instance, do known properties of modal logic, such as
interpolation,

have

some

nice

set-theoretic

meaning? Or, what about the known
PSPACE decision procedure for the minimal modal logic K? Or in line with our
Sections 2, 4:

Does the above analogy help us in matching process operations
(combining modal models) with more standard set operations?

Van Benthem & Bergstra 1995 observe that the + of process algebra is just set-theoretic
union (working on models). Can we compute the characteristic formula for a union
effectively from those for the components? (This might be an interesting exercise in
general fixed point logic.) What are the natural operations in this setting anyway?

3 Computing Fixed Points

3.1 Uniform fixed points
The above solution is not very pretty. Can we compute the greatest fixed point of E(M)
in some nicer way? First, the above argument works (and hence characteristic formulas
exist) because there is a uniform ordinal bound to the computation of a non-empty fixed
point for E(M) in any model N, which only depends on the cardinality of M (not on
that of N). This is worth noting, because not every fixed point equation has this
uniformity property. 4 More precisely, the solution for E(M) in M itself will be found
after at most |M|•|M| steps, as there must be a change in at least one unary predicate px
at each approximation state. Hence, characteristic formulas for each predicate are found

3 The 'De Jongh-Sambin Theorem' says that in the modal logic of all transitive well-founded models,

every fixed point equation of the form p ↔ E(p), where p occurs only 'boxed' in E(p) (positive or

not!) has an explicit solution. I think this is a reflection of the general Recursion Theorems in ZF,

exploiting the well-foundedness of the models. Can we find similar general results in the present setting?

4 E.g., the well-known smallest modal fixed point µp•[]p defines the well-founded part of the relation

R in any model. Its computation length depends essentially on the latter's size.

Johan van Benthem

30

at modal operator depth at most |M|•|M| , i.e. |M| for infinite models (for finite ones: see
below). Here is a formal statement, making the preceding analysis a bit more precise.
Note, however, that the following argument makes no claim about a uniform bound for
computing the greatest fixed point – only for some non-empty fixed point (with the
appropriate proposition true at the root). So, there is an open question here. Also, the
following proof is rather roundabout; and one would prefer a direct combinatorial one.

Fact 7
In any model N, if a schema E(M) reaches a non-empty fixed point at all,
then it reaches one after at most |M| stages.

Proof Suppose some non-empty fixed point is reached in N, t . Then by the earlier
reasoning, there is a bisimulation between M , s and N, t . Now M, s satisfies the
explicit modal solution statement Eδ , where δ describes the satisfying modal
formulas of depth ≤ |M|. But then, through the mentioned bisimulation, N, t must also
satisfy the modal formula Eδ . And by its definition, that means that some non-empty
fixed point was reached at stage ≤ |M| inside N . !

For finite models, we might have a quadratic blow-up here: but we can do better. For, in
the approximation sequence, whenever some predicate px does not change in some
round, we can stick to its previous definition, instead of using the next layer. Thus, its
complexity only increases when there is some real change. We have derived the general

Fact 8
Characteristic formulas for worlds (px) need only modal operator depth |M| .

Specific examples may be computed by hand for simple cases, and then reveal further
syntactic fine-structure – which we will forego here.

3.2 Fixed points at omega
To obtain a greatest fixed point for a formula φ(p), we compute a smallest fixed point
for its dual ¬ φ (¬ p) and then negate that. Often that greatest fixed point is found after
ω rounds. Thus, for the single reflexive point, one works with the new equation

p ↔ <>p ∨ []p

which is modally equivalent to <>p ∨ []⊥ . The latter has p only under existential
modality and disjunction. Now all fixed point equations whose defining clauses for p
have the latter only under <>, &, ∨ are finitely distributive, and hence they compute a
smallest fixed point uniformly in at most ω rounds. For PDL-formulas, one can

31

compute

all

relevant

fixed

points

this

way

(cf. Kleene iteration). Thus, our analysis seems
close to a proof that all characteristic formulas for finite models have this property.

Question When are characteristic formulas computable at omega?

Another interesting question would be to determine in some effective manner

Question Which general fixed point formulas have a uniform solution bound?
In particular, which formulas in the modal µ–calculus do?

4 Connections with Other Simulations

The

above

results

give

an

invariant

-

in

the

standard

mathematical

sense

- for models up
to bisimulation.

All

models

sharing

the

invariant

φM

 form a bisimulation equivalence
class. But there are more results of this kind, that connect up with standard automata
theory.

4.1 Automata and regular sets
 Kleene's Theorem gives regular expressions κM as invariants for finite state machines
M characterizing these up to finite trace equivalence (instead of bisimulation):

N, t |= κM iff N, t has the same 'language yield' as M, s .

This can also be stated in a modal language of 'finite-path formulas' (van Benthem &
Bergstra 1995). In particular, we can compute κM with a fixed point equation as above,
using predicates Yx recursively describing the 'yield' of M starting from x . I did not
find this particular point in the FSM chapter of Barwise & Moss, but I guess they do
mean one can now generalize Kleene's Theorem to arbitrary machines (finite-state or
not). Here is a further observation. The essential thing is that these new fixed-point
equations are simpler. To describe the yield of M at x , one only needs

a disjunction of cases <a>Yy, with y running over the a-successors of x
(and this for all atomic actions a) .

That means that the fixed point will be reached uniformly in ω steps! This is true of
course

for

all

regular

expressions

(cf.

the above point about propositional dynamic logic).
Thus,

the

above

characterization

result

about

finite

models may be interpreted as follows.
It says that

PDL

does

for

them

what regular expressions will do if you are interested only
in their finite succesful sequences. I wonder what else one might get from this analogy.

Question

Which

topics

in

formal

language

theory match which issues in modal logic?

 5

5 Also, what kind of set theory does one get if one makes this very rough identification?

32

4.2 Invariants and simulations

(1) Similar invariants exist for any simulation equivalence, e.g., generated graph
isomorphism (van Benthem & Bergstra 1995). Is there a general connection between
definitions

of

simulations and those for the characteristic formulas? Fixed-point analysis
works for all simulations defined by pebble games (Barwise & van Benthem 1996,
'Interpolation, Preservation, & Pebble Games', to appear in Journal of Symbolic Logic).

(2) A very sweeping philosophical thought (though not for situation theorists). Perhaps,
all language

is

just

an

invariant

for

analogies

across

situations? That is, we can reverse the
usual order, and think of (infinitary) first-order logic as that language which all rational
beings would inevitably invent which are born attuned to potential isomorphism.

(3) Kleene's result was striking because he invented a finite notation for his invariants.
Modal invariants for finite models are also finite. What is going on really is that we
introduce

some

effective notation for the relevant fixed points. For which models can we
get

invariants

from

some

effective

fragment

of the modal language ML∞ω ? In particular,
which models have their characteristic formulas inside the modal µ–calculus?

5 Connections with AFA Set Theory

Finally, there seems to be a very tight connection with the non-well-founded set theoy
AFA. Is the above implicit in the relative consistency result for AFA vis-à-vis ZF?

5.1 Fixed points and the 'solution lemma'
The above fixed-point equations E(M) are exactly the 'flat systems of equations' of the
Solution Lemma, and so they drive the key AFA axiom. That one can make do with flat
equations instead of iterated ones must have to do with an earlier standard trick. (In
computing fixed points, we lose no generality by coding up all subformulas by atoms.)
Also, the uniform bound on the fixed point seems related to the requirement that the
solution must be a set. Any solution to 'unbounded' fixed point equations like the above
p ↔ []p (well-foundedness) would presumably give us a 'class'. Have we (including
Barwise & MOss) then been doing essentially the same things twice?

5.2 Truth as simulation?
To

conclude,

here

is a wild speculation. What is the essential role of modal formulas vis-
à-vis

models

under

bisimulation?

A model is a possibly non-well-founded set. A formula
is a well-founded object. Now infinitary modal formulas, as objects, can be at least as

Johan van Benthem

33

complex as the models they describe. (They may be even more complex, like when we
use infinite conjunctions to describe finite models). This point has always bothered me.
Finite models are characterized by their first-order theories, but the descriptive sentence
is intuitively more complex than the model itself! So, what is the gain? One might just
as well manipulate the model (rather than all subformulas, or other syntactic items).
Perhaps the gain is in the well-founded structure of the formulas, which allows us to use
some simple inductive techniques. (But is this really a line of defense available to
Barwise & Moss, who advocate free-wheeling circularity all around?)

Whatever the answer, it seems to me that viewing models and formulas on a par has
some advantages. We can think of a truth definition itself as a notion of simulation
between models and formulas. Think of a language where all negations have been
pushed inward. At the atomic level, 'truth' is simple embeddability (more or less half an
atomic clause in potential isomorphism). Upward, quantifiers or modalities suggest
natural zigzag conditions between the <>, [] successor structure in the syntax tree and
R-successor structure in the model. 6 The result looks like the semantics behind Hans
Kamp's Discourse Representation Theory, which has 'embeddability conditions' relating
DRSs to actual models (cf. Kamp & van Eyck 1997). (It is also in the spirit of a
Wittgensteinian picture theory of language.) Could one get further mileage out of this?

6 Bisimulation itself, for instance, also works if one compares process models with different structure:

provided some match makes sense between moves of the right sorts. This is the standard situation in

practice. Much standard theory goes through then – including the Modal Invariance Theorem and the

Modal Interpolation Theorem in Barwise & van Benthem 1996. Cf. Section 10.1 for further details.

34

35

 6 Information Transfer across Chu Spaces

Chu spaces are a new model for information structure (cf. J. Barwise & J. Seligman,

"Information Flow", Cambridge UP, 1997) and for mathematical structure in general

(cf. Vaughan Pratt's ongoing work at the homepage http://boole.stanford.edu/live).

Their properties are usually developed as a form of category theory. In this note, we

show how they may also be viewed as models for a two-sorted first-order language,

and we determine the exact flow of information across the natural Chu transforms.

Our analysis is akin to that of process graphs via bisimulation and modal formulas.

1 Chu Spaces
A two-valued Chu Space is any structure (A, X, R) with two domains A, X and a binary
relation R inside AxX. Examples: A = objects, X = sets, R = ∈, or A = models, X =
formulas, R = |= , or A = 'tokens', X = 'types', R = 'classification by'. Such spaces are
naturally viewed as models for a two-sorted first-order language with variables a over
(as we shall say) 'objects' and variables x over 'types'. Of course, one can also use
other languages extending first-order logic here, such as infinitary or second-order ones.
General Chu Spaces have a k-valued relation R (which makes them 'fuzzy' rather than
crisp

2-valued

classification

structures),

but

in

practice

two-sorted

examples predominate.

2 Chu Transforms
A Chu transform between two Chu spaces M = (A, X, ∈), N = (B, Y, ∈) (we shall use
the same notation '∈' for convenience across Chu spaces) is a pair of functions f:
A→B, g: Y→X (note the inversion in direction!) satisfying the following condition:

X

A
M

Y

B
N

f

g

for all a∈A, y∈Y: f(a)∈y ⇔ a∈g(y)

There are motivations galore for this 'contravariant ' equivalence, for instance, in the
logical theory of relative interpretation (cf. Barwise & Seligman 1997).

36

3 Preservation and Flow Formulas
What information is preserved in switching between Chu spaces connected by such a
transform? We can view this as a standard question in model theory, asking for a
preservation theorem. The following syntactic notion is obvious from some reflection
on what we have, and do not have, in the above diagram:

a flow formula is any first-order formula produced
by the schema a∈x | ¬ a∈x | & | ∨ | ∃a | ∀x

Flow formulas φ (a1, .., ak, x1, .., xm) can define many useful notions on Chu spaces:
in general, relations between k objects and m types. Here are some examples:

∀x (¬ a1∈x ∨ a2∈x) ≤ 'object inclusion'
∀x (¬ a1∈x ∨ ¬ a2∈x) – 'object incompatibility'
∃a (a∈x1 & a∈x2) o 'type overlap'

Let us call a first-order formula φ Chu-preserved if we have (with bold-face symbols
indicating 'fitting' finite tuples of objects and types):

M, a, g(y) |= φ only if N, f(a), y |= φ
whenever (f, g) is a Chu transform between M and N.

Of course, this notion also makes sense for non-first-order formulas φ.

Proposition All flow formulas are Chu preserved.

Proof This is a straightforward induction on the above definition, starting from the
above characteristic Chu equivalence f(a)∈y ⇔ a∈g(y) for literals. !

Application Chu transforms are monotone with respect to object inclusion, as the
latter relation was defined by a flow formula.

Comment We have described preservation in the 'f-direction' only. But in the
opposite

'g-direction', we have the following syntactic description of preserved formulas
(pushing negations inward for the equivalent implication "N |= ¬ φ ⇒ M |= ¬ φ"):

a∈x | ¬ a∈x | & | ∨ | ∀a | ∃x

This outcome is precisely what one would predict by the obvious duality of Chu
Spaces, where interchanging of the roles of A and X makes no difference.

37

4 Application: Rigid Chu Spaces
The preceding analysis systematizes several separate observations about Chu
transforms. Take the following 'rigid Chu space' constructed by Pratt. Objects A = {1,
2, 3, 4}, types X = {x, y, z, u}, classification ∈ as in the following diagram:

x: {1} y: {2}
z: {1, 3} u: {1, 2, 4}

Plotkin and Pratt have shown that the only Chu transform sending (A, X, ∈) to itself
must be the identity. We can explain this by observing that each object a∈A is uniquely
definable by a flow formula, and therefore, it must 'land on itself' by our Proposition.
Let the relations ≤, – be as in Section 3 above. Here are the definitions:

(a) ∃a1a2 (a1≤1 & a2≤1 & a1–a2) is unique for object 1
(b) ∀x (1∈x ∨ 2∈x) is unique for object 2

(one uses the flow definition for object 1 here:
∃a (DEF1(a) & ∀x (a∈x ∨ 2∈x)).)

