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Abstract

This paper contributes to the theory of the modal p-calculus by proving some model-theoretic
results. More in particular, we discuss a number of semantic properties pertaining to formulas of
the modal p-calculus. For each of these properties we provide a corresponding syntactic fragment,
in the sense that a pu-formula & has the given property iff it is equivalent to a formula ¢’ in the
corresponding fragment. Since this formula & will always be effectively obtainable from &, as a
corollary, for each of the properties under discussion, we prove that it is decidable in elementary
time whether a given p-calculus formula has the property or not.

The properties that we study have in common that they all concern the dependence of the
truth of the formula at stake, on a single proposition letter p. In each case the semantic condition
on £ will be that &, if true at a certain state in a certain model, will remain true if we restrict the
set of states where p holds, to a subset of the state space which is of a special kind, associated
with the semantic condition at stake. Important examples include the properties of full and
complete additivity and of continuity, where the special subsets are the singletons and the finite
sets, respectively.

Our proofs for these characterization results will be automata-theoretic in nature; we will see
that the effectively defined maps on formulas are in fact induced by rather simple transformations
on modal automata. Thus our results can also be seen as a contribution to the model theory of
modal automata.

Keywords. modal logic, u-calculus, model theory, characterization results, full additivity, Scott
continuity, modal automata.

1 Introduction

This paper is inspired by the model-theoretic tradition in logic of linking semantic properties of for-
mulas to syntactic restrictions on their shape. Such correspondences abound in the model theory of
classical (propositional or first-order) logic [14]. Well-known preservation results are the Los-Tarski
theorem stating that the models of a formula ¢ are closed under taking submodels iff ¢ is equivalent
to a universal formula, or Lyndon’s theorem stating that a formula ¢ is monotone with respect to the
interpretation of a relation symbol R iff ¢ is equivalent to a formula in which all occurrences of R are
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positive. In the last example, the semantic property is monotonicity, and the syntactic restriction is
positivity.

Our aim here is to establish such correspondences in the setting of the (modal) p-calculus pML, the
extension of modal logic with least and greatest fixpoint operators [8]. Since its introduction by Kozen
in the 1980s [35], the modal p-calculus has found increasing recognition as an important and natural
formalism for specifying properties of processes. The main reason for this is that uML, just like basic
modal logic, strikes a very favorable balance between expressiveness and computational feasibility. In
particular, it was proved by Janin & Walukiewicz [32] that pML is expressively complete for those
monadic second-order properties that are bisimulation invariant, so that most, if not all, interesting
properties of processes can be specified in the language. On the other hand, despite this large expressive
power, the computational complexity of the satisfiability problem for puML can be solved in exponential
time [18], which is basically the same as for any extension of modal logic with fixpoint connectives.
Other attractive features of the modal p-calculus include a semantics that can both be presented in
a compositional, algebraic format and in intuitive, game-theoretic terms; a natural axiomatization,
formulated by Kozen [35] and proven to be complete for the semantics, partially by Kozen himself and
fully by Walukiewicz [46]; a tight link with automata theory, established by Janin & Walukiewicz [31]
and Wilke [47] via the introduction of modal automata, of non-deterministic respectively alternating
type, as automata-theoretic equivalents to puML-formulas; and a certain internal expressive balance,
witnessed by the property of uniform interpolation, proved by D’Agostino & Hollenberg [17].

With all these positive results, the modal u-calculus has become the canonical modal process logic,
and it seems worth while to develop its model theory in full detail. Some results are known: in
particular, preservation results, similar to the Los-Tarski and Lyndon theorems, have been shown for
the p-calculus by D’Agostino & Hollenberg [17]. However, in the intended semantics of uyML, where
models represent computational processes, and accessibility relations, bisimulations, and trees play an
important role, there are some specific properties of interest that have not been studied in classical
model theory. Important examples that we will study here include the properties of full and complete
additivity and of continuity with respect to some fixed propositional variable p.

Full and complete additivity To define the properties of full and complete additivity, recall that
in each Kripke model S = (S, R, V) we may formalize the dependence of the meaning of a p-formula
£ in S on a fixed proposition letter p as a map

& PSS —PS,

defined by fE(X) ={se€S|S[pr X]IFE&}, where S[p — X] = (S, R, V[p — X] is the model obtained
from S by modifying V' so that V(p) = X. Then a formula ¢ is fully additive in p if for each model S,
the operation §§ distributes over arbitrary unions:

g(Ux)=U{gx) 1xexf,

for any collection X of subsets of S, whereas we say that £ is completely additive if §§ distributes over

arbitrary non-empty unions. Clearly, the difference between the two notions is that for full additivity
we require the map & to be normal, that is, £(IJ @) = U @, or equivalently, £(2) = @.
It is not difficult to see that full additivity is equivalent to requiring that for all X C S|

& (X)) =J{gda) |z e X},
or, putting it yet differently, to the following constraint, for every pointed Kripke model (S, s):

S, sl & iff S[p — {x}],sIF &, for some z € V(p).



This is a very natural property in the context of modal logic, since for any set S, there is a 1-1
correspondence between the fully additive functions on PS and the binary (accessibility) relations on
S, the relation associated with the map f given as Ry := {(s,s") | s € f({s'})}. Related to this, a
more specific reason for studying full additivity is given by its pivotal role in the characterization of
the fragments of first- and monadic second-order logic of formulas that are safe for bisimulations (for
a detailed discussion of this notion and its relation to full additivity we refer to section 9). Syntactic
characterizations of the formulas that are fully additive in a given proposition letter p, were obtained
by van Benthem [4] in the setting of basic (i.e., fixpoint-free) modal logic and by Hollenberg [30] in
the setting of the modal p-calculus. As an alternative to Hollenberg’s result, we shall give a different
syntactic fragment characterizing full additivity. More precisely, we will prove that a uML-formula is
fully additive in p if it is equivalent to a formula in the fragment uMLj{qp}, where we define, for a set P

of propositional variables, the fragment uMLI@ of the modal p-calculus by the following grammar:

pu=pleVeleAy | Op|pr.y.

Here p belongs to P, ¢ is a P-free formula (i.e., without free occurrences of proposition letters in P),
and the formula ¢’ belongs to the fragment MML’]?,U {2} For the property of complete additivity we
obtain a very similar characterization.

Continuity Another important property featuring in this study is that of continuity. We shall call
a formula £ continuous in a proposition letter p if for all S, and all X C S,

) =U{gwm 1re, x}.

That is, where the meaning of £,(X) in the case of £ being fully additive in p depends on the singleton
subsets of X, here the meaning of £,(X) depends on the finite subsets of X.

What explains both the name and the importance of this property, is its equivalence to Scott
continuity: for any model S, the map 518) is continuous (in our sense) iff it is continuous with respect
to the Scott topology on the powerset algebra. Scott continuity is of key importance in many areas of
theoretical computer sciences where ordered structures play a role, such as domain theory (see, e.g., [1]).
Another motivation concerns the relation between continuity and another property of computational
interest, constructivity. A monotone formula £ is constructive in a proposition letter p if for each model
S, the least fixpoint of the map 5;57 is reached in at most w approximation steps. Locally, this means
that a state satisfies a least fixpoint formula if it satisfies one of its finite approximants. While the
exact relation between the two properties is not clearly understood, it is well-known that continuity
strictly implies constructivity, and we believe that in a sense continuity can be considered as the
most natural property to approximate constructivity syntactically. A full discussion of the notion of
contnuity and its relation with constructivity can be found in section 8

As one of the main results of this paper we will show that a u-formula £ is continuous in p iff
it is equivalent to a formula ¢ in the syntactic fragment MML{CP}, where we define, for any set P of

propositional variables, the set uMLg by a mutual induction based on the following grammar:

pu=pl]|eVelone|Op|ur.y,

where v is a P-free u-formula, and ¢’ belongs to the fragment ,uMLéu (o} A first presentation of this

result was given by the first author in [24]; here we will give an alternative and more insightful proof
of this result.



Aim The general purpose of this paper is to prove, in a uniform framework, syntactic characterization
results corresponding to a number of semantic properties, including full and complete addivity, and
continuity. What these properties have in common is that they all concern the dependence of the truth
of the formula at stake, on a single proposition letter — it will be convenient to fix this letter from
now on as ‘p’. More precisely, given a Kripke model S = (S, R, V) (which in some cases we require
to be a tree), let Xs uniformly denote a certain class of subsets of S, such as singletons, finite sets,
paths, finitely branching subtrees, etc. Let £ be a formula of the modal p-calculus. Assuming that &
is monotone in p, we say that it has the X'-property with respect to p if for every pointed model (S, s)
we have

S, s Ik & iff S[pX], s IF & for some X € X, (1)

where S[p[X] := S[p — V(p) N X] is the model obtained from S by restricting p to the set X. In the
examples that we shall consider, Xg consists of the following sets':

(a) singletons inside V' (p), leading to the property of full additivity;

(b) singletons, leading to the property of complete additivity?;

(c) finite sets, leading to the property of continuity;

(d) finitely branching subtrees, leading to the finite width property;

(e) noetherian subtrees (i.e., without infinite paths), leading to the finite depth property;

(f) branches, leading to the single branch property.

Clearly, there are some interesting relations between some of these properties. For instance, both
full and complete additivity imply continuity. Also, continuity can be seen as the combination of
a ‘horizontal’ and a ‘vertical’ component: the finite width property and the finite depth property,
respectively. The latter equivalence will be put to good use in the paper.

The above abstract presentation allows us to summarize our results in a concise and uniform
manner. Basically, for each instance (a—f) of X we present a syntactic characterization of the X-
property, in the form of a syntactically defined fragment ,uMLff C pML such that a p-formula has the
X-property with respect to p iff it is equivalent to a formula in uMLff . Since monotonicity forms part
of the definition of each of the properties (a—f), to facilitate the other proofs we first prove a slightly
stronger version of D’Agostino & Hollenberg’s Lyndon theorem; in the remainder of this introduction
it will be convenient to let X’ also cover the property of monotonicity.

Main results & proof method Our proofs, though different in each case, follow a uniform method,
which goes back to the proofs of Janin & Walukiewicz [32] and D’Agostino & Hollenberg [17]. For each
property X', we will exhibit an explicit translation which, given a uML-formula &, computes a formula
X e MMLZ)f such that

¢ has the X-property iff £ is equivalent to £¥. (2)

Since in each case the translation ()X is effectively computable, and the equivalence problem for two
given pML-formulas is decidable, as a nice corollary of (2) we obtain various new decidability results.
With X-PROP being the problem whether a given pyML-formula has the X-property, for each X as
discussed we will show that

the problem X-PROP is decidable. (3)

Considering that our main interest here is model-theoretic, we have not undertaken an in-depth study
of the computational complezity of the X-PROP problems. What we can say is that each of our
translations (-)* will be based on the composition of simple transformations, each of which constructs

IThere are a few subtleties here. For instance the property might only make sense when we investigate (1) on certain
(tree) models, we might want the set X’ to consist of subsets of V(p) or not, etc.

