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1  Exploring Logical Dynamics: The Main Lines

"Exploring Logical Dynamics" consists of three, not tightly connected parts: a survey

of current trends in dynamic semantics (ch's 1–2), a process theory in extended modal

logic (ch's 4–9), a bunch of illustrations of these phenomena in various fields (ch's

≥10).This introduction sums up what I see as the main points of the ELD monograph.

1  The proposed paradigm: modal logics of process graphs
The core of the book are Chapters 4–9, which propose a mathematical paradigm for the
Dynamic Turn. Process theories can be designed as modal logics of process graphs, not via one
unique system, but as a family varying in expressive strength and deductive power. Thus,
between the lines, the book also presents 'modal logic in a new key' – with its repercussions for
standard parts of logic. In other words, the book basically proposes a general methodology for
the analysis and design of dynamic systems, with theorems backing up its viability and interest.

2  Three main methods: bisimulation, guards, and correspondence
Now, the question arises at once how one avoids a steaming jungle of new systems. What
provides uniformity in the theory? The answer lies in two general viewpoints and techniques,
which form an independent contribution of ELD, beyond 'dynamics'. The main innovations are
(1) systematic use of bisimulations (in a broad sense), which allows for a model theory on
classical lines, (2) syntactic guarded quantifier analysis, as a 'thermometer' for expressive
power and computational complexity. A third red thread through the book are (3) modal frame
correspondences (cf. my 1985 monograph "Modal Logic and Classical Logic"), which identify
the computational import of special axioms on top of the minimal logic for dynamic languages.

3  The tandem approach: both modal and classical
Typical for ELD is a duality between 'modal' and 'standard' viewpoints. These are two sides of
the same coin, modulo effective translation. (In particular, there is no need for choosing
between the two, as some puritans think.) This style of working again has more general import.
It allows us to use insights from standard logic in the new dynamic logic, instead of setting up
the cottage industries that make so much of computer science disconnected. It also suggests
new process logics that would not easily come up otherwise. A typical example are the new
logics for parallellism in LICS 98 (Section 2) – not discussed in ELD, which concentrates on
sequential actions. First, one finds more delicate simulations involved with operations for 'joint
action'. Next, guarded analysis shows how matching languages skirt the edge of undecidability.
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4  The propositional core logic of dynamics: main themes, and repercussions
The ELD framework is an abstract 'propositional logic' of dynamics. This level is very poor.
All the greater the success if one finds significant questions here! By my count, these are four.

(1) General theory of semantic simulations and matching syntactic expressive power, with the
1976 bisimulation invariance theorem as a point of departure (Ch. 4). (2) Analysis of 'natural'
process operations (Ch. 5). Practising dynamic semanticists find this concern abstruse (some
computer scientist find it the outstanding question of their field). Noone knows how to address
this well. It is akin to the vexed question what are 'logical constants'. The ELD proposal reads:
'safety for (bi-)simulation', strengthening Tarski's 'permutation invariance'. The key result is the
1993 safety theorem, which cuts down the first-order operations to essentially obvious
dynamic readings of negation, conjunction and disjunction – and thus identifies a natural
'propositional core' for dynamics. In ELD methodology, this is not the end: as we seek
generality across many kinds of simulation. It is a pilot for a type of expressive completeness
result which I would like to put on the agenda. (3 ) Interplay between expressive
power/computational complexity for dynamic logics. Here the picture reverses. We use a
dynamic perspective to take a new look at standard logic, finding large decidable fragments.
Main result: decidability of the Guarded Fragment, as a pilot for other systems in Chapters 4,
9. (4) Modal/dynamic reinterpretation of standard logic (Chapters 8, 9). The general issue now
is identification of 'hidden parameters' in standard modeling: 'dependence' is a prime example.
The outcome is a new perspective on standard logic, which might change its teaching. Frame
correspondences determine surprising computational content for formerly 'anonymous'
standard laws of first-order logic. Over our generalized modal semantics, various dynamic
extensions for the classical language emerge.

5  Striking omissions
(1) No systematic analysis of complexity for decidable dynamic logics: deeper fine-structure
remains unexplored. (2) No fixed-point versions of systems, so that we miss operations crucial
to real computation. (3) No systematic exploration of additional axioms on top of the minimal
logics, as in standard modal logic. (4) No analysis of parallel or 'joint' action. Of course, these
are all obvious next agenda items – and we know more now, two years after ELD's appearance.

6  Relating other dynamic approaches
ELD proposes and develops a modal paradigm. It does not say that other approaches to
dynamics are wrong (linear logic, game theory, process algebra, &c). What I would claim, two
years later, is an additional virtue. One can often profitably analyze other approaches in the
ELD style. A good example is the modally inspired analysis of Chu Spaces (Section 6), and
another the modal analysis of game logics – which will be the subject of a later ILLC report.
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2  Process Operations in Extended Dynamic Logic

This is an extended abstract for a tutorial at "Logic in Computer Science", LICS 98, Indianapolis,

which was delivered eventually by Maarten de Rijke(whose slides with additional material can be

obtained via email mdr@wins.uva.nl). The text outlines the main program of guarded first-order

analysis for process theories. Further clarifications of definitions and results are in Section 3.

Abstract

Modal  

 

logic 

 

becomes action logic by adding

programs as in propositional dynamic logic or the µ–

calculus. Modal languages can be 

 

seen 

 

as 

 

decidable

fragments of first-order logic that admit a natural

bisimulation, and hence enjoy a good model theory.

Recently, much stronger 'guarded fragments' of first-

order logic have been identified that enjoy the same

pleasant features. The latter 

 

can 

 

serve 

 

as 

 

richer 

 

action

languages 

 

as well. We will  develop the logic of

guarded fragments as a form of process theory. ln

particular, moving from sequential to parallel process

operations correlates with moving to first-order

fragments that are close to, or perhaps just over the

decidable–undecidable fence.

1 The modal dynamics of actions

We will start by reviewing the basics. Standard poly-

modal logic is a decidable fragment of the first-order

logic of process graphs (labeled transition systems,

Kripke models). It can be characterized semantically

as consisting, up to logical equivalence, of those first-

order formulas which are invariant for bisimulation.

Propositional dynamic logic turns this into an

explicit action language by treating propositions and

programs on a par, adding a syntactic component of

regular programs, including tests for all propositions.

Again, this system is decidable, its propositions are

invariant for bisimulation, while its programs are

what may be called 'safe for bisimulation'. (Roughly

speaking, transition relations for all programs enjoy

automatic zig-zag over any existing bisimulation).

To obtain the full power of fixed-point

operations over all syntactically positive predicate

transformers, however, one must move to the modal

µ-calculus. Again, the latter system is decidable, and

it consists of all bisimulation-invariant statements in a

first-order logic with fixed-point operators over

process graphs. (This convenient paraphrase of a

recent semantic characterization is equivalent to the

version involving monadic second-order logic.)

This line of logics runs into clear limitations, as

it does not handle joint or parallel action. But read on.

2 From modal to guarded logics

Modal logic behaves much like a miniature of first-

order logic in its main system properties (effective

axiomatizability, interpolation, preservation results).

The mechanism that drives this strong similarity is

essentially the following meta-equation:

ML : FOL = bisimulation : potential isomorphism

We will unpack this terse, but meaning-laden

statement somewhat in the tutorial. Of course, modal
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logic achieves all this while staying decidable.

Recently, it has become clear these virtues are shared

by much larger decidable parts of first-order logic.

A typical example is the Guarded Fragment (GF),

allowing all existential quantifications of the form

∃y (G (x, y) & φ (x, y))

Here  x, y  are finite sequences of variables, and the

'guard' G (x, y) is an atom in which these variables all

occur, in any order or multiplicity of occurrence

(Rxy, Ryx, Rxyx, etc.). Also, GF has no restriction to

specifically designated predicates for guards – like the

special relational guard 'R' found in modal logic. The

matrix statement φ is again a guarded formula. GF

admits of a natural bisimulation analysis, and it  is

decidable (complete for doubly-exponential time). 

With designated guard predicates, one gets the

weaker but useful action-guarded fragment A-GF,

which makes a principled distinction between state

predicates and action predicates. A-GF enjoys the

same properties as GF (its natural decidability proof

is even somewhat more 'constructive'). Moreover,

both GF and A-GF have a standard model theory.

First-order 

 

translation 

 

from 

 

modal 

 

languages

into GF 

 

explains 

 

many known scattered decidability

results (minimal modal and tense logic, additional

frame conditions). A current focus are decidable

extensions, explaining even more. For instance,

decidability of Since/Until temporal logic reduces to

decidability of GF extended with guards that are

atomic conjunctions which 

 

are 'pairwise guarded': that

is, any two variables from  x, y  occur together in at

least one guard atom. 

The location of the 'undecidability threshold' for full

predicate logic is a subtle matter here. Allowing (1)

matrix statements introducing new free variables, or

(2) arbitrary conjunctions in guards, leads to

undecidable languages. Guards provide a new take on

decidable fragments of FOL, different from the usual

divisions (arities, prenex forms, finite variable sets).

They are rather related to general algebraic techniques

of 'relativization' for various undecidable logics.

Another way of pushing the threshold moves

beyond first-order logic to fixed-point extensions of

guarded fragments. For instance, while transitivity of

relations is non-guarded (and bad for decidability...),

the well-known decidability of modal S4 on transitive

models may be explained by translation into a fixed-

point extension of GF, generalizing the µ-calculus in

an obvious way. Decidability of these (modestly non-

first-order) systems remains a conjecture at present.

The tutorial will cover the basic theory of these

guarded fragments, as compared with full FOL.

3 Connection with process logics

Guarded languages evidently provide richer process

representations than standard modal ones. They allow

for complex states (through the use of tuples), and

thereby to more complex transitions between these.

Our main theme in this tutorial is loosely described by

the following general 'meta-equation':

PDL  :  ?  =  ML :  GF

That is, how can we strengthen PDL to achieve the

benefits 

 

that 

 

t h e  

 

guarded language offers over

standard modal logic? Read in another way, of

course, we have

GF  :  ?  =  ML :  PDL

What is a good action view of guarded languages?

We can extend both questions to include fixed points.

The main aim of the tutorial is to demonstrate

how one can usefully think of process languages and

decidable fragments of standard logics in tandem. For
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instance, the action-guarded fragment A-GF talks

about transitions between complex states where the

only evaluations that we make concern those states.

(My complaining about the noise changes the state

from one with a defective fan to one with a good fan.)

GF allows also comparisons across these states. (My

complaining made me happier now than I was then.)

In parallel action, we would also wish to decompose

what happens to components of the state, and hence

have non-atomic, conjunctive guards. (You complain

about the pump, and I'll deal with the fan - and who

knows, I'll be happier now than you were then.) The

pairwise guarded fragment urges us to state all cross-

comparisons between effects from input to output.

Actually, in this interplay, the difference between

special 'modal' or 'dynamic' formalisms and their first-

order guarded counterparts becomes slight. So there is

a real issue (familiar from other areas of applied

logic) why we could not use suitable fragments of

first-order logic directly, rather than go for new

language design.

4 Sequential action on multi-states

4.1  Joint Action over State Tuples
Collective states may have many components. This

can be represented by moving from binary transition

relations to general finitary relations  Rxy between

finite sequences of individual states. One language for

this is a many-dimensional modal one, with two

components: state predicates, and action predicates.

This requires a two-level syntax, as for PDL, plus

some book-keeping of arities for both levels (position

numbers, or with variables themselves as 'positions').

We will discuss this use of variables in the tutorial.

We outline the main notions and results, skipping the

technicalities of formal notations or proofs.

Assertions. State atoms Px, all Boolean operations,

existential modal operators  <R>x,y  (taking y-state

formulas to x-state formulas) and 'lifters'  [φ, T]z
(from  x-state formulas φ to x+z-state ones).

Programs. Action atoms Rx,y, relation composition

(with arity fit), union (with arity fit), tests (φ )?,

projections  Πx,y  (from a larger x to a subset y).

Models 

 

and a truth definition for this language are

like in many-dimensional modal languages. In

particular, the lifter holds at an x+z-tuple if  φ  holds

at its x-subtuple. That the above is a natural set of

operators shows, amongst others, in the later 'safety

analysis'.

T h e r e  

 

exists 

 

a  

 

straightforward 

 

effective

translation from this system taking both assertions

and programs to formulas of the action-guarded

fragment A-GF. (This extends the usual modal

translations.) So, we can either think of a modal

formalism, or of a piece of first-order logic,

whichever seems more convenient.  Let us call this

language GSAL (Guarded Sequential Action Logic),

viewed either way. It is weaker than A-GF in that we

have fixed action predicates Rx,y: no permutation or

duplication of arguments allowed. One deviant

feature on the first-order side is its distinction

between two sorts of predicate on tuples: state versus

transition assertions. This distinction might seem

empty in standard logic, but we'll give a principled

account in terms of different semantic roles. One

other point. We assume that GSAL has identity, but

this is for convenience - and one can do without.

4.2  Bisimulation, Invariance and Safety
Bisimulations for GSAL are variations on 'potential

isomorphisms' for the full first-order language.

Guarded bisimulations are non-empty families  E  of
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finite partial isomorphisms between two models  M,

N  with respect to the atomic state predicates, that are

closed under domain restriction to sub-isomorphisms,

and which satisfy zig-zag clauses along the atomic

action predicates. 

 

E.g., using straightforward

sequence notation to denote partial isomorphisms, one

requires 'guarded choices' for any atomic action

predicate R :

If  aEb , and RM a', c  with a' contained in a, 

then there exists d such that, for the b' contained

in b which matches a', both RN b', d  and cEd.

And vice versa with guarded choice from N to M.

A first-order formula  φ (x) is  invariant for guarded

bisimulations if, whenever  a E b , then  M  |= φ (a)

iff  N |= φ (b). We call a first-order formula  π (x, y)

safe for guarded bisimulations  if, whenever E is a

guarded bisimulation (zigzagging for the basic action

predicates of the language), the above zigzag clauses

hold automatically for the new relation defined by  π

in the models M , N . Thus, safe formulas define

transition relations that 'stay inside' our simulation

semantics, i.e. our process realm. The basic property

of GSAL is proved by a simultaneous induction.

Proposition  (1) All GSAL formulas are invariant for

guarded bisimulations. (2) All GSAL programs are

safe for guarded bisimulations.

An adaptation of a known model-theoretic argument

for modal logic shows a converse result as well.

Invariance Theorem  For all first-order formulas,

the following two assertions are equivalent:

(1) φ  is invariant for guarded bisimulations

(2) φ  is definable in GSAL.

A more laborious argument, again following a modal

analogue, captures the safe operations. This amounts

to expressive completeness for our key operations.

Safety Theorem  The safe operations are precisely

those definable using (1) atomic action predicates, (2)

tests for arbitrary state formulas, (3) projections, (4)

relation composition, (5) union.

We can vary a bit on this. Instead of all tests, atomic

ones will do, if one adds an 'impossibility negation' ~

on actions. Safe programs describe unions (OR-trees)

of finite sequences of multi-states linked by action

steps or projections, with test assertions interspersed.

4.3  Basic Model Theory
Guarded bisimulation is like standard bisimulation,

though technically a bit more difficult to visualize.

Bisimulations now match finite sequences of states.

There is a modified unraveling construction creating

tree models – by marking of objects via paths <atom

Ra, b, selected object  bi , atom  Sb', c, etcetera>.

This can be used for various purposes, amongst others

for interpolation and preservation properties. Here is a

sample case used in the proof of the Safety Theorem.

A formula φ(Q) is totally distributive in the displayed

state predicate if its truth for the union of any family

{Qi | i∈I} is equivalent to that for some Qi separately.

Distribution Theorem  A GSAL formula is totally

distributive in the state predicate Qx iff it can be

defined in the form <π>Qx , where π is a safe

program as described above whose test conditions on

intermediate states do not involve the predicate  Q.

The dual nature of GSAL invites comparison with

action predicates. A characterization for their total

distributivity looks rather different. The tutorial will

highlight such state-action differences occasionally.
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4.4  Decidability and Axiomatization
GSAL is decidable, and it even has an effective Finite

Model Property, because the action-guarded fragment

h a s  

 

(via 

 

a  

 

direct Reduction Lemma for valid

sequents).

Valid principles are much as in *-free PDL. For

completeness several proofs exist (many-dimensional

modal logic, other representation methods, proof-

theoretic modification of GF decidability arguments).

4.5  Iteration and Fixed Points
Computation has a special interest in fixed points that

can be reached in ω steps. In our first-order analysis,

PDL-style operators suffice for all ω–fixed points

µQ•φ(Q) that can be computed with a matrix φ(Q)

involving one  suitable occurrence of the atom Qx.

Semantically, general ω-stability follows from Finite

Distribution (i.e., φ  holds of Q iff it holds of some

finite 

 

subpredicate 

 

Q0). 

 

The latter allows more

general forms of definition with a finite number of

suitable occurrences of Q. Full first-order logic has a

simple syntactic normal form for finite-distributive

operators:

µQ• φ(Q)  where the occurrences of Q-atoms in φ

lie only in the scope of logical operators  ∨, ∧, ∃

For GSAL, a similar syntactic classification exists.  It

involves the existence of an AND-tree whose steps

are safe actions, and whose nodes may now carry

both  Q-free test conditions and atomic tests involving

Q.

Finite Distribution Theorem  For GSAL state-

formulas φ, the following are equivalent: (1) φ is

finitely distributive in Q, (2) φ states there exists one

out of some set of finite action trees as just described.

Finite distribution for action predicates is still open.

Notice that defining state assertions by fixed points is

not the same as defining new programs or actions by

fixed points. (E.g., µ-calculus only has the former.) 

We have a proof on probation to the effect that

GSAL extended with fixed-point operators for state

predicates 

 

defined 

 

b

 

y

 

 

 

t

 

h

 

e

 

 

 

above 

 

operations 

 

is decidable.

(It generalizes the standard Fisher-Ladner filtration

argument for PDL.) This is one instance of a general

Conjecture  GSAL with fixed-points is decidable.

Indeed, a similar conjecture is around for the full GF.

Finally, Lyndon-style preservation theorems for

monotonic operations also generalize to GSAL, as do

various Craig-style interpolation properties.

4.6  Moving to the full guarded fragment
The tutorial so far has developed the basic model

theory of action-guarded first-order logic with the

additional restrictions on guards imposed by GSAL.

One can do the same analysis, first for the extension

of GSAL which allows permutation and duplication

of arguments in action predicates. Then, new 'safe'

operations will appear, reflecting such permutations.

Next, one moves to the full Guarded Fragment,

whose quantification pattern ∃y (G (x, y) & φ (x, y))

allows assertions linking up input and output states. In

this case, partial isomorphisms will 'accumulate' in

the zig-zag conditions for bisimulation. This will

show in new 'safe' operations like cum(R) (x, yz)

defined by 'Rx, y & z=x'. But the main structure of

the preceding notions and results remains the same.

5  Parallel action, polyadic modality

5.1  Polyadic Modalities
The languages GSAL and GF were still sequential.

To describe parallel action, one needs conjunctions of

guard atoms, which are known to skirt the decidable-
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undecidable boundary. Using conjunctions, one can

describe genuinely parallel actions, such as products:

RxS  takes ab to cd when  (1) aRc , (2)  bSd

Many variations are possible here (including merges

as in Process Algebra). To describe such compound

transitions, GSAL must be extended at least to what

m a y  

 

b e  

 

called 

 

GPAL 

 

(Guarded Polyadic Action

Logic) with polyadic modalities  <R, S>. GSAL can

express a local version viewing the two outcomes

separately:

<R, S> (A, B) = ∃zu (Rxz ∧ Syu ∧ A(z) ∧ B(u))

This reduces to a conjunction of GSAL formulas. But

we want to combine compound action with assertions

that describe the total result achieved, i.e. the stronger

<R, S> Q  =  ∃zu (Rxz ∧ Syu ∧ Qzu)

This format is not guarded, or even pairwise guarded.

(It is an interesting generalization of modal logic all

the same.) General decidability results do not apply.

We will present a simple example showing that

Proposition   Allowing arbitrary conjunctions of

guards makes the guarded fragment GF undecidable.

Thus, at least in principle, parallel action is connected

with the decidability-undecidability frontier.

5.2  Complexity Thresholds
Closer analysis of the dangerous examples shows that

their syntactic forms mix state predicates with action

predicates. But this intuitive distinction seems equally

justified for parallel action. Hence, we must backtrack

from the current front-line in pushing decidability

upward from GF. Instead, retreating to the action-

guarded fragment A-GF, another way of striking out

from there is to keep the separation into two predicate

roles, but then, allow arbitrary guard conjunctions.

(See Section 3 for sharpenedup syntax definitions.)

Conjecture The action-guarded fragment with

separate action and state predicates, but extended

with arbitrary conjunctive guards is decidable.

A natural proof strategy is the usual modal unraveling

via finite tree models. In its wake, PGAL with

polyadic modalities using any conjunctions of action

guards would be decidable. Next, what happens if we

add fixed point operators to this parallel action logic,

o n  

 

state or action predicates. Do we keep

decidability? And, is there a difference between the

two versions?

5.3  Parallel Bisimulation
Guarded bisimulations for GSAL can be extended to

stricter bisimulations for the richer language PGAL.

This requires additional zig-zags for joint actions.

E.g.

 If  a E b , and Ra'c', S a''c'', there must be d', d''

with  Rb'd', S b''d''  such that c'c'' E d'd''

This combines the results of two actions undertaken

from a single collective state. We will discuss the fate

of the earlier key results on invariance and safety in

this setting. In particular, can we find expressively

complete sets of operations for parallel actions?
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3  Guarded Quantifiers: Questions and Variations

The Guarded Fragment is a large modally inspired decidable part of first-order logic,

whose 'instrument of variation' is bounding of the range of quantifiers by atoms.

We consider some natural variations on the original Guarded Fragment,

and present a number of new observations plus open questions.

3.1   Decidable fragments: extending GF
The Guarded Fragment of first-order logic allows only the bounded quantifier pattern

∃y (R(x, y) & φ(x, y))

where the 'guard atom' G may have occurrences of the variables in the finite sequences
x, y  in any order and multiplicity. GF is decidable (Andréka, van Benthem & Németi
1998), indeed complete for doubly exponential time (Grädel 1997). This generalizes
many standard modal logics. But, in order to translate, e.g., Since/Until temporal logic,
or pair-arrow logic, one needs the larger Loosely-Guarded fragment (LGF) of first-
order logic, which allows

conjunctions of atomic guards in the above position R(x, y), provided
each pair of distinct variables from x, y  occur together in some guard.

(Pairs taken from the parameters  x  may have their co-occurrence outside of the scope
of the existential quantification, as this may be imported up to equivalence.) LGF is
decidable as well, by an extension of the original quasi-model argument for GF (van
Benthem 1997A). Given its description, a better name for LGF might be the Pairwise
Guarded Fragment. (Maarten Marx has suggested Packed Fragment as a better name.)

With pairwise guarded conjunctions, we seem to reach a clear complexity threshold.
Not admissible, on pain of undecidability, are arbitrary conjunctions of guards:

Proposition GF extended with arbitrary conjunctions of guards is undecidable.

Proof (van Benthem 1997B) The 3-variable fragment of first-order logic is undecidable.
Here is an effective reduction. Any  3-variable formula  φ  is satisfiable iff its guarded
relativization  (φ)U  to some new ternary predicate  U  is satisfiable in a full Cartesian
product  U = DxDxD. The latter can be expressed as the satisfiability of a formula
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(φ)U  & CART(U) 

where CART(U)  =def  (i)  ∃xyz Uxyz  & (ii)  ∀xyz (Uxyz → & U-followed-by  "all
permutations and identifications among {x, y, z}")  & (iii)  ∀xyzuvw ((Uxyz & Uuvw)
→ & U-followed-by "all selections of three variables from among {x, y, z, u, v, w}").
Note that the latter formula is in GF with added conjunctions of guards.       !