(c) ∀x ((1∈x & 2∈x) → ¬ 3∈x) is unique for object 3
(d) 4≤1 & 4≤1 is unique for object 4

5 Flow Preservation Implies Chu Tranform on Finite Models
Now let us convert the result, showing that the above is 'best possible'. Up to logical
equivalence, only flow formulas are preserved under Chu transforms. We will formulate
this as a preservation theorem in Section 6. But before proving this, we give a warm-up
result inspired by an analogy with bisimulation and modal logic. (Some further aspects
to this modal analogy that can be usefully exploited have been pointed out by Martin
Otto.) The proof that follows here contains some key ideas for the later one.

Proposition For finite Chu spaces M, N, the following assertions are equivalent:
(i) there exists a Chu transform from M to N
(ii) every flow sentence true in M is also true in N

Proof (i) ⇒ (ii) is a special case of our earlier Proposition. (ii) ⇒ (i) works as follows.
Enumerate A as {a1, ..., ak} and Y as {y1, ..., ym}. We do one case of a stepwise
construction

for

the desired function f . (The remaining case, as well as the construction
of the contravariant companion function g , are similar.) The idea is that, progressively,
f should assign some object f(a)∈B to a∈A which satisfies the same flow properties
(where the latter may involve parameters for objects which have already been matched).

38

Suppose that no b∈B satisfies all flow properties that hold for a1 in M. That is, for
some flow formula γb , we have that

M, a1 |= γb but not N, b |= γb

Altogether, M then satisfies the flow formula (here we use ∃ | & – closure)

∃a & b∈B γb

But by condition (ii), the latter formula should hold in N. But, each b∈B is disqualified
as a witness for this, since it lacks 'its' conjunct γb .Therefore, by reductio ad absurdum,
a 'good choice' b1 must exist after all, and we can set

f(a1) = b1

This argument can be repeated to produce the successive values for f on all of A.
Moreover, it can also be used in the opposite direction to find values for the function g,
again maintaining the 'invariant' that flow formulas be preserved going from M to N.
E.g., when searching for a matching type x for y1, one assumes that each xi fails for
this purpose with a 'defect' δy , and then uses a flow formula of the form

∀x ∨ y∈Y δy

(with a dual use of ∀ | ∨ – closure) to obtain a contradiction, going from M to N. !

6 A First-Order Preservation Theorem
Instead of a standard preservation theorem, we formulate a slight strengthening in terms
of 'generalized interpolation' (cf. Barwise & van Benthem 1998). Let us say that

φ implies ψ along Chu transforms if always
M, a, g(y) |= φ only if N, f(a), y |= ψ

Then we have the following result:

Theorem For all first-order formulas φ,ψ, the following statements are equivalent:
(i) φ implies ψ along Chu transforms
(ii) there exists a flow formula α such that φ |= α |= ψ

Proof (ii) ⇒ (i) is again essentially the earlier Proposition. As for (i) ⇒ (ii), assume
that φ implies ψ along Chu transforms. First, define

39

FF(φ) =def { α a flow formula | φ |= α }

It suffices to prove that

Claim FF(φ) |= ψ

The required flow interpolant then exists by Compactness. So consider any countable
model N = (B, Y, ∈) for FF(φ). (This case suffices by the Löwenheim-Skolem
theorem.) Let Th ¬ FF (N) be the set of all N-true negations of flow sentences. By a
routine argument, using the closure of flow formulas under disjunctions, we have that

Th ¬ FF (N) ∪ {φ} is finitely satisfiable

Therefore, there is a (countable) model M = (A, X, ∈) for Th ¬ FF (N) ∪ {φ}, so that
the following implication holds for all flow formulas γ :

M |= γ ⇒ N |= γ

Without loss of generality, we can even assume that (M, N) is a recursively saturated
model

pair

with

the

same

transfer property. But then we can mimick the earlier argument
for finite models, this time, using the recursive saturation. Enumerate A as {a1, a2, ...}
and Y as {y1, y2, ...}. In the general case, suppose that some finite part of the pair (f, g)
has already been constructed. Moreover, assume that all flow formulas whose free
variables are set to objects a in the domain of f and types g(y) in the range of g in
M, and to the corresponding items f(a), y in N, satisfy the following implication:

M, a, g(y) |= γ only if N, f(a), y |= γ #

Then we can extend this situation both ways. Here is the case for objects in M (that for
types in N is similar). Let a* be the first object in A without an f-value. Consider the
recursive(!)

set

of all formulas of the following shape, where γ runs over flow formulas
as

in

the

preceding

implication

–

except

that

there

is

one

free

object

variable

a on the right:

γM (a, g(y), a*) → γN (f(a), y, a)

This set is finitely satisfiable in the model pair (M, N), because for any finite number of
flow properties γi of a* in M, we can form the flow statement (by ∃ | & – closure)

∃a &i γi (a, g(y), a)

40

which is also true in N (by the earlier transfer implication #). So, we can find a value
for a in B satisfying all these finitely many implications. But then, because of
recursive saturation (our set is recursive, with only finitely many parameters from the
domain), there is even some b∈B satisfying this whole set of flow implications
simultaneously, and we can choose this object to be the desired f-value for the object a*

. The argument in the opposite direction, producing a suitable g-value in M for the first
virgin type y∈Y, is analogous, but now using the ∀ | ∨ – closure of flow formulas.

Then, finally, we have M |= φ , N is a Chu transform of M, and so M |= ψ : !

Remark Sol Feferman (Stanford Logic Seminar, June 1998) has given an alternative
proof for this preservation result using his interpolation theorem for many-sorted first-
order logic. At its present state, this argument only covers Chu transforms with
injective object maps. But it can presumably be modified to deal with the full case.

7 Variations and Extensions
The preceding result tells us precisely how much (or perhaps, what little) information is
passed between Chu spaces that are related by their 'natural equivalence', at least for
their first-order language. But we can vary the result to cover other cases of interest.

(1) The result goes through for special classes of Chu spaces, provided that these have
first-order definitions. This holds in particular for bi-extensional Chu spaces, satisfying

∀a∀b (a=b ↔ ∀x(a∈x ↔ b∈x))
∀x∀y (x=y ↔ ∀a(a∈x ↔ a∈y))

In practice, this means that for bi-extensional Chu spaces, one can use two further
atoms in flow formulas, without affecting preservation:

¬ x=y, a=b

(2) But also, the above proof itself can easily be modified to yield further preservations.
For instance, if we know that the f-map in a Chu transform is surjective, then we can
add universal object quantifiers ∀a in the construction of flow formulas, and likewise,
existential type quantifiers ∃x if g is surjective.

(3) Finally, a first-order perspective also suggests other equivalences for Chu spaces,
such as elementary equivalence, potential isomorphism, or pebble game variants
thereof. From the perspective of information flow, there is no need for one model
equivalence: the more structure preservation one can get, the better!

41

8 Infinitary Versions: Information Sequents
The preservation proposition of Section 3 still holds for arbitrary infinitary conjunctions
and disjunctions in flow formulas. This explains the observations found in Barwise &
Seligman 1996 on transfer (and non-transfer) of 'local logics' along 'infomorphisms'.
In their terminology, let U, V be sets of types in M . We define true sequents:

U |-M V if ∀a: a∈ ∩U → a∈ ∪V

This infinitary definition is not an flow formula (as their maps f need not be surjective,
universal object quantifiers are not allowed), and it is not preserved by Chu transforms.
The implication will only hold in N on the image of f, the so-called 'normal tokens' in
N. Thus, logically true sequents do not transfer in the f-direction. But they do transfer
in the opposite g-direction, as the negation ∃a: a∈ ∩U & ¬ a∈ ∪V is equivalent to an
infinitary flow formula. (Barwise & Seligman do not consider further flow properties.)

This application increases the interest of an infinitary version of our preservation result.
We conjecture that this is the case. But so far, we have only checked that the techniques
of Barwise & van Benthem 1996 go through. These apply to model relations that can be
cast in the form of pebble games. Applied to Chu transforms, this means the following.
Instead of total maps, we now have a non-empty family of finite partial maps (f, g)
between M, N, which satisfy the basic Chu equivalence for atoms, such that two back-
and-forth properties hold, one extending each f-domain with an object from M, and one
extending

each

g-domain

with

a type from N. Let us call these potential Chu transforms.

Theorem The above preservation theorem extends to formulas φ, ψ in the infinitary
language L∞ω, when we require preservation along potential Chu transforms.

9 Richer Chu Spaces: General Frames in Modal Logic
In modal logic, the natural Chu spaces are general frames (W, P, ∈) with W a set of
worlds, P a family of sets of worlds (the 'admissible propositions') and ∈ membership.
Here the natural equivalence is as in the following 'contravariant' picture (cf. Blackburn,
de Rijke & Venema 1998, van Benthem 1985), where f(w) ∈) q iff w ∈ g(q) :

P

W
M

Q

V
N

f

g

42

But

here

there is an additional requirement: f must be a p-morphism from M to N. I.e.,
it

is

a

homomorphism for the accessibility relation RM , and it satisfies the zigzag clause

if f(w) RN v, then there exists some u∈W such that w RM u & f(u) =v

Moreover, the map g is just the set-theoretic inverse f-1 on Q (landing inside P!),
which is a homomorphism with respect to the natural 'modal algebra' structure on Q, P.
(This 'parasitic' nature of g is also known from Chu spaces in general.) Modal logicians
have proved preservation theorems in this setting. But of course, more is preserved
now, as the 'quality' of f, g is higher than in the above. In particular, flow formulas will
now also allow the usual modal constructions, or more precisely:

atoms Rab | bounded universal object quantifiers ∀b (Rab →

Combining

this

with

the

earlier

syntax

of flow formulas, we see that we get propositional
literals p, ¬p, conjunction, disjunction, existential and universal modalities, plus
arbitrary existential object quantifiers and universal propositional quantifiers. This
includes all standard modal formulas, with a slight first-order and 'second-order' extra.
This is surely an instance of a more general result, telling us how to 'load' our general
Chu preservation with extra information from maps f, g that preserve special structure.

10 Constructions on Chu Spaces
The theory of Chu spaces gives a prominent place to (categorial) model constructions.
One example is the dual operation taking (A, X, ∈) to (X, A, ∍). Another is the
product MxN used extensively in Barwise & Seligman 1996:

new object AxB (Cartesian product)
new types X + Y (disjoint union)
new epsilon (a, b) ∈ X1 iff a∈X, (a, b) ∈ Y2 iff b∈Y

Here the picture of natural connections is as follows:

X

A
M

Y

B
N

X+Y

AxB

M x N

f1

g1 g2

f2

43

Here, preservation results might characterize formulas φ such that, if both M |= φ and
N |= φ, then MxN |= φ. (In particular, this holds for first-order Horn sentences.) But
one does not want 'preservation' here so much as combination of information, or viewed
in the other direction, decomposition. If we have a tight constructive definition of some
operation on Chu spaces, then we can use it to reduce first-order evaluation.

Example 'Every Type is Inhabited'
Here is a simple semantic calculation from the given definitions:

MxN |= ∀x ∃a a∈x iff
∀x∈X ∃a∈A ∃b∈B : (a, b)∈x & ∀y∈Y ∃a∈A ∃b∈B : (a, b)∈y iff
∀x∈X ∃a∈A a∈x & ∀y∈Y ∃b∈B : b∈y iff
M |= ∀x ∃a a∈x & N |= ∀x ∃a a∈x

So in this particular (Horn-definable!) case, the property does reduce to its presence in
the components. In general, however, we don't expect this. Nevertheless, the example
suggests an effective component reduction for arbitrary first-order statements φMxN :

(a) introduce a supply of marked variables with superscripts for A, B, X, Y
(b) replace object quantifiers ∃a by ∃aA∃bB , and replace corresponding

atoms a∈x in the formula by disjunctions aA∈x ∨ bB∈x
(c) replace type quantifiers ∃x by disjunctions ∃xX... ∨ ∃xY...
(d) replace (using the added markings) all 'heterogeneous' atoms

aA∈xY or bB∈xX by false

The result is a first-order formula which may be separated into an equivalent Boolean
compound of separate fist-order assertions about M and N.

Sol Feferman has pointed out a more general background here. Chu dual and product
satisfies the following preservation property (with '≡' for elementary equivalence):

if M ≡ M' and N ≡ N', then MxN ≡ M'xN'

Most operations in abstract process algebra have this feature (Hollenberg 1998). On the
other

hand,

product

spaces in the usual mathematical sense, whose objects are functions,
do not (cf. the references given in Section 4). One obvious conjecture is that Chu tensor
product

as

defined

by Pratt in his model for linear logic, lacks this preservation property.

Preservation

of

elementary

equivalence

is

a

consequence

of

the above effective reduction.
But having an effective decomposition seems stronger. So we want to know about both.

44

11 Co-limits and Generalized Evaluation
Dual and product were just two examples. The natural general construction is an
inverse limit of families of Chu spaces which may have Chu transfoms running between
them:

M-i

f

M-j

M-k
g

k

'Objects' in the inverse limit M are tuples a having the right 'coherence': e.g.,

f ((a)i) = (a)j, etcetera.