2In the formulation (1), complete additivity differs from full additivity in that we do not require the singletons in X
to be subsets of V(p).



an output structure of size at most exponential in the size of the input. From this it follows that all
of the X-PROP problems that we study can be solved in elementary time.

While in almost all cases pure logic-based proofs for our results are possible (and have been given
in the dissertation of the first author [25]), the proofs we provide in this paper are automata-theoretic
in nature. Automata for the modal p-calculus were introduced by Janin & Walukiewicz [31] under the
name of p-automata; where these devices are non-deterministic in nature, Wilke [47] came up with
an alternating variant. We will use both alternating and non-deterministic devices here, under the
names of, respectively, modal and disjunctive modal automata. The particular shape of our automata
is logic-based: the transition map of our structures maps states of the automata to so-called one-step
formulas, and many of our proofs are based on syntactic manipulations on these very simple modal
formulas. In some sense then, our paper is also a contribution to the model theory of modal automata.

Finally, we have formulated our results in the setting of the mono-modal p-calculus; that is, the
language that we consider has one diamond only, and correspondingly the Kripke models have only one
accessibility relation. This restriction is solely for the purpose of simplifying the presentation of our
results and proofs. We want to stress, however, that all of the results in this paper can be generalized
to the setting of the polymodal p-calculus, with no conceptual and little technical complication.

Overview The paper is organized as follows. In order to fix our terminology and notation, we give a
review of the syntax and semantics of the modal p-calculus in the following section, and in section 3 we
introduce the modal automata that we will be working with. In section 4 we make some first model-
theoretic steps, proving the characterization of monotonicity, and introducing an automata-theoretic
construction that will be used in the other parts of the paper. In the subsequent three sections we
discuss the finite width property (section 5), the single branch property (section 7) and the finite depth
property (section 6). After that we arrive the most important parts of the paper, viz., section 8 on
continuity and section 9 on full and complete additivity. In the final section of the paper we draw
some conclusions, discuss some related results, and list some open problems for future research.

Acknowledgement We are deeply indebted to the two referees for many helpful comments on an
earlier version of this paper.

2 Preliminaries

In this paper we assume familiarity with the syntax and semantics of the modal p-calculus, as presented
in for instance [35, 2, 28, 8, 45], and with the basic notions concerning infinite games [28]. Here we fix
some notation and terminology.

Convention 2.1 Throughout the text we fix an infinite set PROP of propositional variables, of which
we often single out a finite subset X.

2.1 Parity games

Definition 2.2 A parity game is a tuple G = (G3, Gy, E, ) where G3 and Gy are disjoint sets, and,
with G := G35 U Gy denoting the board of the game, the binary relation £ C G? encodes the moves
that are admissible to the respective players, and the priority function € : G — w, which is required
to be of finite range, determines the winning condition of the game. Elements of G3 and Gy are called
positions for the players 3 and V, respectively; given a position p for player II € {3,V}, the set E[p]
denotes the set of moves that are legitimate or admissible to II at p. In case E[p] = @ we say that
player II gets stuck at p.



An initialized board game is a pair consisting of a board game G and a initial position p, usually
denoted as GQ@p. <

Definition 2.3 A match of a graph game G = (G3,Gvy, E,Q) is a (finite or infinite) path through
the graph (G, E). Such a match ¥ is called partial if it is finite and E[last¥] # @, and full otherwise.
We let PMy; denote the collection of partial matches ¥ ending in a position last(X) € Gy, and define
PMp@p as the set of partial matches in PMy; starting at position p.

The winner of a full match ¥ is determined as follows. If X is finite, it means that one of the
two players got stuck at the position last(X), and so this player looses %, while the opponent wins. If
Y = (pn)new is infinite, we declare its winner to be 3 if the maximum value occurring infinitely often
in the stream (2pp,)new is even. <

Definition 2.4 A strategy for a player I € {3,V} isamap f : PMpg — G. A strategy is positional if it
only depends on the last position of a partial match, i.e., if f(X) = f(X’) whenever last(X) = last(¥');
such a strategy can and will be presented as a map f : G — G.

A match ¥ = (p;)i<s is guided by a I-strategy f if f(pop1...pn—1) = pn for all n < k such that
Po---Pn_1 € PMp. A position is reachable by a strategy f is there is an f-guided match X of which
p is the last position. A Il-strategy f is legitimate in G@p if the moves that it prescribes to f-guided
partial matches in PMp@p are always admissible to II, and winning for II in GQyp if in addition all
f-guided full matches starting at p are won by II.

A position p is a winning position for player II € {3,V} if II has a winning strategy in the game
GQp; the set of these positions is denoted as Winy;. The game G = (G3, Gy, F,Q) is determined if
every position is winning for either 3 or V. <

When defining a strategy f for one of the players in a board game, we can and in practice will
confine ourselves to defining f for partial matches that are themselves guided by f.

The following fact, independently due to Emerson & Jutla [19] and Mostowski [39], will be quite
useful to us.

Fact 2.5 (Positional Determinacy) Let G = (G3, Gy, E,Q) be a parity game. Then G is deter-
mined, and both players have positional winning strategies.

In the sequel we will often refer to a ‘positional winning strategy’ for one of the players in a parity
game. With this we mean any positional strategy which is winning for that player when starting at
any of his/her winning positions.

2.2 Structures

Definition 2.6 Given a set S, an A-marking on S is a map m : S — PA; an A-valuation on S is
amap V : A — PS. Any valuation V : A — PS gives rise to its transpose marking VI : S — PA
defined by VT(s) := {a € A| s € V(a)}, and dually each marking gives rise to a valuation in the same
manner. 4

Since markings and valuations are interchangeable notions, we will often switch from one perspec-
tive to the other, based on what is more convenient in context.

Definition 2.7 A Kripke structure over a set X of proposition letters is a triple S = (S, R, V') such
that S is a set of objects called points, R C .S x S is a binary relation called the accessibility relation,
and V is an X-valuation on S. A pointed Kripke structure is a pair (S, s) where s is a point of S.



Given a Kripke structure S = (S, R, V'), a propositional variable x and a subset U of S, we define
V]z — U] as the XU {z}-valuation given by

Viz = Ul(p) :== { Z(p) oitfhirfviie,

and we let S[x +— U] denote the structure (S, R, V[z — U]). The structure S[z — V(z) N U] is usually
denoted as S[z[U]. <

It will often be convenient to take a coalgebraic perspective on Kripke structures.

Definition 2.8 Given a Kripke structure S = (S, R, V) over the set X, we define its (coalgebraic)
unfolding map os : S — PX x PS given by os(s) = (ov(s),or(s)), where oy (s) := Vi(s) and
or(s) := R[s] are the sets of, respectively, the proposition letters true at s and the successors of s. We
will write o rather than og in case no confusion is likely. <

Definition 2.9 A path through a Kripke structure S = (S, R, V) is a sequence (8;);<, such that
(84, 8:+1) € R for all ¢ with i+ 1 < k; here k < w is the length of the path. We let C denote the prefix
(initial segment) relation between paths, and use C for the strict (irreflexive) version of C. <

Definition 2.10 Given two models S = (S, R, V) and §' = (S’, R, V'), a relation Z C § x S is a
bisimulation if it satisfies, for all (s,s’) € Z, the conditions

(prop) s € V(p) iff s’ € V/(p), for all ¢ € X;

(forth) for all ¢t € og(s) there is a t' € ogr/(s’) with Ztt'; and

(back) for all ¢’ € o/ (s') there is a t € og(s) with Ztt'.

We say that s and s’ are bisimilar, notation S,s < §', s’ if there is some bisimulation Z with
Zss'. A function f : S — S’ is a bounded morphism from S to §', notation f : S — §', if its graph
{(s, f(s)) | s € S} is a bisimulation. <

Definition 2.11 The reflexive/transitive closure and the transitive closure of R are denoted as R* and
R, respectively; elements of the sets R*[s] and R™[s] are called descendants and proper descendants
of s, respectively.

A pointed structure (S, s) is a tree (with root s) if S = R*[s] and every state ¢t # s has a unique
predecessor. A branch of a tree (S,s) is a maximal path through S, starting at the root. In a tree
model S, a set U C S is downward closed if for all s € U, the predecessors of s belongs to U. A sibling
of a node ¢ in a tree is a node ¢’ # ¢ with the same predecessor as t.

Given a number £ < w, a tree is k-ezpanded if every node (apart from the root) has k — 1 many
bisimilar siblings (where w — 1 = w). Given a pointed structure (S, s), its x-expansion is the structure
St = (8", R, V'), where S’ is the set of all finite sequences spki1 81 ...kps, (n > 0) such that so = s
and k; < k, s; € S and s;_1Rs; for all i > 0; where R’ := {(sok151 ... knSn,Sok181 ... knspkt) | k <
k and s, Rt}; and where V'(p) := {sok151...knsn | $n € V(p)}. The l-expansion of a pointed model
(S, s) is also called its unravelling. <

Fact 2.12 Fiz an ordinal k < w. Given a pointed model (S,s), the structure (S%,s) is a k-expanded
tree which is bisimilar to (S, s) via the canonical bounded morphism mapping a path sok181 ... knsy to
its last element s,,.

2.3 Syntax
Definition 2.13 The language uML of the modal p-calculus is given by the following grammar:

pu=plopleVel|Op|ur.p, (4)



where p and x are propositional variables, and the formation of the formula px.p is subject to the
constraint that the variable x is positive in ¢, i.e., all occurrences of x in ¢ are in the scope of an even
number of negations. Elements of uML will be called modal fixpoint formulas, p-formulas, or simply
formulas. <

We will often make the assumption that our formulas are in negation normal form.

Definition 2.14 A formula of the modal p-calculus is in negation normal form if it belongs to the
language given by the following grammar:

pu=p|lpleVeleAp|Op|Op| pz.e | ve.p,

where p and z are propositional variables, and the formation of the formulas pz.¢ and vz.p is subject
to the constraint that the variable x is positive in . We use the symbol 1 to range over p and v. <

Convention 2.15 In order to increase readability by reducing the number of brackets, we adopt
some standard scope conventions. We let the unary (propositional and modal) connectives, —, ¢ and
0O, bind stronger than the binary propositional connectives A, V and —, and use associativity to the
left for the connectives A and V. Furthermore, we use ‘dot notation’ to indicate that the fixpoint
operators preceding the dot have maximal scope. For instance, pz.—p VvV <Cx V vy.qg A Oy stands for

pa. (((ﬁp) vV (0x)) Vwy.(g A Dy))
We gather some definitions pertaining to formulas.

Definition 2.16 We let Sfor(£) denote the collection of subformulas of a formula &, defined as usual,
and we write ¢ < £ if ¢ is a subformula of £&. The size of € is defined as its number of subformulas,
|p] == |Sfor(€)|. We write BV (§) and FV (§) for, respectively, the set of bound and free variables of a
formula £. We let uML(X) denote the set of p-formulas of which all free variables belong to the set X.