3.2   Decidable parallel action fragments: backtracking from GF
As we saw in Section 2, process logics may suggest other useful decidable fragments,
which backtrack from GF, so to speak. Basic modal logic has a distinction between
what may be called 'action predicates'   Rxy  that jump across accessibility links (from x
to y), and 'state predicates'  Px  making some static assertion about the current state x.
This distinction is obliterated in GF, whose predicates may be viewed indifferently as
describing moves between states, or as descriptions of fixed states. Now, our idea is
that by maintaining such a distinction, we can be more liberal with quantifier bounds –
and in the limit, allow any conjunction at all. The motivation for making this extension
in Section 2 was the study of parallel processes over tuples of local states. In this
setting, we can interpret the negative result in Section 3.1 as saying that unconstrained
parallellism leads to undecidability. But what if we design things more delicately?

Thus, we distinguish between state atoms  Qx  and action atoms  Rx, y  from the start.
The comma in action atoms serves to separate input states on the left from output
states on the right. The total language will have both 'action formulas' and 'state
formulas', whose syntax can be manipulated independently. Here are some options.

GSAL1 Action formulas Rx,y
State formulas Qx, Booleans,  ∃y (Rx, y & φ(y))

This 'guarded state-action language' describes transitions from an old state to a new one,
without cross-comparison between old states and new ones (as in a GF matrix  φ(x, y)).
The input-output distinction has various effects. E.g., action atoms Rx, y are very
different from their converses Ry, x. Moreover, the above restriction to only action-
guarded quantifiers has the effect of making every formula depend on some initial
tuple of free variables. Thus, all formulas in GSAL1 are 'local': one cannot form closed
sentences. As in ordinary modal logic, the natural definition of 'satisfiability' then refers
to local truth at some tuple of states in a model. 'Global satisfiability', in the sense of
truth at all tuples in a model, will turn out to be a much more powerful notion.
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If some input states are to persist as output, we need further atoms like Rx, yx, while
quantifiers ∃y only range over the new components of the output state. Naturally, a
matrix statement may now refer to these new y plus the persistent x. Allowing all this
turns  GSAL1  into  GSAL2 . Both languages are effective parts of GF, and thus inherit
its decidability. Note that their syntax has no explicit operations on action predicates.
Section 2 shows which safe operations can be added, however – mainly suitable 'choice'
and 'composition' – without increasing the expressive resources of these fragments.

This is all 'sequential' action. Genuinely parallel versions enrich the action formulas by
(unsafe!) conjunctions, while imposing various constraints on quantifier patterns.
Quantifiers then collect all output states mentioned in conjunctions of atoms  &Rx, y .
Moreover, to emphasize that the new objects form a coherent state, one may require the
occurrnce of an atomic guard, either over the new y, or over the new y plus the
persistent x. We list some options. But before proceeding, a warning may be in order.
The purpose of all this variation is not to create a boring catalogue of formal languages
– but rather, to demonstrate the effect of various expressive resources on decidability.

P-GSAL1 Action formulas Rx,y, conjunctions
State formulas Qx, Booleans,  ∃y (&Rx, y & φ(y))

P-GSAL1* Action formulas Rx,y, conjunctions
State formulas Qx, Booleans,  ∃y (&Rx, y & Qy & φ(y))

As before, both languages allow only 'local' formulas, describing some tuple of states.
The second fragment is obviously a part of the first. P-GSAL2 and P-GSAL2* are
defined analogously, but now allowing input states from x to reappear as output states.
None of these languages lies inside GF (even though P-GSAL2* adds strong guards):

∃y1y2 (Rx1, y1 & Rx2, y2 & Qy1y2)  is in P-GSAL1*, but not in GF
∃y1y2 (Rx1, y1 & Sx2, x2y2 & Qx2y1y2)  is in P-GSAL2*, but not in GF

Now we make some observations about decidability.

Proposition Satisfiability in P-GSAL1*  is decidable.

Proof  We start from the original quasi-model decidability proof for GF (cf. Andréka,
van Benthem & Németi 1998, van Benthem 1997A), with a universe of 'types' (sets
taken from the finite family of relevant formulas) satisfying suitable closure conditions.
From this, we constructed paths of types recording which formulas are true at any stage.
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We modify this idea slightly, allowing types that describe desired behaviour on only
some subset of the variables. Transitions extending a path are triggered explicitly by
existential formulas  ∃y (&Rx, y & φ(y))  occurring in the last type so far, with the  y
'changing their values' – while the new end-type only has formulas with free variables
among the y . As a result, the 'life-time' of the input variables  x  ends at such a step.
In the model construction, we use objects  (π, x) as before, where x is among the active
variables at the end of the path  π . For the interpretation of predicates, we set

(a)  a state atom  Qd  is only true of a tuple of objects if these lie on the same path, 
and were introduced simultaneously  at the final transition, whose result-type
contains the atom with the variables of the  d  (in the same order)

(b) an action atom  Ad, e  is only true if all its objects lie on the same path,
and the atom with the corresponding variables plugged in (as in (a))
occurred in the conjunctive action prefix of some transition.

Each path has an associated assignment  sπ  defined on the variables in the last and one-
but-last types of the path, sending  x  to the object  (π*, x) , where  π* is that subpath of
π  in which  x  was changed last. Clearly, action atoms will only hold between objects
in the one-but-last and last stages. The Truth Lemma then says that

a (relevant) state formula   φ  holds under the assignment
of a path  iff  φ literally occurs in the last type of that path

As in the original decidability argument for GF, there are two cases of major interest.
(1) First, consider state atoms  Qx . If  Qx  is in the last type of  π  , then – by our
restriction on result-types of path transitions  – its variables were among those affected
by the final change. So, we have the above condition for truth of the atom. Conversely,
if  Qx  is true under  sπ , this can only have happened by a simultaneous introduction
on  π , with  Qx  explicitly present. (2) Now consider existential quantifiers  ∃y (&Rx, y
& Qy & φ(y)). If the latter occurs in the final type, then it is true – by an argument as
for GF: one looks at the obvious path extension triggered by the existential formula.
The crucial case is when such a formula is true under  sπ : while it should occur in the
last type of  π . Let some tuple  d  of objects satisfy the specified action predicates, plus
the state guard  Qy  and the matrix statement  φ(y) . By the definition of true action
predicates, the  d  must have been introduced following the end of the current path.
Moreover, as the state atom  Qy  holds, they were introduced together in one transition,
resulting in one final type  Δ  (i.e., they do not lie on separate forks) containing  Qy .
Call this extended path  π+ . Its s-assignment sends the variables  y  to the objects  d .
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By the inductive hypothesis then,  φ(y)  occurs in  Δ , the last type of π+ . But then, by
an obvious existential closure condition on quasi-models,  ∃y (&Rx, y & Qy & φ(y))
occurred in the type before that, which was the final type of  π .      !

We think that P-GSAL1 (without the guard condition on new state tuples) is decidable,
too. But the above proof method does not work, since there is no guarantee that the new
states introduced by a true existential quantifier ∃y (&Rx, y & form a 'simultaneous set'
introduced in one parallel action step. (Different y might come from different steps.)
On the other hand, various parts of the above argument seem to admit of generalisation.
As for the two stronger languages P-GSAL2 and P-GSAL2*, we leave their decidability
as an open question. Finally, note that the above proof is about local satisfiability only.
It does not settle the decidability of global satisfiability. This issue will return below.

3.3   The danger zone: encoding tiling problems
Let us now approach these issues from a different angle, and see where undecidability
strikes for sure. Consider the embedding of tiling problems. The undecidable task is to
put coloured tiles on the infinite grid NxN, with some finite set of colours, and tiles
having four coloured edges, subject to the constraint that adjacent tiles have the same
colour along their boundary. First-order formulas expressing the relevant constraints
have a definite P-GSAL flavour, with actions N (go one step north), E (go one step
east) and state predicates Cx for the colours. Here are some examples. Adjacency of
colours can be expressed by straightforward universal conditions of the form

∀x: ∀y ( Nx, y →  (C1x → ∨ C2y))
∀x: ∀y ( Ex, y →  (C1x → ∨ C2y))

where the unary predicates  Ci  describe the various possible kinds of tiles. General
behaviour of colours is expressed by conditions of the form

∀x: "at least and at most one C holds of x"

Next, the crucial grid pattern seen from x  is expressed by the assertions

∀x: ∃y Nx, y ∀x: ∃y Ex, y

and more importantly,

∀x: ∀yz ( (Nx, y & Ex, z) → ∃u (Ey, u & Nz, u))
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These assertions lie in P-GSAL1, modulo one unbounded universal quantifier in front.
Let us call their conjunction  TILE. Now it is not hard to prove the following

Fact NxN has a tiling  iff  TILE is satisfiable.

Proof Here is a sketch (for detailed arguments of this kind, cf. Spaan 1993, Blackburn,
de Rijke & Venema 1998). Clearly, if a tiling exists, NxN itself, suitably expanded,
verifies TILE. Conversely, consider any model for TILE. It is easy to define a map  f
from NxN, sending the origin to any point in the model, with the following property:

if  y  is a northern  (eastern)  neighbour of x, then  N f(x), f(y)  (E f(x), f(y))

To see this, use the last three formulas above repeatedly to construct a grid of squares
x N y E u, x E z N u, which provides all necessary  f-values. Then, a colouring for
NxN  meeting all constraints can be copied from the  C-behaviour of the f-values.      !

3.4   Analysis: what causes undecidability?
What does this tell us? First, the expressive power of parallellism comes close to
encoding grids, and hence undecidable tiling problems may arise. But the undecidable
encoding does not quite lie in P-GSAL1. We need one unbounded universal quantifier
in front to make TILE work – whose dangers are well-known. Spaan 1993 shows how
decidable modal logics can become undecidable with this simple addition. She states
this in terms of adding a 'universal modality' to the logic, but also observes that one
such modality in front, i.e., our earlier global satisfiability, would do the harm already.
An alternative would use only those points (in models for TILE) reachable from some
fixed origin by a finite number of E, N steps. This uses transitive closure of the relation
N∪E, which is again outside our fragments – and even more dangerous for decidability.
Spaan 1993 shows that the latter can embed the Σ11-hard problem of 'recurrent tiling'.
(For later use in Section 3.5, note that transitive closure is a fixed-point operator on
relations, not on propositions.) Thus, a mixture of encoding grids plus some weak form
of universal prefix quantification will make process logics undecidable.

Nevertheless, things are a bit delicate. For instance, adding one universal quantifier up
front to the non-conjunctively-bounded Guarded Fragment does no harm! (Cf. van
Benthem 1997B for similar observations for 'Sofia fragments' in extended modal logic.)

Fact Satisfiability in the GF with one universal prefix quantifier is decidable.
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Proof   Start with any type containing a few universally quantified guarded formulas  x
∀x φ (x) . Add all instances  [u/x]φ  (for the relevant variables  u ) to the types in the
quasi-model. The original tree-model construction will still work as it stands – and it is
easy to show that  φ  will hold for all tuples of 'path objects' of the form  (π, u).      !

Recall that minimal modal logic plus a 'universal modality' remains decidable. Thus, it
is the mixture of parallellism and universal quantification that generates undecidability.
As to extensions of our observation about GF, Marx 1997 presents undecidable modal
logics with characteristic universal Horn frame conditions. Therefore, allowing
universal prefix quantification over larger tuples seems problematic already.

Excursion Maarten Marx has an interesting view of GF as a 'monadic language'
defining properties of 'generalized objects', which may clarify the general situation
discussed in this Section. The P-GSAL family generalizes the admissible 'properties'
while trying to stay away from having genuine 'relations' between generalized objects.

Finally, there is another feature to our tiling argument. The formulas in TILE did not
satisfy the syntactic constraint of the language PGSAL1 *  , that new objects in
quantification must come simultaneously guarded by some state predicate Q. This
seems less serious. We can modify the definition of TILE by using a trivial unary
predicate P at all points, as well as a trivial binary predicate Q  at all point pairs:

∀x: Px
∀xy: Qxy

Without the (double) universal prefix quantifiers allowing this trivial obedience, it is
unclear how to modify the necessary grid encoding, and get things right for proper
tiling within the syntactic constraint on outputs imposed by PGSAL1*.

Clearly, adding parallel constructions (through conjunctive guards) comes close to
undecidability. On the other hand, it need not do so in general (witness the decidability
of PGSAL1), and it seems harmful mainly in league with universal prefix quantifiers.
We leave the investigation of intermediate possibilities open. For the moment, we hope
the preceding has sufficiently illustrated our main concern: probing the effects of
expressive power on decidability in a sensitive manner, guided by guarded analysis.

Remark   One can also investigate the above fragments for other nice logical properties.
Here we just recall a point about bisimulation. As stated in Section 2, the distinction
between state predicates and action predicates can be supported by assigning them two
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different roles in the definition of guarded bisimulations. Action predicates regulate the
picking of suitable tuples of objects in back-and-forth moves, while state predicates
determine what counts as a 'partial isomorphism'. This has all kinds of effects on further
model-theoretic properties. E.g., we have two kinds of monotonicity now.

Remark     The notion of 'partial isomorphism' may have to change, too, because of the
special status of identity in our fragments. Identity statements like  ∃y (Rx1x2, y & ... &
y=x1 & ...) circumvent the distinction between input and output states, and their effect
is therefore hard to predict. But without identity, the characteristic bisimulation must be
adjusted, even for the guarded fragment GF itself. The basic building blocks will now
be binary relations between finite tuples of objects of the same length (which do not
necessarily decompose into functions, or even binary relations as sets of ordered pairs)
– or alternatively, binary relations between finite variable assignments.

3.5   Fixed-point extensions
Even strong guarded langauges like GF or LGF leave the decidability of several well-
known decidable modal logics unaccounted for. The key example is modal K4.
Transitivity of frames, expressed by the first-order formula

∀xyz  ((Rxy & Ryz) → Rxz))

is not pairwise guarded, as the variable combination xz is not guarded anywhere. Also,
results like the decidability of the two-variable first-order fragment  L2  do not apply:
transitivity needs essentially three variables. Then why is K4 (even easily) decidable?
There are two possible lines of attack here. One extends the syntactic scope of GF and
its ilk, to find still broader decidability results. We doubt this is feasible. Transitivity is
dangerous: it is known to make first-order fragments undecidable (Börger, Grädel &
Gurevich 1996). But there is a way-out, by an alternative diagnosis of K4's decidability,
transcending first-order logic, while retaining the key role of bisimulation invariance.
Recall that propositional dynamic logic (or the  µ–calculus) is decidable. Now it is easy
to see that  K4  is precisely the logic of any iteration modality  [a*] , on which we do
not impose any special frame restrictions at all. This is a genuinely different strategy.
For, the PDL-language does not define transitivity! Like the basic modal language, it is
invariant for bisimulation (the infinitary conjunctions needed to define iteration do not
affect this), while transitivity is not. So we would need a counterpart to the  µ–calculus.

Question Find decidable fixed-point extensions of the Guarded Fragment.
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The current conjecture is that these exist, generalizing the modal µ–calculus, perhaps
using the 'tree model property' highlighted by Moshe Vardi. But there is a subtlety here.
The µ–calculus has only part of its possible fixed points, viz. those defined by recursion
over state predicates! But one can also use fixed points for new program constructions,
recursing over action predicates. E.g., transitive closure <a*>p is mimicked by setting

µq• <a>p  ∨ <a>q

But the natural recursion  a* = a ∪ a;a*  over binary relations  is not expressed directly.
I do not know if the µ–calculus remains decidable when adding the latter version.
Likewise, state recursion and action recursion are two different ways of adding fixed
points to GF and its ilk. For instance, the finite approximations for state predicate-based
fixed point equations remain inside GF, whereas those for action predicates need not.
To see the latter, note that substituting an arbitrary guarded formula for a guard atom
need not produce a guarded formula (substitute ¬ Rxy for Axy in ∃y (Axy & Qy)).
Only 'safe' formats  ∃y (α(x, y) & ...) have this substitution property, which unpack into
iterated guarded quantifications. In this connection, recall the above discussion of tiling
problems, where a transitive closure of action predicates N, E led to undecidability.

On a simpler note, for many practical purposes, it suffices to use finitely distributive
operators, whose smallest fixed point occurs uniformly after at most  ω  iteration steps
(cf. Sections 2 and 4, 7 below, which claim decidability for the state predicate case).

3.6   Finite models
Another topic of interest is the behaviour of GF and its variations on finite models.
Andréka, van Benthem & Németi 1998 show that GF has many of the 'nice' properties
of first-order logic. Typically, such properties are lost for full first-order logic in Finite
Model Theory. But for GF, some of them transfer immediately to finite models,
because of its finite model property. Indeed, for basic modal logic, we know all its nice
meta-properties hold on finite models. Which general transfer principle is at work here?

3.7   Interpolation
Maarten Marx and Eva Hoogland have just shown that GF lacks Craig Interpolation.
(It does have generalized interpolation in the sense of Barwise & van Benthem 1996.)
This raises the issue what interpolation behaviour is exhibited by the above fragments –
and whether such behaviour may serve as a guide toward identifying useful ones.
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4  A Beth Theorem for Process Operations?

Here are some speculations about process operations by entirely classical means.

The setting is not relational algebra (as in safety theorems), which stays inside

single process graphs – but rather model constructions over process graphs.

1   Operations on process graphs
Think of processes as represented by process graphs (LTSs, polymodal Kripke models).
Process operations are defined as operations  F (A, B, ...) creating new graphs out of old
ones, which must respect bisimulation. That is,

if  A bis A', B bis B', ..., then  F (A, B, ...) bis F (A', B', ...) .

Examples are addition  A+B  (joint rooting, offering the options of both), sequential
product  A•B (substitution at the end, continuing with  B  after  A  has been completed),
or parallel products AxB 

 

(performing 

 

both 

 

processes 

 

simultaneously in the left and right
components of ordered pairs). Further examples abound (polarity flip, merge, iteration).

One 

 

would 

 

like 

 

to 

 

find 

 

restricted 

 

natural 

 

spaces 

 

of process operations, preferably through
some kind of semantic invariance, invoking a version of the Beth Definability Theorem.
Thus, standard model theory would apply, as happens in Marco Hollenberg's 1998
Ph.D. thesis "Logic and Bisimulation" (Philosophical Institute, Universiteit Utrecht).

2   Defining operations by first-order theories
To represent matters in standard model theory, take models with new unary predicates
A, B, ... for disjoint argument domains (with a union O (= 'old')) and a predicate N (=
'new') describing a disjoint value domain. Together, O and N exhaust the whole
domain. The A, B, .. and N-components may be viewed as submodels for some
language L describing the internal structure of the process graphs. In addition, to
describe relevant relations between the argument and value domains, we add new
predicates  C  'connecting' objects in  O  to those in  N . The latter may be identical with
old objects (as happened in the above sum + and sequential product • ), but they may
also be new things, created by some construction (such as the ordered pairs in a parallel
product  x ). Thus, we view the operation  F  as given by a class of models of this
similarity type, where the additional vocabulary may satisfy a number of constraints.
The above process operations may then all be specified in the following format:
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I  uniform first-order definition of the new objects in the value graph 
involving finite sets of objects in the arguments (possibly with some 
new object with a unique function, such as the new root added in  A+B ),

II uniform 

 

first-order 

 

definition 

 

of the L-predicates among the new objects in
terms 

 

of 

 

the 

 

L-predicates 

 

among 

 

the 

 

old 

 

objects related to them in clause I .

Thus,  F  is defined by some first-order theory  TF  whose models allow for this schema.
Let us say, in this case, that  T  has  CDP, the constructive definition property. When
do first-order theories have this definitory character? We want a semantic criterion,
matching some natural way of thinking about process operations.

3   Unique extension properties
Instead of bisimulation, let us first look at isomorphism. The semantic feature matching
the above intuitive formulation seems to be this:

Any partial  L-isomorphism  f  matching the  O-parts of two  T-models
has a unique extension  to some total bijection  f+  between these models
which is even an isomorphism with respect to the full language L+C.

Let us say, in this case, that  T  has IEP, the 'unique isomorphism extension property'.
This says, more informally, that the semantic behaviour of the old objects 'enforces' that
of the new objects introduced by the operation.

4  A Beth-type theorem?
Our natural conjecture would be the following kind of Beth theorem:

A first-order theory has CDP if and only if it has IEP.

Although I got some way toward proving this, I did not yet arrive. We are trying to turn
'dependence' (in the sense of IEP) into explicit definability (in the sense of CDP). But
what we have seems weaker than Beth's implicit definability. (For instance, even with a
fixed 

 

O-part, the root in the construction can be chosen in different ways, and therefore,
different isomorphic 'superstructures' are possible.) One technical trick uses (suitably)
saturated models of  T . The identity on the  O-part must have a unique extension to the
whole model. This implies that there cannot be non-trivial automorphisms of the value
part extending the identity on the argument part. By familiar arguments, it then follows
that objects must have unique definitions in the full language 

 

– 

 

allowing arbitrary sets of
parameters in the O-part. This seems to tell us something about the above parts I and II.
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But these definitions may still be 'local' in one single given model for  T . Is then the
additional force of the Unique Isomorphism Extension Property across different models
that it enforces more uniformity on these definitions?

5   From isomorphism to bisimulation
I would also be happy with strengthened forms of  IEP toward an equivalence with
CDP. One natural strategy for this purpose would use potential  L-isomorphisms instead
of complete isomorphisms. Also, going back to the original motivation on process
graphs, one would like to have good variants with bisimulation instead of (total or
potential) isomorphism. Unfortunately, then, no unicity seems left (because of the much
rougher identifications allowed in bisimulations) – as may be seen from inspection of
the earlier examples of sum and products. What might still hold as a constraint is the
existence of some unique minimal extension for the component bisimulations.

6   More general uses
This analysis might have several benefits. It would make the standard format for
specifying 

 

process-algebraic 

 

operations 

 

more 

 

uniform from a model-theoretic viewpoint.
Moreover, it would make the route taken in Marco Hollenberg's dissertation less ad-
hoc. Its author assumes (with some pangs of conscience) that new process constructions
involve states which are finite sequences of old objects, with some uniform finite bound
on their length. It might be that this is an inevitable feature of any first-order treatment.

Addendum

This sketchy promissory note was written in early 1998. Sol Feferman has informed me
in the meantime about two relevant earlier papers. (1) S. Feferman & R. Vaught, 1959,
'First-Order Properties of Products of Algebraic Systems', Fundamenta Mathematicae
47, 57–103. (2) S. Feferman, 1972, 'Infinitary Properties, Local Functors, and Systems
of Ordinal Functions', in Conference in Mathematical Logic, London '70, Lecture Notes
in Mathematics 255, Springer, Berlin, 63–97. In particular, (2) introduces an extension
property for potential isomorphisms, while (1) studies when elementary equivalence for
arguments implies elementary equivalence for values of model constructions. Algebraic
products turn out to be a counter-example. By contrast, the usual operations in Process
Algebra (including both its products!) all have this first-order preservation property.
Thus, one may get a handle on different complexities for proposed process operations.
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5  Modal Fixed Points and Bisimulation

These are some thoughts on Jon Barwise & Larry Moss' intriguing book Vicious Circles

(CSLI Publications, Stanford, 1996) including a proposed simplification of their proofs,

a mysterious analogy, and speculations about a broader moral. Larry Moss has some

new

results that seem relevant to our discussion – but they have not yet been referenced here.

1   Characteristic Modal Formulas for Bisimulation Equivalence Classes

Barwise & Moss show that each modal model M, s  has a characteristic formula  φM  in
an infinitary modal language with all set conjunctions and disjunctions. I.e., for all
models  N, t, we have an equivalence between the following two assertions:

(1) N, t |= φM

(ii)  there exists a bisimulation between  M, s and N, t (connecting  s  to  t )

This is a variation on the well-known Scott Theorem for infinitary logic, with
bisimulation 

 

taking 

 

the 

 

role of potential isomorphism, and the modal fragment that of
the full first-order repertoire. (The same characterization was proved independently for
countable models only in van Benthem & Bergstra 1995.) The method of proof goes as
follows. 

 

Starting 

 

from atomic base descriptions, one works in ordinal rounds  α . At
each round, partial descriptions  δ(α, x)  are generated for the worlds  x  in  M . Let  y
range over 

 

all 

 

 R–successors of  x  in  M . Then the next description  δ(α+1, x)  is
defined to be

the conjunction of all statements  <> δ(α, y)
together with the closure condition  [] ∨ δ(α, y)

At limit ordinals, 

 

one 

 

takes 

 

the 

 

obvious 

 

infinite 

 

conjunction of everything obtained so
far. One can show that this construction will stabilize at some ordinal  α*  (depending
on the cardinality of  M) after which no new descriptions are generated. The resulting
formula  δ(α*, s)  is the characteristic formula, defining the bisimulation equivalence
class.