This setting makes it much harder to do a 'logical decomposition' as above. It rather
suggests that we generalize our perspective once more. One could think of evaluation of
formulas in M as a generalized semantics, where we have a family of models
available instead of just one. We then sometimes shift (a bit like in some recent
semantics for modal predicate logic) from looking for an object in one model to some
image in another. This theme of 'long-distance evaluation' will return in Section 8 on
'information links', and, viewed as a strategy for 'decomplexifying' logics, in Section
10.3.

45

7 logical constants, semantic computation &
simulation invariance

Johan van Benthem

ILLC, University of Amsterdam
October 1997

to appear in Logica 98 Yearbook
Institute of Philosophy, Czech Academy of Sciences.

Abstract

Semantic invariance approaches to 'logical constants' capture the important aspect of

their 'topic-neutrality'. But these approaches tend to overgenerate, in that they admit

all infinite Boolean combinations – which can hide a lot of unwarranted complexity.

To advance further, we note that semantic invariances rather tell us something about

the kind of evaluation process associated with logical constants. This process view

leads us to impose a natural further constraint, of finite computability, which can be

implemented over arbitrary models in a language-free manner. The result of such an

analysis is a complete characterization of the logical constants that relate predicates

and individual objects as precisely those definable in a standard first-order language.

We also discuss ways of extending this analysis to more complex 'logical processes'.

46

1 Logical Constants, Semantic Invariances and Evaluation Processes

The logical expressions of a language are topic-neutral, and describe only abstract
patterns in semantic models. Thus, they typically exhibit invariance for permutations of
the universe of individuals (Tarski 1986, van Benthem 1986). But still very many
expressions pass this test. More restrictive kinds of logicality arise by imposing
invariance for less demanding semantic equivalence relations, sich as potential
isomorphism, or bisimulation. Invariance may then be modified to a notion of 'safety'
(preservation of back-and-forth behaviour), which allows for complete syntactic
characterizations, e.g., of all safe first-order operations (van Benthem 1996, Ch. 5).
Such results are attractive expressive completeness theorems, effectively enumerating
all logical constants. A drawback common to all such invariance approaches, however,
is their 'Boolean slippage': arbitrary infinite combinations of invarinat items satisfy the
criterion. The reason is the symmetry of invariance, plus the usual inductive argument.
(If one moves to different, asymmetric model relations to avoid this slippage, too many
Booleans are lost, not just infinite ones.) Now, infinitary combinations are undesirable,
as they encode a lot of unanalyzed structure that does not seem 'logical'. For instance,
infinitary modal theories suffice for characterizing all sets (Barwise & Moss 1996)!

So, we have to find a further intuitive ingredient to logicality. Our analysis starts from
the observation that semantic equivalence relations like the above may be viewed as
'simulations' between models, where the latter serve as process representations. Logical
constants are naturally viewed as processes, viz. evaluation procedures. For instance,
Tarski semantics defines the following evaluation process for first-order predicate logic.
Its states are variable assignments, its basic moves are steps =x between assignments
that agree up to their x–value (for the relevant variables x), while in between these,
one can perform atomic tests on the current state (Groenendijk & Stokhof 1991). Now,
our general suggestion is that all logical constants are evaluation procedures, and that
'logicality' also means computational 'simplicity' in some sense. In particular, this
requires finite computation spaces. We will now implement this view more technically.

2 Semantic Computation: Approximating Models by Finite State Machines

Fix some finite predicate vocabulary, disregarding function symbols. Logical constants
can be viewed as relations between these predicates, plus distinguished individuals.
(Logical operations, like negation or composition of relations, may be subsumed here
via their graphs – or via the use of models-cum-initial-assignments introduced below.)
Thus, we identify a potential logical constant with some model class C in the relevant

47

(predicate) similarity type. For instance, the clas of models M = (D, P, Q) where P, Q
are unary predicates with a non-empty intersection encodes the logical notion of
'overlap'. More generally, we also consider pairs (M, s) with s a variable assignment.
For instance, the class of pairs (M, s) with (D, P, Q) as above, and s an assignment
sending one single variable x to some object in both P and Q , naturally encodes the
logical operation of intersection. Next, we seek a link with semantic computation.
Fix some finite number of variables k . After all, any computation process uses only a
fixed number of registers for accessing objects in the domain of the relevant models.

2.1 Evaluation states: assignments modulo zigzag equivalences
It seems rasonable to identify our computational states with 'current workspaces', being
k-assignments from these variables to objects in our model. But this may still be an
infinite set (viz. if the domain of individuals is infinite), and not all differences between
k–assignments need be relevant for our intended computations. Given any model M ,
we therefore define a family of equivalence relations between states ~d by induction:

s ~0 t iff the relation sot–1 is a partial isomorphism
(i.e., s, t satisfy the same atomic facts place-by-place)

s ~d+1 t iff s ~d t and for each variable x and object d in |M| ,
there exists an object e in |M| with s[x:=d] ~d t[x:=e],
and vice versa from right to left.

Note that these are language-free relations (introduced e.g. in Chang & Keisler 1970).
We can consider their equivalence classes as appropriate abstract computation states. In
particular, we do not need the concrete k–assignments displaying domain objects when
computing Tarski's truth definition, since evaluation need not touch the actual objects
(provided that we have access to the outcome of all relevant atomic tests). Of course,
the larger the index d , the more information we get from ~d about our current model.

2.2 Linguistic analysis: types up to some quantifier depth
There is a well-known 'linguistic' definition for the preceding relations.

Proposition 1 The following assertions are equivalent for all models and assignments:
(i) s ~d t
(ii) M, s |= φ iff M, t |= φ for all first-order formulas φ in k variables

up to quantifier depth d

Proof (i) ⇒ (ii) requires a well-known induction on the quantifier depth d of φ . For
(ii) ⇒ (i), we also use the logical finiteness of the latter first-order language. !

48

Corollary 2 Let x, y be sequences of objects, both of length k . There are obvious
corresponding k–assignments sx, sy . The relation Ed(x, y) defined by
sx ~d sy is first-order definable ('having the same d–type in k variables').

2.3 Model approximations by filtration
Next, we define a family of model approximations Mkd , which are finite Kripke
models for modal logic, or more computationally (' annotated') finite state machines:

states all ~d equivalence classes sd

transition relations sd =x td iff s' =x t' in M for some s' ~d s, t' ~d t
atomic valuation sd |= Px1...xk iff M, s |= Px1...xk

The valuation is well-defined, since any two n–equivalent states agree on all atoms.
Note also that Mkd is not an ordinary first-order model. There are no objects, and
atoms are directly interpreted by their truth values at states without looking up tuples of
objects in the usual Tarskian manner. This is precisely what we have in Kripke models
for modal formulas. More precisely, the Mkd are multi-S5 models. Again, one can
look at this construction purely structurally. The reader will find it helpful to draw a
concrete sequence of n–approximations, seeing how these reflect the structure of given
first-order models. (A good example is (IN, <) with k=3 .) Incidentally, this is a new
source of concrete models for modal logic, quite different from the usual examples.
Here is an observation that we shall need later on:

Proposition 3 Each individual model Mkd is finite. Moreover, there are only
finitely many different models Mkd up to isomorphism. Both these finite
numbers have upper bounds which are effectively computable from k, d .

Proof This is a simple calculation from the given definitions. It reflects (in non-
linguistic terms) the logical finiteness of the above predicate language. !

Thus, over the universe of all models, there are only finitely many 'projections' Mkd .
Let us call this finite set Mkd . It is easy to show that not all multi-S5 Kripke models
up to this size are filtrations of first-order models.

Question Is there a good representation theorem singling out those who are?

Even with such a result, it would still be undecidable if a modal model is representable
in this way. Otherwise, one could decide universal validity for any first-order formula
φ by surveying all appropriate finite modal candidate models for it, up to the above-
mentioned effectively bounded size for its number of variables and quantifier depth.

49

2.4 Linguistic analysis: relating truth across filtrations
On the above models, first-order formulas behave just as modal formulas, with
existential quantifiers ∃x as existential modalities <x> for each of the k variables.
One precise connection is a well-known Filtration Lemma from modal logic.

Proposition 4 For all first-order formulas φ with k variables
and quantifier depth at most d , M, s |= φ iff Mkd, sd |= φ

Proof Induction on the depth of φ . The atomic step is by the definition of a valuation.
Boolean cases are routine. Next, consider the existential quantifiers. If M, s |= ∃x ψ ,
then there exists some assignment t =x s with M, t |= ψ . By the inductive hypothesis,
M kd, td |= ψ . By the above definition, td =x sd , whence Mkd, sd |= ∃x ψ .

Conversely, suppose that Mkd, sd |= ∃x ψ . By the truth definition for the existential
modality <x> , there is a state td with sd =x td and Mkd, td |= ψ . By the definition
of =x on equivalence classes, there are states s' ~d s, t' ~d t with s' =x t' in M . Now,
by the inductive hypothesis, M, t' |= ψ . Then also M, t |= ψ , by Proposition 1. But
then, by the standard first-order truth definition, M, s' |= ∃x ψ , and once more by
Proposition 1, we have the desired outcome that M, s |= ∃x ψ . !

Proposition 4 only tells us how to relate truth of formulas up to quantifier depth d . But
there is a more general result allowing us to reduce evaluation of arbitrary first-order
formulas in filtration models Mkd to what happened in the parent model M . One can
translate backwards from Mkd to M , by faithfully transcribing the above definition
of states and accessibilities For this purpose, we define (cf. Corollary 2 for notation):

(φ)# = φ for all atoms φ
(¬ φ)# = ¬ (φ)#

(φ&ψ)# = (φ)# & (ψ)#

(∃xi φ)# = ∃x1' ∃xk' (Ed(x1, .., xk, x1' , ..., xk')
& ∃xi (φ)# (x1', .., xi, .., xk')) .

Note that the latter formula is indeed first-order, using the finiteness of k, n–types.
Now, a straightforward induction establishes the following

Proposition 5 For arbitrary modal formulas φ , Mkd, sd |= φ iff M, s |= (φ)#

We can check that this generalizes the Filtration Proposition 4 by observing that, for
all formulas φ up to quantifier depth d, the equivalence φ↔ (φ)# is universally valid.

Johan van Benthem

Johan van Benthem

Johan van Benthem
 =

Johan van Benthem

50

We conclude by noting that the same constructions and arguments work on any model
M with some distinguished assignment s – the basic setting for Tarski semantics.
The latter lands in Mkd as sd , which we can think of as a distinguished 'starting state'.

3 Logicality as Bisimulation Invariance in a Finite Computation Space

In this technical setting, we can sharpen up our general analysis. A 'logical' relation is a
semantic computation process. This means two things. (1) On any model, it only uses a
fixed finite workspace, no matter how large that model is. (2) It does not distinguish
models with 'the same' associated process: i.e., whose associated workspaces are related
by a standard process equivalence. For the latter purpose, we use an obvious candidate.

3.1 Basics of bisimulation and modality
There is a strong case for bisimulation, defined as usual (cf. van Benthem 1996), as a
basic equivalence preserving both external output and internal choices of a process,
across many fields (logic, computer science, game theory). We know, in particular, that
modal formulas are invariant for bisimulation. Of various converse results, we mention

Lemma 6 Finite models are modally equivalent iff they are bisimilar.

Proof Cf. any modern textbook. From right to left, this is a straightforward induction
on modal formulas. From left to right, one can take modal equivalence between states
as the bisimulation. The back-and forth clauses use the finiteness essentially. !

Also useful is the following simple consequence.

Lemma 7 Let A be some finite set of finite modal models. Let B be any
bisimulation-closed subset of A . Then B has a modal definition in A .

Proof Consider any model M in B , and any model N in A–B . The two are not
bisimilar, because of the closure condition on B . By Lemma 6, there is then some
modal formula µM, N true in M and false in N . The conjunction of all these
formulas with N running over the finite set A–B is a modal formula true in M but
false throughout A–B . Then the disjunction of the latter formulas, with M running
over the finite set B , is the required modal definition for B in A . !

3.2 Defining logicality as finite process invariance
The above two requirements on logicality now naturally combine into one. Consider
any class C of models with distinguished assignments, standing for a putative logical
relation. As earlier, we assume that models come with some distinguished assignment.

51

We call any such model class finite-bisimulation-invariant (FBI) if there exist two
natural numbers k, d for which the following invariance condition is satisfied:

for all models M∈C, and for all models N ,
if Mkd is bisimilar with Nkd , then N∈C

In this formulation of the FBI property, the bisimulations between Mkd and Nkd are
always taken to connect the two distinguished starting states sd, td – even if the latter
have not been mentioned explicitly.

4 From Logicality to Definability

4.1 First-order definability
Here is our main result, which amounts to the following syntactic characterization.
(The term 'first-order definable' refers to definability by one single formula.)

Theorem 8 A class of models is FBI iff it is first-order definable.

Proof First-order definable classes of models are FBI. Suppose that φ defines C .
Let k indicate all the variables occurring in φ , and let d be the quantifier depth of φ .
Suppose that M, s ∈C satisfies φ . By Proposition 4, Mkd , sd |= φ as well. Now let
N, t be any model such that Mkd, sd is bisimilar with Nkd, td . By the invariance of
modal formulas under bisimulations, we get Nkd , td |= φ . Once more by Proposition 4,
N, t satisfies φ as well, and hence – since φ defined C – N, t ∈C .