A p-formula ¢ is well-named if BV ()N FV(§) = &, and with every bound variable z of £ we may
associate a unique subformula of the form nz.§ (with n € {p,v}). This unique subformula will be

denoted as 7,.6,, and we call x a u-variable if n, = p, and a v-variable if n, = v. <
As a convention, the free variables of a formula ¢ are denoted by the symbols p, g, 7, . . ., and referred
to as proposition letters, while we use the symbols x,y, z, . .. for the bound variables of a formula.

Definition 2.17 Let ¢ and {¢, | z € Z} be modal fixpoint formulas, where Z N BV (p) = @. Then
we let

ply./z |z € Z]

denote the formula obtained from ¢ by simultaneously substituting each formula ¢, for z in ¢ (with
the usual understanding that no free variable in any of the ¢, will get bound by doing so0). In case Z
is a singleton z, we will simply write ¢[¢),/z], or ¢[¢] if z is clear from context. <

Definition 2.18 Let £ be a well-named p—formula. The dependency order <¢ on the bound variables
of £ is defined as the least strict partial order such that x <, y if , is a subformula of §,.

We define a map Act : Sfor(§) — P(FV(£)) assigning to each subformula ¢ < & the least set Act(p)
such that Act(p) = {p} if p € FV(£), Act(p x1) = Act(p) U Act(¢) if x € {A,V}, Act(Vp) = Act(y)
if © € {<,0}, Act(nz.) = Act(p) if n € {u,v}, and Act(z) = Act(d,) if z € BV (E). If p € Act(p)
we say that p is active in ¢ (relative to &). <



Position z Player | Admissible moves F(z)
(p,s) withpe FV(§) and s € V(p) v %)

(p,s) withpe FV(£) and s ¢ V(p) 3 %)

(—p,s) withpe FV(£) and s € V(p) 3 %)

(-p,s) withpe FV(§) and s ¢ V(p) v 1)

(x,s)  withz e BV(§) - {(6z,9)}
(pV,s) 3| {(e9), (¥, 8)}
(PN, s) Vo {les), (¢, 9)}
(Tlﬂ?-% 8) B {(90’ 3)}
(©p,s) 3 | {(p1) | sRt}
(B¢, s) vV [ {(g 1) | sRt}

Table 1: The evaluation game £(¢,S)

2.4 Semantics

Definition 2.19 By induction on the complexity of modal fixpoint formulas, we define a meaning
function [-], which assigns to a formula ¢ € pML(X) its meaning [¢]° C S in any Kripke structure
S =(S,R,V) over X. The clauses of this definition are standard:

[PI° == Vi(p)
[l® = S\ [e]®
[evel = [ePPulel®
[0¢]° = {seS|R[s|n[¢]® # @}
[prel® = (WU ePS|[p]f"" cU}.

If a point s € S belongs to the set [p]°, we write S, s I ¢, and say that ¢ is true at s or holds at s,
or that s satisfies ¢. Two formulas ¢ and v are equivalent, notation: ¢ = v, if [p]° = []° for any
structure S. <

Throughout this paper we will rely on the bisimulation invariance of the modal u-calculus.

Fact 2.20 Let (S,s) and (S',s") be pointed Kripke structures such that (S,s) € (S',s'). ThenS,s - ¢
iff S’y s" Ik, for all p € uML.

We will usually take a game-theoretic perspective on the semantics of the modal p-calculus.

Definition 2.21 Let S = (S, R, V) be a Kripke model and let £ be a formula in uML. We define the
evaluation game E(&,S) as the parity game (G, E, Q) of which the board consists of the set Sfor(£) xS,
and the game graph (i.e., the partitioning of Sfor(£) x S into positions for the two players, together
with the set E(z) of admissible moves at each position z), is given in Table 1. Note that we do not
assign a player to positions that admit a single move only.

To define the priority map Q of £(,S), consider an infinite match ¥ = (¢n, $n)necw, and let Inf(X)
denote the set of (bound) variables that get unfolded infinitely often during the match. This set
contains a highest variable z (with respect to the dependency order <), and the winner of ¥ is 3
if n, = p, and V if n, = v. It is not difficult to define a priority map Q : (Sfor x S) — w that is
compatible with this condition, but we do not need the details of the precise definition. <

The following fact states the adequacy of the game semantics.



Fact 2.22 Let & be a well-named formula of the modal p-calculus, and let (S, s) be some pointed Kripke
structure. Then S, s Ik & iff (£,s) € Wing(E(E,S)).

Finally, for our decidability results we will use the following result, due to Emerson & Jutla [18].

Fact 2.23 The question whether a given pML-formula & is satisfiable can be decided in time exponential
in the size of £. As a corollary, the question whether two pML-formula & and &' are equivalent is
decidable in time exponential in the sum of the sizes of £ and &'.

Since this paper is about various syntactic fragments of the modal u-calculus, we gather here some
specific formulas that will be discussed as (non-)instances of these fragments throughout the paper.

Example 2.24 Below we introduce a number of formulas, ¢y, ..., g, and for each listed formula we
explain in words its meaning in an arbitrary tree model S at the root r.

o = p simply states that p holds at 7;

1 :=vy.(g A Oy) expresses the existence of an infinite g-path at r;

w2 :=p Avy.(q A< y) is the conjunction of ¢y and ¢q;

w3 := px.pV OOx expresses the existence of a p-state at an even distance of r;

w4 = px.pV OOz states that every path starting at r has a p-state at even distance from r;

5 = vy.pz.((p A Oy) V Ox) expresses the existence of a path with infinitely many p-nodes;

v 1= pr.(pV (C(g A x) ANO(—g Ax))) expresses the existence of a finite binary subtree rooted at
r, of which all leaves satisfy p, and all inner nodes have both a ¢- and a —g-successor. <

3 Modal automata

In this section we give a detailed introduction to the automata that feature in our proofs. Basically,
we will be working with the guarded specimens of Wilke’s alternating tree automata [47], and with the
non-deterministic versions of these which correspond to the p-automata of Janin & Walukiewicz [32].
As mentioned in the introduction, many of our proofs will be based on manipulating the one-step
formulas featuring as the co-domain of the transition map of a modal automaton.

3.1 One-step logic

The transition map of our modal automata will be based on a so-called modal one-step language,
consisting of modal formulas of rank 1, built up from proposition letters (which may have negative
occurrences but must appear unguarded) and variables (which must appear both guarded and posi-
tively).

Definition 3.1 Given a set P, we define the set Latt(P) of lattice terms over P through the following
grammar:
mu=p|L|T|nAxm |7V,

where p € P. Given two sets X and A, we define the set 1ML(X, A) of modal one-step formulas over A
with respect to X inductively by

ax=p|-p|Or|On|L]|T|arha|aVa,
with p € X and 7 € Latt(A). <

These formulas are naturally interpreted in so-called one-step models.
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Definition 3.2 Fix sets X and A. A one-step frame is a pair (Y,S) where S is any set, and Y C X.
A one-step model is a triple (Y,.S,m) such that (Y,S) is a one-step frame and m : S — PA is an
A-marking on S. <

Observe that with this definition, the coalgebraic representation of a Kripke structure (S, R, V)
can now be seen as a function og mapping any state s € S to a one-step frame of which the carrier is a
subset of S. This plays a fundamental role in the acceptance game for modal automata, and explains
the following one-step satisfaction relation IF' between one-step models and one-step formulas.

Definition 3.3 Fix a one-step model (Y, S, m). First we define the value [r] C S of a lattice formula 7
over A by induction, setting [a] := {s € S| a € m(s)} for a € A, and treating the boolean connectives
in the obvious manner.

The one-step satisfaction relation IF' is inductively defined as follows. For the literals and modal
operators we set:

- (Y, S,m) - p iff pey,

- (Y, S,m) It —p iff p gy,

- (Y, S,m) It Or iff 7] =S,

- (Y, 8,m) I O iff [n] # o,
while we have the standard clauses for the boolean connectives. <

3.2 Modal automata

Definition 3.4 A modal X-automaton A is a triple (A,0,Q) where A is a non-empty finite set of
states, 0 : A — w is the priority map, while the transition map

©: A — 1ML(X, A)

maps states to one-step formulas. An initialized modal automaton is pair (A, a), usually denoted as
A{a), consisting of a modal automaton A together with a designated initial state a. The classes of
(initialized) modal automata over the set X are denoted as TAut(X) and Aut(X), respectively. <

The operational semantics of modal automata is defined in terms of acceptance games.

Definition 3.5 Let A = (A4,0,Q) and S = (S, R, V') be a modal X-automaton and a Kripke structure,
respectively. The acceptance game A(A,S) for A with respect to S is defined as the parity game given
by the following table:

Position Player | Admissible moves Priority
(a,5) e Ax S 3 {m:or(s) = PA]o(s),mIF O(a)} | Q(a)
m v {(b,t) | b e m(t)} 0

We say that A(a) accepts the pointed structure (S, s) if (a, $) is a winning position in the acceptance
game A(A,S), and we write S, s IF A{a) to denote this. <

Convention 3.6 We will usually identify a match 3 = (ag, so)mo(a1, $1)m1(az, s2)ms. .. of the ac-
ceptance game A(A,S) with the sequence (ag, so)(a1, s1)(az, s2) ... of its basic positions.

Some basic concepts concerning modal automata are introduced in the following definition.

Definition 3.7 Fix a modal X-automaton A = (A, 0, Q).
The size |A| of A is defined as the cardinality |A| of its carrier set, while its weight w(A) :=
max{|O(a)| | @ € A} is given as the maximum size of the one-step formulas in the range of ©.
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Given a state a of A, we write n, = p if Q(a) is odd, and 7, = v if Q(a) is even; we call 7, the
(fizpoint) type of a and say that a is an 7,-state.

The occurrence graph of A is the directed graph (G, Ep), where aEab if a occurs in ©(b). We let
<l denote the transitive closure of E and say that a is active in b if a <1x b. We write a >y b if a <14 b
and b <y a. A cluster of A is a cell of the equivalence relation generated by > (i.e., the smallest
equivalence relation on A containing i<y ); a cluster C' is degenerate if it is of the form C' = {a} with
a 4y a. The unique cluster to which a state a € A belongs is denoted as C,. We write a Ty b if
Qa) < Qb), and a Ty b if Q(a) < Q(b). <

3.3 Disjunctive modal automata

Many of our proofs involve the non-deterministic version of modal automata that we call disjunctive.
The transition map of these automata makes use of the so-called cover modality V, which was indepen-
dently introduced in coalgebraic logic by Moss [38] and in automata theory by Janin & Walukiewicz [31]
(where the authors used a different notation). It is a slightly non-standard connective that takes a
finite set of formulas as its argument.