2   Characteristic Modal Formulas via Fixed Points

What follows revolves around one simple observation. The above looks very much like
the construction of a fixed point.  Its template is a description  E(M)  for any modal
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model first given by Jankov and Fine in the 70s. 1  Here is the definition. Take a set of
new proposition letters (different from those in the initial modal language)  px : one for
each world  x  in  M . Moreover, for each  x, let  ATx  be the conjunction of all literals
in the original language that hold at   M, x . Here is the major tool in what follows:

 E(M)  is the conjunction of all statements
px   →   ATx  &  env (M, x),       where
env (M, x)  is the formula   & Rxy <> py  &  []  ∨ Rxy py

2.1   Computing uniform fixed points
Now, it is easy to establish the following description for all models of  E(M) . Let the
symbol  ≡  indicate the existence of a bisimulation between two rooted models.

Proposition 1
For any two modal models  M, s  and  N, t  the following are equivalent:
(1) M, s  ≡  N, t
(2) N, t  can be expanded to a model for  E(M)  (i.e., the latter statement 

holds throughout  M ) such that the predicate  ps  holds at world  t .

Note that this amounts to the truth of some monadic second-order formula in  N, t .

Proof  From (1) to (2).   Define the predicates  px  in  N, t  by setting  px (u)  iff  x≡u .
All clauses of  E(M )  hold, by the back-and-forth conditions of modal bisimulation.
From (2) to (1). Define a relation  E  between worlds in  M  and N  by setting  x E u  iff
u  satisfies  px  in the expanded model for  E(M) . The latter's clauses ensure that  u, x
satisfy 

 

the same atoms, and that the back-and-forth conditions hold everywhere.          !

Next, there is a well-known intimate connection between truth of existential second-
order formulas and the existence of fixed points. This suggest the following alternative
version of the preceding result. Note that E(M), whose 'minimal reading' can be seen as
an equivalence, may be viewed as a  simultaneous inductive definition for the predicates
px , all of whose clauses are syntactically positive in all  py . Thus, the associated
semantic approximation operator is monotone. Therefore, every modal model  N, t  has
a greatest fixed point for the latter operator – say, GFP(N, E(M)) – whose obvious
'projections' to the predicates  px  satisfy  E(M).

1  These formulas were originally used to define axioms for special modal logics 'omitting' all  p–

morphic pre-images of some fixed finite set of frames. Van Benthem 1985 has further applications.
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Proposition 2
For any two modal models  M, s  and  N, t  the following are equivalent:
(1) M, s  ≡  N, t
(2) N, t |= (GFP(N, E(M)))ps

From (2) to (1), this follows directly from Proposition 1. From (1) to (2), we must add
the observation that, if any set of predicates satisfies the implications  E(M)  in  N, with
the root predicate  ps  holding at  t , then so does the greatest fixed point.

2.2   Special classes and specific definitions
The 

 

preceding 

 

observations 

 

have 

 

further 

 

implications. 

 

We can analyse modal fixed
points in special cases of interest. In what follows, we use the basic modal language for
ease of exposition. But everything we say transfers to a polymodal logic with many
modalities. There are two directions here. Start with some class of models, and
determine its modal invariants – or start with some class of modal formulas, and find
the models which they can characterize up to bisimulation. We start with a
characterization of the finite models.

Proposition 3
Each finite model is characterized by a formula of propositional dynamic logic.

Proof Consider any finite model  M . Without loss of generality, we can pass to its
contraction under the maximal bisimulation. The latter model has the following further
property. Two worlds satisfy the same finitary modal formulas iff they are equal
(otherwise, non-trivial bisimulations would occur after all). Therefore, by a standard
combinatorial 

 

argument 

 

on finite models, each world x has a unique modal definition
δx  in M. But then, we can describe an explicit solution for the fixed point equations
E(M), by setting the  px  equal to  δx . More precisely, let  µM  be the infinitary modal
formula

[]* Eδ & ps

where  []*  is the transitive reflexive closure of  [] , and  Eδ  says that the  δx  satisfy
E(M) . (Note that this formula is immediately definable in propositional dynamic logic.)
It is evident from the above definition that  M, s  itself satisfies  []* Eδ & ps . Hence,
any model bisimilar to it also does. Conversely, if an arbitrary model  N, t  satisfies  µM
, then the  δx  describe a set of predicates  px  as meant in the preceding propositions,
which guarantee the existence of a bisimulation with  M, s . (Incidentally, the prefix  []*

only serves to guarantee that the  δx  solution works in the 'transitive closure' of the root
t , but not necessarily throughout  N  – but that is enough for the argument.)         !
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Remark  One really needs an infinitary modal formula here. E.g., consider the single
reflexive 

 

point. 

 

Its 

 

fixed 

 

point 

 

equation 

 

is 

 

merely 

 

 

 

p 

 

 

 

↔ <>p & []p . One can easily show
the 

 

greatest 

 

fixed 

 

point 

 

for this, in any model, is the set of worlds satisfying the
infinitary formula  []*<>T . But the latter is not equivalent to a finite modal formula, as
is easily shown by considering suitably large Kripke models of the form ({1, .., n},
'successor'). Note that this solution is what automatically results from applying the
above general solution schema  []* Eδ  to the model consisting of a single reflexive
world.

It is also possible to derive a converse for the preceding proposition.

Proposition 4
Formulas from PDL characterize only finite models (up to bisimulation).

Proof  Let  φ  characterize a model  M, s . By the Finite Model Property for PDL,  φ
then holds in some finite N, t . So  N, t  ≡  M, s,  and φ  characterizes a finite model.   !

Theorem 5
The finite models are precisely those that are characterized by PDL-sentences. 2

This result can be improved to broader modal classes (e.g.,  ω–saturated ones). As an
illustration, here is an instant proof of one of Baltag's theorems in Barwise & Moss.
Here, the direction of interest reverses, going from some given class of modal formulas
(viz. the finitary ones) to a corresponding model class.

Proposition 6
The models characterized by finite modal formulas are precisely
the finite well-founded ones.

Proof    Any finite well-founded model satisfies some modal formula of the special
form  [] ...(k times)... [] ⊥ . Therefore, in the above formula  []* Eδ & ps , the initial
modality  []*   may be replaced by that  []k  ⊥ , and we have found a finitary
characteristic formula. The converse is even faster. If a finitary modal formula  φ
characterizes some model,  then it is satisfiable, and – by a  standard modal unraveling
argument – it must also be satisfied in some finite well-founded tree.     

                 !

2   A speculation about the broader thrust of this result. Only one fixed point iteration is involved in the
eventual characteristic formulas: namely, for the outermost reachability operator []* . This reflects the fact
that fixed-point logics can replace nested iterations by one 'grand loop'. There should be a connection
between the 'flatness' of the equations in  E(M)  and the well-known trick for coding subformulas by new
propositon letters in the usual way, which only requires equivalences of forms  p ↔ <>q  and  p ↔ []q .

Johan van Benthem


Johan van Benthem
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Here are some further general issues.

Questions Which formulas characterize the well-founded models (the ZF sets)?  3

When is the characteristic modal formula 'effective'?

There 

 

are 

 

also 

 

some 

 

further 

 

general 

 

questions, 

 

about the whole point in describing models
or sets by modal formulas. Can we use known facts about modal logic to get interesting
new lines on sets? For instance, do known properties of modal logic, such as
interpolation,  

 

have 

 

some 

 

nice 

 

set-theoretic 

 

meaning? Or, what about the known
PSPACE decision procedure for the minimal modal logic K? Or in line with our
Sections 2, 4:

Does the above analogy help us in matching process operations
(combining modal models) with more standard set operations?

Van Benthem & Bergstra 1995 observe that the + of process algebra is just set-theoretic
union (working on models). Can we compute the characteristic formula for a union
effectively from those for the components? (This might be an interesting exercise in
general fixed point logic.) What are the natural operations in this setting anyway?

3   Computing Fixed Points

3.1   Uniform fixed points
The above solution is not very pretty. Can we compute the greatest fixed point of E(M)
in some nicer way? First, the above argument works (and hence characteristic formulas
exist) because there is a uniform ordinal bound to the computation of a non-empty fixed
point for  E(M)  in any model N, which only depends on the cardinality of  M  (not on
that of  N ). This is worth noting, because not every fixed point equation has this
uniformity property. 4  More precisely, the solution for  E(M)  in M itself will be found
after at most |M|•|M| steps, as there must be a change in at least one unary predicate  px
at each approximation state. Hence, characteristic formulas for each predicate are found

3  The 'De Jongh-Sambin Theorem' says that in the modal logic of all transitive well-founded models,

every fixed point equation of the form  p  ↔  E(p), where  p  occurs only 'boxed' in  E(p)  (positive or

not!) has an explicit solution. I think this is a reflection of the general Recursion Theorems in ZF,

exploiting the well-foundedness of the models. Can we find similar general results in the present setting?

4  E.g., the well-known smallest modal fixed point  µp•[]p  defines the well-founded part of the relation

R  in any model. Its computation length depends essentially on the latter's size.

Johan van Benthem
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at modal operator depth at most |M|•|M| , i.e. |M| for infinite models (for finite ones: see
below). Here is a formal statement, making the preceding analysis a bit more precise.
Note, however, that the following argument makes no claim about a uniform bound for
computing the greatest fixed point – only for some non-empty fixed point (with the
appropriate proposition true at the root). So, there is an open question here. Also, the
following proof is rather roundabout; and one would prefer a direct combinatorial one.

Fact 7
In any model  N, if a schema  E(M)  reaches a non-empty fixed point at all,
then it reaches one after at most  |M| stages.

Proof   Suppose some non-empty fixed point is reached in  N, t . Then by the earlier
reasoning, there is a bisimulation between  M , s  and  N, t . Now  M, s  satisfies the
explicit modal solution statement  Eδ , where  δ  describes the satisfying modal
formulas of depth ≤ |M|. But then, through the mentioned bisimulation,  N, t   must also
satisfy the modal formula Eδ . And by its definition, that means that some non-empty
fixed point was reached at stage ≤ |M|  inside  N .        !

For finite models, we might have a quadratic blow-up here: but we can do better. For, in
the approximation sequence, whenever some predicate  px  does not change in some
round, we can stick to its previous definition, instead of using the next layer. Thus, its
complexity only increases when there is some real change. We have derived the general

Fact 8
Characteristic formulas for worlds (px) need only modal operator depth  |M| .

Specific examples may be computed by hand for simple cases, and then reveal further
syntactic fine-structure – which we will forego here.

3.2   Fixed points at omega
To obtain a greatest fixed point for a formula  φ(p), we compute a smallest fixed point
for its dual  ¬ φ (¬ p)  and then negate that. Often that greatest fixed point is found after
ω  rounds. Thus, for the single reflexive point, one works with the new equation

p ↔ <>p ∨ []p

which is modally equivalent to  <>p ∨ []⊥ . The latter has  p  only under existential
modality and disjunction. Now all fixed point equations whose defining clauses for  p
have the latter only under <>, &, ∨ are finitely distributive,  and hence they compute a
smallest fixed point uniformly in at most  ω  rounds. For PDL-formulas, one can
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compute 

 

all 

 

relevant 

 

fixed 

 

points 

 

this 

 

way 

 

(cf. Kleene iteration). Thus, our analysis seems
close to a proof that all characteristic formulas for finite models have this property.

Question When are characteristic formulas computable at omega?

Another interesting question would be to determine in some effective manner

Question Which general fixed point formulas have a uniform solution bound?
In particular, which formulas in the modal  µ–calculus do?

4   Connections with Other Simulations

The 

 

above 

 

results 

 

give 

 

an 

 

invariant 

 

- 

 

in 

 

the 

 

standard 

 

mathematical 

 

sense 

 

- for models up
to bisimulation. 

 

All 

 

models 

 

sharing 

 

the 

 

invariant 

 

 

 

φM 

 

 form a bisimulation equivalence
class. But there are more results of this kind, that connect up with standard automata
theory.

4.1   Automata and regular sets
 Kleene's Theorem gives regular expressions  κM  as invariants for finite state machines
M characterizing these up to finite trace equivalence (instead of bisimulation):

N, t |= κM  iff  N, t  has the same 'language yield' as  M, s .

This can also be stated in a modal language of 'finite-path formulas' (van Benthem &
Bergstra 1995). In particular, we can compute  κM  with a fixed point equation as above,
using predicates  Yx  recursively describing the 'yield' of  M  starting from  x . I did not
find this particular point in the FSM chapter of Barwise & Moss, but I guess they do
mean one can now generalize Kleene's Theorem to arbitrary machines (finite-state or
not). Here is a further observation. The essential thing is that these new fixed-point
equations are simpler. To describe the yield of  M  at  x , one only needs

a disjunction of cases  <a>Yy, with  y  running over the  a-successors of  x
(and this for all atomic actions  a) .

That means that the fixed point will be reached uniformly in  ω  steps! This is true of
course 

 

for 

 

all 

 

regular 

 

expressions 

 

(cf. 

 

the above point about propositional dynamic logic).
Thus, 

 

the 

 

above 

 

characterization 

 

result 

 

about 

 

finite 

 

models may be interpreted as follows.
It says that 

 

PDL 

 

does 

 

for 

 

them 

 

what regular expressions will do if you are interested only
in their finite succesful sequences. I wonder what else one might get from this analogy.

Question  

 

 

 

 

 

 

 

Which 

 

topics 

 

in 

 

formal 

 

language 

 

theory match which issues in modal logic? 

 

 5

5  Also, what kind of set theory does one get if one makes this very rough identification?
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4.2   Invariants and simulations

(1) Similar invariants exist for any simulation equivalence, e.g., generated graph
isomorphism (van Benthem & Bergstra 1995). Is there a general connection between
definitions 

 

of 

 

simulations and those for the characteristic formulas? Fixed-point analysis
works for all simulations defined by pebble games (Barwise & van Benthem 1996,
'Interpolation, Preservation, & Pebble Games', to appear in Journal of Symbolic Logic).

(2) A very sweeping philosophical thought (though not for situation theorists). Perhaps,
all language 

 

is 

 

just 

 

an 

 

invariant 

 

for 

 

analogies 

 

across 

 

situations? That is, we can reverse the
usual order, and think of (infinitary) first-order logic as that language which all rational
beings would inevitably invent which are born attuned to potential isomorphism.

(3) Kleene's result was striking because he invented a finite notation for his invariants.
Modal invariants for finite models are also finite. What is going on really is that we
introduce 

 

some 

 

effective notation for the relevant fixed points. For which models can we
get 

 

invariants 

 

from 

 

some 

 

effective 

 

fragment 

 

of the modal language  ML∞ω ? In particular,
which models have their characteristic formulas inside the modal  µ–calculus?

5   Connections with AFA Set Theory

Finally, there seems to be a very tight connection with the non-well-founded set theoy
AFA. Is the above implicit in the relative consistency result for AFA vis-à-vis ZF?

5.1   Fixed points and the 'solution lemma'
The above fixed-point equations  E(M)  are exactly the 'flat systems of equations' of the
Solution Lemma, and so they drive the key AFA axiom. That one can make do with flat
equations instead of iterated ones must have to do with an earlier standard trick. (In
computing fixed points, we lose no generality by coding up all subformulas by atoms.)
Also, the uniform bound on the fixed point seems related to the requirement that the
solution must be a set. Any solution to 'unbounded' fixed point equations like the above
p ↔  []p  (well-foundedness) would presumably give us a 'class'. Have we (including
Barwise & MOss) then been doing essentially the same things twice?

5.2   Truth as simulation?
To 

 

conclude, 

 

here 

 

is a wild speculation. What is the essential role of modal formulas vis-
à-vis 

 

models 

 

under 

 

bisimulation? 

 

A model is a possibly non-well-founded set. A formula
is a well-founded object. Now infinitary modal formulas, as objects, can be at least as

Johan van Benthem
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complex as the models they describe. (They may be even more complex, like when we
use infinite conjunctions to describe finite models). This point has always bothered me.
Finite models are characterized by their first-order theories, but the descriptive sentence
is intuitively more complex than the model itself! So, what is the gain? One might just
as well manipulate the model (rather than all subformulas, or other syntactic items).
Perhaps the gain is in the well-founded structure of the formulas, which allows us to use
some simple inductive techniques. (But is this really a line of defense available to
Barwise & Moss, who advocate free-wheeling circularity all around?)

Whatever the answer, it seems to me that viewing models and formulas on a par has
some advantages. We can think of a truth definition itself as a notion of simulation
between models and formulas. Think of a language where all negations have been
pushed inward. At the atomic level, 'truth' is simple embeddability (more or less half an
atomic clause in potential isomorphism). Upward, quantifiers or modalities suggest
natural zigzag conditions between the  <>, []  successor structure in the syntax tree and
R-successor structure in the model.  6  The result looks like the semantics behind Hans
Kamp's Discourse Representation Theory, which has 'embeddability conditions' relating
DRSs to actual models (cf. Kamp & van Eyck 1997). (It is also in the spirit of a
Wittgensteinian picture theory of language.) Could one get further mileage out of this?

6  Bisimulation itself, for instance, also works if one compares process models with different structure:

provided some match makes sense between moves of the right sorts. This is the standard situation in

practice. Much standard theory goes through then – including the Modal Invariance Theorem and the

Modal Interpolation Theorem in Barwise & van Benthem 1996. Cf. Section 10.1 for further details.
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 6  Information Transfer across Chu Spaces

Chu spaces are a new model for information structure (cf. J. Barwise & J. Seligman,

"Information Flow", Cambridge UP, 1997) and for mathematical structure in general

(cf. Vaughan Pratt's ongoing work at the homepage http://boole.stanford.edu/live).

Their properties are usually developed as a form of category theory. In this note, we

show how they may also be viewed as models for a two-sorted first-order language,

and we determine the exact flow of information across the natural Chu transforms.

Our analysis is akin to that of process graphs via bisimulation and modal formulas.

1   Chu Spaces
A two-valued Chu Space is any structure (A, X, R) with two domains A, X and a binary
relation R inside AxX. Examples: A = objects, X = sets, R = ∈, or A = models, X =
formulas, R = |= , or A = 'tokens', X = 'types', R = 'classification by'. Such spaces are
naturally viewed as models for a two-sorted first-order language with variables  a  over
(as we shall say) 'objects' and variables  x  over 'types'. Of course, one can also use
other languages extending first-order logic here, such as infinitary or second-order ones.
General Chu Spaces have a k-valued relation R (which makes them 'fuzzy' rather than
crisp 

 

2-valued 

 

classification 

 

structures), 

 

but 

 

in 

 

practice 

 

two-sorted 

 

examples predominate.

2   Chu Transforms
A Chu transform between two Chu spaces  M = (A, X, ∈), N = (B, Y, ∈)  (we shall use
the same notation '∈' for convenience across Chu spaces) is a pair of functions  f:
A→B, g: Y→X  (note the inversion in direction!) satisfying the following condition:

X

A
M

Y

B
N

f

g

for all a∈A, y∈Y:  f(a)∈y  ⇔  a∈g(y)

There are motivations galore for this 'contravariant ' equivalence, for instance, in the
logical theory of relative interpretation (cf. Barwise & Seligman 1997).



36

3   Preservation and Flow Formulas
What information is preserved in switching between Chu spaces connected by such a
transform? We can view this as a standard question in model theory, asking for a
preservation theorem. The following syntactic notion is obvious from some reflection
on what we have, and do not have, in the above diagram:

a flow formula is any first-order formula produced
by the schema     a∈x | ¬ a∈x | & | ∨ | ∃a | ∀x

Flow formulas φ (a1, .., ak, x1, .., xm) can define many useful notions on Chu spaces:
in general, relations between  k  objects and m types. Here are some examples:

∀x (¬ a1∈x ∨ a2∈x) ≤ 'object inclusion'
∀x (¬ a1∈x ∨ ¬ a2∈x) – 'object incompatibility'
∃a ( a∈x1 & a∈x2 ) o 'type overlap'

Let us call a first-order formula  φ  Chu-preserved if we have (with bold-face symbols
indicating 'fitting' finite tuples of objects and types):

M, a, g(y) |= φ   only if  N, f(a), y |= φ
whenever  (f, g)  is a Chu transform between M and N.

Of course, this notion also makes sense for non-first-order formulas  φ.

Proposition All flow formulas are Chu preserved.

Proof This is a straightforward induction on the above definition, starting from the
above characteristic Chu equivalence  f(a)∈y  ⇔  a∈g(y)   for literals.       !

Application Chu transforms are monotone with respect to object inclusion, as the
latter relation was defined by a flow formula.

Comment We have described preservation in the 'f-direction' only. But in the
opposite 

 

'g-direction', we have the following syntactic description of preserved formulas
(pushing negations inward for the equivalent implication "N |= ¬ φ  ⇒  M |= ¬ φ"):

a∈x | ¬ a∈x | & | ∨ | ∀a | ∃x

This outcome is precisely what one would predict by the obvious duality of Chu
Spaces, where interchanging of the roles of  A  and  X  makes no difference.
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4   Application: Rigid Chu Spaces
The  preceding analysis systematizes several separate observations about Chu
transforms. Take the following 'rigid Chu space' constructed by Pratt. Objects A = {1,
2, 3, 4}, types X = {x, y, z, u}, classification  ∈  as in the following diagram:

x: {1} y: {2}
z: {1, 3} u: {1, 2, 4}

Plotkin and Pratt have shown that the only Chu transform sending  (A, X, ∈) to itself
must be the identity. We can explain this by observing that each object  a∈A is uniquely
definable by a flow formula, and therefore, it must 'land on itself' by our Proposition.
Let the relations  ≤, –  be as in Section 3 above. Here are the definitions:

(a)  ∃a1a2 ( a1≤1 & a2≤1 & a1–a2)   is unique for object  1
(b)  ∀x ( 1∈x ∨ 2∈x)  is unique for object  2

(one uses the flow definition for object  1 here:
∃a ( DEF1(a) & ∀x ( a∈x ∨ 2∈x)).)

(c) ∀x (( 1∈x &  2∈x) → ¬ 3∈x)   is unique for object  3
(d) 4≤1 & 4≤1  is unique for object  4

5   Flow Preservation Implies Chu Tranform on Finite Models
Now let us convert the result, showing that the above is 'best possible'. Up to logical
equivalence, only flow formulas are preserved under Chu transforms. We will formulate
this as a preservation theorem in Section 6. But before proving this, we give a warm-up
result inspired by an analogy with bisimulation and modal logic. (Some further aspects
to this modal analogy that can be usefully exploited have been pointed out by Martin
Otto.) The proof that follows here contains some key ideas for the later one.

Proposition For finite Chu spaces M, N, the following assertions are equivalent:
(i) there exists a Chu transform from M to N
(ii) every flow sentence true in M is also true in N

Proof (i) ⇒ (ii) is a special case of our earlier Proposition. (ii) ⇒ (i) works as follows.
Enumerate A as {a1, ..., ak} and Y as {y1, ..., ym}. We do one case of a stepwise
construction 

 

for 

 

the desired function  f . (The remaining case, as well as the construction
of the contravariant companion function  g , are similar.) The idea is that, progressively,
f  should assign some object  f(a)∈B  to  a∈A  which satisfies the same flow properties
(where the latter may involve parameters for objects which have already been matched).
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Suppose that no b∈B satisfies all flow properties that hold for  a1 in M. That is, for
some flow formula  γb , we have that

M, a1 |= γb but not  N, b |= γb

Altogether,  M  then satisfies the flow formula (here we use ∃ | & – closure)

∃a  & b∈B  γb

But by condition (ii), the latter formula should hold in  N. But, each b∈B is disqualified
as a witness for this, since it lacks 'its' conjunct  γb .Therefore, by reductio ad absurdum,
a 'good choice'  b1  must  exist after all, and we can set

f(a1) = b1

This argument can be repeated to produce the successive values for  f  on all of A.
Moreover, it can also be used in the opposite direction to find values for the function g,
again maintaining the 'invariant' that flow formulas be preserved going from M to N.
E.g., when searching for a matching type  x  for  y1, one assumes that each  xi  fails for
this purpose with a 'defect'  δy , and then uses a flow formula of the form

∀x ∨ y∈Y  δy

(with a dual use of  ∀ | ∨ – closure) to obtain a contradiction, going from M to N.       !