Conversely, consider the d,k–projections of all models in our FBI class C . This is a
finite subset Ckd of the finite class of all finite models Mkn . By Lemma 7, the finite
bisimulation closure of this set has a modal definition µ . (Note that all models in the
latter closure are bisimilar to some member of Ckd .) This modal formula as it stands
need not be the required first-order definition. (Proposition 4 only applies to formulas
up to modal depth d , and we have no reason to think µ is of the latter kind.) But by
Proposition 5, we can translate backwards from Mkd to M , and use the first-order
formula (µ)# . The latter indeed defines our class C . First, if M, s ∈C , then Mkd, sd

is in Ckd , and hence it satisfies the modal formula µ . By Proposition 4 then, (µ)#

must hold in M , s . Conversely, assume that M , s |= (µ)# . By Proposition 5, its
approximation Mkd, sd satisfies µ . Then, by the above construction of the modal
formula µ , this means that Mkd, sd is bisimilar to Nkd, td for some model N, t in the
class C . But then, by the definition of the FBI property, M, s ∈C as well. !

52

4.2 Relaxing the bounds on computation
This is not the only result that can be extracted from this style of analysis. In particular,
our restriction to some fixed finite bound on the computation space rules out cases with
genuine iteration, such as fixed-point operators. For instance, computing the operation
of transitive closure tc(R) (x, y) involves computing through finite spaces whose size
may depend on the arguments x, y. This case may be covered, however, by the
following relaxation of the above FBI property, shifting its quantifiers somewhat:

∃ k ∀M, s ∈C ∃ d ∀N, t:
if Mkd, sd is bisimilar to Nkd, td , then N, t ∈C

An easy modification of the preceding proof in Section 4.1 shows that this weaker
property holds for a class of models C if and only if the latter is definable by a
countable disjunction of first-order formulas. As countable disjunctions may be highly
non-effective, however, we feel this outcome still cannot be the final word.

4.3 Other states over first-order models
The preceding analysis of transitive closure is still unsatisfactory, as it does not capture
the uniform finiteness of the process involved. This latter is the computation of a fixed-
point with a fixed scheme whose approximation sequence 'stabilizes' after ω rounds.
One way of representing these takes richer states (sd, i) combining the above sd

standing for an 'environment' that yields replies to tests, with the 'current instruction' i .
Such states occur in computations by Turing or Register machines. Here is a program
checking whether the transitive closure of the binary relation R connects x with y :

1: IF Rxy THEN 2 ELSE 4 2: SUCCESS 3: FAILURE
 4: IF ∃z Rxz THEN 4 ELSE 5 5: SET x:= εz• Rxz ; GOTO 1

This program terminates succesfully just in case tc(R)(x, y) . It may diverge or fail
otherwise, depending on the model. These actions can be described in terms of (sd, i)
state models with d=1 (no test for the program reaches greater depth), while arrows
between the i's encode possible further activity. We then need a notion of bisimulation
on such product models, which we will not pursue here. Note also that we need a new
indeterministic atomic action x:= εz• Rxz ('x becomes some successor of its old self'),
different from the random changes in x–values that sufficed so far. Alternatively, we
can make use of the fact that fixed-point computations correspond to expandability of
the original model with certain additional predicates, and complicate our notion of state
sd accordingly. We leave the analysis of fixed-point computations to another occasion.

53

5 Points for Discussion

5.1 This analysis is close to the usual characterization of first-order logic in terms of
Ehrenfeucht games. We have merely 'rearranged the pieces' to throw some new light.

5.2 There is also a close connection to algebraic-style generalized CRS–models for
first-order logic, and their representation theory.

5.3 Can one give a similar analysis for definability in first-order logic plus
monotone (or just ω–continuous) fixed point operators? This would be an interesting
step toward a purely semantic analysis of the notion of computational 'algorithm'.

5.4 How does our analysis of logical relations between individuals and predicates
extend to relations at higher type levels?

5.5 Are there good representation theorems for finite modal models as Mkd's?

5.6 Develop some standard model theory of d,k–approximations. Can each M be
retrieved as an inverse limit of its approximations Mkd , plus their natural connections?

5.7 The only atomic actions allowed in our analysis of semantic computation are
random shifts in single registers (cf. the relations ~x), and tests for atomic formulas.
One might consider richer repertoires, such as multiple assignment, and choice of new
values constrained by some atom (e.g., 'let x become one of its own R-successors').
What will happen to our previous analysis? What happens if we throw in further
infinitary regular constructions, like iteration?

5.8 Is there a link with the category-theoretic analysis in Butz & Moerdijk 1997?

6 References

J. Barwise & L. Moss, 1996, Vicious Circles, CSLI Publications, Stanford.
J. van Benthem, 1986, Essays in Logical Semantics, Reidel, Dordrecht.
J. van Benthem, 1996, Exploring Logical Dynamics, CSLI Publications, Stanford.
C. Butz & I. Moerdijk, 1997, 'A Definability Theorem for First-Order Logic',

to appear in the Journal of Symbolic Logic.
C.C. Chang & H.J. Keisler, 1970, Model Theory, North-Holland, Amsterdam.
H.C. Doets, 1996, Basic Model Theory, CSLI Publications, Stanford.
J. Groenendijk & M. Stokhof, 1991, 'Dynamic Predicate Logic', Ling. & Phil. 14, 39-100.
A. Tarski, 1986, 'What Are Logical Notions?', in J. Corcoran, ed.,

History and Philosophy of Logic 7, 143-154.

54

55

8

Information

Links

and

Logical

Transfer

Information

can

reside

in

a

number

of

different

but

connected

situations.

We

discuss

the

logical

structure

of

information

flow

across

these

links,

using

'generalized

consequence

relations'

in

a

modal

logic

framework.

1

Information

Networks
One

situation

can

carry

information

about

another,

provided

there

i s

sufficient
'connection'

between

the

two.

This

idea

i s

the

core

of

Fred

Dretske's

analysis

of
information

flow,

as

developed

further

in

a

logical

vein

by

Barwise

&

Seligman

1996,
Israel

&

Perry

1991.

Such

connections

can

be

'extrinsic'

(due

to

regularities

that

happen

to
hold

in

this

world),

but

also

'intrinsic':

based

on

structural

similarities

between

the
situations.

One

can

model

both

by

information

network

plus

u

s

e

f

u

l

links

between

them.
(Another

source

for

this

idea

is

Michiel

v

a

n

Lambalgen's

work

o

n

information

flow

across
various

approximations

o

f

visual

scenes.)

Unlike

Barwise

&

Seligman,

we

do

not

assume
that

these

links

are

of

one

kind:

information

flows

along

various

channels.

An

information
network

is

a

(finite)

labeled

transition

system,

interpreted

intuitively

as

a

set

of

'situations'
related

by

some

binary

relations

that

allow

flow

of

information

from

one

situation

to
another.

Concrete

examples

might

be

first-order

models,

with

relations

of

isomorphism,
homomorphism,

submodel,

etcetera.

This

is

a

very

abstract

framework.

What

concrete

questions

arise?

One

concerns

a

measure
for

'identity'

of

our

notion.

What

is

the

correct

structural

equivalence

between

different
information

networks?

Bisimulation

seems

a

good

candidate,

just

as

in

process

theory

–

but
this

time,

describing

equivalent

potentials

for

directions

of

information

flow.

Next,

at

least
two

basic

logical

issues

suggest

themselves

naturally

:

(1)

A

general

calculus

for

combining

information

from

different

sources

(regardless

of

the

origin

of

its

initial

statements:

extrinsic,

intrinsic),
(2)

'intrinsic

input':

transfer

behaviour

of

specific

model

relations.

The

former

is

modal

or

dynamic

logic

(or

suitable

fragments

of

it),

re-interpreted

in

this
setting,

while

model-theoretic

preservation

theorems

are

a

prime

source

for

the

latter.
Thus,

our

starting

point

are

the

same

models

that

underly

modal

process

theories

(Sections
2,

3).

But

the

questions

that

we

raise

are

rather

different.

56

2

Consequence

along

a

Connection
Information

networks

suggest

the

following

key

notion

of

'flow'

across

links:

A

→

[R]B:

if

A

holds

in

situation

s

and

s

R

t

,

then

B

holds

in

situation

t

This

is

a

generalized

consequence,

along

such

model

relations

as

'submodel'

or

'potentially
isomorphic

image'.

Standard

consequence

is

the

case

where

R

is

the

identity

relation.
Motivation

for

and

applications

of

this

notion

are

found

in

Barwise

&

van

Benthem

1996.
Here

is

a

typical

result

for

(infinitary)

first-order

languages.

Example

Bisimulation

preservation

and

modal

interpolation.
If

A,

B

are

first-order

formulas,

and

R

is

bisimulation

w.r.t.

their

shared

vocabulary,

then
(1)

A

implies

B

along

R

iff

(2)

there

exists

a

modal

interpolant

C

such

that

A|=

C|=

B

.
A

simple

modification

holds

with

different

languages

on

both

sides

(cf.

Section

10.1).

3

Complete

Modal

Calculi
The

simplest

useful

inferences

work

as

follows.

Given

some

transfer

statements

A

→

[R]B
as

premises,

how

to

derive

a

new

one,

representing

some

further

transfer

of

information?
What

this

requires

is

an

axiomatization

of

the

Horn

fragment

of

minimal

polymodal

logic.
(The

version

needed

for

this

purpose

is

'global

consequence',

from

universal

truth

of

the
premises

in

a

model

to

universal

truth

of

the

conclusion.)

This

is

easy

to

do.

Richer

logics

to

this

effect

use

Horn

fragments

of

dynamic

logics

building

up

complex

new
relations

t

o

g

e

t

th

e

right

transfer

statements

f

o

r

the

conclusions.

E.g.,

hypothetical

syllogism:

from

A

→

[R]B

and

B

→

[S]C

to

A

→

[R

;

S]

C

The

Tree

Calculus

f

r

o

m

"Dynamic

Bits

a

n

d

Pieces"(1997)

gives

a

concrete

implementation.
Its

assertions

generalize

the

schema

A→[R]B

to

the

more

convenient

and

flexible

format
"description

of

some

tree

of

connected

models"

implies

"description

of

the

root

situation".
This

calculus

w

a

s

designed

to

describe

plan

formation,

but

it

can

also

describe

combination
of

information

links

('planning

new

information').

It

is

reprinted

in

the

Appendix

below.

4

A

First-Order

Horn

Clause

Analysis
All

the

above

inference

can

be

formulated

in

terms

of

universal

Horn

clauses,

whose
variables

range

over

th

e

situations

i

n

one

information

network,

and

whose

vocabulary

refers
to

transfer

relations

as

well

as

unary

facts

local

to

a

situation.

Horn

clauses

can

express
more

sophisticated

informational

dependencies

than

what

was

handled

above:

say,

57

∀xyz

((Rxy

&

Sxz

&

Tyz

&

Ay

&

Bz)

→

Cx)

(These

richer

statements

are

no

longer

preserved

under

bisimulation

between

networks.)
This

first-order

calculus

is

easily

decidable

(a

standard

fact),

and

one

complete

inference
system

is

PROLOG-style

SLD

resolution.

Even

so,

there

is

an

interest

to

explicit

calculi
for

specific

links

–

and

expressive

completeness

for

modal

logics

matching

their

Horn
clauses.

5

Sequential

and

Parallel

Operations
Informational

inference

goes

in

tandem

with

link-building.

To

see

this,

one

can

analyse
propositional

inferences

with

relational

tags,

and

observe

the

emergence

of

complex

links.
(Cf.

again

the

Tree

Calculus

of

our

Appendix.)

Natural

examples

are

the

following:

from A

→

[R]B,

B

→

[S]C

infer

A

→

[R

;

S]

C composition
from

A

→

[R]B infer ¬

B

→

[Rˇ]¬

A converse
from

A

→

[R]B,

A

→

[S]B infer

A

→

[R∪S]

B union

The

obvious

language

for

this

is

a

fragment

of

propositional

dynamic

logic.

But

if

we

want
to

'linearize'

the

two-dimensional

finite

action

trees

which

arise

eventually

in

this

setting,
we

must

use

the

extended

Choice

Calculus

with

main

operation

&

of

Section

10.6.

Even
then,

not

every

propositional

inference

will

'fit'.

We

also

need

'parallel'

operators,

as

in:

from

A

→

[R]B,

C

→

[S]D infer

(A,

C)

→

[RxS]

(B,

D)

product

or

in

first-order

transcription:

∀xyzu:

((Ax

&

Cy)

&

(Rxz

&

Syu))

→

(Bz

&

Du)

A

concrete

calculus

f

o

r

this

purpose

needs

product

operators

on

complex

states

i

n

a

polyadic
version

of

propositional

dynamic

logic.

Such

modal

calculi

were

provided

in

Section

2.
Notice

again

that,

although

these

calculi

were

developed

to

model

processes

(through
process

graphs),

they

also

fit

the

current

interpretation

in

terms

of

information

networks.

6

Extensions

with

Guarded

Patterns;

'Boosting'
Modal

logics

retain

their

decidability

when

extended

t

o

t

h

e

Guarded

Fragment

of

first-order
logic

(and

even

further;

cf.

Section

3).

The

latter

allows

all

bounded

existential

quantifiers

∃y

(G(x,

y)

&

φ

(x,

y))

Thus,

we

can

freely

use

existential

modalities

<R>

of

various

kinds

in

our

calculi

(going
b

e

y

o

n

d

universal

Horn

clauses)

without

loss

o

f

decidability.