Definition 3.8 Given a finite set ®, we let V& abbreviate the formula
vo = Aoenro\/e,
where O® denotes the set {Oy | p € D} <

Remark 3.9 In words, V® holds at s iff ® and ogr(s) ‘cover’ one another, in the sense that every
successor of s satisfies some formula in ® and every formula in ® holds in some successor of s. From
this observation it is easy to derive that, conversely, the standard modal operators can be expressed
in terms of the cover modality:

Cp = Vip, T}
Op = Vi{p}VvVe,
where we note that V& holds at a point s iff s is a ‘blind’ world, that is, R[s] = @. <

Definition 3.10 Let X be a given set of proposition letters and A any finite set. We define a literal
over X to be a formula of the form p or —p with p € X, and define the language CL(X) of conjunctions
of literals to be generated by 7 in the grammar:

Tu=p|-p|T|wAT
where p € X. We now define the set 1DML(X, A) of disjunctive formulas in 1ML(X, A) as follows:
az=n1AVB|Ll|aVaea,
where 7 € CL(X) and B C A. <

Definition 3.11 A modal X-automaton A = (4, ©, Q) is disjunctive if ©(a) € 1DML(X, A) for all a € A.
<

The non-deterministic nature of disjunctive automata is exemplified by the following fact, which
can easily be verified.

Fact 3.12 Let A be a disjunctive automaton and S an w-unravelled tree. Then without loss of gen-
erality we may assume 3’s positional winning strategy to be such that each marking m picked by the
strategy at a position (a, s) satisfies |/m(t)| =1, for all t € or(s).
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In many branches of automata theory a crucial role is played by a simulation theorem, stating that
automata of certain given type can be transformed into, or ‘simulated’ by, an equivalent automaton of
which the transition structure is of a conceptually simpler kind. In the case of modal automata, such
a theorem can be proved along the lines of Janin & Walukiewicz’ characterization of the u-calculus in
terms of the non-deterministic p-automata [31]. For a detailed proof of the result below we refer to
Venema, [45].

Fact 3.13 (Simulation Theorem) There is an effective procedure transforming an initialized modal
automaton A{a) into an equivalent initialized disjunctive modal automaton D{(d). The size of D is
exponential in the size of A, and its weight is at most exponential in the product of the size and the
weight of A.

3.4 Formulas and automata

The automata-theoretic approach towards the modal p-calculus hinges on the existence of truth-
preserving translations between formulas and automata, which testify that automata and formulas
have the same expressive power. In the direction from formulas to automata we only need the result
as such.

Fact 3.14 (i) There is an effective procedure providing for any formula & € pML(X) an equivalent
initialized modal automaton A¢{ag). The size of A¢ is linear and its weight is at most exponential in
the size of &.

(ii) There is an effective procedure providing for any formula & € pML(X) an equivalent initialized
disjunctive modal automaton De(de). The size of D¢ is exponential and its weight is at most doubly
exponential in the size of €.

The translations mentioned in Fact 3.14 originate with Janin & Walukiewicz [32] for part (ii)
and with Wilke [47] for part (i). Concerning the size matters, note that we get an exponential (and
not polynomial) weight bound in Fact 3.14(1) because our modal automata are guarded (that is, all
occurrences of states/variables in one-step formulas must occur in the scope of a modality; see Bruse
et alii for details [9]). The size bounds in Fact 3.14(ii) are obtained simply by combining part (i) with
Fact 3.13.

In the opposite direction we will need an actual map transforming an initialized modal automaton
into an equivalent p-calculus formula. For our definition of such a map, which is a variation of the one
found in [28], we need some preparations. For a proper inductive formulation of this definition it is
convenient to extend the class of modal automata, allowing states of the automaton to appear in the
scope of a modality in a one-step formula.

Definition 3.15 A generalized modal automaton over X is a triple A = (A4,0,Q) such that A is a
finite set of states, 2 : A — w is a priority map, and © : A — 1ML(X, A U X) maps states of A to
generalized one-step formulas. <

To mark the difference with standard modal automata, the formula ¢a A O(p V b) is a generalized
one-step formula but not a proper one-step formula. Whenever possible, we will apply concepts that
have been defined for modal automata to these generalized structures without explicit notification.
For the operational semantics of generalized modal automata we may extend the notion of a one-step
model in the obvious way. Readers who are interested in the details may consult [22].

Definition 3.16 A (generalized) modal automaton A = (4,0, ) is called linear if the relation Ty
is a linear order (i.e., the priority map € is injective), and satisfies 2(a) > Q(b) in case b is active in
a but not vice versa. A linearization of A is a linear automaton A’ = (A4, ©,Q’) such that (1) for all
a € A, Q(a) has the same parity as Q(a), and (2) for all a,b € A that belong to the same cluster we
have Q' (a) < '(b) iff Q(a) < Q(b). <
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The following proposition is easy to verify.

Proposition 3.17 Let A be a modal automaton.
(1) A has some linearization.
(2) If A’ is a linearization of A, then A{a) = A'{a).

Definition 3.18 We define a map
try @ A — pML(X)

for any linear generalized X-automaton A = (A,0,Q). These maps are defined by induction on the
size of the automaton A.
In case |[A| =1, we set
tra(a) :=n,a.0(a),

where a is the unique state of A.

In case |A| > 1, by linearity there is a unique state m reaching the maximal priority of A, that
is, with Q(m) = max(Ran(Q2)). Let A~ = (A7,07,Q7) be the X U {m}-automaton given by A~ :=
A\ {m}, while © and Q~ are defined as the restrictions of, respectively, © and Q to A~. Since
|A™| < JA], inductively® we may assume a map try— : A — uML(X U {m}).

Now we first define

tra(m) := n,m.©O(m)[try-(a)/a|a € A7],

and then set
tr4(a) = tra-()[era(m)/m]

for the states a # m. <

The following proposition states that this map is truth-preserving, and of exponential size. The
proof of the first statement is rather standard; details can be found in [28, 45]; the size bound can be
established via a straightforward induction on the size of the automaton.

Fact 3.19 Let A{a) be an initialized linear modal automaton. Then tra(a) is equivalent to A{a) and
its size is at most exponential in the sum of the size and the weight of A. If A is positive in p € X then
s0 is tra(a).

Based on Proposition 3.17 and Fact 3.19 we may define a truth-preserving translation try : A —
pML for every modal automaton A = (A, ©, Q) by picking a linearization A’ of A and defining tr (a) :=
tryi(a) for all a € A. Clearly the exact shape of try(a) will depend on the choice of the linearization.

3.5 Bipartite automata

As mentioned in our introduction, the results in this paper will be based on constructions that trans-
form a given automaton into one of a particular shape. In this final subsection on modal automata we
look at the target automata of these constructions in some more detail.

Definition 3.20 A modal automaton A is called a bipartite automaton if its carrier A can be parti-
tioned into an initial part Ag and a final part A;, in such a way that we have <14 N (A x A1) = @. It
will sometimes be convenient to represent a bipartite automaton as a quadruple A = (4, A1,0,Q).
Given such an automaton and a state a of A, we say that A(a) is an initialized bipartite automaton
if a belongs to the initial part of A; and given a class C' of bipartite automata, we let IC' denote the
class of corresponding initialized bipartite automata. <

30bserve that since m is a proposition letter and not a variable in A~, the latter structure need not be a modal
automaton, even if A is. It is for this reason that we introduced the notion of a generalized modal automaton.
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The intuition underlying this definition is that, in any acceptance game related to a bipartite
automaton A = (A, A1,0,Q) there will be two kinds of matches: either A stays in its initial part
throughout the match, or at some stage it moves to its final part, where it remains throughout the
remainder of the match. The bipartite automata that we will meet in this paper will be such that its
initial and final part behave differently with respect to the designated propositional variable p.

Recall that each of our results concerns a certain syntactic fragment F'(P) of the modal p-calculus,
consisting of formulas where we have imposed restrictions on the occurrence of the proposition letters
belonging to a certain set P C PROP. (Note that while these restrictions generally concern the free
variables of the formula, not the bound ones, there is no relation between the fragment F(P) and the
set uML(X) of formulas of which the free variables belong to X). In each case considered, part of our
proof will consist in showing that given a bipartite automaton A of a certain kind, one can find a a
translation tr : A — uML, such that for all states a in the initial part of A, the formula tr(a) belongs
to the fragment F'(P). Since these proofs are all quite similar, we have extracted their pattern in
the form of the following definition and proposition, so that in each specific case we may confine our
attention to a verification that the fragment and the automata at stake meet the required conditions.

Definition 3.21 Suppose that we have defined, for each finite set P of proposition letters, a fragment
F(P) C puML of p-calculus formulas. In the sequel we shall consider the following properties that are
applicable to such a family F' = {F(P) | P C, PROP}:

(EP) extension property: ¢ € F(PU{q}) whenever ¢ € F(P) and ¢ & FV();

(SP1) first substitution property: @[/x] € F(P) whenever ¢ € F(P U {z}) and ¢ € F(P);

(SP2) second substitution property: ¢[y/x] € F(P) whenever ¢ € F(P), x ¢ P and FV () N P = &;
(CA,) n-fizpoint closure property: nx.@ € F(P) whenever ¢ € F(P U {z}). <

Proposition 3.22 Let F = {F(Q) | @ C PROP} be a family of fragments of pML, and let P,X be two
finite sets of proposition letters. Let A = (A, B,0,Q) be a bipartite X-automaton, and let B denote the
automaton (B,O,p,Qp). Assume that

(1) F' has the properties (EP), (SP1), (SP2) and, for alla € A, (CA,, );

(i) ©(a) € F(PUA) for alla € A;

(i) there is a translation tr : B — pML(X) such that B(b) = tx(b) € F(P), for allb € B;
Then there is a translation tr : A — pML(X) such that tra(a) = Aa) and tra(a) € F(P) for all
a € A

Proof. By Proposition 3.17 we may assume without loss of generality that A is linear itself and that
Q(a) > Q(b) for all a € A and b € B. We will also assume that the translation tr of (iii) is identical
to the map trp obtained by applying Definition 3.18 to the automaton B. (The more general case can
be proved by a straightforward modification of the proof given below.)

Enumerate A = {a1,...,a,} in such a way that Q(a;) < Q(a;) iff i < j. For 0 < k < n we define
A ={a; | 0 < i <k}, and we let Ay, be the linear generalized automaton (B U Ay, ©1pua,, 2 1BuA,)-
It is straightforward to verify that Ay = B, A, = A, and that A; = (A;41)” for all i < n. We
abbreviate try 1= tryx.

Our task is then to show that tr,(a) € F(P) for all a € A, and our approach will be to prove, by
induction on k, that

tri(c) € F(PU{a; | k<i<mn}), forallce AUB and k < n. (5)

In the base step of the induction, where £ = 0, we are dealing with the automaton Ay = B,
corresponding to the final part of A, and we only have to worry about states b € B. It is easy to see
that

tro(b) = trp(b) for all b € B,
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and so by assumption (iii) and the assumption (i) that F' has the extension property, we obtain that
tro(b) € F(P) C F(PU A). This suffices to prove (5) in the base case.