6   A First-Order Preservation Theorem
Instead of a standard preservation theorem, we formulate a slight strengthening in terms
of 'generalized interpolation' (cf. Barwise & van Benthem 1998). Let us say that

φ  implies  ψ  along Chu transforms  if always
M, a, g(y) |= φ   only if     N, f(a), y |= ψ

Then we have the following result:

Theorem      For all first-order formulas φ,ψ, the following statements are equivalent:
(i) φ  implies  ψ  along Chu transforms
(ii) there exists a flow formula  α  such that   φ |= α |= ψ

Proof    (ii) ⇒  (i) is again essentially the earlier Proposition. As for (i) ⇒ (ii), assume
that  φ  implies  ψ  along Chu transforms. First, define
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FF(φ)  =def  { α  a flow formula |  φ |= α }

It suffices to prove that

Claim      FF(φ)  |= ψ

The required flow interpolant then exists by Compactness. So consider any countable
model  N  = (B, Y, ∈ )  for FF(φ). (This case suffices by the Löwenheim-Skolem
theorem.) Let  Th ¬ FF (N)  be the set of all  N-true negations of flow sentences. By a
routine argument, using the closure of flow formulas under disjunctions, we have that

Th ¬ FF (N)  ∪ {φ} is finitely satisfiable

Therefore, there is a (countable) model  M = (A, X, ∈)  for  Th ¬ FF (N)  ∪ {φ},  so that
the following implication holds for all flow formulas  γ :

M |= γ  ⇒  N |= γ

Without loss of generality, we can even assume that (M, N) is a recursively saturated
model 

 

pair 

 

with 

 

the 

 

same 

 

transfer property. But then we can mimick the earlier argument
for finite models, this time, using the recursive saturation. Enumerate A as {a1, a2, ...}
and Y as {y1, y2, ...}. In the general case, suppose that some finite part of the pair  (f, g)
has already been constructed. Moreover, assume that all flow formulas whose free
variables are set to objects  a  in the domain of  f  and types  g(y)  in the range of g in
M, and to the corresponding items  f(a), y  in N, satisfy the following implication:

M, a, g(y) |= γ   only if     N, f(a), y |= γ           #

Then we can extend this situation both ways. Here is the case for objects in M (that for
types in N is similar). Let  a*  be the first object in A without an f-value. Consider the
recursive(!) 

 

set 

 

of all formulas of the following shape, where  γ  runs over flow formulas
as 

 

in 

 

the 

 

preceding 

 

implication 

 

– 

 

except 

 

that 

 

there 

 

is 

 

one 

 

free 

 

object 

 

variable 

 

a on the right:

γM (a, g(y), a*) →  γN (f(a), y, a) 

This set is finitely satisfiable in the model pair (M, N), because for any finite number of
flow properties  γi  of  a*  in M, we can form the flow statement (by ∃ | & – closure)

∃a  &i  γi (a, g(y), a)
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which is also true in N (by the earlier transfer implication #). So, we can find a value
for  a   in B  satisfying all these finitely many implications. But then, because of
recursive saturation (our set is recursive, with only finitely many parameters from the
domain), there is even some b∈B satisfying this whole set of flow implications
simultaneously, and we can choose this object to be the desired f-value for the object  a*

. The argument in the opposite direction, producing a suitable g-value in M for the first
virgin type y∈Y, is analogous, but now using the  ∀ | ∨  – closure of flow formulas.

Then, finally, we have  M |= φ ,  N is a Chu transform of M, and so  M |= ψ  :       !

Remark   Sol Feferman (Stanford Logic Seminar, June 1998) has given an alternative
proof for this preservation result using his interpolation theorem for many-sorted first-
order logic. At its present state, this argument only covers Chu transforms with
injective object maps. But it can presumably be modified to deal with the full case.

7   Variations and Extensions
The preceding result tells us precisely how much (or perhaps, what little) information is
passed between Chu spaces that are related by their 'natural equivalence', at least for
their first-order language. But we can vary the result to cover other cases of interest.

(1) The result goes through for special classes of Chu spaces, provided that these have
first-order definitions. This holds in particular for bi-extensional Chu spaces, satisfying

∀a∀b (a=b ↔ ∀x(a∈x ↔ b∈x))
∀x∀y (x=y ↔ ∀a(a∈x ↔ a∈y))

In practice, this means that for bi-extensional Chu spaces, one can use two further
atoms in flow formulas, without affecting preservation:

¬ x=y, a=b

(2) But also, the above proof itself can easily be modified to yield further preservations.
For instance, if we know that the  f-map in a Chu transform is surjective, then we can
add universal object quantifiers  ∀a  in the construction of flow formulas, and likewise,
existential type quantifiers  ∃x  if  g  is surjective.

(3) Finally, a first-order perspective also suggests other equivalences for Chu spaces,
such as elementary equivalence, potential isomorphism, or pebble game variants
thereof. From the perspective of information flow, there is no need for one model
equivalence:  the more structure preservation one can get, the better!
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8   Infinitary Versions: Information Sequents
The preservation proposition of Section 3 still holds for arbitrary infinitary conjunctions
and disjunctions in flow formulas. This explains the observations found in Barwise &
Seligman 1996 on transfer (and non-transfer) of 'local logics' along 'infomorphisms'.
In their terminology, let  U, V  be sets of types in M . We define true sequents:

U |-M V if ∀a: a∈ ∩U →  a∈ ∪V

This infinitary  definition is not an flow formula (as their maps f need not be surjective,
universal object quantifiers are not allowed), and it is not preserved by Chu transforms.
The implication will only hold in N on the image of f, the so-called 'normal tokens' in
N. Thus, logically true sequents do not transfer in the  f-direction. But they do transfer
in the opposite g-direction, as the negation  ∃a: a∈ ∩U & ¬ a∈ ∪V  is equivalent to an
infinitary flow formula. (Barwise & Seligman do not consider further flow properties.)

This application increases the interest of an infinitary version of our preservation result.
We conjecture that this is the case. But so far, we have only checked that the techniques
of Barwise & van Benthem 1996 go through. These apply to model relations that can be
cast in the form of pebble games. Applied to Chu transforms, this means the following.
Instead of total maps, we now have a non-empty family of finite partial maps  (f, g)
between M, N, which satisfy the basic Chu equivalence for atoms, such that two back-
and-forth properties hold, one extending each f-domain with an object from M, and one
extending 

 

each 

 

g-domain 

 

with 

 

a type from N. Let us call these potential Chu transforms.

Theorem     The above preservation theorem extends to formulas  φ, ψ  in the infinitary
language L∞ω, when we require preservation along potential Chu transforms.

9   Richer Chu Spaces:  General Frames in Modal Logic
In modal logic, the natural Chu spaces are general frames  (W, P, ∈)  with  W a set of
worlds, P a family of sets of worlds (the 'admissible propositions') and ∈ membership.
Here the natural equivalence is as in the following 'contravariant' picture (cf. Blackburn,
de Rijke & Venema 1998, van Benthem 1985), where  f(w) ∈) q  iff  w ∈ g(q) :

P

W
M

Q

V
N

f

g
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But 

 

here 

 

there is an additional requirement:  f  must be a  p-morphism from M to N. I.e.,
it 

 

is 

 

a 

 

homomorphism for the accessibility relation RM , and it satisfies the zigzag clause

if  f(w) RN v, then there exists some  u∈W  such that  w RM u & f(u) =v

Moreover, the map  g  is just the set-theoretic inverse  f-1  on Q (landing inside P!),
which is a homomorphism with respect to the natural 'modal algebra' structure on  Q, P.
(This 'parasitic' nature of g is also known from Chu spaces in general.) Modal logicians
have proved preservation theorems in this setting. But of course, more is preserved
now, as the 'quality' of  f, g is higher than in the above. In particular, flow formulas will
now also allow the usual modal constructions, or more precisely:

atoms Rab | bounded universal object quantifiers  ∀b (Rab →

Combining 

 

this 

 

with 

 

the 

 

earlier 

 

syntax 

 

of flow formulas, we see that we get propositional
literals p, ¬p, conjunction, disjunction, existential and universal modalities, plus
arbitrary existential object quantifiers and universal propositional quantifiers. This
includes all standard modal formulas, with a slight first-order and 'second-order' extra.
This is surely an instance of a more general result, telling us how to 'load' our general
Chu preservation with extra information from maps  f, g that preserve special structure.

10   Constructions on Chu Spaces
The theory of Chu spaces gives a prominent place to (categorial) model constructions.
One example is the dual  operation taking  (A, X, ∈) to  (X, A, ∍). Another is the
product MxN used extensively in Barwise & Seligman 1996:

new object AxB  (Cartesian product)
new types X + Y  (disjoint union)
new epsilon (a, b) ∈ X1  iff  a∈X,  (a, b) ∈ Y2  iff  b∈Y

Here the picture of natural connections is as follows:

X

A
M

Y

B
N

X+Y

AxB

M x N

f1

g1 g2

f2
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Here, preservation results might characterize formulas  φ  such that, if both  M |= φ and
N |= φ, then  MxN |= φ. (In particular, this holds for first-order Horn sentences.) But
one does not want 'preservation' here so much as combination of information, or viewed
in the other direction, decomposition. If we have a tight constructive definition of some
operation on Chu spaces, then we can use it to reduce first-order evaluation.

Example 'Every Type is Inhabited'
Here is a simple semantic calculation from the given definitions:

MxN |=  ∀x ∃a a∈x iff
∀x∈X ∃a∈A ∃b∈B : (a, b)∈x  & ∀y∈Y ∃a∈A ∃b∈B : (a, b)∈y iff
∀x∈X ∃a∈A a∈x  & ∀y∈Y ∃b∈B : b∈y  iff
M |= ∀x ∃a a∈x  &  N |= ∀x ∃a a∈x

So in this particular (Horn-definable!) case, the property does reduce to its presence in
the components. In general, however, we don't expect this. Nevertheless, the example
suggests an effective component reduction for arbitrary first-order statements  φMxN :

(a) introduce a supply of marked variables with superscripts for A, B, X, Y
(b) replace object quantifiers  ∃a  by  ∃aA∃bB , and replace corresponding 

atoms  a∈x in the formula by disjunctions    aA∈x ∨ bB∈x
(c) replace type quantifiers  ∃x  by disjunctions  ∃xX...  ∨  ∃xY...
(d) replace (using the added markings) all 'heterogeneous' atoms

aA∈xY  or  bB∈xX  by false

The result is a first-order formula which may be separated into an equivalent Boolean
compound of separate fist-order assertions about M and N.

Sol Feferman has pointed out a more general background here. Chu dual and product
satisfies the following preservation property (with '≡' for elementary equivalence):

if  M ≡ M' and N ≡ N', then  MxN ≡ M'xN'

Most operations in abstract process algebra have this feature (Hollenberg 1998). On the
other 

 

hand, 

 

product 

 

spaces in the usual mathematical sense, whose objects are functions,
do not (cf. the references given in Section 4). One obvious conjecture is that Chu tensor
product 

 

as 

 

defined 

 

by Pratt in his model for linear logic, lacks this preservation property.

Preservation 

 

of 

 

elementary 

 

equivalence 

 

is 

 

a 

 

consequence 

 

of 

 

the above effective reduction.
But having an effective decomposition seems stronger. So we want to know about both.
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11   Co-limits and Generalized Evaluation
Dual and product were just two examples. The natural general construction is an
inverse limit of families of Chu spaces which may have Chu transfoms running between
them:

M-i

f

M-j

M-k
g

k

'Objects' in the inverse limit  M  are tuples  a  having the right 'coherence': e.g.,

f ((a)i) = (a)j, etcetera.

This setting makes it much harder to do a 'logical decomposition' as above. It rather
suggests that we generalize our perspective once more. One could think of evaluation of
formulas in  M  as a generalized semantics, where we have a family of models
available instead of just one. We then sometimes shift (a bit like in some recent
semantics for modal predicate logic) from looking for an object in one model to some
image in another. This theme of 'long-distance evaluation' will return in Section 8 on
'information links', and, viewed as a strategy for 'decomplexifying' logics, in Section
10.3.
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Abstract

Semantic invariance approaches to 'logical constants' capture the important aspect of

their 'topic-neutrality'. But these approaches tend to overgenerate, in that they admit

all infinite Boolean combinations – which can hide a lot of unwarranted complexity.

To advance further, we note that semantic invariances rather tell us something about

the kind of evaluation process associated with logical constants. This process view

leads us to impose a natural further constraint, of finite computability, which can be

implemented over arbitrary models in a language-free manner. The result of such an

analysis is a complete characterization of the logical constants that relate predicates

and individual objects as precisely those definable in a standard first-order language.

We also discuss ways of extending this analysis to more complex 'logical processes'.
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1   Logical Constants, Semantic Invariances and Evaluation Processes

The logical expressions of a language are topic-neutral, and describe only abstract
patterns in semantic models. Thus, they typically exhibit invariance for permutations of
the universe of individuals (Tarski 1986, van Benthem 1986). But still very many
expressions pass this test. More restrictive kinds of logicality arise by imposing
invariance for less demanding semantic equivalence relations, sich as potential
isomorphism, or bisimulation. Invariance may then be modified to a notion of 'safety'
(preservation of back-and-forth behaviour), which allows for complete syntactic
characterizations, e.g., of all safe first-order operations (van Benthem 1996, Ch. 5).
Such results are attractive expressive completeness theorems, effectively enumerating
all logical constants. A drawback common to all such invariance approaches, however,
is their 'Boolean slippage': arbitrary infinite combinations of invarinat items satisfy the
criterion. The reason is the symmetry of invariance, plus the usual inductive argument.
(If one moves to different, asymmetric model relations to avoid this slippage, too many
Booleans are lost, not just infinite ones.) Now, infinitary combinations are undesirable,
as they encode a lot of unanalyzed structure that does not seem 'logical'. For instance,
infinitary modal theories suffice for characterizing all sets (Barwise & Moss 1996)!

So, we have to find a further intuitive ingredient to logicality. Our analysis starts from
the observation that semantic equivalence relations like the above may be viewed as
'simulations' between models, where the latter serve as process representations. Logical
constants are naturally viewed as processes, viz. evaluation procedures. For instance,
Tarski semantics defines the following evaluation process for first-order predicate logic.
Its states are variable assignments, its basic moves are steps  =x between assignments
that agree up to their  x–value (for the relevant variables  x ), while in between these,
one can perform atomic tests on the current state (Groenendijk & Stokhof 1991). Now,
our general suggestion is that all logical constants are evaluation procedures, and that
'logicality' also means computational 'simplicity' in some sense. In particular, this
requires finite computation spaces. We will now implement this view more technically.

2   Semantic Computation: Approximating Models by Finite State Machines

Fix some finite predicate vocabulary, disregarding function symbols. Logical constants
can be viewed as relations between these predicates, plus distinguished individuals.
(Logical operations, like negation or composition of relations, may be subsumed here
via their graphs – or via the use of models-cum-initial-assignments introduced below.)
Thus, we identify a potential logical constant with some model class  C in the relevant
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(predicate) similarity type. For instance, the clas of models  M = (D, P, Q) where  P, Q
are unary predicates with a non-empty intersection encodes the logical notion of
'overlap'. More generally, we also consider pairs  (M, s)  with  s  a variable assignment.
For instance, the class of pairs  (M, s)  with  (D, P, Q)  as above, and  s  an assignment
sending one single variable  x  to some object in both  P  and  Q , naturally encodes the
logical operation of intersection. Next, we seek a link with semantic computation.
Fix some finite number of variables  k . After all, any computation process uses only a
fixed number of registers for accessing objects in the domain of the relevant models.

2.1   Evaluation states: assignments modulo zigzag equivalences
It seems rasonable to identify our computational states with 'current workspaces', being
k-assignments from these variables to objects in our model. But this may still be an
infinite set (viz. if the domain of individuals is infinite), and not all differences between
k–assignments need be relevant for our intended computations. Given any model  M ,
we therefore define a family of equivalence relations between  states  ~d  by induction:

s ~0 t iff the relation  sot–1  is a partial isomorphism
(i.e.,  s, t  satisfy the same atomic facts place-by-place)

s ~d+1 t iff s ~d t  and for each variable  x  and object  d in  |M| , 
there exists an object  e  in  |M|  with  s[x:=d] ~d t[x:=e],
and vice versa from right to left.

Note that these are language-free relations (introduced e.g. in Chang & Keisler 1970).
We can consider their equivalence classes as appropriate abstract computation states. In
particular, we do not need the concrete  k–assignments displaying domain objects when
computing Tarski's truth definition, since evaluation need not touch the actual objects
(provided that we have access to the outcome of all relevant atomic tests). Of course,
the larger the index  d , the more information we get from  ~d  about our current model.

2.2   Linguistic analysis: types up to some quantifier depth
There is a well-known 'linguistic' definition for the preceding relations.

Proposition  1  The following assertions are equivalent for all models and assignments:
(i) s  ~d  t
(ii)  M, s |=  φ   iff  M, t |= φ  for all first-order formulas  φ  in  k  variables

up to quantifier depth  d

Proof (i) ⇒ (ii) requires a well-known induction on the quantifier depth  d  of  φ . For
(ii) ⇒ (i), we also use the logical finiteness of the latter first-order language.       !
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Corollary  2    Let  x, y  be sequences of objects, both of length k . There are obvious
corresponding  k–assignments  sx,  sy . The relation  Ed(x, y)  defined by
sx ~d sy  is first-order definable ('having the same  d–type in  k  variables').

2.3   Model approximations by filtration
Next, we define a family of model approximations  Mkd , which are finite Kripke
models for modal logic, or more computationally (' annotated') finite state machines:

states all  ~d  equivalence classes  sd

transition  relations  sd  =x  td   iff   s' =x t'  in  M  for some  s' ~d s,  t'  ~d t
atomic valuation sd |= Px1...xk   iff   M, s |= Px1...xk

The valuation is well-defined, since any two  n–equivalent states agree on all atoms.
Note also that  Mkd  is not an ordinary first-order model. There are no objects, and
atoms are directly interpreted by their truth values at states without looking up tuples of
objects in the usual Tarskian manner. This is precisely what we have in Kripke models
for modal formulas. More precisely, the  Mkd  are multi-S5 models. Again, one can
look at this construction purely structurally. The reader will find it helpful to draw a
concrete sequence of  n–approximations, seeing how these reflect the structure of given
first-order models. (A good example is  (IN, <) with  k=3 .) Incidentally, this is a new
source of concrete models for modal logic, quite different from the usual examples.
Here is an observation that we shall need later on:

Proposition  3       Each individual model  Mkd  is finite. Moreover, there are only 
finitely many different models   Mkd  up to isomorphism. Both these finite 
numbers have upper bounds which are effectively computable from  k,  d .

Proof This is a simple calculation from the given definitions. It reflects (in non-
linguistic terms) the logical finiteness of the above predicate language.        !

Thus, over the universe of all models, there are only finitely many 'projections'  Mkd .
Let us call this finite set  Mkd . It is easy to show that not all multi-S5 Kripke models
up to this size are filtrations of first-order models.

Question Is there a good representation theorem singling out those who are?

Even with such a result, it would still be undecidable if a modal model is representable
in this way. Otherwise, one could decide universal validity for any first-order formula
φ  by surveying all appropriate finite modal candidate models for it, up to the above-
mentioned effectively bounded size for its number of variables and quantifier depth.
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2.4   Linguistic analysis: relating truth across filtrations
On the above models, first-order formulas behave just as modal formulas, with
existential quantifiers  ∃x  as existential modalities  <x>  for each of the  k  variables.
One precise connection is a well-known Filtration Lemma from modal logic.

Proposition  4          For all first-order formulas  φ  with  k  variables
and quantifier depth at most  d ,  M, s |= φ   iff   Mkd, sd |=  φ

Proof Induction on the depth of  φ . The atomic step is by the definition of a valuation.
Boolean cases are routine. Next, consider the existential quantifiers. If  M, s |= ∃x ψ ,
then there exists some assignment  t =x s  with  M, t |= ψ . By the inductive hypothesis,
M kd, td |=  ψ . By the above definition,  td  =x   sd , whence  Mkd, sd |=  ∃x ψ .

Conversely, suppose that  Mkd,  sd |=  ∃x ψ .  By the truth definition for the existential
modality  <x> ,  there is a state  td  with  sd =x td  and  Mkd, td |=  ψ . By the definition
of  =x  on equivalence classes, there are states  s' ~d s, t' ~d t  with  s' =x t'  in  M . Now,
by the inductive hypothesis,  M, t' |=  ψ . Then also  M, t |=  ψ , by Proposition 1. But
then, by the standard first-order truth definition,  M, s' |=  ∃x ψ , and once more by
Proposition 1, we have the desired outcome that  M, s |=  ∃x ψ .       !

Proposition 4 only tells us how to relate truth of formulas up to quantifier depth  d . But
there is a more general result allowing us to reduce evaluation of arbitrary first-order
formulas in filtration models  Mkd  to what happened in the parent model  M . One can
translate backwards from  Mkd  to  M , by faithfully transcribing the above definition
of states and accessibilities For this purpose, we define (cf. Corollary 2 for notation):

(φ)# = φ for all atoms  φ
(¬ φ)# = ¬ (φ)#

(φ&ψ)# = (φ)# & (ψ)#

(∃xi φ)# = ∃x1' .... ∃xk' (Ed(x1, .., xk, x1' , ..., xk' )
&  ∃xi (φ)# (x1', .., xi, .., xk')) .

Note that the latter formula is indeed first-order, using the finiteness of  k, n–types.
Now, a straightforward induction establishes the following

Proposition  5   For arbitrary modal formulas  φ ,  Mkd, sd |=  φ  iff   M, s |= (φ)#

We can check that this generalizes the Filtration Proposition 4 by observing that, for
all formulas  φ  up to quantifier depth  d, the equivalence  φ↔ (φ)#  is universally valid.

Johan van Benthem
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We conclude by noting that the same constructions and arguments work on any model
M  with some distinguished assignment  s  – the basic setting for Tarski semantics.
The latter lands in  Mkd  as  sd , which we can think of as a distinguished 'starting state'.

3   Logicality as Bisimulation Invariance in a Finite Computation Space

In this technical setting, we can sharpen up our general analysis. A 'logical' relation is a
semantic computation process. This means two things. (1) On any model, it only uses a
fixed finite workspace, no matter how large that model is. (2) It does not distinguish
models with 'the same' associated process: i.e., whose associated workspaces are related
by a standard process equivalence. For the latter purpose, we use an obvious candidate.

3.1   Basics of bisimulation and modality
There is a strong case for bisimulation, defined as usual (cf. van Benthem 1996), as a
basic equivalence preserving both external output and internal choices of a process,
across many fields (logic, computer science, game theory). We know, in particular, that
modal formulas are invariant for bisimulation. Of various converse results, we mention

Lemma  6   Finite models are modally equivalent  iff  they are bisimilar.

Proof Cf. any modern textbook. From right to left, this is a straightforward induction
on modal formulas. From left to right, one can take modal equivalence between states
as the bisimulation. The back-and forth clauses use the finiteness essentially.        !

Also useful is the following simple consequence.

Lemma  7  Let  A  be some finite set of finite modal models. Let  B  be any
bisimulation-closed subset of  A . Then  B  has a modal definition in  A .

Proof  Consider any model  M  in  B , and any model  N  in  A–B . The two are not
bisimilar, because of the closure condition on  B . By Lemma 6, there is then some
modal formula  µM, N  true in  M   and false in  N . The conjunction of all these
formulas with  N  running over the finite set  A–B is a modal formula true in  M  but
false throughout  A–B . Then the disjunction of the latter formulas, with  M  running
over the finite set  B ,  is the required modal definition for  B  in  A .       !