F

o

r

instance,

a

modal

statement
A

→

<R>

(A

&

B)

Johan van Benthem

Johan van Benthem

Johan van Benthem

Johan van Benthem

Johan van Benthem
composition

Johan van Benthem

Johan van Benthem
union

Johan van Benthem

Johan van Benthem

Johan van Benthem

Johan van Benthem
product

Johan van Benthem

58

says

that

A

may

be

boosted

to

B

along

R

.

In

modal

logic,

techniques

like

Segerberg's
'Bulldozer

Theorem'

or

Vakarelov's

'Product

Lemma'

boost

various

properties

of

frames
along

bisimulation.

(Van

Benthem

1997B

has

more

o

n

boosting.)

A

l

s

o

,

standard
unraveling

is

a

construction

which

adds

intransitivity

and

other

tree

properties

along
bisimulation.

7

A

Complete

Modal

Calculus

with

Existence
T

o

describe

some

of

the

previous

phenomena

(such

as

'modal

boosting')

one

can
axiomatize

the

A

→

[R]B,

A

→

<R>B

fragment

of

the

minimal

modal

logic

in

its

own
right.

(The

latter

suffices,

in

a

sense,

for

the

whole

system

–

via

a

well-known

subformula
coding

trick.)

But

again,

to

get

the

subtler

principles,

one

needs

explicit

first-order
versions,

too.

8

Concrete

Excursion:

Predicate

Logic

with

an

Extension

Modality
Specific

transfer

facts

in

our

richer

calculi

may

be

much

more

complicated

than

those

of
the

form

A

→

[R]B,

which

were

often

RE

(though

usually

not

decidable).

For

instance,
saying

that

A

implies

B

along

all

submodels

is

quivalent,

by

the

Los-Tarski

Theorem,

to
stating

that

there

exists

some

universal

interpolant

C

such

that

A|=

C

and

C|=B.

But

the
latter

assertion

is

clearly

RE.

We

discuss

one

similar

existential

case,

showing

how
procuring

base

facts

about

'intrinsic

information

flow'

is

highly

non-trivial.

Consider

first-order

formulas

with

implications

t o

existential

modalities.

These

are
needed,

e.g.,

to

express

situation-theoretic

'constraints'

like

"where

there

is

smoke,

there

is
fire."

Another

motivation

was

the

ubiquity

of

modal

techniques

like

'boosting

along
bisimulation'.

We

list

some

facts

which

are

easy

to

prove:

Fact The

general

notion

"

A

→

<inclusion>B

"

is

not

RE.

Proof

One

easily

reduces

first-order

satisfiability

to

this

notion.

!

Question

What

is

the

exact

complexity

of

this

notion?

A

s

we

shall

see

i

n

a

moment,

t

h

e

preceding

implication

i

s

arithmetically

definable.

Our

more
precise

conjecture

is

Π02

for

the

relation

of

'submodel'.

Similar

questions

arise

for

other
important

model

connections,

in

particular

–

with

'modal

boosting'

–

for

bisimulation.

Proposition The

notion

"

A

→

<inclusion>B

"

is

equivalent

to

conservativity
of

A

over

B

w.r.t.

universal

statements.

59

Proof

There

is

a

straightforward

semantic

argument

for

this.

(1)

First,

if

B

implies

some
universal

sentence

C,

then

so

does

A.

For,

let

M

be

any

model

for

A.

It

has

some

extension
N

which

is

a

model

for

B.

Therefore,

C

holds

in

N,

and

by

preservation

under

submodels,

C
also

holds

in

M.

(2)

Conversely,

let

M

be

any

model

for

A.

Consider

the

atomic

diagram

of
M

together

with

B.

We

claim

that

this

is

finitely

satisfiable.

For

suppose

otherwise.

Then
B

implies

some

negation

of

a

conjunction

of

true

literals

in

the

M-diagram,

and

–
quantifying

out

the

new

domain

constants

–

we

get

a

universal

consequence

of

B

which

is
false

i n

M ,

and

hence

does

not

follow

from

A.

This

refutes

the

given

universal
conservativity.

!

Note

that

conservativity

is

typically

Π02

–

which

explains

the

earlier

conjecture.

By

quite
similar

reasoning,

we

can

determine

a

counterpart

for

'boosting

along

bisimulation'.

Proposition The

following

assertions

are

equivalent

for

first-order

formulas

A,

B

:
(a)

each

model

for

A

has

a

bisimilar

model

where

B

holds
(b)

B

is

conservative

over

A

with

respect

to

modal

consequences.

If

A

is

a

modal

formula,

condition

(a)

gives

a

bisimilar

model

where

both

A

and

B

hold.

Excursion

Implication

up

to

some

vocabulary
Conservativity

suggests

a

ternary

notion

of

consequence

A

|=

B

|

L

defined

as

follows:

A
implies

every

L-consequence

of

B

.

Ordinary

valid

consequence

is

A

|=

B

|

LB,

and
conservative

extension

of

A

by

B

is

B

|=

A

|

LA

&

A

|=

B

|

LA

.

This

leads

to

a

new
calculus

with

ternary

inferences

that

may

also

change

vocabulary.

E.g.,

A

|=

B

|

L

and

C

|=
B

|

L'

imply

A

∨

C

|=

B

|

L∩L'

.

Interesting

new

questions

arise

in

such

a

setting.

E.g.,

does
A

|=

B

|

L

,

A

|=

B

|

L'

imply

that

A

|=

B

|

L∪L'

?

The

answer

is:

"no"

in

general,

but

"yes"
for

propositional

logic,

and

suitable

first-order

fragments.

This

would

provide

a

concrete
calculus

of

interpolation

and

conservativity,

beyond

the

usual

proof

systems.

I t

also
generalizes

so-called

'Ramsey

Eliminability'

of

theoretical

terms

in

the

philosophy

of
science,

which

turns

on

extension

relations

between

theories

with

different

vocabularies.
(Historical

motivation:

explaining

the

role

of

theoretical

terms,

as

opposed

to
observational

vocabulary,

in

the

claims

made

by

empirical

scientific

theories.)

Here

is

a
negative

result.

Theory

T+

(vocabulary

L+L'

)

may

conservatively

extend

theory

T
(vocabulary

L

),

without

every

model

of

T

having

an

L-bisimulation

to

a

model

of

T+

.

Another

view

of

the

matter

i s

provided

i n

Section

10.3.

Universal

or

existential
consequence

along

model

relations

involves

modal

statements

across

standard

models.
This

move

amounts

to

evaluation

of

formulas

both

inside

and

across

models.

In

particular,
an

existential

modality

<R>

shifts

evaluation

to

some

other

model,

suitably

related

to

the
current

one.

Thus

we

have

a

much

more

general

model-theoretic

Johan van Benthem

Johan van Benthem

Johan van Benthem

60

Question What

is

the

complete

propositional

dynamic

logic

of

the

universe

of

models
with

the

relations

of

submodel,

bisimulation,

and

potential

isomorphism
(all

taken

w.r.t.

changing

vocabularies)?

In

particular,

might

it

be

effectively

equivalent

to

True

Arithmetic?

9

Combined

Interpolation

Theorems
Let

us

also

note

that,

in

information

networks,

classical

preservation

results

may

have

to

be
modified.

For

instance,

suppose

that

we

know

that

model

M

sits

in

an

environment

of

one
extension

N

where

A

holds,

while

it

is

a

homomorphic

immage

of

some

model

K

where

B
holds.

What

is

the

best

that

we

can

say

about

M?

Using

Los-Tarski

and

Lyndon,

one

would
say

that

M

satisfies

all

positive

consequences

of

B

and

all

universal

consequences

of

A.
But

is

this

also

the

best

one

can

do?

This

may

be

seen

as

a

form

of

generalized

consequence
in

a

three-model

network

with

a

submodel

link

and

a

homomorphism

link.

Indeed,

we

have
the

following

generalization

of

the

usual

first-order

preservation

theorems:

Proposition If

C

follows

at

position

M

from

A,

B

in

all

3-networks

as

described,
then

there

exists

a

universal

consequence

A'

of

A

and

a

positive

consequence
B'

of

B

such

that

the

conjunction

A'

&

B'

implies

C.

Proof The

argument

is

a

straightforward

combination

of

the

usual

ones.

Let

UN(A)

be

the
set

o

f

all

universal

consequences

of

A

,

and

POS(B)

t

h

e

set

of

all

positive

consequences

of

B.

Claim UN(A)

∪

POS(B)

|=

C

Let

M

b

e

any

model

for

this

combined

set.

First,

since

M

satisfies

POS(B),

the

usual

model-
theoretic

argument

shows

that

there

exists

some

model

K

for

B,

as

well

as

a

surjective
homomorphism

from

K

onto

some

elementary

extension

M'

of

M .

Next,

consider

the
atomic

diagram

of

M'

together

with

A.

This

set

is

finitely

satisfiable

–

again

by

a

standard
argument

(observing

that

any

universal

sentence

true

in

M'

is

also

true

in

M).

Therefore,

by
the

assumption

of

the

theorem,

C

holds

at

M'

–

and

therefore,

it

also

holds

at

M.

The

required

conjunction

A'

&

B'

now

emerges

from

the

Claim

by

Compactness.

!

Obviously,

since

the

usual

model-theoretic

preservation

arguments

'add

up'

so

easily

here,
there

must

be

a

more

general

combination

result

in

the

background.

We

leave

the

relevant
generalisation

to

the

reader.

Johan van Benthem

Johan van Benthem

61

10

Plans

and

a

Resource

Interpretation
The

plan

interpretation

of

process

graphs

makes

their

nodes

into

locations

with

resources,
while

relations

indicate

actions

possibly

using

these

resources.

Intuitively,

this

is
occurrence

based

(as

in

linear

or

categorial

logic),

and

hence

it

leads

to

different

notion

of
bisimulation,

where

having

many

successors

satisfying

(say)

atom

p

is

not

the

same

as
having

just

one.

This

goes

beyond

the

framework

so

far,

and

when

taken

to

information
networks,

i

t

may

require

t

h

e

use

o

f

ternary

and

general

finitary

relations

between

their

nodes.

This

resource

interpretation

requires

us

to

resolve

an

ambiguity.

It

reads

process

graphs

as
AND

trees

(one

has

to

perform

all

the

component

actions

to

obtain

the

result),

not

as

OR
trees

(t

h

e

usual

interpretation

o

f

graphs

process

theories).

This

i

s

the

same

issue

that

came
up

in

our

discussion

of

extensions

for

PDL:

choice

trees

versus

complex

states

for

joint
action.

11

Richer

Flow

Networks
In

Graph

Theory,

networks

are

one

major

use

for

graphs,

with

basic

results

like

the

Ford

&
Fulkerson

Theorem

on

maximum

flow

capacity.

Can

this

be

related

to

our

analysis?

I

n

probabilistic

treatments

(c

f

.

Michiel

v

a

n

Lambalgen's

work),

one

has

numerical

measures
o

f

reliability

for

the

links.

Can

we

extend

our

analysis

to

deal

with

'quality'

of

transmission?

__
APPENDIX

Resolution

in

Dynamic

Logic

as

Task

Calculus
__

Hoare

Calculus

is

a

system

for

proving

correctness

of

programs,

or

developing

correct
programs.

But

computation

is

just

one

kind

of

action,

and

correctness

assertions

{A}S{B}
may

just

as

well

be

read

as

descriptions

of

any

available

action

S

that

will

produce

effects
described

b

y

postcondition

B

g

i

v

e

n

resources

described

b

y

precondition

A

.

O

u

r

more

general
planning

task

does

not

consist

in

proving

isolated

correctness

statements.

It

is

rather

one

of
logical

derivation.

Given

a

number

of

routines

{A}S{B},

how

can

we

put

together

some
combination

of

them

performing

some

new

task,

from

a

given

precondition

to

a

given
postcondition?

Such

a

more

general

'calculus

of

tasks'

(ELD,

chapter

11)

is

a

common
interpretation

of

propositional

dynamic

logic.

It

only

involves

a

small

fragment

of

the
latter

system,

however.

We

can

take

the

conditions

to

be

Boolean,

and

the

given

actions

to
be

atomic.

So

our

question

is,

what

is

a

complete

subsystem

for

planning

derivations?

Resolution

and

Monotonicity One

natural

method

is

propositional

resolution.

We
can

normalize

task

statements

–

by

valid

Disjunction

of

Antecedents

and

Conjunction

of
Consequents,

to

conjunctions

of

universal

'action

clauses'

of

the

forms

A

→S

B

,

with

A

a

62

conjunction

of

literals,

B

a

disjunction,

and

S

a

program

expression.

We

need

a

suitable
style

of

reasoning

on

these

clauses.

Now,

resolution

is

really

Monotonicity,

a

very

general
logical

inference

allowing

insertion

of

suitable

formulas

i n

syntactically

'positive'
positions.

E.g.,

consider

¬

A

∨

B,

A

∨

C

.

The

former

says

A

implies

B

.

Hence,

we

may
substitute

B

for

A

in

the

positive

A-occurrence

in

the

second

disjunction,

to

get

the

usual
resolvent

B

∨

C.

This

is

the

'upward'

view.

Alternatively,

we

can

use

a

'downward
monotonic'

inference

where

¬

C

implied

A,

substituting

¬

C

for

the

negative

occurrence
of

A

i n

the

first

clause.