In the inductive case, where £ > 0, we consider the automaton A, with maximum-priority state
ar, € A. Observe that by definition we have

tri(ak) = Mo, ak-O(ak)[trie—1(ai)/a; | i <k, trg—1(b)/b|b € B] (6)

and, for ¢ < k,
trk(ai) = trk,l(ai)[trk(ak)/ak]. (7)

Observe that we may conclude from (6) that
tri(ar) == N, ax.O(ar)[trr—1(a;)/a; | i < k][trr_1(b)/b| b€ B], (8)

since no b € B has a free occurrence in any formula try_1(a;).
We now turn to the proof of (5). Starting with the states in B, it is easy to see that

tr(b) = trp(b) for all b € B and k < mn,

and so we find try(b) € F(PU{a; | ¥ < i < n}) by assumption (iii) and the assumption (i) that F’
has the extension property.

We now consider the formula try(ax). By the inductive hypothesis we have try_1(a;) € F(PU{a; |
k < i < n}), while by assumption (iii) we have ©(ay) € F(PUA) = F((PU{a; | k <i<n})U{a;|
i < k}). But then by the first substitution property of F' we find that

O(ak)[trr—1(a;)/a; | i < k] € F(PU{a; | k <i<mn}),
and by the fact that F' is closed under the application of 7,,-fixpoint operators, we obtain
Nay0k-O(ar)[trr—1(a;)/a; | i < k] € F(PU{a; | k <i<n}). (9)

Now observe that for all b € B we have b ¢ P and tri_1(b) € F(PU{a; | k < i < n}), so that by
successive applications of the second substitution property we obtain from (9) and (8) that

trp(ar) € F(PU{a; | k <i<n}), (10)

as required.

Finally we consider the formula try(a;) for some fixed but arbitrary j < k. From the inductive
observation that try_q(a;) belongs to F(PU{a; |k <i<n})=F(PU{a; | k<i<n})U{ar}), we
may then conclude by (10), (7) and the first substitution property that

try(a;) € F(PU{a; | k <i<n}),

and so we are done. QED

4 First steps

In this section we provide both an automata-theoretic construction and a first preservation result that
that will be of use throughout the paper. We start with the first, introducing a simple operation on
automata that will feature throughout the remainder of the paper.

Convention 4.1 As mentioned in the introduction, in this paper we shall focus on the contribution
of one specific proposition letter in the semantics of formulas and automata. It will be convenient to
fix this letter from now on, and reserve the name ‘p’ for it.
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Definition 4.2 Given a modal automaton A = (4,0,Q), we define A+ = (41,01, Q1) to be the
automaton where A+ := {a* | a € A}, ©F is given by putting

0" (a) := O(a)[L/p],
and Q* is simply defined by Q-+ (at) := Q(a). <

Proposition 4.3 Let A be a modal automaton which is positive in p. Then for any state a in A and
any pointed Kripke model (S, s) we have

S,s - A*(a) iff S[p — 2], s I- A{a).

Proof. We will show that the two respective acceptance games, A+ = A(AL S) and Ay :=
A(A,S[p — @]) are in fact, identical. The key observation here is that for any position (a,t) € A x S,
the set of moves available to 3 in both games is the same. To see this, it suffices to prove that, for any
point ¢ € S and any one-step formula « € 1ML which is positive in p, we have

oy (t),or(t),m - a[L/p] iff oy (t)\ {p},or(t),m) IF' «,
and the proof of this statement proceeds by a straightforward induction on a. QED

We now turn to our first characterization result, which concerns the notion of monotonicity.
D’Agostino and Hollenberg [17] already proved a Lyndon theorem for the modal p-calculus, stat-
ing that monotonicity with respect to a propositional variable p is captured by the formulas that are
syntactically positive in p. Here we strengthen their result, providing both an explicit translation and
a decidability result. Our proof proceeds via some auxiliary lemmas on automata that we shall need
further on.

Definition 4.4 A formula £ € uML(X) is monotone in p € X if for all pointed Kripke structures
(S, s) and for all pairs of sets U, U’ C S such that U C U’, it holds that S[p — U], s IF £ implies
Sp—U'],slFE.

Syntactically, the set MMLZI\)/[ of formulas that are positive in p, is defined by the following grammar:

pu=plglagleVelene|Op|Dp | pr.e | ve.p,

where ¢ # p and z are propositional variables, and the formation of the formulas px.p and vx.p is
subject to the constraint that the formula ¢ is positive in z. <

Definition 4.4 gives an explicit grammar for generating the formulas that are positive in p. It is
easy to see that this definition coincides with the one we gave earlier, viz., that a formula is positive
in p iff all occurrences of p are in the scope of an even number of negations.

The theorem below can be seen as a strong version of D’Agostino & Hollenberg’s characterization
result.

Theorem 4.5 There is an effective translation which maps a given pML-formula & to a formula €M €
uMLé,W such that

¢ is monotone in p iff € = &M, (11)

and it is decidable in elementary time whether a given formula £ is monotone in p.

It is routine to prove that all formulas in MML;,V[ are monotone in p, so we focus on the hard part
of Theorem 4.5, for which we shall involve automata.
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Definition 4.6 A modal automaton A = (A, 0,Q) is positive in p if for all a € A the one-step formula
©(a) is positive in p. <

It is easy to see that for any linear modal automaton that is positive in p, the translation map given
in Definition 3.18 produces formulas that are also positive in p. From this the following is immediate.

Proposition 4.7 Let A = (A,0,Q) be a modal automaton which is positive in p. Then there is a
truth-preserving translation try : A — uMLé‘)/[.

We now turn to the key lemma underlying the proof of Theorem 4.5, for which we need the following
definition.

Definition 4.8 Let ()™ : CL(X) — CL(X) be the translation which replaces every occurrence of the
literal —p with T, and let (-)™ : 1DML(X, A) — 1ML(X, A) be the one-step translation given by the
following inductive definition:

(rAVBM = M AVB
1M = 1
(av )M = aMvpM,

Let A = (A, ©0,Q) be a disjunctive modal automaton. We define the automaton AM as the structure
(A,0M Q) where the map ©M is given by putting

oM(a) := 0(a)M
for every state a € A. <
The following proposition is fairly obvious; we list it for future reference.

Proposition 4.9 Let A be a disjunctive automaton. Then its transformation AM is disjunctive as
well, and positive in p.

Proposition 4.10 Let A{a;) be an initialized disjunctive modal automaton. If Alar) is monotone in
p, then Alar) = AM (a).

Proof. Given the nature of the translation (-)™ at the level of conjunctions of literals, it is easy to
see that A(a;) implies AM(a;), and so we focus on the opposite implication. It suffices to take an
arbitrary w-unravelled tree model (S,7) and show that

S, - AM(ay) only if S, IF Alag). (12)
Assume that S,r IF AM (a;). Our aim is to find a subset U C S such that
SiplU],r IF Alay), (13)

from which it will immediately follow by monotonicity that S,r I+ A{ar).

By Fact 3.12 3 has a positional winning strategy f in A(AM S) such that each marking m picked
by the strategy at a position (a, s) satisfies |m(t)| = 1, for all t € og(s). From this it easily follows that
for all t € S there is exactly one state a; € A such that the position (a¢,t) may occur in an f-guided
match of A(AMS) starting at (az,7). It easily follows that the pair (as,t) is a winning position for 3
in A(AMS); in particular, with m; : og(t) — PA being the marking picked by f at this position, by
the legitimacy of this move we have that

oy (t),or(t),m IF ©M(a,).
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In order to determine whether this ¢ should be a member of U or not, we check whether the one-step
formula ©(a;) holds at the one-step modal (o (t),or(t), m:). If so, we are happy with oy (¢) as it is
and put ¢t € U, but if not, we will want to make p false at ¢, claiming that

ov () \ {p}, or(t),m: IF' O(ar). (14)

To see why this is the case, observe that the only reason why we can have oy (t), og(t), ms IF* ©M (ay)

but oy (t), or(t), ms ¥t ©(ay) is that ©(ax) has a disjunct m A VB such that —p is a conjunct of 7 and

p € oy (t). But then it is immediate that oy (t) \ {p}, or(t), m: IF' m A VB, which implies (14).
These observations reveal that if we define

Ui={te S| (at) € Wins(ALM,S)) and oy (1), or(t), m: I ©(a,)},
we obtain for the valuation V[p[U] that
ovipiu) (), or(t), my IF O (ay),

whenever (a,t) is a winning position for 3 in A(A,S). From this it is easy to derive that f itself is a
winning strategy for 3 in the acceptance game A(A,S[p[U])@(a;, ), as required to prove (13). QED

We now have all material needed to prove Theorem 4.5.

Proof of Theorem 4.5. Let £ be an arbitrary modal p-formula; and let D¢ (d¢) be an initialized
disjunctive automaton that is equivalent to £. Such a structure exists by Fact 3.14, and clearly &
is monotone in p iff D¢ (de) is so. It then follows by Proposition 4.10 that D¢(de) (and hence &) is
monotone in p iff it is equivalent to the initialized disjunctive automaton Dé” (de). Now define

fM = trDéw (dé)

It is easy to verify that ¢M € uMLi‘,/[, while we have Dg(d@ = (M by Fact 3.14. Putting these
observations together we obtain that, indeed, ¢ is monotone in p iff &€ = &M, where €M is effectively
obtained from &. This establishes the first part of the theorem.

For the statement concerning decidability, it suffices to observe that all constructions that are
involved in the definition of the map (-)M : uML(X) — uMLéV[ have uniformly elementary size bounds,
and that the problem, whether two pu-calculus formulas are equivalent or not, can be decided in

exponential time. From this the decidability claim is immediate. QED
5 Finite width property

The first new property that we consider is that of the finite width property.

Definition 5.1 A formula £ € pML(X) has the finite width property for p € X if £ is monotone in p,
and, for every tree model (S, s),

S, s Ik & iff S[p|U], s I+ &, for some finitely branching subtree U C S,

where a subset U C S is a finitely branching subtree if U is downward closed and the set R(u) NU is
finite for every u € U. <

We will associate the following syntactic fragment of the modal u-calculus with this property.
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Definition 5.2 Given a set P C X, we define the fragment uMLY by the following grammar:

ou=plY|eVelpAe|Cp|pry' | ve.y,

where p € P, ¢ € pML(X \ P) is a P-free formula and ¢’ € ,uML%VU{I}. In case P is a singleton, say,
P = {p}, we will write MMLZV rather than uMLf{’Z}. <

In words, the fragment uMLXV consists of those formulas that are positive in p and do not admit any
occurrence of a p-active subformula in the scope of a box modality. All formulas from Example 2.24
belong to /,LML;V , except 4.

The following theorem states that modulo equivalence, MMLL’V is the syntactic fragment of the modal
p-calculus that captures the finite width property, and that it is decidable whether a given p-formula
has this property.

Theorem 5.3 There is an effective translation which maps a given pML-formula & to a formula €V €
,LLML;V such that

¢ has the finite width property for p iff € = €V, (15)

and it is decidable in elementary time whether a given formula & has the finite width property for p.

First we prove the easy part of the theorem, stating that formulas in the fragment uMLY indeed
have the required semantic property.

Proposition 5.4 Every formula £ € ,uMLZV has the finite width property with respect to p.