3.2   Defining logicality as finite process invariance
The above two requirements on logicality now naturally combine into one. Consider
any class  C  of models with distinguished assignments, standing for a putative logical
relation. As earlier, we assume that models come with some distinguished assignment.
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We call any such model class finite-bisimulation-invariant  (FBI)  if there exist two
natural numbers  k, d for which the following invariance condition is satisfied:

for all models  M∈C, and for all models  N ,
if  Mkd  is bisimilar with  Nkd ,  then  N∈C

In this formulation of the FBI property, the bisimulations between  Mkd  and  Nkd  are
always taken to connect the two distinguished starting states  sd,  td – even if the latter
have not been mentioned explicitly.

4   From Logicality to Definability

4.1   First-order definability
Here is our main result, which amounts to the following syntactic characterization.
(The term 'first-order definable' refers to definability by one single formula.)

Theorem  8 A class of models is  FBI  iff  it is first-order definable.

Proof      First-order definable classes of models are FBI. Suppose that  φ  defines  C .
Let  k  indicate all the variables occurring in  φ , and let  d  be the quantifier depth of  φ .
Suppose that  M, s ∈C  satisfies  φ . By Proposition 4,  Mkd , sd |= φ  as well. Now let
N, t  be any model such that  Mkd, sd  is bisimilar with  Nkd, td . By the invariance of
modal formulas under bisimulations, we get  Nkd , td |= φ . Once more by Proposition 4,
N, t  satisfies  φ  as well, and hence – since  φ  defined  C  – N, t ∈C .

Conversely, consider the  d,k–projections of all models in our FBI class  C . This is a
finite subset  Ckd  of the finite class of all finite models  Mkn . By Lemma 7, the finite
bisimulation closure of this set has a modal definition  µ . (Note that all models in the
latter closure are bisimilar to some member of  Ckd .) This modal formula as it stands
need not be the required first-order definition. (Proposition 4 only applies to formulas
up to modal depth  d , and we have no reason to think  µ  is of the latter kind.) But by
Proposition 5, we can translate backwards from  Mkd  to  M  , and use the first-order
formula  (µ)# . The latter indeed defines our class  C . First, if  M, s ∈C , then  Mkd, sd

is in  Ckd , and hence it satisfies the modal formula  µ . By Proposition 4 then,  (µ)#

must hold in  M , s . Conversely, assume that  M , s |= (µ)# . By Proposition 5, its
approximation  Mkd, sd  satisfies  µ . Then, by the above construction of the modal
formula  µ , this means that  Mkd, sd  is bisimilar to  Nkd, td  for some model  N, t  in the
class  C . But then, by the definition of the FBI property,  M, s ∈C  as well.       !
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4.2   Relaxing the bounds on computation
This is not the only result that can be extracted from this style of analysis. In particular,
our restriction to some fixed finite bound on the computation space rules out cases with
genuine iteration, such as fixed-point operators. For instance, computing the operation
of transitive closure  tc(R) (x, y)  involves computing through finite spaces whose size
may depend on the arguments  x, y. This case may be covered, however, by the
following relaxation of the above FBI property, shifting its quantifiers somewhat:

∃ k  ∀M, s ∈C ∃ d  ∀N, t:
if  Mkd, sd  is bisimilar to  Nkd, td , then  N, t ∈C

An easy modification of the preceding proof in Section 4.1 shows that this weaker
property holds for a class of models  C  if and only if the latter is definable by a
countable disjunction of first-order formulas. As countable disjunctions may be highly
non-effective, however, we feel this outcome still cannot be the final word.

4.3   Other states over first-order models
The preceding analysis of transitive closure is still unsatisfactory, as it does not capture
the uniform finiteness of the process involved. This latter is the computation of a fixed-
point with a fixed scheme whose approximation sequence 'stabilizes' after  ω  rounds.
One way of representing these takes richer states  (sd, i)  combining the above  sd

standing for an 'environment' that yields replies to tests, with the 'current instruction'  i .
Such states occur in computations by Turing or Register machines. Here is a program
checking whether the transitive closure of the binary relation  R  connects  x  with  y :

1:  IF  Rxy  THEN  2  ELSE  4               2:  SUCCESS                  3:  FAILURE
  4:  IF  ∃z Rxz  THEN  4  ELSE  5       5:  SET  x:=  εz• Rxz  ; GOTO 1

This program terminates succesfully just in case tc(R)(x, y) . It may diverge or fail
otherwise, depending on the model. These actions can be described in terms of  (sd, i)
state models with  d=1  (no test for the program reaches greater depth), while arrows
between the  i's  encode possible further activity. We then need a notion of bisimulation
on such product models, which we will not pursue here. Note also that we need a new
indeterministic atomic action  x:=  εz• Rxz ('x  becomes some successor of its old self'),
different from the random changes in  x–values that sufficed so far. Alternatively, we
can make use of the fact that fixed-point computations correspond to expandability of
the original model with certain additional predicates, and complicate our notion of state
sd  accordingly. We leave the analysis of fixed-point computations to another occasion.
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5   Points for Discussion

5.1 This analysis is close to the usual characterization of first-order logic in terms of
Ehrenfeucht games. We have merely 'rearranged the pieces' to throw some new light.

5.2 There is also a close connection to algebraic-style generalized CRS–models for
first-order logic, and their representation theory.

5.3  Can one give a similar analysis for definability in first-order logic plus
monotone (or just  ω–continuous) fixed point operators? This would be an interesting
step toward a purely semantic analysis of the notion of computational 'algorithm'.

5.4 How does our analysis of logical relations between individuals and predicates
extend to relations at higher type levels?

5.5 Are there good representation theorems for finite modal models as  Mkd's?

5.6 Develop some standard model theory of d,k–approximations. Can each  M  be
retrieved as an inverse limit of its approximations  Mkd , plus their natural connections?

5.7 The only atomic actions allowed in our analysis of semantic computation are
random shifts in single registers (cf. the relations  ~x ), and tests for atomic formulas.
One might consider richer repertoires, such as multiple assignment, and choice of new
values constrained by some atom (e.g.,  'let  x  become one of its own  R-successors').
What will happen to our previous analysis? What happens if we throw in further
infinitary  regular constructions, like iteration?

5.8  Is there a link with the category-theoretic analysis in Butz & Moerdijk 1997?
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information 

 

flow 

 

across 

 

these 

 

links,

using 

 

'generalized 

 

consequence 

 

relations' 

 

in 

 

a 

 

modal 

 

logic 

 

framework.

1 

 

 

 

 

 

Information 

 

Networks
One 

 

situation 

 

can 

 

carry 

 

information 

 

about 

 

another, 

 

provided 

 

there 

 

i s  

 

sufficient
'connection' 

 

between 

 

the 

 

two. 

 

This 

 

idea 

 

i s  

 

the 

 

core 

 

of 

 

Fred 

 

Dretske's 

 

analysis 

 

of
information 

 

flow, 

 

as 

 

developed 

 

further 

 

in 

 

a  

 

logical 

 

vein 

 

by 

 

Barwise 

 

& 

 

Seligman 

 

1996,
Israel 

 

& 

 

Perry 

 

1991. 

 

Such 

 

connections 

 

can 

 

be 

 

'extrinsic' 

 

(due 

 

to 

 

regularities 

 

that 

 

happen 

 

to
hold 

 

in  

 

this 

 

world), 

 

but 

 

also 

 

'intrinsic': 

 

based 

 

on  

 

structural 

 

similarities 

 

between 

 

the
situations. 

 

One 

 

can 

 

model 

 

both 

 

by 

 

information 

 

network 

 

plus 

 

u

 

s

 

e

 

f

 

u

 

l

 

 

 

links 

 

between 

 

them.
(Another 

 

source 

 

for 

 

this 

 

idea 

 

is 

 

Michiel 

 

v

 

a

 

n

 

 

 

Lambalgen's

 

 

 

work 

 

o

 

n

 

 

 

information 

 

flow 

 

across
various 

 

approximations 

 

o

 

f

 

 

 

visual 

 

scenes.) 

 

Unlike 

 

Barwise 

 

& 

 

Seligman, 

 

we 

 

do 

 

not 

 

assume
that 

 

these 

 

links 

 

are 

 

of 

 

one 

 

kind: 

 

information 

 

flows 

 

along 

 

various 

 

channels. 

 

An 

 

information
network 

 

is 

 

a 

 

(finite) 

 

labeled 

 

transition 

 

system, 

 

interpreted 

 

intuitively 

 

as 

 

a 

 

set 

 

of 

 

'situations'
related 

 

by 

 

some 

 

binary 

 

relations 

 

that 

 

allow 

 

flow 

 

of 

 

information 

 

from 

 

one 

 

situation 

 

to
another. 

 

Concrete 

 

examples 

 

might 

 

be 

 

first-order 

 

models, 

 

with 

 

relations 

 

of 

 

isomorphism,
homomorphism, 

 

submodel, 

 

etcetera.

This 

 

is 

 

a 

 

very 

 

abstract 

 

framework. 

 

What 

 

concrete 

 

questions 

 

arise? 

 

One 

 

concerns 

 

a 

 

measure
for 

 

'identity' 

 

of 

 

our 

 

notion. 

 

What 

 

is 

 

the 

 

correct 

 

structural 

 

equivalence 

 

between 

 

different
information 

 

networks? 

 

Bisimulation 

 

seems 

 

a 

 

good 

 

candidate, 

 

just 

 

as 

 

in 

 

process 

 

theory 

 

– 

 

but
this 

 

time, 

 

describing 

 

equivalent 

 

potentials 

 

for 

 

directions 

 

of 

 

information 

 

flow. 

 

Next, 

 

at 

 

least
two 

 

basic 

 

logical 

 

issues 

 

suggest 

 

themselves 

 

naturally 

 

:

(1) 

 

A 

 

general 

 

calculus 

 

for 

 

combining 

 

information 

 

from 

 

different 

 

sources 

 

(regardless 

 

of 

 

the 

 

origin 

 

of 

 

its 

 

initial 

 

statements: 

 

extrinsic, 

 

intrinsic),
(2) 

 

'intrinsic 

 

input': 

 

transfer 

 

behaviour 

 

of 

 

specific 

 

model 

 

relations.

The 

 

former 

 

is 

 

modal 

 

or 

 

dynamic 

 

logic 

 

(or 

 

suitable 

 

fragments 

 

of 

 

it), 

 

re-interpreted 

 

in 

 

this
setting, 

 

while 

 

model-theoretic 

 

preservation 

 

theorems 

 

are 

 

a  

 

prime 

 

source 

 

for 

 

the 

 

latter.
Thus, 

 

our 

 

starting 

 

point 

 

are 

 

the 

 

same 

 

models 

 

that 

 

underly 

 

modal 

 

process 

 

theories 

 

(Sections
2, 

 

3). 

 

But 

 

the 

 

questions 

 

that 

 

we 

 

raise 

 

are 

 

rather 

 

different.
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2 

 

 

 

 

 

Consequence 

 

along 

 

a 

 

Connection
Information 

 

networks 

 

suggest 

 

the 

 

following 

 

key 

 

notion 

 

of 

 

'flow' 

 

across 

 

links:

 

 

A 

 

→ 

 

[R]B: 

 

 

 

 

 

 

 

 

 

if 

 

 

 

A 

 

 

 

holds 

 

in 

 

situation 

 

 

 

s 

 

 

 

and 

 

 

 

s 

 

R 

 

t 

 

, 

 

then 

 

 

 

B 

 

 

 

holds 

 

in 

 

situation 

 

 

 

t

This 

 

is 

 

a 

 

generalized 

 

consequence, 

 

along 

 

such 

 

model 

 

relations 

 

as 

 

 

 

'submodel' 

 

or 

 

'potentially
isomorphic 

 

image'. 

 

Standard 

 

consequence 

 

is 

 

the 

 

case 

 

where 

 

 

 

R 

 

 

 

is 

 

the 

 

identity 

 

relation.
Motivation 

 

for 

 

and 

 

applications 

 

of 

 

this 

 

notion 

 

are 

 

found 

 

in 

 

Barwise 

 

& 

 

van 

 

Benthem 

 

1996.
Here 

 

is 

 

a 

 

typical 

 

result 

 

for 

 

(infinitary) 

 

first-order 

 

languages.

Example 

 

Bisimulation 

 

preservation 

 

and 

 

modal 

 

interpolation.
If 

 

 

 

A, 

 

B 

 

 

 

are 

 

first-order 

 

formulas, 

 

and 

 

 

 

R 

 

 

 

is 

 

bisimulation 

 

w.r.t. 

 

their 

 

shared 

 

vocabulary, 

 

then
(1) 

 

A 

 

 

 

implies 

 

 

 

B 

 

 

 

along 

 

 

 

R 

 

 

 

iff 

 

 

 

(2) 

 

there 

 

exists 

 

a 

 

modal 

 

interpolant 

 

 

 

C 

 

 

 

such 

 

that 

 

 

 

A|= 

 

C|= 

 

B 

 

.
A 

 

simple 

 

modification 

 

holds 

 

with 

 

different 

 

languages 

 

on 

 

both 

 

sides 

 

(cf. 

 

Section 

 

10.1).

3 

 

 

 

 

 

Complete 

 

Modal 

 

Calculi
The 

 

simplest 

 

useful 

 

inferences 

 

work 

 

as 

 

follows. 

 

Given 

 

some 

 

transfer 

 

statements 

 

A 

 

→ 

 

[R]B
as 

 

premises, 

 

how 

 

to 

 

derive 

 

a 

 

new 

 

one, 

 

representing 

 

some 

 

further 

 

transfer 

 

of 

 

information?
What 

 

this 

 

requires 

 

is 

 

an 

 

axiomatization 

 

of 

 

the 

 

Horn 

 

fragment 

 

of 

 

minimal 

 

polymodal 

 

logic.
(The 

 

version 

 

needed 

 

for 

 

this 

 

purpose 

 

is 

 

'global 

 

consequence', 

 

from 

 

universal 

 

truth 

 

of 

 

the
premises 

 

in 

 

a 

 

model 

 

to 

 

universal 

 

truth 

 

of 

 

the 

 

conclusion.) 

 

This 

 

is 

 

easy 

 

to 

 

do.

Richer 

 

logics 

 

to 

 

this 

 

effect 

 

use 

 

Horn 

 

fragments 

 

of 

 

dynamic 

 

logics 

 

building 

 

up 

 

complex 

 

new
relations 

 

t

 

o

 

 

 

g

 

e

 

t

 

 

 

th

 

e

 

 

 

right 

 

transfer 

 

statements 

 

f

 

o

 

r

 

 

 

the 

 

conclusions. 

 

E.g., 

 

hypothetical 

 

syllogism:

from 

 

 

 

A 

 

→ 

 

[R]B 

 

 

 

and 

 

 

 

B 

 

→ 

 

[S]C 

 

 

 

to 

 

 

 

A 

 

→ 

 

[R 

 

; 

 

S] 

 

C

The 

 

Tree 

 

Calculus 

 

f

 

r

 

o

 

m

 

 

 

"Dynamic 

 

Bits 

 

a

 

n

 

d

 

 

 

Pieces"(1997) 

 

gives 

 

a

 

 

 

concrete 

 

implementation.
Its 

 

assertions 

 

generalize 

 

the 

 

schema 

 

 

 

A→[R]B 

 

 

 

to 

 

the 

 

more 

 

convenient 

 

and 

 

flexible 

 

format
"description 

 

of 

 

some 

 

tree 

 

of 

 

connected 

 

models" 

 

implies 

 

"description 

 

of 

 

the 

 

root 

 

situation".
This 

 

calculus 

 

w

 

a

 

s

 

 

 

designed 

 

to 

 

describe 

 

plan 

 

formation, 

 

but 

 

it 

 

can 

 

also 

 

describe 

 

combination
of 

 

information 

 

links 

 

('planning 

 

new 

 

information'). 

 

It 

 

is 

 

reprinted 

 

in 

 

the 

 

Appendix 

 

below.

4 

 

 

 

 

 

A 

 

First-Order 

 

Horn 

 

Clause 

 

Analysis
All 

 

the 

 

above 

 

inference 

 

can 

 

be 

 

formulated 

 

in 

 

terms 

 

of 

 

universal 

 

Horn 

 

clauses, 

 

whose
variables 

 

range 

 

over 

 

th

 

e

 

 

 

situations 

 

i

 

n

 

 

 

one 

 

information 

 

network, 

 

and 

 

whose 

 

vocabulary 

 

refers
to 

 

transfer 

 

relations 

 

as 

 

well 

 

as 

 

unary 

 

facts 

 

local 

 

to 

 

a 

 

situation. 

 

Horn 

 

clauses 

 

can 

 

express
more 

 

sophisticated 

 

informational 

 

dependencies 

 

than 

 

what 

 

was 

 

handled 

 

above: 

 

say,
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∀xyz 

 

((Rxy 

 

& 

 

Sxz 

 

& 

 

Tyz 

 

& 

 

Ay 

 

& 

 

Bz) 

 

→ 

 

 

 

Cx)

(These 

 

richer 

 

statements 

 

are 

 

no 

 

longer 

 

preserved 

 

under 

 

bisimulation 

 

between 

 

networks.)
This 

 

first-order 

 

calculus 

 

is 

 

easily 

 

decidable 

 

(a 

 

standard 

 

fact), 

 

and 

 

one 

 

complete 

 

inference
system 

 

is 

 

PROLOG-style 

 

SLD 

 

resolution. 

 

Even 

 

so,

 

 

 

there 

 

is 

 

an 

 

interest 

 

to 

 

explicit 

 

calculi
for 

 

specific 

 

links 

 

–

 

 

 

and 

 

expressive 

 

completeness 

 

for 

 

modal 

 

logics 

 

matching 

 

their 

 

Horn
clauses.

5 

 

 

 

 

 

Sequential 

 

and 

 

Parallel 

 

Operations
Informational 

 

inference 

 

goes 

 

in 

 

tandem 

 

with 

 

link-building. 

 

To 

 

see 

 

this, 

 

one 

 

can 

 

analyse
propositional 

 

inferences 

 

with 

 

relational 

 

tags, 

 

and 

 

observe 

 

the 

 

emergence 

 

of 

 

complex 

 

links.
(Cf. 

 

again 

 

the 

 

Tree 

 

Calculus 

 

of 

 

our 

 

Appendix.) 

 

Natural 

 

examples 

 

are 

 

the 

 

following:

from A 

 

→ 

 

[R]B, 

 

B 

 

→ 

 

[S]C 

 

 

 

infer 

 

 

 

A 

 

→ 

 

[R 

 

; 

 

S] 

 

C composition
from 

 

A 

 

→ 

 

[R]B infer ¬ 

 

B 

 

→ 

 

[Rˇ]¬ 

 

A converse
from 

 

 

 

A 

 

→ 

 

[R]B, 

 

A 

 

→ 

 

[S]B infer 

 

 

 

 

 

 

 

A 

 

 

 

→ 

 

[R∪S] 

 

B union

The 

 

obvious 

 

language 

 

for 

 

this 

 

is 

 

a 

 

fragment 

 

of 

 

propositional 

 

dynamic 

 

logic. 

 

But 

 

if 

 

we 

 

want
to 

 

'linearize' 

 

the 

 

two-dimensional 

 

finite 

 

action 

 

trees 

 

which 

 

arise 

 

eventually 

 

in 

 

this 

 

setting,
we 

 

must 

 

use 

 

the 

 

extended 

 

Choice 

 

Calculus 

 

with 

 

main 

 

operation 

 

 

 

& 

 

 

 

of 

 

Section 

 

10.6. 

 

Even
then, 

 

not 

 

every 

 

propositional 

 

inference 

 

will 

 

'fit'. 

 

We 

 

also 

 

need 

 

'parallel' 

 

operators, 

 

as 

 

in:

from 

 

 

 

A 

 

→ 

 

[R]B, 

 

C 

 

→ 

 

[S]D infer 

 

 

 

 

 

 

 

(A, 

 

C) 

 

→ 

 

[RxS] 

 

(B, 

 

D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

product

or 

 

in 

 

first-order 

 

transcription: 

 

 

 

∀xyzu: 

 

((Ax 

 

& 

 

Cy) 

 

& 

 

(Rxz 

 

& 

 

Syu)) 

 

 

 

→ 

 

 

 

(Bz 

 

& 

 

Du)

A

 

 

 

concrete 

 

calculus 

 

f

 

o

 

r

 

 

 

this 

 

purpose 

 

needs 

 

product 

 

operators 

 

on 

 

complex 

 

states 

 

i

 

n

 

 

 

a

 

 

 

polyadic
version 

 

of 

 

propositional 

 

dynamic 

 

logic. 

 

Such 

 

modal 

 

calculi 

 

were 

 

provided 

 

in 

 

Section 

 

2.
Notice 

 

again 

 

that, 

 

although 

 

these 

 

calculi 

 

were 

 

developed 

 

to 

 

model 

 

processes 

 

(through
process 

 

graphs), 

 

they 

 

also 

 

fit 

 

the 

 

current 

 

interpretation 

 

in 

 

terms 

 

of 

 

information 

 

networks.

6 

 

 

 

 

 

Extensions 

 

with 

 

Guarded 

 

Patterns; 

 

'Boosting'
Modal 

 

logics 

 

retain 

 

their 

 

decidability 

 

when 

 

extended 

 

t

 

o

 

 

 

t

 

h

 

e

 

 

 

Guarded 

 

Fragment 

 

of 

 

first-order
logic 

 

(and 

 

even 

 

further; 

 

cf. 

 

Section 

 

3). 

 

The 

 

latter 

 

allows 

 

all 

 

bounded 

 

existential 

 

quantifiers

∃y 

 

(G(x, 

 

y) 

 

& 

 

φ 

 

(x, 

 

y))

Thus, 

 

we 

 

can 

 

freely 

 

use 

 

existential 

 

modalities 

 

 

 

<R> 

 

 

 

of 

 

various 

 

kinds 

 

in 

 

our 

 

calculi 

 

(going
b

 

e

 

y

 

o

 

n

 

d

 

 

 

universal 

 

Horn 

 

clauses) 

 

without 

 

loss 

 

o

 

f

 

 

 

decidability. 

 

F

 

o

 

r

 

 

 

instance, 

 

a

 

 

 

modal 

 

statement
A 

 

→ 

 

<R> 

 

(A 

 

& 

 

B)

Johan van Benthem


Johan van Benthem


Johan van Benthem


Johan van Benthem


Johan van Benthem
composition

Johan van Benthem


Johan van Benthem
union

Johan van Benthem


Johan van Benthem


Johan van Benthem


Johan van Benthem
product

Johan van Benthem
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says 

 

that 

 

 

 

A 

 

 

 

may 

 

be 

 

boosted 

 

to 

 

 

 

B 

 

 

 

along 

 

 

 

R 

 

. 

 

In 

 

modal 

 

logic, 

 

techniques 

 

like 

 

Segerberg's
'Bulldozer 

 

Theorem' 

 

or 

 

Vakarelov's 

 

'Product 

 

Lemma' 

 

boost 

 

various 

 

properties 

 

of 

 

frames
along 

 

bisimulation. 

 

(Van 

 

Benthem 

 

1997B 

 

has 

 

more 

 

o

 

n

 

 

 

boosting.) 

 

A

 

l

 

s

 

o

 

,  

 

standard
unraveling 

 

is 

 

a  

 

construction 

 

which 

 

adds 

 

intransitivity 

 

and 

 

other 

 

tree 

 

properties 

 

along
bisimulation.

7 

 

 

 

 

 

A 

 

Complete 

 

Modal 

 

Calculus 

 

with 

 

Existence
T

 

o

 

 

 

describe 

 

some 

 

of 

 

the 

 

previous 

 

phenomena 

 

(such 

 

as 

 

'modal 

 

boosting') 

 

one  

 

can
axiomatize 

 

the 

 

 

 

A 

 

→ 

 

 

 

[R]B, 

 

A 

 

→ 

 

<R>B 

 

 

 

fragment 

 

of 

 

the 

 

minimal 

 

modal 

 

logic 

 

in 

 

its 

 

own
right. 

 

(The 

 

latter 

 

suffices, 

 

in 

 

a 

 

sense, 

 

for 

 

the 

 

whole 

 

system 

 

– 

 

via 

 

a 

 

well-known 

 

subformula
coding 

 

trick.) 

 

But 

 

again, 

 

to  

 

get 

 

the 

 

subtler 

 

principles, 

 

one 

 

needs 

 

explicit 

 

first-order
versions, 

 

too.