With

labeled

action

clauses

A

→S

B ,

however,

some
complications

arise:

(1)

First,

consider

analogues

of

standard

propositional

inferences.

Let

A

→S

B,

B→T

C

.

We

want

to

conclude

A

→S;T

C

.

What

is

the

precise

mechanism

producing

the

right

programs

in

these

conclusions?

(2)

Next,

take

action

premises

A

→S

B

∨

C,

B

∧

D

→T

E

.

Given

that

the

actions

separate

the

Boolean

atoms,

i

s

there

a

good

format

f

o

r

a

n

evident

conclusion

a

t

 a

l

l

?

We

make

a

simple

proposal

based

on

'plan

trees'

describing

actions

with

conditions.

Plan

Implications Let

us

replace

the

above

correctness

statements

A

→S

B

by
Boolean

implications

of

the

form

PSA

→

B

–

or

more

generally,

by

'plan

implications'

Π

→

B

where

Π

describes

the

succesful

execution

of

some

actions

from

given

resources,

using
existential

modalities

PSA

looking

backward

into

the

past

of

the

current

state.

In

general,
Π

describes

a

finite

tree

of

previous

atomic

actions,

with

literals

true

at

its

nodes.

Thus,

it
may

be

constructed

using

only

literals,

conjunctions

and

indexed

program

modalities

PS

.
The

conclusion

B

may

b

e

a

disjunction

of

literals.

A

s

usual

i

n

Hoare

Calculus,

premises

are
universally

quantified,

over

all

available

states

in

our

model.

The

above

examples

become

(1)

PS

A

→

B,

PT

B

→

C,

with

conclusion

PT

PS

A→

C

by

downward

Monotonicity.

The

passage

to

one

complex

program

PS;T

A

→

C

will

come

later.

(2)

From

PS

A

→

B∨C,

PT

(B∧D)

→

E

,

downward

Monotonicity

yields
PT

(¬

C

∧

PS

A

∧

D)

→

E

–

or

'linearized':

P

(A)?

;

S

;

(¬

C

∧

D)?

;

T

→

E

Tree

Calculus Here

is

a

simple

Tree

Calculus

justifying

these

inferences.

Given
premises

of

the

above

form,

plus

some

tree

formula

Π*

,

apply

the

following

three

rules.

63

In

general,

starting

from

{Π*}

,

these

will

lead

to

the

formation

of

a

finite

set

of

tree
(formula)s

{Π1,

...,

Πk}

,

to

be

viewed

as

a

disjunction

of

possible

cases:
I If

the

tree

for

some

premise

Π

→

B

'fits

inside'

some

tree

Πi

,
at

any

node

position,

then

we

may

write

B

at

that

node.
II If

a

tree

has

a

disjunction

D

at

a

node,

we

may

replace

it

by
a

disjunction

of

trees

with

the

successive

D-literals

at

that

node.
III If

a

contradiction

occurs

at

a

node,

remove

the

tree.

A

set

of

trees

implies

a

disjunction

B

if

B

follows

from

the

literals

at

each

root.

We

revisit
the

above

examples

t

o

demonstrate

how

this

works

(including

the

notion

of

'fitting

inside').

(1) Start: {PT

PS

A}
I:

{PT

(PS

A

∧

B)}
I:

{PT

(PS

A

∧

B)

∧

C}
The

literal

C

at

the

root

implies

the

desired

conclusion.

(2)

Start:

{PT

(¬

C

∧

PS

A

∧

D)}.
I:

{PT

(¬

C

∧

PS

A

∧

(B

∨

C

)

∧

D)}
II: {PT

(¬

C

∧

PS

A

∧

B

∧

D),

PT

(¬

C

∧

PS

A

∧

C

∧

D)}
III: {PT

(¬

C

∧

PS

A

∧

B

∧

D)}
I: {E

∧

PT

(¬

C

∧

PS

A

∧

B

∧

D)}
The

desired

conclusion

E

follows

from

inspection

of

the

root.

Theorem The

Tree

Calculus

is

complete

for

our

task

inference.

Proof

Starting

with

set

{Π}

for

the

conclusion

Π

→

B

,

perform

all

possible

inferences

in
the

calculus,

using

the

given

premises

to

perform

substitutions.

Remove

trees

which

are
subtrees

o

f

other

ones.

(These

a

r

e

implied.)

This

process

will

stop

after

finitely

many

steps.
It

only

produces

trees

richer

than

the

original

one

–

which

therefore

imply

it,

in

an

obvious
sense.

Now,

suppose

some

tree

Πi

in

the

resulting

set

has

root

literals

whose

conjunction
fails

to

imply

B

.

It

gives

a

counter-model

to

the

implication

as

follows.

Take

Πi

itself

as

a
model,

with

only

the

atomic

relations

described,

and

only

those

atomic

propositions

true

at
each

node

that

are

explicitly

indicated

at

it.

Evidently,

B

fails

at

the

root.

But,

each

premise
is

true

at

every

node

in

this

model.

For,

if

its

antecedent

tree

is

true

at

a

node,

then

it

'fits'
inside

Πi

(this

is

because

of

the

special

form

of

the

corresponding

modal

formulas),

and
hence,

it

would

have

given

rise

to

a

further

I-move

adding

literals.

In

general,

this

will

be

a
disjunction,

whence

a

further

II-move

was

applied,

yielding

trees

with

extra

literals

(as
compared

with

Πi

).

Not

all

of

these

can

have

been

removed

by

III-moves,

or

Πi

would
not

have

made

i

t

into

the

final

set.

But

the

other

situations

are

impossible,

too,

as

Πi

would

64

then

have

been

removed

for

not

being

maximal.

The

outcome

must

be

that

n

o

antecedent

of
a

premise

is

true

at

any

node

in

our

model

–

and

hence

all

premises

hold

vacuously.

!

A

complete

calculus

of

task

inference

is

no

surprise.

Inference

between

plan

implications
is

decidable,

even

with

premises

read

universally

(ELD,

Chapter

7,

Theorem

10).

Program

Operations

for

Hoare-Style

Conclusions Is

there

a

standard

procedure

for
linearizing

statements

Π

→

B

into

standard

correctness

assertions

A

→S

B,

of

course,
for

suitable

complex

programs

S

?

The

matter

is

not

entirely

clear.

Branching

tree

patterns
call

for

parallel

program

operators,

going

beyond

dynamic

logic.

E.g.,

premises

A

→S

B,
C

→T

D

suggest

a

conclusion

A∧C

→U

B∧D

for

some

new

program

U

.

One

option

for
U

might

be

Boolean

intersection

S∩T.

But

we

can

also

use

new

parallel

operators.

Tree
transcription

of

our

premises

suggests

a

conclusion

(PSA

∧

PTC)

→

B∧D,

whose
linearisation

might

read

true

→

((A)?

;

S)

|

|

((B)?

;

T)

C

.

A

third

option

are

n–ary

modalities
directly

over

tree-like

structures

(cf.

Hollenberg

1998),

that

support

parallel

programs.
The

design

of

a

suitably

expressive

repertoire

of

program

operations

for

our

task

calculus
remains

open.

But

then,

trees

themselves

may

b

e

just

a

s

convenient

representations

o

f

plans.

Synthesizing

Plans

The

Tree

Calculus

also

helps

synthesize

plans

out

of

premise
routines.

Now,

we

have

'resource

propositions'

A

and

a

'goal'

G

,

and

a

'plan'

is

a

tree

with
leaves

from

A

only

which

implies

G.

One

procedure

enumerates

all

possible

resource-to-
goal

implications

from

the

given

premises

(with

their

plan

trees).

A

finite

upper

bound

to
the

number

of

the

latter

can

be

computed

in

advance

(it

only

depends

on

the

proposition
letters

occurring

i

n

the

problem).

Then,

w

e

solve

the

standard

propositional

search

problem
from

A

to

G

using

the

derived

implications.

An

associated

plan

with

intermediate

actions
arises

from

successive

leaf

substitution

of

trees

for

auxiliary

implications.

Example
Let

the

resource

proposition

be

A

and

the

goal

G

.

The

available

action

premises

are

PSB
∧

C

→

G,

PT

B

→

C,

PU

A

→

B

.

We

derive

G

from

A

as

follows:

1 G

from

B,

C
2 B

from

A
3 C

from

B
4 B

from

A

The

associated

trees

will

work

out

to

(via

their

above

normal

form

descriptions):

1 PSB

∧

C
2 PSPU

A

∧

C

65

3 PSPU

A

∧

PT

B
4 PSPU

A

∧

PT

PU

A

!

Less

blindly,

we

need

a

search

procedure

for

finding

good

conclusions

(including

plans).
Now,

notice

that

the

preceding

example

looks

somewhat

like

a

logic

program

derivation.
Here

we

need

a

translated

first-order

version

of

our

plan

implications,

in

the

standard
modal

fashion.

Consider

the

earlier

Example

(1).

Take

first-order

clause

forms

for

its

two
premises:

Ax

∧

Sxy

→

By

and

Bx

∧

Txy

→

Cy

.

From

an

assumption

Au

,

the

standard
search

procedure

for

a

proof

of

the

goal

Cv

will

produce

outcome

Sus

∧

Tsv

–

whose
quantified

version

∃s

(Sus

∧

Tsv)

is

exactly

the

definition

of

program

composition
proposed

earlier.

The

preceding

example

may

be

analyzed

in

a

similar

manner

through

its
first-order

transcriptions,

trying

to

get

Gv

from

instances

of

Au

using

the

clauses

Bx

∧

Sxy

∧

Cy

→

Gy

Bx

∧

Txy

→

Cy Ax

∧

Uxy

→

By

Thus,

standard

proof

search

via

first-order

transcriptions

may

produce

useable

answers.

Another

angle

on

plan

synthesis

is

'propositional

completeness'.

All

valid

consequences
between

plan

implications

reduce

to

valid

propositional

inferences

by

disregarding

all
action

operators

PS

.

(These

consequences

must

also

hold

on

models

where

all

atomic
relations

coincide

with

the

identity

relation.)

Conversely,

consider

any

valid

propositional
inference

from

a

set

of

implicational

clauses

to

one

implicational

clause

D

→

E

.

Now,
assume

that

the

premise

clauses

all

carry

an

action

S

producing

their

consequent

from
their

antecedent.

Question Is

there

always

a

plan

implication

Π

→

E

for

a

valid

conclusion
whose

antecedent

Π

only

employs

conditions

that

occur

in

D

?

A

positive

answer

would

express

a

kind

of

functional

completeness

for

the

programming
repertoire

encoded

in

our

Tree

Calculus.

Finally,

we

mention

a

case

of

plan

inference
where

additional

expressive

power

seems

needed.

Negations

and

Converse

The

obvious

dynamic

version

of

propositional

Contraposition

A

→

B

|=

¬

B

→

¬

A

is

the

inference

from

from

PSA

→

B

to

PSˇ

¬

B

→

¬

A

involving

a

relational

converse

Sˇ

.

Contraposed

once

more,

this

implication

reflects

the
well-known

tense-logical

'duality

inference'

from

P

A

→

B

to

A

→

G

B

.

This

example

66

shows

that

we

need

plan

trees

which

also

allow

converse

arrows,

going

to

successors,
rather

than

predecessors

in

the

atomic

relations.

It

may

be

checked

that

the

above

rules
remain

complete.

E.g.,

dynamic

contraposition

remains

derivable

in

this

fashion.

67

9 Information Processing as a Social Activity

Colloquim on Social Organisation in Logical Theory, TU Eindhoven, March 1998.

The following are points from an abstract for a talk, together with some observations

prompted by a day of pleasant discussion at Eindhoven Technical University.

1 Logic in Groups Traditional logic is mainly about single agents that think, reason and
evaluate. But social themes are emerging nowadays. Our somewhat Pickwickian sense of
'social' themes employed here: all those issues where a group level is essential.

2 Epistemic Logic A famous case where a social level leads to significant logical insight is
Epistemic Logic, in its gradual development from individual knowledge to group knowledge.
Hintikka talked about single agents which can reflect on each other's information through finite
iteration of knowledge operators Ki, Kj . Lewis put 'common knowledge' on the map in his

study of conventions and rules, R. Fagin, J. Halpern, Y. Moses & M. Vardi 1995 has a full-
fledged theory of 'collective epistemic operators' EG ("everyone in group G knows"), CG
("common knowledge in G "), IG ("implicit knowledge in group G"). Common knowledge is a
typical group phenomenon (what is known in 'reflective equilibrium'), as is implicit knowledge
(what is known by pooling the individual information). No explicit calculus of groups occurs in
epistemic logic, which would take this emancipation of social structure one step further.

Questions
Introduce groups as an explicit object of study, in a dynamic logic with manipulation of
G-arguments, not just proposition arguments. An example is a modal calculus of social
combination inferences such as (1) CGA implies CG'A for all subgroups G' of G (valid

for factual propositions, invalid for statements of ignorance), or (2) combinations of
group knowledge, such as (CG1A & CG2B) → C(G1∪G2)(A&B) (invalid), or (IG1A
& IG2B) → I(G1∪G2)(A&B) (valid). This calls for systematic comparison with

dynamic logics and process algebras for parallel computation. (Common knowledge
can be viewed as referring to a program (i1 ∪... ∪ ik)* where G = {i1, ..., ik}. What is

the natural group structure allowing for cooperation between subgroups?