Proof. Let £ be a formula in uMLy (p), then £ is obviously positive, and hence, monotone in p. Fix a
tree model S with root r € S. We have to prove

S,r - & iff S[pU],r I &, for some finitely branching subtree U C S. (16)

The direction from right to left follows from the fact that £ is monotone in p. For the opposite
direction, suppose that S, r I- £&. We need to find a finitely branching subtree U of S that is downward
closed and such that S[p|U],r IF & Let f be a positional winning strategy of 3 in the game & :=
E(&,5)Q(&,r). We define U C S such that

u € U iff there is a ¢ such that (p,u) is f-reachable in & and p is active in .

It is easy to see that the set U is downward closed. Indeed, if a position (¢, t) is reached during an
Ep-match ¥ and p is not active in ¢, then all positions occurring after (¢, t) will be of the form (¢, u),
where p is not active in .

Hence it suffices to show that U is finitely branching. Fix v € U and let us show that op(u)NU is
finite. Let t € U be a successor of u. Since w is the only predecessor of ¢, by definition of U, there must
be an f-guided match during which a move occurs from (A, u) to (¢r,t), where A € {0, <} and ¢y
is a p-active subformula of £&. Because of the syntactic constraints on uMLZV , this can only happen if
A = <. But then (O, u) is a position which belongs to 3 and so ¢ is her choice as dictated by f.
From this, it follows that for all ¢ and ¢’ in R(u) N U, we have p; # @ if t # t'. Putting this together
with the fact that Sfor() is finite, we obtain that R(u) N U is finite. This finishes the proof that U is
downward closed and finitely branching.

It remains to show that S[p|U],r IF . Let £ be the game E(&,S[p|U])Q(§,r). We show that f
itself is a winning strategy for 3 in the game £. The winning conditions for & and £ are the same.
Moreover, the rules of the two games are the same, except when we reach a position of the form (p, t).
So to prove that f is a winning strategy for 3 in &£, it suffices to show that if an f-guided £-match
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Y arrives at a position (p,t), then S[p|U],t IF p, that is, ¢ € V(p) N U. Suppose that we are in this
situation. Since ¥ is also an f-guided &y-match and since f is a winning strategy for 3 in &, ¢ belongs
to V(p). It remains to show that ¢ belongs to U. That is, we have to find a p-active formula ¢ such
that (¢, t) is f-reachable in &. Clearly, the formula p itself satisfies these two conditions. This proves
that f is a winning strategy for 3 in the game £ and hence shows that S[p[U],r I &. QED

For the hard part of the theorem, we involve automata. The particular modal automata that we
associate with the finite width property are given below; recall that we introduced bipartite automata
in Definition 3.20.

Definition 5.5 A bipartite modal automaton A = (4, B, 0, 2) belongs to the class Autgv of finite-
width automata if the one-step language associated with B is the language 1ML(X \ {p}, B), and the
one-step language associated with A is given by the following grammar:

ax=p|Om |flana|T|avVal|l (17)
where my € Latt(A) and 8 € 1ML(X \ {p}, B). <

In words, an initialized modal automaton A{a;), with A = (A, ©,), belongs to the class AutZV if
A can be partitioned as A = Ag W A; such that (0) a; belongs to Ag, (1) p occurs only positively in
O(a), for a € Ap, (2) p does not occur in any O(a), a € Ay, (3) if a,b € Ap then a may only occur in
©(b) in the scope of a diamond (not of a box) modality, and (4) if a € Ag and b € A; then a may not
occur in ©(b).

Proposition 5.6 Let A = (A, B,0,Q) be a bipartite modal automaton in Autgv, Then there is a
translation try : A — pML such that try(a) € pML) for every state a € A.

Proof. It suffices to check that the fragment uMLY := {yMLW | P C, PROP} and the automaton A
satisfy the conditions (i) — (iii) of Proposition 3.22, with P = {p}.

Starting with (i), we need to show that uML"W satisfies the properties (EP), (SP1), (SP2) and (AC,))
for n € {u,v}. All these results can be established by routine proofs; we consider the property (SP1)
as an example (the other properties are easier to show). By a straightforward formula induction on
© one may show that if ¢ € uML}’DVU{I}, then for all ¢ € uML}’DV the formula ¢[¢)/x] belongs to the
fragment puMLY .

Confining ourselves to the inductive case where ¢ is of the form puy.¢’, we reason as follows.
Without loss of generality we may assume that y ¢ FV (¢), so that ¢ € uML%VU (v} by the extension

property. Also, if py.¢" € MML‘;,VU (o} then by the formulation rules of uMLYW it must be the case

that ¢’ € uMLYDVU (e} It then follows by the inductive hypothesis that ¢'[¢/z] € MMLIVDVU (v} SO that
o[t/x] € uMLY | again by definition of the fragment.

To check that (ii) the formula ©(a) belongs to uMLf{’Z}UA for all a € A, one may proceed via a
straightforward induction on the complexity of the one-step formulas generated by the grammar (17).

Finally, it is easy to verify that there is a translation tr : B — pML(X \ {p}); from this it is
immediate that (iii) tr(b) € uMLf{/‘;}, for all b € B. QED

Note that it follows from Proposition 5.6 and Proposition 5.4 that initialized automata in IAutZV
have the finite width property.

Preparing for the main technical result of this section, we define the following transformation of
automata. Recall from Definition 3.10 that 1DML(X, A) denotes the set of disjunctive one-step formulas
over X and A, and that A+ is the automaton given in Definition 4.2.
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Definition 5.7 Let (-)"V : 1DML(X, A) — 1ML(X, A W A1) be the one-step translation given by the
following inductive definition:

(T AVB)Y = \/{7r/\/\<>Bl/\VB2l BluBzzB}
1w = 1
(av BV = aVvpW,

where By denotes the set By := {b1 | b € By}.

Let A = (A,0,9) be a disjunctive modal automaton which is positive in p. We define A" as the
bipartite automaton (A", 0" QW) where AW := Aw AL, and the maps OV and QW are given by
putting

W) = OV q MW@ = Q)
% (at) = ©i(a) an Q% (at) = Q)
for an arbitrary state a € A. <

In words, AW is a bipartite automaton that we obtain from A by putting a copy of A ‘in front of’
of a copy of A+, changing the transition map © of the initial part A of A" via the one-step translation
()W'. The final part of the structure A" is isomorphic to the automaton A+, so that we have

AV (at) = At{at) (18)

for every state a € A. Finally, observe that, while we define the transformation (-)"V for disjunctive
automata only, the resulting structures are generally not disjunctive.
The following proposition is easy to verify, we leave the details for the reader.

Proposition 5.8 Let A(a) be an initialized disjunctive modal automaton which is positive in p. Then
its transformation A" (a) belongs to the class IAutXV.

We are now ready for the main technical lemma of this section.

Proposition 5.9 Let A{a) be an initialized disjunctive modal autormaton which is positive in p. If
Alay) has the finite width property, then Alar) = AW (a).

Proof. Let A = (A, 0,Q) be a disjunctive modal automaton, and assume that, for some state ay € A,
the initialized automaton A(a;) has the finite width property. In order to prove the equivalence of
Alar) and AW (ay), it suffices to take an arbitrary w-unravelled Kripke tree (S,r) and prove that

S,r - Alar) iff S, r IF AW (az). (19)

We first consider the direction from left to right of (19). Assume that S,r |- A{as), then it follows
from the finite width property of A(a) that there is a finitely branching subtree U C S such that
SiplU],r IF A{ar). Without loss of generality we may assume that U # &, or equivalently, that r € U.
By monotonicity of A" it suffices to show that S[p[U],r I AW (as); that is, we need to supply 3 with
a winning strategy h in the game A" := A(AW S[p|U])@(as,7). In order to define this strategy, we
will make use of two auxiliary strategies: let f and g be positional winning strategies for 3 in the
acceptance games A(A,S[p|U]) and A(AW,S[p|U]) itself, respectively.

It will be 3’s goal to maintain the following condition throughout any match of the acceptance
game AW

With ¥ = (an, $n)n<k a partial match of A", one of the following holds:
() (tw) (ax,sx) € A x U and ¥ corresponds to an f-guided match of A(A, S[p|U]),
fw (t3) (ar,s1) € A+ x S for some | < k such that S[p|U], s; IF AW (a;),
and (a;, s;)i1<i<k is a g-guided A(AY,S[p|U])-match.
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In words, 3 will make sure that the match either stays in A x U and corresponds to an f-guided
match of A(A, S[p|U], or it moves to AL x S at a moment when it is safe for her to follow the strategy
g. Let us first see that 3 can keep this condition during one single round of the game.

CrLAIM 1 Let X be a partial match of A" satisfying (f;,). Then 3 has a legitimate move guaranteeing
that, after any response move by V, (ty) holds again.

PRrROOF OF CLAIM Let ¥ = (ay, Sp)n<k be as in the claim, and distinguish cases.

The easiest case is where ¥ satisfies (T%/V) here 3 can simply continue to use her winning strategy
g.

If ¥ satisfies (t7y), then obviously its final position (ay, sz ) is a winning position for 3in A(A, S[p|U]).
Note that since s, € U, for its coalgebraic unfolding we have osp,p1(sk) = os(sk), so we may simply
denote this object as o(sy) without causing confusion. Let m : og(si) — PA be the marking given by
her positional winning strategy f. By the legitimacy of this move we have that o(sg), m IF' 7 A VB
for some disjunct m A VB of O(ay).

If B = @ it immediately follows that ogr(sx) = @. It is easy to see that in this case, taking I’s
move to be the empty map m" and with B; = By = @, we find o(s;),m" - 7 A NOB; A VB3,
This means that m" is a legitimate move for her, while V has no legitimate response to it. Thus 3
immediately wins (and the condition of the claim is satisfied).

Assuming in the sequel that B # &, we arrive at the heart of the proof. Define

By
Bo

{a € A]a e m(u) for some u € og(sk) NU},
{a € A|a € m(t) for some t € or(s;) \U}.

Then clearly it follows from o (sz), m IF1 VB that B; U By = B. A crucial observation is that since S
is w-unravelled, and U is finitely branching, any u € og(s;) NU has a sibling u € og(sk) \ U such that
S,u € S,u. Note that this bisimilarity does not hold for the structure S[p[U], but for the structure
S[p — @] it does follow that

Slp — @],u < S[p — 9], u. (20)

w

We can now define the desired move for 3 as the AW -marking m" : op(sy) — PAY given by

[ m@um@)t ifteU
m" (1) = { m(t)* it U,

where m(t)+ denotes the set {a* | a € m(t)}. We claim that m" is a legitimate move for 3 at position
(ak, sk) in A(A,S[p|U]), and to prove this we need to show that

o(sp),m™V IFL W (ay). (21)
To do so, it clearly suffices to prove that
o(sg),m" IFY NOBy A VBS-. (22)

For this purpose, first consider an arbitrary state b € B;. It is immediate by the definitions of B; and
m" that b € m" (u) for some u € og(s;) N U; hence we find that o(sx), m" IF1 AC By, as required.