8 

 

 

 

 

 

Concrete 

 

Excursion: 

 

Predicate 

 

Logic 

 

with 

 

an 

 

Extension 

 

Modality
Specific 

 

transfer 

 

facts 

 

in 

 

our 

 

richer 

 

calculi 

 

may 

 

be 

 

much 

 

more 

 

complicated 

 

than 

 

those 

 

of
the 

 

form 

 

 

 

A 

 

→ 

 

[R]B, 

 

which 

 

were 

 

often 

 

 

 

RE 

 

(though 

 

usually 

 

not 

 

decidable). 

 

For 

 

instance,
saying 

 

that 

 

 

 

A 

 

 

 

implies 

 

 

 

B 

 

along 

 

all 

 

submodels 

 

is 

 

quivalent, 

 

by 

 

the 

 

Los-Tarski 

 

Theorem, 

 

to
stating 

 

that 

 

there 

 

exists 

 

some 

 

universal 

 

interpolant 

 

 

 

C 

 

such 

 

that 

 

 

 

A|= 

 

C 

 

 

 

and 

 

 

 

C|=B. 

 

But 

 

the
latter 

 

assertion 

 

is  

 

clearly 

 

RE. 

 

We 

 

discuss 

 

one 

 

similar 

 

existential 

 

case, 

 

showing 

 

how
procuring 

 

base 

 

facts 

 

about 

 

'intrinsic 

 

information 

 

flow' 

 

is 

 

highly 

 

non-trivial.

Consider 

 

first-order 

 

formulas 

 

with 

 

implications 

 

t o  

 

existential 

 

modalities. 

 

These 

 

are
needed, 

 

e.g., 

 

to 

 

express 

 

situation-theoretic 

 

'constraints' 

 

like 

 

"where 

 

there 

 

is 

 

smoke, 

 

there 

 

is
fire." 

 

Another 

 

motivation 

 

was 

 

the 

 

ubiquity 

 

of 

 

modal 

 

techniques 

 

like 

 

'boosting 

 

along
bisimulation'. 

 

 

 

We 

 

list 

 

some 

 

facts 

 

which 

 

are 

 

easy 

 

to 

 

prove:

Fact The 

 

general 

 

notion 

 

 

 

" 

 

A 

 

→ 

 

<inclusion>B 

 

" 

 

 

 

is 

 

not 

 

RE.

Proof 

 

 

 

 

 

One 

 

easily 

 

reduces 

 

first-order 

 

satisfiability 

 

to 

 

this 

 

notion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

Question 

 

What 

 

is 

 

the 

 

exact 

 

complexity 

 

of 

 

this 

 

notion?

A

 

s

 

 

 

we 

 

shall 

 

see 

 

i

 

n

 

 

 

a

 

 

 

moment, 

 

t

 

h

 

e

 

 

 

preceding 

 

implication 

 

i

 

s

 

 

 

arithmetically 

 

definable. 

 

Our 

 

more
precise 

 

conjecture 

 

is 

 

 

 

Π02 

 

 

 

for 

 

the 

 

relation 

 

of 

 

'submodel'. 

 

Similar 

 

questions 

 

arise 

 

for 

 

other
important 

 

model 

 

connections, 

 

in 

 

particular 

 

– 

 

with 

 

'modal 

 

boosting' 

 

– 

 

for 

 

bisimulation.

Proposition The 

 

notion 

 

 

 

" 

 

A 

 

 

 

→ 

 

<inclusion>B 

 

" 

 

 

 

is 

 

equivalent 

 

to 

 

conservativity
of 

 

 

 

 

 

A 

 

 

 

over 

 

 

 

B 

 

 

 

w.r.t. 

 

universal 

 

statements.
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Proof 

 

There 

 

is 

 

a 

 

straightforward 

 

semantic 

 

argument 

 

for 

 

this. 

 

(1) 

 

First, 

 

if 

 

B 

 

implies 

 

some
universal 

 

sentence 

 

C, 

 

then 

 

so 

 

does 

 

A. 

 

For, 

 

let 

 

M 

 

be 

 

any 

 

model 

 

for 

 

A. 

 

It 

 

has 

 

some 

 

extension
N 

 

which 

 

is 

 

a 

 

model 

 

for 

 

B. 

 

Therefore, 

 

C 

 

holds 

 

in 

 

N, 

 

and 

 

by 

 

preservation 

 

under 

 

submodels, 

 

C
also 

 

holds 

 

in 

 

M. 

 

(2) 

 

Conversely, 

 

let 

 

M 

 

be 

 

any 

 

model 

 

for 

 

A. 

 

Consider 

 

the 

 

atomic 

 

diagram 

 

of
M 

 

together 

 

with 

 

B. 

 

We 

 

claim 

 

that 

 

this 

 

is 

 

finitely 

 

satisfiable. 

 

For 

 

suppose 

 

otherwise. 

 

Then
B  

 

implies 

 

some 

 

negation 

 

of 

 

a  

 

conjunction 

 

of 

 

true 

 

literals 

 

in  

 

the 

 

M-diagram, 

 

and 

 

–
quantifying 

 

out 

 

the 

 

new 

 

domain 

 

constants 

 

– 

 

we 

 

get 

 

a 

 

universal 

 

consequence 

 

of 

 

B 

 

which 

 

is
false 

 

i n  

 

M , 

 

and 

 

hence 

 

does 

 

not  

 

follow 

 

from 

 

A. 

 

This 

 

refutes 

 

the 

 

given 

 

universal
conservativity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

Note 

 

that 

 

conservativity 

 

is 

 

typically 

 

 

 

Π02 

 

– 

 

which 

 

explains 

 

the 

 

earlier 

 

conjecture. 

 

By 

 

quite
similar 

 

reasoning, 

 

we 

 

can 

 

determine 

 

a 

 

counterpart 

 

for 

 

'boosting 

 

along 

 

bisimulation'.

Proposition The 

 

following 

 

assertions 

 

are 

 

equivalent 

 

for 

 

first-order 

 

formulas 

 

 

 

A, 

 

B 

 

:
(a) 

 

 

 

 

 

each 

 

model 

 

for 

 

A 

 

has 

 

a 

 

bisimilar 

 

model 

 

where 

 

B 

 

holds
(b) 

 

 

 

 

 

B 

 

 

 

is 

 

conservative 

 

over 

 

A 

 

with 

 

respect 

 

to 

 

modal 

 

consequences.

If 

 

 

 

A 

 

 

 

is 

 

a 

 

modal 

 

formula, 

 

condition 

 

(a) 

 

gives 

 

a 

 

bisimilar 

 

model 

 

where 

 

both 

 

A 

 

and 

 

B 

 

hold.

Excursion 

 

Implication 

 

up 

 

to 

 

some 

 

vocabulary
Conservativity 

 

suggests 

 

a 

 

ternary 

 

notion 

 

of 

 

consequence 

 

 

 

A 

 

|= 

 

B 

 

| 

 

L 

 

 

 

defined 

 

as 

 

follows: 

 

 

 

 

 

A
implies 

 

every 

 

 

 

L-consequence 

 

of 

 

 

 

B  

 

.  

 

Ordinary 

 

valid 

 

consequence 

 

is 

 

 

 

A 

 

|= 

 

B  

 

| 

 

LB, 

 

and
conservative 

 

extension 

 

of 

 

 

 

A 

 

 

 

by 

 

 

 

B 

 

 

 

is 

 

 

 

B 

 

|= 

 

A 

 

| 

 

LA 

 

 

 

& 

 

 

 

A 

 

|= 

 

B 

 

| 

 

LA 

 

. 

 

This 

 

leads 

 

to 

 

a 

 

new
calculus 

 

with 

 

ternary 

 

inferences 

 

that 

 

may 

 

also 

 

change 

 

vocabulary. 

 

E.g., 

 

 

 

A 

 

|= 

 

B 

 

| 

 

L 

 

 

 

and 

 

 

 

C 

 

|=
B 

 

| 

 

L' 

 

 

 

imply 

 

 

 

A 

 

∨ 

 

C 

 

|= 

 

B 

 

| 

 

L∩L' 

 

. 

 

Interesting 

 

new 

 

questions 

 

arise 

 

in 

 

such 

 

a 

 

setting. 

 

E.g., 

 

does
A 

 

|= 

 

B 

 

| 

 

L 

 

, 

 

 

 

A 

 

|= 

 

B 

 

| 

 

L' 

 

 

 

imply 

 

that 

 

 

 

A 

 

|= 

 

B 

 

| 

 

L∪L' 

 

? 

 

The 

 

answer 

 

is: 

 

"no" 

 

in 

 

general, 

 

but 

 

"yes"
for 

 

propositional 

 

logic, 

 

and 

 

suitable 

 

first-order 

 

fragments. 

 

This 

 

would 

 

provide 

 

a 

 

concrete
calculus 

 

of 

 

interpolation 

 

and 

 

conservativity, 

 

beyond 

 

the 

 

usual 

 

proof 

 

systems. 

 

I t  

 

also
generalizes 

 

so-called 

 

'Ramsey 

 

Eliminability' 

 

of 

 

theoretical 

 

terms 

 

in 

 

the 

 

philosophy 

 

of
science, 

 

which 

 

turns 

 

on 

 

extension 

 

relations 

 

between 

 

theories 

 

with 

 

different 

 

vocabularies.
(Historical 

 

motivation: 

 

explaining 

 

the 

 

role 

 

of 

 

theoretical 

 

terms, 

 

as 

 

opposed 

 

to
observational 

 

vocabulary, 

 

in 

 

the 

 

claims 

 

made 

 

by 

 

empirical 

 

scientific 

 

theories.) 

 

Here 

 

is 

 

a
negative 

 

result. 

 

Theory 

 

 

 

T+ 

 

 

 

(vocabulary 

 

 

 

L+L' 

 

) 

 

may 

 

conservatively 

 

extend 

 

theory 

 

 

 

T
(vocabulary 

 

 

 

L 

 

), 

 

without 

 

every 

 

model 

 

of 

 

 

 

T 

 

 

 

having 

 

an 

 

 

 

L-bisimulation 

 

to 

 

a 

 

model 

 

of 

 

 

 

T+ 

 

.

Another 

 

view 

 

of 

 

the 

 

matter 

 

i s  

 

provided 

 

i n  

 

Section 

 

10.3. 

 

Universal 

 

or 

 

existential
consequence 

 

along 

 

model 

 

relations 

 

involves 

 

modal 

 

statements 

 

across 

 

standard 

 

models.
This 

 

move 

 

amounts 

 

to 

 

evaluation 

 

of 

 

formulas 

 

both 

 

inside 

 

and 

 

across 

 

models. 

 

In 

 

particular,
an 

 

existential 

 

modality 

 

 

 

<R> 

 

 

 

shifts 

 

evaluation 

 

to 

 

some 

 

other 

 

model, 

 

suitably 

 

related 

 

to 

 

the
current 

 

one. 

 

Thus 

 

we 

 

have 

 

a 

 

much 

 

more 

 

general 

 

model-theoretic
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Question What 

 

is 

 

the 

 

complete 

 

propositional 

 

dynamic 

 

logic 

 

of 

 

the 

 

universe 

 

of 

 

models
with 

 

the 

 

relations 

 

of 

 

submodel, 

 

bisimulation, 

 

and 

 

potential 

 

isomorphism
(all 

 

taken 

 

w.r.t. 

 

changing 

 

vocabularies)?

In 

 

particular, 

 

might 

 

it 

 

be 

 

effectively 

 

equivalent 

 

to 

 

True 

 

Arithmetic?

9 

 

 

 

 

 

Combined 

 

Interpolation 

 

Theorems
Let 

 

us 

 

also 

 

note 

 

that, 

 

in 

 

information 

 

networks, 

 

classical 

 

preservation 

 

results 

 

may 

 

have 

 

to 

 

be
modified. 

 

For 

 

instance, 

 

suppose 

 

that 

 

we 

 

know 

 

that 

 

model 

 

M 

 

sits 

 

in 

 

an 

 

environment 

 

of 

 

one
extension 

 

N 

 

where 

 

A 

 

holds, 

 

while 

 

it 

 

is 

 

a 

 

homomorphic 

 

immage 

 

of 

 

some 

 

model 

 

K 

 

where 

 

B
holds. 

 

What 

 

is 

 

the 

 

best 

 

that 

 

we 

 

can 

 

say 

 

about 

 

M? 

 

Using 

 

Los-Tarski 

 

and 

 

Lyndon, 

 

one 

 

would
say 

 

that 

 

M  

 

satisfies 

 

all 

 

positive 

 

consequences 

 

of 

 

B 

 

and 

 

all 

 

universal 

 

consequences 

 

of 

 

A.
But 

 

is 

 

this 

 

also 

 

the 

 

best 

 

one 

 

can 

 

do? 

 

This 

 

may 

 

be 

 

seen 

 

as 

 

a 

 

form 

 

of 

 

generalized 

 

consequence
in 

 

a 

 

three-model 

 

network 

 

with 

 

a 

 

submodel 

 

link 

 

and 

 

a 

 

homomorphism 

 

link. 

 

Indeed, 

 

we 

 

have
the 

 

following 

 

generalization 

 

of 

 

the 

 

usual 

 

first-order 

 

preservation 

 

theorems:

Proposition If 

 

 

 

C 

 

 

 

follows 

 

at 

 

position 

 

M 

 

from 

 

 

 

A, 

 

B 

 

in 

 

all 

 

3-networks 

 

as 

 

described,
then 

 

there 

 

exists 

 

a 

 

universal 

 

consequence 

 

A' 

 

of 

 

A 

 

and 

 

a 

 

positive 

 

consequence
B' 

 

of 

 

B 

 

such 

 

that 

 

the 

 

conjunction 

 

A' 

 

& 

 

B' 

 

implies 

 

C.

Proof The 

 

argument 

 

is 

 

a 

 

straightforward 

 

combination 

 

of 

 

the 

 

usual 

 

ones. 

 

Let 

 

UN(A) 

 

be 

 

the
set 

 

o

 

f

 

 

 

all 

 

universal 

 

consequences 

 

of 

 

A

 

, 

 

and 

 

POS(B) 

 

t

 

h

 

e

 

 

 

set 

 

of 

 

all 

 

positive 

 

consequences 

 

of 

 

B.

Claim UN(A) 

 

∪ 

 

POS(B) 

 

|= 

 

C

Let 

 

M 

 

b

 

e

 

 

 

any 

 

model 

 

for 

 

this 

 

combined 

 

set. 

 

First, 

 

since 

 

M 

 

satisfies 

 

POS(B), 

 

the 

 

usual 

 

model-
theoretic 

 

argument 

 

shows 

 

that 

 

there 

 

exists 

 

some 

 

model 

 

K  

 

for 

 

B, 

 

as 

 

well 

 

as 

 

a 

 

surjective
homomorphism 

 

from 

 

K  

 

onto 

 

some 

 

elementary 

 

extension 

 

M' 

 

of 

 

M . 

 

Next, 

 

consider 

 

the
atomic 

 

diagram 

 

of 

 

M' 

 

together 

 

with 

 

A. 

 

This 

 

set 

 

is 

 

finitely 

 

satisfiable 

 

– 

 

again 

 

by 

 

a 

 

standard
argument 

 

(observing 

 

that 

 

any 

 

universal 

 

sentence 

 

true 

 

in 

 

M' 

 

is 

 

also 

 

true 

 

in 

 

M). 

 

Therefore, 

 

by
the 

 

assumption 

 

of 

 

the 

 

theorem, 

 

C 

 

holds 

 

at 

 

M' 

 

– 

 

and 

 

therefore, 

 

it 

 

also 

 

holds 

 

at 

 

M.

The 

 

required 

 

conjunction 

 

A' 

 

& 

 

B' 

 

now 

 

emerges 

 

from 

 

the 

 

Claim 

 

by 

 

Compactness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

Obviously, 

 

since 

 

the 

 

usual 

 

model-theoretic 

 

preservation 

 

arguments 

 

'add 

 

up' 

 

so 

 

easily 

 

here,
there 

 

must 

 

be 

 

a 

 

more 

 

general 

 

combination 

 

result 

 

in 

 

the 

 

background. 

 

We 

 

leave 

 

the 

 

relevant
generalisation 

 

to 

 

the 

 

reader.
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10 

 

 

 

 

 

Plans 

 

and 

 

a 

 

Resource 

 

Interpretation
The 

 

plan 

 

interpretation 

 

of 

 

process 

 

graphs 

 

makes 

 

their 

 

nodes 

 

into 

 

locations 

 

with 

 

resources,
while 

 

relations 

 

indicate 

 

actions 

 

possibly 

 

using 

 

these 

 

resources. 

 

Intuitively, 

 

this 

 

is
occurrence 

 

based 

 

(as 

 

in 

 

linear 

 

or 

 

categorial 

 

logic), 

 

and 

 

hence 

 

it 

 

leads 

 

to 

 

different 

 

notion 

 

of
bisimulation, 

 

where 

 

having 

 

many 

 

successors 

 

satisfying 

 

(say) 

 

atom 

 

p 

 

 

 

is 

 

not 

 

the 

 

same 

 

as
having 

 

just 

 

one. 

 

This 

 

goes 

 

beyond 

 

the 

 

framework 

 

so 

 

far, 

 

and 

 

when 

 

taken 

 

to 

 

information
networks, 

 

i

 

t

 

 

 

may 

 

require 

 

t

 

h

 

e

 

 

 

use 

 

o

 

f

 

 

 

ternary 

 

and 

 

general 

 

finitary 

 

relations 

 

between 

 

their 

 

nodes.

This 

 

resource 

 

interpretation 

 

requires 

 

us 

 

to 

 

resolve 

 

an 

 

ambiguity. 

 

It 

 

reads 

 

process 

 

graphs 

 

as
AND 

 

trees 

 

(one 

 

has 

 

to 

 

perform 

 

all 

 

the 

 

component 

 

actions 

 

to 

 

obtain 

 

the 

 

result), 

 

not 

 

as 

 

OR
trees 

 

(t

 

h

 

e

 

 

 

usual 

 

interpretation 

 

o

 

f

 

 

 

graphs 

 

process 

 

theories). 

 

This 

 

i

 

s

 

 

 

the 

 

same 

 

issue 

 

that 

 

came
up 

 

in 

 

our 

 

discussion 

 

of 

 

extensions 

 

for 

 

PDL: 

 

choice 

 

trees 

 

versus 

 

complex 

 

states 

 

for 

 

joint
action.

11 

 

 

 

 

 

Richer 

 

Flow 

 

Networks
In 

 

Graph 

 

Theory, 

 

networks 

 

are 

 

one 

 

major 

 

use 

 

for 

 

graphs, 

 

with 

 

basic 

 

results 

 

like 

 

the 

 

Ford 

 

&
Fulkerson 

 

Theorem 

 

on 

 

maximum 

 

flow 

 

capacity. 

 

Can 

 

this 

 

be 

 

related 

 

to 

 

our 

 

analysis?

I

 

n

 

 

 

probabilistic 

 

treatments 

 

(c

 

f

 

.

 

 

 

Michiel 

 

v

 

a

 

n

 

 

 

Lambalgen's 

 

work), 

 

one 

 

has 

 

numerical 

 

measures
o

 

f

 

 

 

reliability 

 

for 

 

the 

 

links. 

 

Can 

 

we 

 

extend 

 

our 

 

analysis 

 

to 

 

deal 

 

with 

 

'quality' 

 

of 

 

transmission?

______________________________________________________________________
APPENDIX 

 

 

 

 

 

 

 

 

 

Resolution 

 

in 

 

Dynamic 

 

Logic 

 

as 

 

Task 

 

Calculus
______________________________________________________________________

Hoare 

 

Calculus 

 

is 

 

a  

 

system 

 

for 

 

proving 

 

correctness 

 

of 

 

programs, 

 

or 

 

developing 

 

correct
programs. 

 

But 

 

computation 

 

is 

 

just 

 

one 

 

kind 

 

of 

 

action, 

 

and 

 

correctness 

 

assertions 

 

 

 

{A}S{B}
may 

 

just 

 

as 

 

well 

 

be 

 

read 

 

as 

 

descriptions 

 

of 

 

any 

 

available 

 

action 

 

 

 

S 

 

 

 

that 

 

will 

 

produce 

 

effects
described 

 

b

 

y

 

 

 

postcondition 

 

B

 

 

 

g

 

i

 

v

 

e

 

n

 

 

 

resources 

 

described 

 

b

 

y

 

 

 

precondition 

 

A

 

.

 

 

 

O

 

u

 

r

 

 

 

more 

 

general
planning 

 

task 

 

does 

 

not 

 

consist 

 

in 

 

proving 

 

isolated 

 

correctness 

 

statements. 

 

It 

 

is 

 

rather 

 

one 

 

of
logical 

 

derivation. 

 

Given 

 

a 

 

number 

 

of 

 

routines 

 

 

 

{A}S{B}, 

 

how 

 

can 

 

we 

 

put 

 

together 

 

some
combination 

 

of 

 

them 

 

performing 

 

some 

 

new 

 

task, 

 

from 

 

a  

 

given 

 

precondition 

 

to 

 

a  

 

given
postcondition? 

 

Such 

 

a  

 

more 

 

general 

 

'calculus 

 

of 

 

tasks' 

 

(ELD, 

 

chapter 

 

11) 

 

is 

 

a  

 

common
interpretation 

 

of 

 

propositional 

 

dynamic 

 

logic. 

 

It 

 

only 

 

involves 

 

a  

 

small 

 

fragment 

 

of 

 

the
latter 

 

system, 

 

however. 

 

We 

 

can 

 

take 

 

the 

 

conditions 

 

to 

 

be 

 

Boolean, 

 

and 

 

the 

 

given 

 

actions 

 

to
be 

 

atomic. 

 

So 

 

our 

 

question 

 

is, 

 

what 

 

is 

 

a 

 

complete 

 

subsystem 

 

for 

 

planning 

 

derivations?

Resolution 

 

and 

 

Monotonicity One 

 

natural 

 

method 

 

is 

 

propositional 

 

resolution. 

 

We
can 

 

normalize 

 

task 

 

statements 

 

– 

 

by 

 

valid 

 

Disjunction 

 

of 

 

Antecedents 

 

and 

 

Conjunction 

 

of
Consequents, 

 

to 

 

conjunctions 

 

of 

 

universal 

 

'action 

 

clauses' 

 

of 

 

the 

 

forms 

 

 

 

A 

 

→S 

 

B 

 

, 

 

with 

 

 

 

A 

 

 

 

a
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conjunction 

 

of 

 

literals, 

 

B 

 

a 

 

disjunction, 

 

and 

 

 

 

S 

 

 

 

a 

 

program 

 

expression. 

 

We 

 

need 

 

a 

 

suitable
style 

 

of 

 

reasoning 

 

on 

 

these 

 

clauses. 

 

Now, 

 

resolution 

 

is 

 

really 

 

Monotonicity, 

 

a 

 

very 

 

general
logical 

 

inference 

 

allowing 

 

insertion 

 

of 

 

suitable 

 

formulas 

 

i n  

 

syntactically 

 

'positive'
positions. 

 

E.g., 

 

consider 

 

 

 

¬ 

 

A 

 

∨ 

 

B, 

 

 

 

A 

 

∨ 

 

C 

 

. 

 

The 

 

former 

 

says 

 

A 

 

 

 

implies 

 

 

 

B 

 

. 

 

Hence, 

 

we 

 

may
substitute 

 

 

 

B 

 

 

 

for 

 

 

 

A 

 

 

 

in 

 

the 

 

positive 

 

A-occurrence 

 

in 

 

the 

 

second 

 

disjunction, 

 

to 

 

get 

 

the 

 

usual
resolvent 

 

 

 

 

 

B  

 

∨  

 

C. 

 

This 

 

is 

 

the 

 

'upward' 

 

view. 

 

Alternatively, 

 

we 

 

can 

 

use 

 

a  

 

'downward
monotonic' 

 

inference 

 

where 

 

 

 

¬ 

 

C 

 

 

 

implied 

 

 

 

A, 

 

substituting 

 

 

 

¬ 

 

C 

 

 

 

for 

 

the 

 

negative 

 

occurrence
of 

 

 

 

A 

 

 

 

i n  

 

the 

 

first 

 

clause. 