3 Reducible versus emergent group properties. E reduces to properties of individuals, C
'half' (in a circular manner), some things not at all. Compare the semantics of collective
predicates in natural language, which is notoriously hard. E.g., the meaning of a simple, almost

68

'logical' expression like the reciprocal "each other", turning an individual predicate into a
collective one applying to groups, has been under debate for decades. (No one has such
difficulties with its individual cousin "self"...) Similar problems afflict plural quantifiers (van
der Does 1992). This is a serious issue. Perhaps the collective talk pervading communication
in natural language has no definite truth conditions at all, only partial constraints! If "the
prisoners liberated each other", some prisoner liberated some prisoner. There may not be more
'regularity' than that, though by no means everyone need have liberated everyone. And as every
academic knows, if "the professors quarrelled" it is even less clear what happened.

Questions
Study many-level languages mixing knowledge and action of both individuals and
collectives, allowing for some reduction between levels as the case may be.

4 Semantics of Communication Language use and reasoning is a social proces.
Contemporary logical semantics is moving from its original habitat of single sentence meanings
towards discourse and communication. How to deal with these social phenomena without
losing the subtlety and rigour that has been achieved lower down? One concrete challenge in
this move is one single building block of dialogue, the communicative unit consisting of a
question/answer exchange. This crucially affects collective information states of questioner and
answerer, by suitable updates for the two speech acts. This is an active research area, witness
Jaspars 1994), Gerbrandy & Groeneveld 1997, as well as recent research by Jeroen
Groenendijk, dynamifying Groenendijk & Stokhof 1984.

Questions
How to model collective communication states, and important updates? More generally,
how to take communicative actions like questions seriously as a new category in logical
theory – in addition to proof steps or evaluation moves?

Excursion Specifying preconditions/postconditions, or specifying updates directly?
In this area, two logical approaches occur which are interestingly different. The Bunt–Jaspars
line specifies the relevant dynamic process in terms of preconditions and postconditions. Thus,
a question-answer exchange between agents Q and A might be any move which starts from Q-
ignorance about some proposition P and Q-knowledge that A knows if P, to a state where it is
common knowledge that both know if P. The exact nature of the update can be left open.
Conversely, in much Amsterdam work, information states and their updates are central
(satisfying key intuitions) – after which one will just have to see if they satisfy the relevant
postconditions. E.g., Gerbrandy's 'Dynamic Epistemic Logic' has an update operator learn(P)
when agent i learns that P . This changes i's information state, updating all his alternatives

69

with P, while leaving the alternatives for all other agents unchanged. (This is hard to implement
over ordinaryKripke models, which generate 'side-effects' for i's update, affecting the others'
knowledge after all. To avoid this, Gerbrandy uses non-well-founded sets.) Thus, the intuition
here is some form of minimal change. Can this also be cashed out in terms of pre- and
postconditions? After the update, i has 'only' learnt that P, while the others have not learnt
anything new at all. In dynamic logic terms, the postcondition should be something like the
backward-looking converse modality: SP(A, learn(P)) := <learn(p)–1>A. But this statement is
undefinable in the usual update languages. Connections between update systems and pre/
postcondition specifications in static epistemic languages for group knowledge are still scarce.

5 Game Theory The oldest social paradigm in logic are games, that go back to Antiquity.
Paradigmatic modern examples are Hintikka evaluation games, Ehrenfeucht comparison games,
and richest of all for analysing communication: Lorenzen argumentation games. Up until now,
logical games have mainly served to throw new light on existing notions. But they embody
many ideas that are sui generis, such as commitment, role, role switch, strategy, game
resources, 'social construction' of a common object. Games are on the way up in logic, as a
means of exploring new avenues. (Compare the recent work on games for linear logics.)
Moreover, there are some interesting junctions between Game Theory in the received sense of
that term and epistemic logic, e.g., in the work of Bonanno and Vilks. (Cf. Dekel & Gul 1997.)

Questions
What is a paradigm for 'logical games' comparable in scope to the received analysis of
formal proof, or formal computation? Who will solve the meta-equation ? : game =
Hilbert : proof = Turing : computation ? How to import probabilistic considerations (at
the heart of classical Game Theory) into logical games? What are probabilistic moves –
or on another line, how could one certify, without playing all possible games, with
sufficiently high probability, my possession of a winning strategy in logical games?

6 Many-authored Theories 'Social themes' in logic correlate with developments in the
philosophy of science. First, consider information representation. The 'web of scientific
theories' is group knowledge of a whole field. Since the Renaissance, no single individual's
state contains this. Moreover, there are several questions about its architecture. One is
aggregation: possible consistency problems when merging theories. The other is segregation:
how to encapsule parts of theories in a modular fashion, so that failures in one module need not
vitiate the whole? Relevant logical work may be found in the literature on 'combining systems',
as advocated by Gabbay. There are interesting analogies between work on theory structure, and
the structuring of information states in semantics of conditionals and epistemic updates (cf.
Segerberg's recent work on so-called 'hyper-theories', and the discussion in Subsection 10.4).

70

Questions
Give a calculus of social knowledge architecture, with natural inter-theory relations and
combinations. How to combine this with current logics of belief update and revision?
And with preference structure in default logic?

7 Representation and Computation Representation invites computation. Cognitive
action is also becoming a central theme in the philosophy of science. This started with Popper's
pioneering emphasis on learning as a basic category – a theme which is also slowly penetrating
into logic and computer science. It is quite explicit in Theo Kuipers' recent broad monograph on
Cognitive Structures in Science, Philosophical Institute, Rijksuniversiteit Groningen. Social
processes (in our logical sense) in science involve: argumentation games, the role of 'the forum',
betting models for rationality (which involve several players), collective aspects in scientific
proof, theory change, language change, etcetera. Again, these lead to interesting analogies with
developments elsewhere (such as logic, or Artificial Inteligence); cf. Aliseda-Llera 1997.

Questions
Analyse classical problems in the philosophy of science in logical dynamics for 'social'
structures. Compare specific themes in logic and philosophy of science. E.g. key
notions of verisimilitude and truthlikeness in Zwart 1998 resemble those found in
AGM-style belief revision theory. Theory structure often has a syntactic flavour. Thus,
how can one translate systematically between epistemic logic and syntactic proofs:
KiA and 'i has a proof for A' – individually, or socially?

8 Conclusions A social aspect is emerging in current logical studies. There is even more
evidence for this claim than what we have surveyed here, such as interesting analogies between
dynamic epistemic logic and the key phenomena studied in Social Choice Theory (cf. the
introduction in the recent logic textbook by Royakkers and Sarlemijn). But the agenda and
paradigm for the study of social, collective structure in logical terms are still unclear. What this
move leads to is an interesting generalisation of logic. Not just individuals can have goals and
transform information. So can social organisations, which are epistemic agents just as
individuals. A major challenge, therefore, to logic as classically conceived, is extension of its
scope so as to deal with information flow in significant organisations.

71

10 Paralipomena

This final section collects some disconnected fall-out of the preceding investigations.

1 Bisimulation Invariance and Translation

The following point was made by Natasha Kurtonina. Intuitively, 'simulations' may relate processes

with different moves or local properties. But then, the usual model theory of bisimulation – for instance,

as presented in ELD – is too uniform, as it has the same language on both sides. Here is a first response.

Consider two modal models M, N, in different similarity types L, L'. A bisimulation is
a binary relation E between points in the two models with the following properties:

(i) there exists a correlation between L-atoms p and L'-atoms q such that
if s E t, and M, s |= p, then N, t |= q ; and vice versa

(ii) there exists a correlation between L-actions a and L'-actions b such that
if s E t, and s a s', then there exists t' with t b t' and s' E t'; and v.v.

This corresponds to a fixed correlation of features observed in one process with those in
another. In this case, each L-formula φ has a direct L'-translation τ(φ) (and vice versa).

Theorem The following assertions are equivalent:
(a) φ implies ψ along L-L'-bisimulations
(b) there exists some modal L-formula α such that φ |= α, τ(α) |= ψ

The

proof

is

essentially

the

argument

for the Modal Invariance Theorem. From (a) to (b),
one

shows

that the set of all L'-translations of the modal L-consequences of φ implies ψ.

But there are further natural situations. Suppose we have a more complex correlation,
with an occurrence of p in M corresponding to truth in N of some complex L'-formula
σp , and the occurrence of an a-move in M always matched by some finite sequence of
actions

in N defined by some expressen σa . Assume the same in the opposite direction,
with a similar translation τ. Then we need a more complex two-way preservation
statement. E.g., immediately preserved from left to right under σ-translation are all
formulas generated by the syntactic schema p | ¬p | & | ∨ | <a> . But in addition,
universal

modalities

[τ(b)] may be allowed, when translated into plain L'-modalities [b].

72

Question What is the proper treatment of the preceding situation?

Things

get

even

more

complicated

if

we

want

the

definability

to come out, not by fiat, but
as a result of some semantic regularities – as happens in Beth's Definability Theorem.

2 How to Express Variable Dependencies

Decidable remodelling of first-order logic can be done in the form of generalized assignment models,

where 'gaps' encode dependencies between variables. Now dependencies are interesting mathematical

structures in their own right. But are they adequately reflected in the standard predicate-logical language?

We give some examples suggesting the need for, at least, an enriched modal logic on top of the latter.

Consider the main example of a generalized assignment model in ELD, chapter 10. It
has a domain of objects {1, 2}, a set of variables {x, y}, and so there are 4 possible
states. These generate 15 non-empty assignment models, which may encode various
dependencies between the variables. For instance, the one with just {(x, 1), (y, 2)} and
{(x, 2), (y, 1)} made y and x heavily interdependent: a change of value for one forces a
change

for

the other. Now we showed how to interpret a predicate-logical language with
quantifiers

∃x,

∃y

over all these models. But is this really the right medium for bringing
out the underlying dependencies, viewed as important structures in their own right?

Let us look at the situation in modal logic. The standard model is really a 4-world
multi-S5 model with two modalities, which may be drawn as follows:

xy
11

x y
xy xy
21 12

y x
xy
22

To liven things up, we can postulate some binary relation R on the underlying objects,
say, R = {(1, 2)}. Let the language contain atoms Rxy, Ryx. Each of these will be true
in one world in the above picture. One way of making distinctions between dependency
models is by looking at all possible submodels of this multi-S5 model, and asking if
their modal theories are different. It is possible to show that they are, by inspecting all

Johan van Benthem

Johan van Benthem

Johan van Benthem

Johan van Benthem

73

cases. But this does not define dependency information directly. And indeed, standard
predicate logic seems to poor to adequately describe, say, the above 2-world model. No
ordinary relation =x or =y crosses from one world to the other: only ={x, y} does that.

More generally, we need an extended modal logic with modalities for all relations

w =X v iff w, v agree on all variables except at most those in the set X

But

will

this

express

concrete

facts

about

variable

dependencies?

Consider two examples:

(a) "If x changes its value, than so does y"
(b) "Any change in x determines a unique change in y"

Neither assertion is expressible in even a polyadic quantifier language, although some
approximations may be stated. But these are contrived and indirect. It seems we need
further relations =X which say that, in passing from assignment w to v at least (not:
'at most') the variables in X change their values. Then we can express (a) as follows:

<={x}>φ → <={x, y}>φ

This is another case where generalized semantics supports natural new types of
quantifier, beyond the standard first-order ones. The above type of quantification seems
related to introducing some kind of difference modality between states.

Questions What happens to decidability and axiomatization of generalized predicate
 logic when we add a difference modality – or even just a universal modality?

Does this correspond to an obvious extension of the Guarded Fragment?

Here is an almost–translation into the Guarded Fragment with identity. Let φ have
variables {x1, ..., xk} in total, and let y be a new variable, different from these and x:

<={x}>φ ⇔ ∃x1...xk y. (R(x1, ..., xk, y) & y≠x & φ(y/x)(x1, ..., xk))

where R is the uniform relativizing predicate for all quantifiers used in

Andréka, van Benthem & Németi 1998 in order to reduce satisfiability

in generalized assignment semantics to standard satisfiability in GF.

But note that this introduces new variables, and does not seem to do the job precisely.

Taking dependence models seriously means finding the right modal language for them
– and then developing its simulations, correspondences, and complexity properties.

74

3 Lowering Complexity by Long-Distance Evaluation

Various strategies for lowering complexity occur in logical dynamics. One is the use of 'general models'

for

second-order

logic,

restricting

predicate

ranges.

Another

i

s

algebraic

relativization,

restricting

available

object combinations. But one can also vary the mechanism of the truth definition for similar purposes.

We consider evaluation allowing jumps across 'indistinguishable' models as one further strategic

remodeling option, with some good independent motivation, and raise some questions about its effects.

There are few general strategies for lowering the complexity of logical systems. One is
the

use

of

Henkin's

general

models, which turn non-arithmetical second-order logics into
RE

many-sorted

first-order

logics.

Another

is

algebraic

relativization,

which turns RE but
undecidable algebraic logics into decidable ones. But here is another approach, inspired
by the discussion of modal logic with 'bisimulation quantifiers' Bφ in Hollenberg
1998, which 'jump models' by stating that φ holds in some bisimilar state in a possibly
different model. These quantifiers access the current model only 'up to bisimulation'.