Now we consider the other conjunct, viz., the formula VB3-. First take an arbitrary element b € By;
it is immediate from the definitions of By and m" that b € m" (u) for some u € og(si) \ U, so that
o(sr),m" -1 Ob, as required. Conversely, take an arbitrary successor t of si. If t € U, it follows from
o(si), m IFt VB, the non-emptiness of B and the definition of By, that m(t)NB, # @. If, on the other
hand, ¢ belongs to U, then by the same reasoning, but now applied to its sibling t € U, we find that
m(t) N By # @. In both cases it is immediate by the definition of m" that m" (¢)N By # &, so that

23



o(sy),m" IF1 O\ By. Thus we obtain o(s;),m" IF' VB3, which means that we have established
both (22) and (21), showing that m" is a legitimate move indeed.

It remains to show that, playing m", 3 ensures that (fy,) continues to hold after any response
by V. So suppose that V picks a basic position (b,t) such that b € m" (). There are three cases to
distinguish. First, if b € m(t) and t € U, then by our assumption on m the continuation X - (b, t) of ¥
clearly satisfies condition (fy;,).

Second, suppose that ¢ € or(sy) \ U. Then by definition of m"', b belongs to the At-part of
AW say b = a* for some a € A. From the definition of m" it follows that a € m(t), and since m
is part of I’s winning strategy f, this means that S[p[U],t IF A(a). Now observe that since t ¢ U
and U is downward closed, the entire subtree generated by t is disjoint from U, so that we find
S[p + @],t I A{a). We may now use Proposition 4.3 and obtain S[p[U],t IF A+{at). By (18) it is
immediate from this that S[p|U],t IF A" (a*). In other words, in this case the continuation match
- (a’, t) satisfies condition (13).

Third, we consider the case where t € or(s)NU, and b, belonging to the A+-part of A" | is of the
form b = a* for some a € A such that a € m(t). Reasoning as in the previous case, but now for the
sibling t of ¢, we find that S[p — @], ¢ IF A(a). But then it follows from (20) that S[p — @], ¢ IF A{a) as
well. And, again reasoning as before, we find that in this case the match X - (a™,¢) satisfies condition
(13) as well. <

Based on Claim 1 we may provide 3 with the following strategy h. Given a partial match X, h
picks any move for 3 as given by Claim 1 in case ¥ satisfies (fy;,), while h picks a random move if ¥
does not meet mentioned condition. We will now prove that this is in fact a winning strategy.

CLAIM 2 Any h-guided full match ¥ of A" is won by 3.

PROOF OF CLAIM Let ¥ be an h-guided full match of A". Note that (ar,r) is the first position of
¥, and that by our assumption that » € U, the partial match ¥y := (ay, ) satisfies condition (T%/V) It
then easily follows from Claim 1 that, playing h, 3 will never get stuck.

To show that h is a winning strategy, we may thus focus on the case where ¥ = (an, $n)n<w 18
infinite; again by Claim 1 it follows that every initial part X; := (an, Sn)n<; of ¥ satisfies (fy;/). From
this it is obvious that we may distinguish the following two cases.

If every ¥ satisfies (11y), then ¥ itself corresponds to an f-guided full match of A(AW, S[p|U]).
Since f was assumed to be winning for 3 in A(A, S[p[U]) from position (ag, o), this means that the
A-stream (a, )new satisfies the acceptance condition of A. But then this stream satisfies the acceptance
condition of AW as well, which means that ¥ is won by 3 indeed.

Alternatively, there is a first [ € w such that ¥ satisfies (13,). It easily follows from Claim 1
that in this case, the match (an, s, )i<n<w is a g-guided full match of A(AW,S[p|U]), which starts
at a position, viz., (a;, s;), which is winning for 3. Clearly then the A-stream (a,);<ne. satisfies the
acceptance condition of A"'; from this it is immediate that the full A-stream (a,)ne. induced by
does so as well. <

Clearly, it follows from Claim 2 that h is a winning strategy for 3 in the game A" = A(AW S[p|U])Q(as, 7).
This proves the direction from left to right of (19).

In order to prove the opposite, right-to-left, direction of (19), our line of reasoning is similar (but
simpler). Assume that S,7 I A" (a;), with a; € A. We will supply 3 with a winning strategy h in
the game A(A,S)Q(ay, ). For this purpose we will make use of arbitrary but fixed positional winning
strategies f and g for 3 in the acceptance games A(A"S) and A(A,S), respectively.

I's strategy in A(A, S)@Q(ar,r) will be based on maintaining the following condition:

With ¥ = (ap, Sn)n<k a partial match of A(A,S)@(ay, ), one of the following holds:
(tw) (fy) ¥ corresponds to an f-guided match of A(AW,S),
(13) S, 51 IF Ala;) for some I < k, and (a;, 8;)1<i<k is a g-guided A(A, S)-match.
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As before, our main claim is that 3 can keep condition (i) during one single round of the game.

CLAM 3 Let X be a partial match of A(A,S)Q(ar,r) satisfying (1y,). Then 3 has a legitimate move
guaranteeing that, after any response move by V, ({y;,) holds again.

PROOF OF CLAIM Let ¥ = (G, 8, )n<k be as in the claim, and distinguish cases. If ¥ satisfies (13,
3 can simply continue to use the strategy g.

If ¥ satisfies ({1} ), then obviously its final position (ay, s;) is a winning position for 3 in A(AY,S).
Let m : og(s;) — PA"W be the marking given by her positional winning strategy f. By the legitimacy
of this move we have that o(si), m IF1 ©W (ay), which means that

o(sk),m I 7 A \NOBy A VB3, (23)

where m A V(B; U By) is some disjunct of ©(ag).
We claim that the A-marking my : or(sx) — PA, defined by

mw(t) :={a € A|acm(t)ora* €m(t)}
is the right move for 3 in the partial match 3. In order to prove the legitimacy of my, we show that:
o(sg),mw IF' 7 A V(B U By). (24)

which clearly implies that o(sy), mw IF! ©(ag). It easily follows from (23) that o(sg), mw IF! 7, and
so we may focus on the formula V(B; U Bs). First take an arbitrary successor t of sy; it follows from
(23) that m(t) contains some variable b € By . But this immediately gives that b € my(t), showing
that o(sy), mw IF! O\/(B1 U Bs). Conversely, take an arbitrary state b € By U Ba; we need to show
that o(sg), my IF! Ob. Given the definition of my, this easily follows from o(sg), m IF1 AOB; if
b € By, and from o(sy),m IF! VBs if b € By. Thus we have proved (23).

It is left to show that each response (b,t) of V to I's move my, constitutes a continuation ¥ - (b, t)
of ¥ that satisfies (fj;). Let (b,t) be an arbitrary such move, that is, an arbitrary pair such that
b € mw(t). Again we distinguish cases: if b € m(t) then by our assumption of m being provided by
F's strategy f, the partial match X (b, t) satisfies condition (i‘l,v) Alternatively, if b+ € m(t), then by
the assumption that f is a winning strategy for 3 in A(AY,S)Q(az,r), we find that S, IF AW (b1).
By (18) this obviously implies S,¢ I A+(b'), whence by Proposition 4.3 and monotonicity of A we
obtain, subsequently, S[p — @],t IF A(b) and S, ¢ I- A(b). But then the continuation match ¥ - (b, t)
satisfies condition (f3). <

We now define a strategy for 3 in the game A(A,S)Q(ar,r): Given a partial match X, h picks any
move for 3 as given by Claim 3 in case ¥ satisfies (ty;,), while h picks a random move if ¥ does not
meet mentioned condition. We claim that A is in fact a winning strategy at position (as,r), and since
one may prove this claim in the same manner as above, we leave the details for the reader. QED

Proof of Theorem 5.3. To define the required map ()" : uML(X) — MMLZV(X), fix a pML-formula
&

By Fact 3.14(2) there is an initialized disjunctive modal automaton D¢(de) that is equivalent
to &; using the constructions of Definition 4.8 and Definition 5.7, we transform D¢ into a finite-
width automaton ID)éV[ W Finally, we apply the translation map of Definition 3.18, instantiated at the

automaton ]D)éw W to its state de, and we let & be the resulting formula. Summarizing, we define

ﬁW = trDévIW (d&)
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It then follows by the Propositions 4.9, 5.8 and 5.6 that the formula ¢V belongs to the frag-

ment uMLZV , and by the Propositions 4.10 and 5.9, together with the equivalences { = D¢(d¢) and

Dé‘/IW(dg) = trpuw (de), that & has the finite width property for p iff ¢ = ¢W.

Finally, all constructions that are involved in the definition of the map (-)" : uML(X) — pML)" (X) are
effective, and can be performed in elementary time. In addition, the problem whether two formulas of
the modal p-calculus are equivalent or not can be solved in exponential time. From this it is immediate
that the problem whether a given p-formula has the finite width property, is decidable, and its time
complexity is bounded by an elementary function on the size of the formula. QED

6 Finite depth property

The property that we consider in this section can be informally classified as ‘vertical’ in the sense that
its definition involves subtrees containing no infinite paths.

Definition 6.1 A formula £ € pyML(X) has the finite depth property for p € X if £ is monotone in p,
and, for every tree model (S, s),

S, s Ik & iff S[p|U], s IF &, for some noetherian subtree U C S,
where we call U a noetherian subtree of S if it is downward closed and contains no infinite paths. <
We will associate the following syntactic fragment of the modal u-calculus with this property.
Definition 6.2 Given a set P C X, we define the fragment uMLE by the following grammar:
pu=plYleVeleAe|Op|Dp | pr.y,

where 9 is a p-free formula and ¢’ € ,uMLIDDU (a}- In case P is a singleton, say, P = {p}, we will write
MMLZJOj rather than uMLﬁ)}. <

In words, the fragment MMLPD consists of those formulas of which no p-active subformula is in the
scope of a greatest fixpoint operator v. All formulas from Example 2.24 belong to uML{? , except 5.

The following theorem states that modulo equivalence, ;LML]? is the syntactic fragment of the modal
p-calculus that captures the finite depth property, and that it is decidable whether a given u-formula
has this property.

Theorem 6.3 There is an effective translation which maps a given pML-formula € to a formula £P €
,uMLE such that

¢ has the finite depth property for p iff £ = &P, (25)

and it is decidable in elementary time whether a given formula & has the finite depth property for p.

First we prove the easy part of the theorem, stating that formulas in the fragment pMLE indeed
have the required semantic property.

Proposition 6.4 FEvery formula € € uMLE has the finite depth property with respect to p.

Proof. Let £ be a formula in uMLy (p), then £ is obviously positive, and hence, monotone in p. Fix a
tree model S with root r € S. We have to prove

S,r Ik & iff S[p|U],r I &£, for some noetherian subtree U C S. (26)
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The direction from right to left follows from the fact that £ is monotone in p. For the opposite
direction, suppose that S, r IF £&. We need to find a noetherian subtree U of S such that S[p|U],r IF &.