 

With 

 

labeled 

 

action 

 

clauses 

 

 

 

A 

 

→S 

 

B ,  

 

however, 

 

some
complications 

 

arise:

(1) 

 

 

 

First, 

 

consider 

 

analogues 

 

of 

 

standard 

 

propositional 

 

inferences. 

 

Let 

 

 

 

A 

 

→S 

 

 

 

B, 

 

 

 

 

 

B→T 

 

C 

 

. 

 

We 

 

want 

 

to 

 

conclude 

 

A 

 

→S;T 

 

C 

 

. 

 

What 

 

is 

 

the 

 

precise 

 

mechanism 

 

producing 

 

the 

 

right 

 

programs 

 

in 

 

these 

 

conclusions?

(2) 

 

 

 

Next, 

 

take 

 

action 

 

premises 

 

 

 

A 

 

→S 

 

B 

 

∨ 

 

C, 

 

 

 

 

 

B 

 

∧ 

 

D 

 

→T 

 

E 

 

. 

 

Given 

 

that 

 

the 

 

actions 

 

separate 

 

the 

 

Boolean 

 

atoms, 

 

i

 

s

 

 

 

there 

 

a

 

 

 

good 

 

format 

 

f

 

o

 

r

 

 

 

a

 

n

 

 

 

evident 

 

conclusion 

 

a

 

t

 

 

 

 a

 

l

 

l

 

?

 

We 

 

make 

 

a 

 

simple 

 

proposal 

 

based 

 

on 

 

'plan 

 

trees' 

 

describing 

 

actions 

 

with 

 

conditions.

Plan 

 

Implications Let 

 

us 

 

replace 

 

the 

 

above 

 

correctness 

 

statements 

 

 

 

A 

 

→S 

 

B  

 

 

 

by
Boolean 

 

implications 

 

of 

 

the 

 

form 

 

 

 

PSA 

 

→ 

 

B 

 

– 

 

or 

 

more 

 

generally, 

 

by 

 

'plan 

 

implications'

Π 

 

→ 

 

B

where 

 

 

 

Π 

 

 

 

describes 

 

the 

 

succesful 

 

execution 

 

of 

 

some 

 

actions 

 

from 

 

given 

 

resources, 

 

using
existential 

 

modalities 

 

 

 

PSA 

 

 

 

looking 

 

backward 

 

into 

 

the 

 

past 

 

of 

 

the 

 

current 

 

state. 

 

In 

 

general,
Π 

 

 

 

describes 

 

a 

 

finite 

 

tree 

 

of 

 

previous 

 

atomic 

 

actions, 

 

with 

 

literals 

 

true 

 

at 

 

its 

 

nodes. 

 

Thus, 

 

it
may 

 

be 

 

constructed 

 

using 

 

only 

 

literals, 

 

conjunctions 

 

and 

 

indexed 

 

program 

 

modalities 

 

 

 

PS 

 

.
The 

 

conclusion 

 

 

 

B 

 

 

 

may 

 

b

 

e

 

 

 

a

 

 

 

disjunction 

 

of 

 

literals. 

 

A

 

s

 

 

 

usual 

 

i

 

n

 

 

 

Hoare 

 

Calculus, 

 

premises 

 

are
universally 

 

quantified, 

 

over 

 

all 

 

available 

 

states 

 

in 

 

our 

 

model. 

 

The 

 

above 

 

examples 

 

become

(1) 

 

 

 

PS 

 

A 

 

→ 

 

B, 

 

PT 

 

B 

 

→ 

 

C, 

 

with 

 

conclusion 

 

 

 

PT 

 

PS 

 

A→ 

 

C 

 

 

 

by 

 

downward 

 

Monotonicity. 

 

The 

 

passage 

 

to 

 

one 

 

complex 

 

program 

 

 

 

PS;T 

 

A 

 

→ 

 

C 

 

 

 

will 

 

come 

 

later.

(2) 

 

 

 

From 

 

 

 

PS 

 

A 

 

→ 

 

B∨C, 

 

 

 

 

 

PT 

 

(B∧D) 

 

→ 

 

E 

 

, 

 

downward 

 

Monotonicity 

 

yields
PT 

 

(¬ 

 

C 

 

∧ 

 

PS 

 

A 

 

∧ 

 

D) 

 

→ 

 

E 

 

 

 

– 

 

or 

 

'linearized': 

 

 

 

P 

 

(A)? 

 

; 

 

S 

 

; 

 

(¬ 

 

C 

 

∧ 

 

D)? 

 

 

 

; 

 

T 

 

→ 

 

E

Tree 

 

Calculus Here 

 

is 

 

a 

 

simple 

 

Tree 

 

Calculus 

 

justifying 

 

these 

 

inferences. 

 

Given
premises 

 

of 

 

the 

 

above 

 

form, 

 

plus 

 

some 

 

tree 

 

formula 

 

 

 

Π* 

 

, 

 

apply 

 

the 

 

following 

 

three 

 

rules.
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In 

 

general, 

 

starting 

 

from 

 

 

 

{Π*} 

 

,  

 

these 

 

will 

 

lead 

 

to 

 

the 

 

formation 

 

of 

 

a  

 

finite 

 

set 

 

of 

 

tree
(formula)s 

 

 

 

{Π1, 

 

..., 

 

 

 

Πk} 

 

, 

 

to 

 

be 

 

viewed 

 

as 

 

a 

 

disjunction 

 

of 

 

possible 

 

cases:
I If 

 

the 

 

tree 

 

for 

 

some 

 

premise 

 

 

 

Π 

 

→ 

 

B 

 

 

 

 

 

'fits 

 

inside' 

 

some 

 

tree 

 

 

 

Πi 

 

,
at 

 

any 

 

node 

 

position, 

 

then 

 

we 

 

may 

 

write 

 

 

 

B 

 

 

 

at 

 

that 

 

node.
II If 

 

a 

 

tree 

 

has 

 

a 

 

disjunction 

 

 

 

D 

 

 

 

at 

 

a 

 

node, 

 

we 

 

may 

 

replace 

 

it 

 

by
a 

 

disjunction 

 

of 

 

trees 

 

with 

 

the 

 

successive 

 

 

 

D-literals 

 

at 

 

that 

 

node.
III If 

 

a 

 

contradiction 

 

occurs 

 

at 

 

a 

 

node, 

 

remove 

 

the 

 

tree.

A 

 

set 

 

of 

 

trees 

 

implies 

 

a 

 

disjunction 

 

 

 

B 

 

 

 

if 

 

 

 

B 

 

 

 

follows 

 

from 

 

the 

 

literals 

 

at 

 

each 

 

root. 

 

We 

 

revisit
the 

 

above 

 

examples 

 

t

 

o

 

 

 

demonstrate 

 

how 

 

this 

 

works 

 

(including 

 

the 

 

notion 

 

of 

 

'fitting 

 

inside').

(1) Start: {PT 

 

PS 

 

A}
I: 

 

{PT 

 

(PS 

 

A 

 

∧ 

 

B)}
I: 

 

{PT 

 

(PS 

 

A 

 

∧ 

 

B) 

 

∧ 

 

C}
The 

 

literal 

 

 

 

C 

 

 

 

at 

 

the 

 

root 

 

implies 

 

the 

 

desired 

 

conclusion.

(2) 

 

 

 

Start: 

 

 

 

{PT 

 

(¬ 

 

C 

 

∧ 

 

PS 

 

A 

 

∧ 

 

D)}.
I: 

 

{PT 

 

(¬ 

 

C 

 

∧ 

 

PS 

 

A 

 

∧ 

 

(B 

 

∨ 

 

C 

 

) 

 

∧ 

 

D)}
II: {PT 

 

(¬ 

 

C 

 

∧ 

 

PS 

 

A 

 

∧ 

 

B 

 

∧ 

 

D), 

 

PT 

 

(¬ 

 

C 

 

∧ 

 

PS 

 

A 

 

∧ 

 

C 

 

∧ 

 

D)}
III: {PT 

 

(¬ 

 

C 

 

∧ 

 

PS 

 

A 

 

∧ 

 

B 

 

∧ 

 

D)}
I: {E 

 

∧ 

 

PT 

 

(¬ 

 

C 

 

∧ 

 

PS 

 

A 

 

∧ 

 

B 

 

∧ 

 

D)}
The 

 

desired 

 

conclusion 

 

 

 

E 

 

 

 

follows 

 

from 

 

inspection 

 

of 

 

the 

 

root.

Theorem The 

 

Tree 

 

Calculus 

 

is 

 

complete 

 

for 

 

our 

 

task 

 

inference.

Proof 

 

 

 

Starting 

 

with 

 

set 

 

 

 

{Π} 

 

 

 

for 

 

the 

 

conclusion 

 

 

 

Π 

 

→ 

 

B 

 

, 

 

perform 

 

all 

 

possible 

 

inferences 

 

in
the 

 

calculus, 

 

using 

 

the 

 

given 

 

premises 

 

to 

 

perform 

 

substitutions. 

 

Remove 

 

trees 

 

which 

 

are
subtrees 

 

o

 

f

 

 

 

other 

 

ones. 

 

(These 

 

a

 

r

 

e

 

 

 

implied.) 

 

This 

 

process 

 

will 

 

stop 

 

after 

 

finitely 

 

many 

 

steps.
It 

 

only 

 

produces 

 

trees 

 

richer 

 

than 

 

the 

 

original 

 

one 

 

– 

 

which 

 

therefore 

 

imply 

 

it, 

 

in 

 

an 

 

obvious
sense. 

 

Now, 

 

suppose 

 

some 

 

tree 

 

 

 

Πi 

 

 

 

in 

 

the 

 

resulting 

 

set 

 

has 

 

root 

 

literals 

 

whose 

 

conjunction
fails 

 

to 

 

imply 

 

 

 

B 

 

. 

 

It 

 

gives 

 

a 

 

counter-model 

 

to 

 

the 

 

implication 

 

as 

 

follows. 

 

Take 

 

Πi 

 

itself 

 

as 

 

a
model, 

 

with 

 

only 

 

the 

 

atomic 

 

relations 

 

described, 

 

and 

 

only 

 

those 

 

atomic 

 

propositions 

 

true 

 

at
each 

 

node 

 

that 

 

are 

 

explicitly 

 

indicated 

 

at 

 

it. 

 

Evidently, 

 

B 

 

fails 

 

at 

 

the 

 

root. 

 

But, 

 

each 

 

premise
is 

 

true 

 

at 

 

every 

 

node 

 

in 

 

this 

 

model. 

 

For, 

 

if 

 

its 

 

antecedent 

 

tree 

 

is 

 

true 

 

at 

 

a 

 

node, 

 

then 

 

it 

 

'fits'
inside 

 

 

 

Πi 

 

 

 

(this 

 

is 

 

because 

 

of 

 

the 

 

special 

 

form 

 

of 

 

the 

 

corresponding 

 

modal 

 

formulas), 

 

and
hence, 

 

it 

 

would 

 

have 

 

given 

 

rise 

 

to 

 

a 

 

further 

 

 

 

I-move 

 

adding 

 

literals. 

 

In 

 

general, 

 

this 

 

will 

 

be 

 

a
disjunction, 

 

whence 

 

a 

 

further 

 

 

 

II-move 

 

was 

 

applied, 

 

yielding 

 

trees 

 

with 

 

extra 

 

literals 

 

(as
compared 

 

with 

 

 

 

Πi 

 

). 

 

Not 

 

all 

 

of 

 

these 

 

can 

 

have 

 

been 

 

removed 

 

by 

 

III-moves, 

 

 

 

or 

 

 

 

Πi 

 

 

 

would
not 

 

have 

 

made 

 

i

 

t

 

 

 

into 

 

the 

 

final 

 

set. 

 

But 

 

the 

 

other 

 

situations 

 

are 

 

impossible, 

 

too, 

 

as 

 

 

 

Πi 

 

 

 

 

 

would
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then 

 

have 

 

been 

 

removed 

 

for 

 

not 

 

being 

 

maximal. 

 

The 

 

outcome 

 

must 

 

be 

 

that 

 

n

 

o

 

 

 

antecedent 

 

of
a 

 

premise 

 

is 

 

true 

 

at 

 

any 

 

node 

 

in 

 

our 

 

model 

 

– 

 

and 

 

hence 

 

all 

 

premises 

 

hold 

 

vacuously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

A 

 

complete 

 

calculus 

 

of 

 

task 

 

inference 

 

is 

 

no 

 

surprise. 

 

Inference 

 

between 

 

plan 

 

implications
is 

 

decidable, 

 

even 

 

with 

 

premises 

 

read 

 

universally 

 

(ELD, 

 

Chapter 

 

7, 

 

Theorem 

 

10).

Program 

 

Operations 

 

for 

 

Hoare-Style 

 

Conclusions       Is 

 

there 

 

a 

 

standard 

 

procedure 

 

for
linearizing 

 

statements 

 

 

 

Π 

 

→ 

 

B 

 

 

 

into 

 

standard 

 

correctness 

 

assertions 

 

 

 

A 

 

→S 

 

 

 

B, 

 

of 

 

course,
for 

 

suitable 

 

complex 

 

programs 

 

 

 

S 

 

? 

 

The 

 

matter 

 

is 

 

not 

 

entirely 

 

clear. 

 

Branching 

 

tree 

 

patterns
call 

 

for 

 

parallel 

 

program 

 

operators, 

 

going 

 

beyond 

 

dynamic 

 

logic. 

 

E.g., 

 

 

 

premises 

 

 

 

A 

 

→S 

 

 

 

B,
C 

 

→T 

 

 

 

D 

 

 

 

suggest 

 

a 

 

conclusion 

 

 

 

A∧C 

 

 

 

→U 

 

 

 

B∧D 

 

 

 

for 

 

some 

 

new 

 

program 

 

 

 

U 

 

. 

 

One 

 

option 

 

for
U 

 

might 

 

be 

 

Boolean 

 

intersection 

 

S∩T. 

 

But 

 

we 

 

can 

 

also 

 

use 

 

new 

 

parallel 

 

operators. 

 

Tree
transcription 

 

of 

 

our 

 

premises 

 

suggests 

 

a  

 

conclusion 

 

(PSA 

 

∧  

 

PTC) 

 

→ 

 

B∧D, 

 

whose
linearisation 

 

might 

 

read 

 

 

 

true 

 

→ 

 

((A)? 

 

; 

 

S) 

 

| 

 

| 

 

((B)? 

 

; 

 

T) 

 

C 

 

. 

 

 

 

A 

 

third 

 

option 

 

are 

 

n–ary 

 

modalities
directly 

 

over 

 

tree-like 

 

structures 

 

(cf. 

 

Hollenberg 

 

1998), 

 

that 

 

support 

 

parallel 

 

programs.
The 

 

design 

 

of 

 

a 

 

suitably 

 

expressive 

 

repertoire 

 

of 

 

program 

 

operations 

 

for 

 

our 

 

task 

 

calculus
remains 

 

open. 

 

But 

 

then, 

 

trees 

 

themselves 

 

may 

 

b

 

e

 

 

 

just 

 

a

 

s

 

 

 

convenient 

 

representations 

 

o

 

f

 

 

 

plans.

Synthesizing 

 

Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 

 

Tree 

 

Calculus 

 

also 

 

helps 

 

synthesize 

 

plans 

 

out 

 

of 

 

premise
routines. 

 

Now, 

 

we 

 

have 

 

'resource 

 

propositions' 

 

 

 

A 

 

 

 

and 

 

a 

 

'goal' 

 

 

 

G 

 

, 

 

and 

 

a 

 

'plan' 

 

is 

 

a 

 

tree 

 

with
leaves 

 

from 

 

A 

 

only 

 

which 

 

implies 

 

G. 

 

One 

 

procedure 

 

enumerates 

 

all 

 

possible 

 

resource-to-
goal 

 

implications 

 

from 

 

the 

 

given 

 

premises 

 

(with 

 

their 

 

plan 

 

trees). 

 

A 

 

finite 

 

upper 

 

bound 

 

to
the 

 

number 

 

of 

 

the 

 

latter 

 

can 

 

be 

 

computed 

 

in 

 

advance 

 

(it 

 

only 

 

depends 

 

on 

 

the 

 

proposition
letters 

 

occurring 

 

i

 

n

 

 

 

the 

 

problem). 

 

Then, 

 

w

 

e

 

 

 

solve 

 

the 

 

standard 

 

propositional 

 

search 

 

problem
from 

 

 

 

A 

 

 

 

to 

 

 

 

G 

 

 

 

using 

 

the 

 

derived 

 

implications. 

 

An 

 

associated 

 

plan 

 

with 

 

intermediate 

 

actions
arises 

 

from 

 

successive 

 

leaf 

 

substitution 

 

of 

 

trees 

 

for 

 

auxiliary 

 

implications.

Example
Let 

 

the 

 

resource 

 

proposition 

 

be 

 

 

 

 

 

A 

 

 

 

and 

 

the 

 

goal 

 

 

 

G 

 

. 

 

The 

 

available 

 

action 

 

premises 

 

are 

 

PSB
∧ 

 

C 

 

 

 

→ 

 

G, 

 

 

 

PT 

 

B 

 

→ 

 

C, 

 

 

 

PU 

 

A 

 

→ 

 

B 

 

. 

 

We 

 

derive 

 

 

 

G 

 

 

 

from 

 

 

 

A 

 

 

 

as 

 

follows:

1 G 

 

 

 

from 

 

 

 

B, 

 

C
2 B 

 

 

 

from 

 

 

 

A
3 C 

 

 

 

from 

 

 

 

B
4 B 

 

 

 

from 

 

 

 

A

The 

 

associated 

 

trees 

 

will 

 

work 

 

out 

 

to 

 

(via 

 

their 

 

above 

 

normal 

 

form 

 

descriptions):

1 PSB 

 

∧ 

 

C
2 PSPU 

 

A 

 

∧ 

 

C
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3 PSPU 

 

A 

 

∧ 

 

PT 

 

B
4 PSPU 

 

A 

 

∧ 

 

PT 

 

PU 

 

A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

Less 

 

blindly, 

 

we 

 

need 

 

a 

 

search 

 

procedure 

 

for 

 

finding 

 

good 

 

conclusions 

 

(including 

 

plans).
Now, 

 

notice 

 

that 

 

the 

 

preceding 

 

example 

 

looks 

 

somewhat 

 

like 

 

a 

 

logic 

 

program 

 

derivation.
Here 

 

we 

 

need 

 

a  

 

translated 

 

first-order 

 

version 

 

of 

 

our 

 

plan 

 

implications, 

 

in 

 

the 

 

standard
modal 

 

fashion. 

 

Consider 

 

the 

 

earlier 

 

Example 

 

(1). 

 

Take 

 

first-order 

 

clause 

 

forms 

 

for 

 

its 

 

two
premises: 

 

 

 

Ax 

 

∧ 

 

Sxy 

 

→ 

 

By 

 

 

 

and 

 

 

 

Bx 

 

∧ 

 

Txy 

 

→ 

 

Cy 

 

. 

 

From 

 

an 

 

assumption 

 

 

 

Au 

 

, 

 

the 

 

standard
search 

 

procedure 

 

for 

 

a 

 

proof 

 

of 

 

the 

 

goal 

 

 

 

Cv 

 

 

 

will 

 

produce 

 

outcome 

 

 

 

Sus 

 

∧ 

 

Tsv 

 

– 

 

whose
quantified 

 

version 

 

 

 

∃s  

 

(Sus 

 

∧  

 

Tsv) 

 

 

 

is 

 

exactly 

 

the 

 

definition 

 

of 

 

program 

 

composition
proposed 

 

earlier. 

 

The 

 

preceding 

 

example 

 

may 

 

be 

 

analyzed 

 

in 

 

a 

 

similar 

 

manner 

 

through 

 

its
first-order 

 

transcriptions, 

 

trying 

 

to 

 

get 

 

 

 

Gv 

 

 

 

from 

 

instances 

 

of 

 

 

 

Au 

 

 

 

using 

 

the 

 

clauses

Bx 

 

∧ 

 

Sxy 

 

∧ 

 

Cy 

 

 

 

→ 

 

Gy 

 

 

 

Bx 

 

∧ 

 

Txy 

 

→ 

 

Cy Ax 

 

∧ 

 

Uxy 

 

→ 

 

By

Thus, 

 

standard 

 

proof 

 

search 

 

via 

 

first-order 

 

transcriptions 

 

may 

 

produce 

 

useable 

 

answers.

Another 

 

angle 

 

on 

 

plan 

 

synthesis 

 

is 

 

'propositional 

 

completeness'. 

 

All 

 

valid 

 

consequences
between 

 

plan 

 

implications 

 

reduce 

 

to 

 

valid 

 

propositional 

 

inferences 

 

by 

 

disregarding 

 

all
action 

 

operators 

 

 

 

PS 

 

. 

 

(These 

 

consequences 

 

must 

 

also 

 

hold 

 

on 

 

models 

 

where 

 

all 

 

atomic
relations 

 

coincide 

 

with 

 

the 

 

identity 

 

relation.) 

 

Conversely, 

 

consider 

 

any 

 

valid 

 

propositional
inference 

 

from 

 

a 

 

set 

 

of 

 

implicational 

 

clauses 

 

to 

 

one 

 

implicational 

 

clause 

 

 

 

D 

 

→ 

 

E 

 

. 

 

Now,
assume 

 

that 

 

the 

 

premise 

 

clauses 

 

all 

 

carry 

 

an 

 

action 

 

 

 

S 

 

 

 

producing 

 

their 

 

consequent 

 

from
their 

 

antecedent.

Question Is 

 

there 

 

always 

 

a 

 

plan 

 

implication 

 

 

 

Π 

 

→ 

 

E 

 

 

 

for 

 

a 

 

valid 

 

conclusion
whose 

 

antecedent 

 

 

 

Π 

 

 

 

only 

 

employs 

 

conditions 

 

that 

 

occur 

 

in 

 

 

 

D 

 

?

A 

 

positive 

 

answer 

 

would 

 

express 

 

a 

 

kind 

 

of 

 

functional 

 

completeness 

 

for 

 

the 

 

programming
repertoire 

 

encoded 

 

in 

 

our 

 

Tree 

 

Calculus. 

 

Finally, 

 

we 

 

mention 

 

a  

 

case 

 

of 

 

plan 

 

inference
where 

 

additional 

 

expressive 

 

power 

 

seems 

 

needed.

Negations 

 

and 

 

Converse 

 

 

 

The 

 

obvious 

 

dynamic 

 

version 

 

of 

 

propositional 

 

Contraposition

A 

 

→ 

 

B 

 

 

 

|= 

 

 

 

¬ 

 

B 

 

→ 

 

¬ 

 

A

is 

 

the 

 

inference 

 

from

from 

 

 

 

PSA 

 

→ 

 

B 

 

 

 

 

 

to 

 

 

 

 

 

PSˇ 

 

¬ 

 

B 

 

→ 

 

¬ 

 

A

involving 

 

a 

 

relational 

 

converse 

 

 

 

Sˇ 

 

. 

 

Contraposed 

 

once 

 

more, 

 

this 

 

implication 

 

reflects 

 

the
well-known 

 

tense-logical 

 

'duality 

 

inference' 

 

from 

 

 

 

P 

 

A 

 

→ 

 

B 

 

 

 

to 

 

 

 

A 

 

→ 

 

G 

 

B 

 

. 

 

This 

 

example
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shows 

 

that 

 

we 

 

need 

 

plan 

 

trees 

 

which 

 

also 

 

allow 

 

converse 

 

arrows, 

 

going 

 

to 

 

successors,
rather 

 

than 

 

predecessors 

 

in 

 

the 

 

atomic 

 

relations. 

 

It 

 

may 

 

be 

 

checked 

 

that 

 

the 

 

above 

 

rules
remain 

 

complete. 

 

E.g., 

 

dynamic 

 

contraposition 

 

remains 

 

derivable 

 

in 

 

this 

 

fashion.
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9  Information Processing as a Social Activity

Colloquim on Social Organisation in Logical Theory, TU Eindhoven, March 1998.

The following are points from an abstract for a talk, together with some observations

prompted by a day of pleasant discussion at Eindhoven Technical University.

1    Logic in Groups  Traditional logic is mainly about single agents that think, reason and
evaluate. But social themes are emerging nowadays. Our somewhat Pickwickian sense of
'social' themes employed here: all those issues where a group level is essential.