Here is our proposal for second-order logic. The problem with predicate quantifiers ∃Y
is their ranging over the power set of the current model M, a mysterious set-theoretic
entity. Let us allow these quantifiers to be a bit fuzzier now, claiming the existence of a
set that we know 'up to a degree' measured by some semantic equivalence relation. In
general, formulas will have free object variables x set to objects a, and free predicate
variables X set to predicates P. Here is a new second-order quantifier clause:

M, a, P |= ∃Y• φ iff there is a model N, b, Q potentially isomorphic
to M, and a set B in N such that N, B |= φ

The relevant potential isomorphism generalizes that of first-order logic. Its component
partial isomorphisms refer to predicates in P concerning a-objects, matching their
counterparts in b w.r.t the corresponding Q-predicates – plus the constant predicates of
the language. This move does not make a difference over countable models, as potential
isomorphism is isomorphism there, but it does when we work on arbitrary models.

Question What are the complexity effects of this move?

For independent motivation, cf. 'consequence along a model relation R' (Barwise & van
Benthem 1996), with a modal form φ → [R]ψ . Our ∃Y is an existential modality <R>.

75

4 Towards a Dynamic Theory Structure

Constructive information states can be thought of as 'theories', in the sense used in the philosophy of

science.

We

identify

a number of stages where theory structure is becoming more complicated these days,

plus some analogies with the needs of dynamic semantics. These thoughts were inspired by Zwart 1998.

Verisimilitude is a ternary relation VA BC saying, intuitively: 'B is more like A than
C is'. To some extent this may be compared with a notion of (preferential) consequence
from C to B, in the context of C. Sjoerd Zwart's recent dissertation surveys many
proposals for more precise definitions, constraints on how the latter are to perform, and
in the process, different representations of the 'theories' involved in this comparison.
Here are some analogies with issues in logic.

4.1 Base Level Here is a first view of theories. T is a set of sentences, which
corresponds semantically to MOD(T), the class of all models that verify every sentence
in T. Tarskian consequence operates at this level:

T1 |= T2 if MOD(T1) ⊆ MOD(T2)

4.2 Partial Logic Let a theory now consist of two disjoint classes of models:
MOD+(T),

the

ones

that

are

definitely

accepted,

and

MOD–(T),

the

ones

that

are

definitely
rejected. The remaining models form a grey zone. This is exactly as in 3-valued logic,
and consequence becomes a bit les clear-cut accordingly. Here are two options:

T1 |=+ T2 if MOD+(T1) ⊆ MOD+(T2)
T1 |=+– T2 if MOD+(T1) ⊆ MOD+(T2) and MOD–(T2) ⊆ MOD–(T1)

This emergence of options for defining logical consequence may match the well-known
proliferation of options for verisimilitude. No unique best choice may exist.

4.3 Hypertheories Now lift theories to families of sets of models (there are
motivations for this in linguistics and AI). E.g., think of the family { MOD(φ) | φ∈T}.
This is intermediate between making theories syntax-independent and syntax-
dependent. E.g., {p, p &q} will be different from {p&q}, but the same as {p&p, q&p}.
Valid consequence between theories at this level is even a less clear-cut intuitive
notion. Should one require, perhaps, that

∀X∈T2 ∃Y∈T1 Y⊆X ?

76

A Difficulty. There are two interpretations for this. Conjunctive: the theory says that all
models in its intersection are 'in', while those outside of all sets of the family are 'out'.
The family records how the intersection was arrived out, as a handle for later belief
revision, or other cognitive processes. Disjunctive: the theory says that one of the sets in
the family is the right one. In this case, the intersection records what is 'in' no matter
what, and the exterior everything that is 'out'. Sjoerd Zwart's 'modal theory
representation' in terms of S5 normal forms is of the second variety: it describes all S5
models in which the theory would be true.

Question What is the connection between this view of verisimilitude and
hypertheories for belief revision as developed by Krister Segerberg?

Of course, there are even richer theory representations, indicating preferences between
different pieces, as in Mark Ryan's well-known dissertation on 'structured theories'.

5 Updates, Upgrades, and Setting an Agenda

Incoming assertions need not just increase information, say, by eliminating possibilities. They may also

change current preferences over these possibilities (as being 'more or less plausible'), or they may merely

structure the set of assertions now on the table. We present a simple propositional model for doing this.

Model 1: Updates Information states are sets of propositional valuations. Update(φ)
is an instruction (alternatively, a mode of reading the incoming assertion) which
eliminates all valuations that do not verify φ, viewed as a classical proposition.

 Model 2: Updates and upgrades Information states are now 'graded' sets of
propositional valuations, where each valuation has a natural number indicating its
'current preference status'. Update(φ) works as before. Upgrade(φ) adds 1 to each
valuation which verifies φ in the standard sense.

Model 3: Updates, upgrades, and tabling Information states are graded sets of
propositional valuations, plus a marking of subsets named by specific formulas ('what's
on the table'). Update (φ), Upgrade(φ) work as before. Table(φ) adds a marking to the
current table for the set of valuations verifying φ.

The final model is a bit like the hypertheories of an Section 10.4, as it carries 'historical'
information. The upshot of all this is a rich procedural version of propositional logic,
which can be used as a concrete model for studying issues like

77

(1) laws of felicitous discourse: 'no update befor tabling', etcetera
(2) logic of discourse moves: such as recursion rules for Update,

Upgrade, and Table w.r.t the standard Boolean connectives
(3) new procedural notions of validity, or other items of

importance to argumentative discourse.

References
J. van Benthem, J. van Eyck & A. Frolova, 'Changing Preferences', CWI, 1995.
F. Veltman, 'Defaults in Update Semantics', Journal of Philosophical Logic, 1996.

6 Choice Trees in Dynamic Logic

Labeled

transition systems are a disjunctive definition of all possible steps in a process. Standard dynamic

logics do not manipulate such choice trees. We briefly sketch a modal extension of PDL which does.

6.1 Trees and Process Graphs Choice tree: finite graph with arrows for actions
(perhaps including tests). OR-interpretation: the various options of a single process.
Distinguish from AND interpretation: joint action (as in Section 2). Intuitive ambiguity
"and"/"or" interpretation: cf. the deontic 'Paradox of Free Choice Permission'.

6.2 Language and Semantics Language. <G>Φ . We record the nodes of the
tree G for use in the syntax, while Φ is an assignment of formulas to these nodes.
Example: single-tree equivalent for <a>φ ∧ ψ with branching tree <a + b > <φ, ψ>
. Interpretation in standard PDL models: via existence of a succesful embedding of G
into the model, starting from the current state as its root.

Fact Every tree-formula is equivalent to an ordinary PDL-formula.

Reason:

trees

can be successively 'unpacked' by conjunction of options plus
composition for continued branches. Next, consider tree operations & and • . The first
adds trees under

a

joint root ('choice'). The second glues a tree under another at some
specified leaf, for 'continuation' of processes. (Options: glue at any node, or at specified
leaves only.)

Fact Initial & and final • are complete for building all finite trees.

6.3 Axioms and Completeness Distribution laws for & and • describe
equivalent ways of constructing a tree. They result in a 'normal form' description which
belongs to the original PDL. This is also the complete axiomatization. Also reflected in
the logic: differences between & and program union ∪ .

78

6.4 Iteration and Fixed Points Implicit definitions and iteration. The outcome
becomes really stronger than PDL. Example: fixed point for the tree matrix

{q, a-b branch to <*, *>}.

Solution: all finite trees in which every node is either a p-leaf, or it has both an a- and
a b-successor that each start a similar tree.

Fact This class is undefinable in PDL, which defines only regular languages.

Nevertheless, this extended language is still decidable.

Fact All tree fixed points are definable in the µ–calculus.

Example The above statement about binary trees is µq• p ∨ (<a>q ∧ q)

Complete axiomatization? The two obvious valid iteration principles reflect properties
of 'smallest pre-fixed point':

 (1) φ (µq• φ(q)) (2) if φ(α) → α, then µq• φ(q) → α

General analysis: effective translation into (a small recursive fragment of – countably)
infinitary

modal

logic:

the

above

fixed

points

use

only

very simple countable
disjunctions. Generalisation

of

Kleene's

Normal

Form

Theorem

for regular expressions:
tree notations.

Most striking feature: all relevant fixed points are reached after ω approximation steps,
because the associated operators are finitely distributive. Syntactic normal form for such
special operators: µq• φ(q) where the occurrences of q lie only in the scope of ∨, ∧, ∃
. This is a tree-style generalisation of Kleene's syntactic regular notation.

6.5 Invariance and SafetyThe extended language (including all
propositional fixed point operations) is invariant for bisimulation.

Proposition Safety for the new tree operations follows by an easy induction.

Converse: finitary and infinitary versions exist (cf. Barwise & van Benthem 1996), but
we have the same difficulty as ever in zooming in more precisely on just fixed point
logic.

79

References

A. Aliseda-Llera, 1997, Seeking Explanations: Abduction in Logic, Philosophy, and AI,
Ph.D. thesis, Symbolic Systems program, Stanford University & ILLC.

H. Andréka, J. van Benthem & I. Németi, 1998, 'Modal Logics and Bounded Fragments
of Predicate Logic', Journal of Philosophical Logic 27:3, 1998, 217–274.

J. Barwise & J. van Benthem, 1996, 'Interpolation, Preservation, and Pebble Games',
Report ML–96–12, Institute for Logic, Language and Computation, Amsterdam.
To appear in the Journal of Symbolic Logic.

J. Barwise & L. Moss, 1996, Vicious Circles. On the mathematics of non-wellfounded
phenomena, CSLI Publications, Stanford.

J. Barwise & J. Seligman, Information Flow, Cambridge University Press, 1997
J. van Benthem, 1985, Modal Logic and Classical Logic, Bibliopolis, Napoli.
J. van Benthem, 1986, Essays in Logical Semantics, Reidel, Dordrecht.
J. van Benthem, 1996, Exploring Logical Dynamics, CSLI Publications, Stanford.
J. van Benthem 1997A, 'Dynamic Bits and Pieces', Report LP-97-01, Institute for

Logic, Language and Computation, University of Amsterdam.
J. van Benthem 1997B, 'The Range of Modal Logic', Report ML–97–05, Institute for

Logic, Language and Computation, University of Amsterdam. To appear in the
Journal of Applied Non-Classical Logics, memorial issue for George Gargov.

J. van Benthem & J. Bergstra, 1995, 'Logic of Transition Systems', Journal of Logic,
Language and Information 3:4, 247–283.

J. van Benthem, J. van Eyck & A. Frolova, 'Changing Preferences', CWI, 1995.
P. Blackburn, M. de Rijke & Y. Venema, Modal Logic, textbook, ILLC Amsterdam &

computer linguistics, Saarbruecken.
E. Börger, E. Grädel & Y. Gurevich, 1996, The Classical Decision Problem, Springer,

Berlin.
C. Butz & I. Moerdijk, 1997, 'A Definability Theorem for First-Order Logic',

to appear in the Journal of Symbolic Logic.
C.C. Chang & H.J. Keisler, 1970, Model Theory, North-Holland, Amsterdam.
E. Dekel & F. Gul, 'Rationality and Knowledge in Game Theory', in D.M. Kreps and

K.F. Wallis, eds., Advances in Economics and Econometrics: Theory and
Applications, Vol. 1, Cambridge University Press, 1997.

J. van der Does, 1992, Applied Quantifier Logics. Collectives and Naked Infinitives,
dissertation, ILLC, University of Amsterdam.

H.C. Doets, 1996, Basic Model Theory, CSLI Publications, Stanford.

80

R. Fagin, J. Halpern, Y. Moses & M. Vardi, 1995, Reasoning about Knowledge, MIT
Press, Cambridge (Mass.).

J. Gerbrandy & W. Groeneveld, 1997, 'Reasoning About Information Change', Journal
of Logic, Language and Information 6:2, 147–169.

E. Grädel, 1997, 'On the Complexity of the Guarded Fragment', preprint, Department of
Informatics and Mathematics, RWTH Aachen.

J. Groenendijk & M. Stokhof, 1984, The Semantics of Questions and the Pragmatics of
Answers, dissertation, Filosofisch Instituut, University of Amsterdam.

J. Groenendijk & M. Stokhof, 1991, 'Dynamic Predicate Logic', Linguistics &
Philosophy 14, 39 100.

M. Hollenberg, 1998, Logic and Bisimulation, Ph.D. Thesis, Philosophical Institute,
Utrecht.

D. Israel & J. Perry, 1991, 'What is Information?', Report CSLI-91-145, Center for the
Study of Language and Information, Stanford University.

J. Jaspars, 1994, Calculi for Constructive Communication, dissertation, ITK Tilburg &
ILLC Amsterdam.

H. Kamp & J. van Eyck, 1997, 'Representing Discourse in Context', in J. van Benthem
& A. ter Meulen, eds., 179–237.

M. Marx, 1997. 'Complexity of Modal Logics of Relations', Report ILLC-ML-97-02,
Institute for Logic, Language and Computation, University of Amsterdam.

M. Marx & Y. Venema, 1996, Multi-Dimensional Modal Logic, Kluwer, Dordrecht.
M. de Rijke, 1993, Extending Modal Logics, Ph.D. Thesis, ILLC, University of

Amsterdam.
E. Spaan, 1993, Complexity of Modal Logics, dissertation, Institute for Logic, Language

and Computation, University of Amsterdam.
A. Tarski, 1986, 'What Are Logical Notions?', in J. Corcoran, ed., History and

Philosophy of Logic 7, 143-154.
F. Veltman, 1996, 'Defaults in Update Semantics', Journal of Philosophical Logic 25,

221-261
S. Zwart, 1998, Approaching the Truth, dissertation, Filosofisch Instituut Groningen

and ILLC Amsterdam.