2   Epistemic Logic  A famous case where a social level leads to significant logical insight is
Epistemic Logic, in its gradual development from individual knowledge to group knowledge.
Hintikka talked about single agents which can reflect on each other's information through finite
iteration of knowledge operators  Ki, Kj . Lewis put 'common knowledge' on the map in his

study of conventions and rules, R. Fagin, J. Halpern, Y. Moses & M. Vardi 1995 has a full-
fledged theory of 'collective epistemic operators'  EG  ("everyone in group G knows"), CG
("common knowledge in  G "), IG ("implicit knowledge in group G"). Common knowledge is a
typical group phenomenon (what is known in 'reflective equilibrium'), as is implicit knowledge
(what is known by pooling the individual information). No explicit calculus of groups occurs in
epistemic logic, which would take this emancipation of social structure one step further.

Questions
Introduce groups as an explicit object of study, in a dynamic logic with manipulation of
G-arguments, not just proposition arguments. An example is a modal calculus of social
combination inferences such as (1) CGA implies CG'A for all subgroups G' of G (valid

for factual propositions, invalid for statements of ignorance), or (2) combinations of
group knowledge, such as (CG1A & CG2B) → C(G1∪G2)(A&B) (invalid), or  (IG1A
& IG2B) → I(G1∪G2)(A&B) (valid). This calls for systematic comparison with

dynamic logics and process algebras for parallel computation. (Common knowledge
can be viewed as referring to a program  (i1 ∪... ∪ ik)*  where G = {i1, ..., ik}. What is

the natural group structure allowing for cooperation between subgroups?

3  Reducible versus emergent group properties. E reduces to properties of individuals,  C
'half' (in a circular manner), some things not at all. Compare the semantics of collective
predicates in natural language, which is notoriously hard. E.g., the meaning of a simple, almost
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'logical' expression like the reciprocal "each other", turning an individual predicate into a
collective one applying to groups, has been under debate for decades. (No one has such
difficulties with its individual cousin "self"...) Similar problems afflict plural quantifiers (van
der Does 1992). This is a  serious issue. Perhaps the collective talk pervading communication
in natural language has no definite truth conditions at all, only partial constraints! If "the
prisoners liberated each other", some prisoner liberated some prisoner. There may not be more
'regularity' than that, though by no means everyone need have liberated everyone. And as every
academic knows, if "the professors quarrelled" it is even less clear what happened.

Questions
Study many-level languages mixing knowledge and action of both individuals and
collectives, allowing for some reduction between levels as the case may be.

4   Semantics of Communication    Language use and reasoning is a social proces.
Contemporary logical semantics is moving from its original habitat of single sentence meanings
towards discourse and communication. How to deal with these social phenomena without
losing the subtlety and rigour that has been achieved lower down? One concrete challenge in
this move is one single building block of dialogue, the communicative unit consisting of a
question/answer exchange. This crucially affects collective information states of questioner and
answerer, by suitable updates for the two speech acts. This is an active research area, witness
Jaspars 1994), Gerbrandy & Groeneveld 1997, as well as recent research by Jeroen
Groenendijk, dynamifying Groenendijk & Stokhof 1984.

Questions
How to model collective communication states, and important updates? More generally,
how to take communicative actions like questions seriously as a new category in logical
theory – in addition to proof steps or evaluation moves?

Excursion    Specifying preconditions/postconditions, or specifying updates directly?
In this area, two logical approaches occur which are interestingly different. The Bunt–Jaspars
line specifies the relevant dynamic process in terms of preconditions and postconditions. Thus,
a question-answer exchange between agents Q and A might be any move which starts from Q-
ignorance about some proposition  P and Q-knowledge that A knows if P, to a state where it is
common knowledge that both know if P. The exact nature of the update can be left open.
Conversely, in much Amsterdam work, information states and their updates are central
(satisfying key intuitions) – after which one will just have to see if they satisfy the relevant
postconditions. E.g., Gerbrandy's 'Dynamic Epistemic Logic' has an update operator learn(P)
when agent  i  learns that  P . This changes  i's information state, updating all his alternatives
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with P, while leaving the alternatives for all other agents unchanged. (This is hard to implement
over ordinaryKripke models, which generate 'side-effects' for  i's update, affecting the others'
knowledge after all. To avoid this, Gerbrandy uses non-well-founded sets.) Thus, the intuition
here is some form of minimal change. Can this also be cashed out in terms of pre- and
postconditions? After the update, i has 'only' learnt that P, while the others have not learnt
anything new at all. In dynamic logic terms, the postcondition should be something like the
backward-looking converse modality: SP(A, learn(P)) := <learn(p)–1>A. But this statement is
undefinable in the usual update languages. Connections between update systems and pre/
postcondition specifications in static epistemic languages for group knowledge are still scarce.

5   Game Theory     The oldest social paradigm in logic are games, that go back to Antiquity.
Paradigmatic modern examples are Hintikka evaluation games, Ehrenfeucht comparison games,
and richest of all for analysing communication: Lorenzen argumentation games. Up until now,
logical games have mainly served to throw new light on existing notions. But they embody
many ideas that are sui generis, such as commitment, role, role switch, strategy, game
resources, 'social construction' of a common object. Games are on the way up in logic, as a
means of exploring new avenues. (Compare the recent work on games for linear logics.)
Moreover, there are some interesting junctions between Game Theory in the received sense of
that term and epistemic logic, e.g., in the work of Bonanno and Vilks. (Cf. Dekel & Gul 1997.)

Questions
What is a paradigm for 'logical games' comparable in scope to the received analysis of
formal proof, or formal computation? Who will solve the meta-equation  ? : game =
Hilbert : proof = Turing : computation ? How to import probabilistic considerations (at
the heart of classical Game Theory) into logical games? What are probabilistic moves –
or on another line, how could one certify, without playing all possible games, with
sufficiently high probability, my possession of a winning strategy in logical games?

6   Many-authored Theories   'Social themes' in logic correlate with developments in the
philosophy of science. First, consider information representation. The 'web of scientific
theories' is group knowledge of a whole field. Since the Renaissance, no single individual's
state contains this. Moreover, there are several questions about its architecture. One is
aggregation: possible consistency problems when merging theories. The other is segregation:
how to encapsule parts of theories in a modular fashion, so that failures in one module need not
vitiate the whole? Relevant logical work may be found in the literature on 'combining systems',
as advocated by Gabbay. There are interesting analogies between work on theory structure, and
the structuring of information states in semantics of conditionals and epistemic updates (cf.
Segerberg's recent work on so-called 'hyper-theories', and the discussion in Subsection 10.4).
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Questions
Give a calculus of social knowledge architecture, with natural inter-theory relations and
combinations. How to combine this with current logics of belief update and revision?
And with preference structure in default logic?

7   Representation and Computation    Representation invites computation. Cognitive
action is also becoming a central theme in the philosophy of science. This started with Popper's
pioneering emphasis on learning as a basic category – a theme which is also slowly penetrating
into logic and computer science. It is quite explicit in Theo Kuipers' recent broad monograph on
Cognitive Structures in Science, Philosophical Institute, Rijksuniversiteit Groningen. Social
processes (in our logical sense) in science involve: argumentation games, the role of 'the forum',
betting models for rationality (which involve several players), collective aspects in scientific
proof, theory change, language change, etcetera. Again, these lead to interesting analogies with
developments elsewhere (such as logic, or Artificial Inteligence); cf. Aliseda-Llera 1997.

Questions
Analyse classical problems in the philosophy of science in logical dynamics for 'social'
structures. Compare specific themes in logic and philosophy of science. E.g. key
notions of verisimilitude and truthlikeness in Zwart 1998 resemble those found in
AGM-style belief revision theory. Theory structure often has a syntactic flavour. Thus,
how can one translate systematically between epistemic logic and syntactic proofs:
KiA and 'i has a proof for A' – individually, or socially?

8   Conclusions     A social aspect is emerging in current logical studies. There is even more
evidence for this claim than what we have surveyed here, such as interesting analogies between
dynamic epistemic logic and the key phenomena studied in Social Choice Theory (cf. the
introduction in the recent logic textbook by Royakkers and Sarlemijn). But the agenda and
paradigm for the study of social, collective structure in logical terms are still unclear. What this
move leads to is an interesting generalisation of logic. Not just individuals can have goals and
transform information. So can social organisations, which are epistemic agents just as
individuals. A major challenge, therefore, to logic as classically conceived, is extension of its
scope so as to deal with information flow in significant organisations.
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10  Paralipomena

This final section collects some disconnected fall-out of the preceding investigations.

1  Bisimulation Invariance and Translation

The following point was made by Natasha Kurtonina. Intuitively, 'simulations' may relate processes

with different moves or local properties. But then, the usual model theory of bisimulation – for instance,

as presented in ELD – is too uniform, as it has the same language on both sides. Here is a first response.

Consider two modal models M, N, in different similarity types L, L'. A bisimulation is
a binary relation E between points in the two models with the following properties:

(i) there exists a correlation between L-atoms p and L'-atoms q such that
if s E t, and M, s |= p, then N, t |= q ; and vice versa

(ii) there exists a correlation between L-actions a and L'-actions b such that
if s E t, and s a s', then there exists t' with t b t' and s' E t'; and v.v.

This corresponds to a fixed correlation of features observed in one process with those in
another. In this case, each L-formula φ has a direct L'-translation τ(φ) (and vice versa).

Theorem The following assertions are equivalent:
(a) φ  implies  ψ  along L-L'-bisimulations
(b) there exists some modal L-formula  α  such that  φ |= α, τ(α) |= ψ

The 

 

proof 

 

is 

 

essentially 

 

the 

 

argument 

 

for the Modal Invariance Theorem. From (a) to (b),
one 

 

shows 

 

that the set of all L'-translations of the modal L-consequences of φ implies ψ.

But there are further natural situations. Suppose we have a more complex correlation,
with an occurrence of  p  in M corresponding to truth in N of some complex L'-formula
σp , and the occurrence of an  a-move in M always matched by some finite sequence of
actions 

 

in N defined by some expressen  σa . Assume the same in the opposite direction,
with a similar translation  τ. Then we need a more complex two-way preservation
statement. E.g., immediately preserved from left to right under σ-translation are all
formulas generated by the syntactic schema  p | ¬p | & | ∨ | <a> . But in addition,
universal 

 

modalities 

 

 

 

[τ(b)] may be allowed, when translated into plain L'-modalities [b].
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Question What is the proper treatment of the preceding situation?

Things 

 

get 

 

even 

 

more 

 

complicated 

 

if 

 

we 

 

want 

 

the 

 

definability 

 

to come out, not by fiat, but
as a result of some semantic regularities – as happens in Beth's Definability Theorem.

2  How to Express Variable Dependencies

Decidable remodelling of first-order logic can be done in the form of generalized assignment models,

where 'gaps' encode dependencies between variables. Now dependencies are interesting mathematical

structures in their own right. But are they adequately reflected in the standard predicate-logical language?

We give some examples suggesting the need for, at least, an enriched modal logic on top of the latter.

Consider the main example of a generalized assignment model in ELD, chapter 10. It
has a domain of objects {1, 2}, a set of variables {x, y}, and so there are 4 possible
states. These generate 15 non-empty assignment models, which may encode various
dependencies between the variables. For instance, the one with just {(x, 1), (y, 2)} and
{(x, 2), (y, 1)} made y and x heavily interdependent: a change of value for one forces a
change 

 

for 

 

the other. Now we showed how to interpret a predicate-logical language with
quantifiers 

 

 

 

∃x, 

 

∃y 

 

 

 

over all these models. But is this really the right medium for bringing
out the underlying dependencies, viewed as important structures in their own right?

Let us look at the situation in modal logic. The standard model is really a 4-world
multi-S5 model with two modalities, which may be drawn as follows:

xy
11

x y
xy xy
21 12

y x
xy
22

To liven things up, we can postulate some binary relation R on the underlying objects,
say, R = {(1, 2)}. Let the language contain atoms  Rxy, Ryx. Each of these will be true
in one world in the above picture. One way of making distinctions between dependency
models is by looking at all possible submodels of this multi-S5 model, and asking if
their modal theories are different. It is possible to show that they are, by inspecting all
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cases. But this does not define dependency information directly. And indeed, standard
predicate logic seems to poor to adequately describe, say, the above 2-world model. No
ordinary relation  =x  or  =y  crosses from one world to the other: only  ={x, y} does that.

More generally, we need an extended modal logic with modalities for all relations

w =X v     iff  w, v agree on all variables except at most those in the set X

But 

 

will 

 

this 

 

express 

 

concrete 

 

facts 

 

about 

 

variable 

 

dependencies? 

 

Consider two examples:

(a) "If x changes its value, than so does y"
(b) "Any change in x determines a unique change in y"

Neither assertion is expressible in even a polyadic quantifier language, although some
approximations may be stated. But these are contrived and indirect. It seems we need
further relations  =X  which say that, in passing from assignment  w  to  v  at least (not:
'at most') the variables in  X  change their values. Then we can express (a) as follows:

<={x}>φ →  <={x, y}>φ

This is another case where generalized semantics supports natural new types of
quantifier, beyond the standard first-order ones. The above type of quantification seems
related to introducing some kind of difference modality between states.

Questions     What happens to decidability and axiomatization of generalized predicate
 logic when we add a difference modality – or even just a universal modality?

Does this correspond to an obvious extension of the Guarded Fragment?

Here is an almost–translation into the Guarded Fragment with identity. Let  φ have
variables  {x1, ..., xk} in total, and let y be a new variable, different from these and x:

<={x}>φ  ⇔  ∃x1...xk y. (R(x1, ..., xk, y) & y≠x & φ(y/x)(x1, ..., xk)) 

where R is the uniform relativizing predicate for all quantifiers used in

Andréka, van Benthem & Németi 1998 in order to reduce satisfiability

in generalized assignment semantics to standard satisfiability in GF.

But note that this introduces new variables, and does not seem to do the job precisely.

Taking dependence models seriously means finding the right modal language for them
–   and then developing its simulations, correspondences, and complexity properties.
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3  Lowering Complexity by Long-Distance Evaluation

Various strategies for lowering complexity occur in logical dynamics. One is the use of 'general models'

for 

 

second-order 

 

logic, 

 

restricting 

 

predicate 

 

ranges. 

 

Another 

 

i

 

s

 

 

 

algebraic 

 

relativization, 

 

restricting 

 

available

object combinations. But one can also vary the mechanism of the truth definition for similar purposes.

We consider evaluation allowing jumps across 'indistinguishable' models as one further strategic

remodeling option, with some good independent motivation, and raise some questions about its effects.

There are few general strategies for lowering the complexity of logical systems. One is
the 

 

use 

 

of 

 

Henkin's 

 

general 

 

models, which turn non-arithmetical second-order logics into
RE 

 

many-sorted 

 

first-order 

 

logics. 

 

Another 

 

is 

 

algebraic 

 

relativization, 

 

which turns RE but
undecidable algebraic logics into decidable ones. But here is another approach, inspired
by the discussion of modal logic with 'bisimulation quantifiers'  Bφ  in Hollenberg
1998, which 'jump models' by stating that  φ  holds in some bisimilar state in a possibly
different model. These quantifiers access the current model only 'up to bisimulation'.

Here is our proposal for second-order logic. The problem with predicate quantifiers  ∃Y
is their ranging over the power set of the current model M, a mysterious set-theoretic
entity. Let us allow these quantifiers to be a bit fuzzier now, claiming the existence of a
set that we know 'up to a degree' measured by some semantic equivalence relation. In
general, formulas will have free object variables x set to objects a, and free predicate
variables X set to predicates P. Here is a new second-order quantifier clause:

M, a, P |=  ∃Y• φ iff there is a model  N, b, Q  potentially isomorphic 
to M, and a set B in N such that  N, B |= φ

The relevant potential isomorphism generalizes that of first-order logic. Its component
partial isomorphisms refer to predicates in P concerning a-objects, matching their
counterparts in b w.r.t the corresponding Q-predicates – plus the constant predicates of
the language. This move does not make a difference over countable models, as potential
isomorphism is isomorphism there, but it does when we work on arbitrary models.

Question What are the complexity effects of this move?

For independent motivation, cf. 'consequence along a model relation R' (Barwise & van
Benthem 1996), with a modal form  φ → [R]ψ . Our ∃Y  is an existential modality <R>.
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4  Towards a Dynamic Theory Structure

Constructive information states can be thought of as 'theories', in the sense used in the philosophy of

science. 

 

We 

 

identify 

 

a number of stages where theory structure is becoming more complicated these days,

plus some analogies with the needs of dynamic semantics. These thoughts were inspired by Zwart 1998.

Verisimilitude is a ternary relation  VA BC  saying, intuitively:  'B  is more like A than
C is'. To some extent this may be compared with a notion of (preferential) consequence
from C to B, in the context of C. Sjoerd Zwart's recent dissertation surveys many
proposals for more precise definitions, constraints on how the latter are to perform, and
in the process, different representations of the 'theories' involved in this comparison.
Here are some analogies with issues in logic.

4.1 Base Level  Here is a first view of theories. T is a set of sentences, which
corresponds semantically to MOD(T), the class of all models that verify every sentence
in T. Tarskian consequence operates at this level:

T1 |= T2 if MOD(T1) ⊆ MOD(T2)

4.2  Partial Logic Let a theory now consist of two disjoint classes of models:
MOD+(T), 

 

the 

 

ones 

 

that 

 

are 

 

definitely 

 

accepted, 

 

and 

 

MOD–(T), 

 

the 

 

ones 

 

that 

 

are 

 

definitely
rejected. The remaining models form a grey zone. This is exactly as in 3-valued logic,
and consequence becomes a bit les clear-cut accordingly. Here are two options:

T1 |=+ T2 if MOD+(T1) ⊆ MOD+(T2)
T1 |=+– T2 if MOD+(T1) ⊆ MOD+(T2)  and  MOD–(T2) ⊆ MOD–(T1)

This emergence of options for defining logical consequence may match the well-known
proliferation of options for verisimilitude. No unique best choice may exist.

4.3  Hypertheories   Now lift theories to families of sets of models (there are
motivations for this in linguistics and AI). E.g., think of the family { MOD(φ) | φ∈T}.
This is intermediate between making theories syntax-independent and syntax-
dependent. E.g.,  {p, p &q} will be different from {p&q}, but the same as {p&p, q&p}.
Valid consequence between theories at this level is even a less clear-cut intuitive
notion. Should one require, perhaps, that

∀X∈T2  ∃Y∈T1  Y⊆X ?



76

A Difficulty. There are two interpretations for this. Conjunctive: the theory says that all
models in its intersection are 'in', while those outside of all sets of the family are 'out'.
The family records how the intersection was arrived out, as a handle for later belief
revision, or other cognitive processes. Disjunctive: the theory says that one of the sets in
the family is the right one. In this case, the intersection records what is 'in' no matter
what, and the exterior everything that is 'out'. Sjoerd Zwart's 'modal theory
representation' in terms of S5 normal forms is of the second variety: it describes all S5
models in which the theory would be true.

Question What is the connection between this view of verisimilitude and
hypertheories for belief revision as developed by Krister Segerberg?

Of course, there are even richer theory representations, indicating preferences between
different pieces, as in Mark Ryan's well-known dissertation on 'structured theories'.

5  Updates, Upgrades, and Setting an Agenda

Incoming assertions need not just increase information, say, by eliminating possibilities. They may also

change current preferences over these possibilities (as being 'more or  less plausible'), or they may merely

structure the set of assertions now on the table.  We present a simple propositional model for doing this.

Model 1: Updates  Information states are sets of propositional valuations. Update(φ)
is an instruction (alternatively, a mode of reading the incoming assertion) which
eliminates all valuations that do not verify φ, viewed as a classical proposition.

 Model 2: Updates and upgrades  Information states are now 'graded' sets of
propositional valuations, where each valuation has a natural number indicating its
'current preference status'. Update(φ) works as before. Upgrade(φ) adds 1 to each
valuation which verifies φ in the standard sense.

Model 3: Updates, upgrades, and tabling      Information states are graded sets of
propositional valuations, plus a marking of subsets named by specific formulas ('what's
on the table'). Update (φ), Upgrade(φ) work as before. Table(φ) adds a marking to the
current table for the set of valuations verifying φ.

The final model is a bit like the hypertheories of an Section 10.4, as it carries 'historical'
information. The upshot of all this is a rich procedural version of propositional logic,
which can be used as a concrete model for studying issues like
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(1) laws of felicitous discourse: 'no update befor tabling', etcetera
(2) logic of discourse moves: such as recursion rules for Update,

Upgrade, and Table w.r.t the standard Boolean connectives
(3) new procedural notions of validity, or other items of

importance to argumentative discourse.

References
J. van Benthem, J. van Eyck & A. Frolova, 'Changing Preferences', CWI, 1995.
F. Veltman, 'Defaults in Update Semantics', Journal of Philosophical Logic, 1996.

6  Choice Trees in Dynamic Logic

Labeled 

 

transition systems are a disjunctive definition of all possible steps in a process. Standard dynamic

logics do not manipulate such choice trees. We briefly sketch a modal extension of PDL which does.

6.1 Trees and Process Graphs   Choice tree: finite graph with arrows for actions
(perhaps including tests). OR-interpretation: the various options of a single process.
Distinguish from AND interpretation: joint action (as in Section 2). Intuitive ambiguity
"and"/"or" interpretation: cf. the deontic 'Paradox of Free Choice Permission'.

6.2 Language and Semantics    Language. <G>Φ . We record the nodes of the
tree G  for use in the syntax, while  Φ  is an assignment of formulas to these nodes.
Example: single-tree equivalent for <a>φ ∧ <b>ψ with branching tree  <a + b > <φ, ψ>
. Interpretation in standard PDL models: via existence of a succesful embedding of  G
into the model, starting from the current state as its root.

Fact Every tree-formula is equivalent to an ordinary PDL-formula.

Reason: 

 

trees 

 

can be successively 'unpacked' by conjunction of options plus
composition for continued branches. Next, consider tree operations  &  and  • . The first
adds trees under 

 

a 

 

joint root ('choice'). The second glues a tree under another at some
specified leaf, for 'continuation' of processes. (Options: glue at any node, or at specified
leaves only.)

Fact Initial   &  and final   • are complete for building all finite trees.

6.3 Axioms and Completeness     Distribution laws for  &   and  •   describe
equivalent ways of constructing a tree. They result in a 'normal form' description which
belongs to the original PDL. This is also the complete axiomatization. Also reflected in
the logic: differences between  &  and program union  ∪ .
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6.4 Iteration and Fixed Points     Implicit definitions and iteration. The outcome
becomes really stronger than PDL. Example: fixed point for the tree matrix

{q, a-b branch to <*, *>}.

Solution: all finite trees in which every node is either a  p-leaf, or it has both an  a-  and
a  b-successor that each start a similar tree.

Fact This class is undefinable in PDL, which defines only regular languages.

Nevertheless, this extended language is still decidable.

Fact All tree fixed points are definable in the  µ–calculus.

Example  The above statement about binary trees is  µq•  p ∨ (<a>q ∧ <b>q)

Complete axiomatization? The two obvious valid iteration principles reflect properties
of 'smallest pre-fixed point':

 (1) φ (µq• φ(q)) (2) if  φ(α) → α, then  µq• φ(q) → α

General analysis: effective translation into (a small recursive fragment of – countably)
infinitary 

 

modal 

 

logic:  

 

the 

 

above 

 

fixed 

 

points 

 

use 

 

only  

 

very simple countable
disjunctions. Generalisation 

 

of 

 

Kleene's 

 

Normal 

 

Form 

 

Theorem 

 

for regular expressions:
tree notations.

Most striking feature: all relevant fixed points are reached after  ω  approximation steps,
because the associated operators are finitely distributive. Syntactic normal form for such
special operators:  µq• φ(q)  where the occurrences of  q  lie only in the scope of  ∨, ∧, ∃
. This is a tree-style generalisation of Kleene's syntactic regular notation.

6.5 Invariance and SafetyThe extended language (including all
propositional fixed point operations) is invariant for bisimulation.

Proposition Safety for the new tree operations follows by an easy induction.

Converse: finitary and infinitary versions exist (cf. Barwise & van Benthem 1996), but
we have the same difficulty as ever in zooming in more precisely on just fixed point
logic.
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