Let f be a positional winning strategy of 3 in the game & := £(£,S)Q(&, ). We define U C S
such that

w € U iff there is ¢ such that (¢, u) is f-reachable in & and p is active in .

As before it is easy to see that the set U is downward closed, so we omit the details. Suppose for
contradiction that U contains an infinite path P. We let A be the set of all finite f-guided &y-matches
¥ such that for all positions (¢, u) occurring in ¥, u belongs to P and p is active in ¢. Recall that C
denotes the initial-segment relation on paths (including matches).

Clearly, the structure (A, C) is a tree. Moreover, it is finitely branching as P is a single path, and
all the formulas occurring in matches in A belong to the finite set Sfor(£). Next we show that the set
A is infinite. It suffices to define an injective map h from P to A. Fix ¢t in P. In particular, ¢ belongs
to U and by definition of U, there is a formula ¢ such that (¢, t) is f-reachable in & and p is active
in . We let h(t) be a finite f-guided £y-match with last position (p,t). It is easy to check that any
such map h is an injection from P to A.

By Konig’s lemma, since (A, C) is infinite and finitely branching, it must contain an infinite path.
This infinite path corresponds to an infinite f-guided £y-match ¥ such that for all positions (i, t)
occurring in X, ¢ belongs to P and p is active in ¢. Since £ belongs to the fragment ,uMLI’,D , this can
only happen if all the variables unfolded in ¥ are p-variables. This implies that X is lost by 3 and
thus contradicts the fact that f is a winning strategy for 3 in &. As a consequence, U contains no
infinite path.

It remains to show that S[p[U],r I- &. Here we omit the details since the proof is similar to that
of the corresponding statement in the proof of Proposition 5.4. QED

For the hard part of the theorem, we involve so-called finite-depth automata.

Definition 6.5 A bipartite modal automaton A = (4, B,©,2) belongs to the class Autf of finite-
depth automata if the one-step language associated with B is the language 1ML(X \ {p}, B), and the
one-step language associated with A is given by the following grammar:

az=plag|Bflarna|T|aVal|l (27)

where ap € IML(X\ {p}, A) and B € 1ML(X \ {p}, B). Most importantly, we require that Q(a) is odd,
for every a € A. <

In words, an initialized bipartite modal automaton A{a;), with A = (A, B,0,Q), belongs to the
class IAut,’,j if (1) p occurs only positively in O(a), for a € A, (2) p does not occur in any O(b), b € B,
(3) ©(a) is a (negation-free) propositional formulas obtained p and p-free one-step formulas over A
and B, respectively, (4) all states in A have an odd priority. Note that it follows from (4) that in order
to win a match of the satisfiability game, unless V gets stuck, 3 has to make sure that the automaton
leaves its initial part at some moment.

Proposition 6.6 Let A = (Ag, A1,0,Q) be a bipartite modal automaton in Autf. Then there is a
translation try : A — pML such that tra(a) € ,uMLI’,D for every state a € Ag.

Proof. It suffices to check that the fragment uMLP := {uMLE | P C,, PROP} and the automaton A

satisfy the conditions (i) — (iii) of Proposition 3.22, with P = {p}. In all cases, the proof is routine.
Note that we only need to show that uMLP satisfies the condition (AC,,), not (AC,). QED
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It follows from Proposition 6.6 and Proposition 6.4 that any initialized automaton in IAutf has
the finite depth property for p.

The main technical result of this section will be based on the following transformation of automata.
Recall that A’ is the automaton given in Definition 4.2.

Definition 6.7 Let A = (4,0,9Q) be a modal automaton which is positive in p. We define the
automaton AP as the structure (AP, 07 QF) where AP := Aw AL, and the maps ©F and QF are
given by putting

0P(a) = O(a)VvO(a)bt/b|be A] q OPa) = 1
OP(at) = ©t(a) an QP(at) = Qa),
for an arbitrary state a € A. <

To obtain the automaton AP from A we put a modified copy of A ‘in front of’ of a copy of AL.
The modifications consist of changing the priority map  on A by assigning each state a € A priority
1, and of allowing the same transitions from A to the final part A+ of AP as to the initial part A
itself. As before, this makes the final part of the structure AP isomorphic to the automaton A’, so
that again we have

AP(at) = At(at) (28)

for every state a € A. Finally, observe that we define the transformation (-) for arbitrary (that is,
not necessarily disjunctive) modal automata.
The following proposition is easy to verify.

Proposition 6.8 Let A{a) be an initialized modal automaton which is positive in p. Then its trans-
formation AP (a) belongs to the class IAutf.

We are now ready for the main technical lemma of this section.

Proposition 6.9 Let A{a) be an initialized modal automaton which is positive in p. If Alar) has the
finite depth property with respect to p, then Alar) = AP (az).

Proof. Let A = (A, 0,0) be a modal automaton, and assume that A(as) has the finite depth property
for some state a; € A. In order to prove the equivalence of A(a;) and AP {(ay), it suffices to take an
arbitrary Kripke tree (S,r) and prove that

S,r I Adag) iff S, IF AP (ar). (29)

We first consider the direction from left to right of (29). Assume that S,r I- A{as), then it
follows from the finite depth property of A{a) that there is a noetherian subtree U C S such that
S[pU], r Ik A{as). We may assume that r € U, and that U is balanced in the sense that for any v € U,
either og(u)NU = @ or or(u) C U. (This is without loss of generality: should U itself not meet these
conditions, then we may proceed with the set U’ := U U {r} U U{or(u) | v € U,or(u)NU # 2}.)
By monotonicity of AP it suffices to show that S[p[U],r I- AP (a;); that is, we need to supply 3 with
a winning strategy h in the game AP := A(AP S[pIU])@Q(az,r). In order to define this strategy, we
will make use of two auxiliary strategies: let f and g be positional winning strategies for 3 in the
acceptance games A(A,S[p|U]) and A(AP S[pU]), respectively.

J's strategy in AP will be based on maintaining the following condition:

With ¥ = (an, $n)n<k a partial match of AP, one of the following holds:
() (tp) (ar,sk) € A x U and ¥ corresponds to an f-guided match of A(A, S[p|U]),
fp (7)) (a1, s1) € A+ x S for some | < k such that S[p|U], s; IF AP (a;),
and (a;, s;)i1<i<k is a g-guided A(AP,S[p|U])-match.
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In words, 3 will make sure that the match either stays in A x U while she can play f, or it moves
to A+ x S at a moment when it is safe for her to follow the strategy g.
Let us first see that 3 can maintain this condition during one single round of the game.

CrLAIM 1 Let ¥ be a partial match of AP satisfying (). Then 3 has a legitimate move guaranteeing
that, after any response move by V, () holds again.

PRrROOF OF CLAIM Let ¥ = (ay, Sn)n<k be as in the claim, and distinguish cases. Leaving the easy case,
where X satisfies (13,), for the reader, we assume that X satisfies (1}). Then obviously its final position
(ak, sk) is a winning position for 3 in A(A, S[p[U]). Since sy € U we have ogj,1)(sx) = 0s(sx), so we
may denote this object as o(sy) without causing confusion. Let m : or(sx) — PA be the marking
given by her positional winning strategy f at position (ag, sg)-

By the legitimacy of this move we have that o(sy), m IF! ©(ax). In order to define I's move m
in A(AP,S[p|U]), we distinguish cases.

If or(sx) C U we simply put m” := m, and we leave it for the reader to verify that this move of
3 satisfies the requirements formulated in the claim.

Alternatively, by our assumption on U we have that og(s;) N U = &; in this case we put

D

mP (t) := m(t)*,

for each t € og(u). It then easily follows from o(sy),m IF' ©(a) that o(s),m” IF! ©+(a), and so
o(s),mP IF ©P(a) by definition of ©F. In other words, m? is a legitimate move.

To see that by picking this move 3 maintains the condition (}p), consider an arbitrary response
(bt,t) of V such that bt € mP(t). By definition of mP” it follows that b € m(t), and so by the
assumption that m is part of s winning strategy f, we obtain S[p[U],t IF A(b). But now we may
reason as before (cf. Claim 1 in the proof of Proposition 5.9): Since ¢t ¢ U and U is downward closed,
the entire subtree generated by ¢ is disjoint from U, so that we find S[p — @], ¢ |- A(b). We may
now use Proposition 4.3 and (28) to obtain S[p|U],t I- AP(b*). In other words, in this case the
continuation match ¥ - (b, t) satisfies condition (13,). <

Based on Claim 1 we may provide 3 with a winning strategy h in AP, exactly as in the proof of
Proposition 5.9. This proves the direction from left to right of (29).

We now turn to the right-to-left direction of (29), for which we assume that S,r I+ AP {(ar), with
ar € A. In order to supply 3 with a winning strategy h in the game A(A,S)Q(ay, ), we will make use
of arbitrary but fixed positional winning strategies f and g for 3 in the acceptance games A(AP”,S)
and A(A,S), respectively.

F's strategy in A(A, S)@Q(as,r) will be based on maintaining the following condition:

With £ = (an, Sn)n<k a partial match of A(A,S)Q(ay, ), one of the following holds:
(tp) (ip) X corresponds to an f-guided match of A(AP,S),
(15) S, s IF A{ay) for some | < k, and (a;, 8;)i1<i<k is a g-guided A(A, S)-match.

Once more our main claim is that 3 can maintain condition ({) during one single round of the
game.

CLAIM 2 Let ¥ be a partial match of A(A,S)Q@(ay,r) satisfying (fp). Then 3 has a legitimate move
guaranteeing that, after any response move by V, ({p) holds again.

PROOF OF CLAIM Let ¥ = (a,,, Sn)n<k be as in the claim, and distinguish cases. If ¥ satisfies (13,),
3 can simply continue to use the strategy g.

If ¥ satisfies (1), then obviously its final position (az,sk) € A x S is a winning position for 3
in A(AP,S). Let m : or(si) — PAP be the marking given by her positional winning strategy f,
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then we have o(sg), m IF1 ©P(ay) by legitimacy of m. Now distinguish cases, as to which disjunct of
0P (ax) = O(ax) vV O(ag)[b/b | b € A] holds at the one-step model (o (sg), m).

In case o(sg),m IF! O(ax), we may assume without loss of generality that m(t) € P(A), for all
t € or(ar). We now simply define I’s move mp in A(A,S)Q@Q(ay, r) by setting mp := m. In this case
it is straightforward to verify that mp is legitimate and that for any response move (b,t) of V, the
resulting partial match 3 - (b, t) satisfies condition (1},).

In case o(sy),m IF1 O(ax)[bt/b | b € A], we may assume without loss of generality that m(t) €
P(A1), for all t € ogr(ay). We define 3’'s move mp by putting

mp(t) == {be A| bt € m(t)},

for each t € og(sk). It is straightforward to verify that o(sx), mp IF! ©(ay), which shows that mp is
a legitimate move for 3 in A(A,S) at position (ag, si).

Now consider an arbitrary (legitimate) response (b, t) of V; we claim that the resulting continuation
Y- (b,t) of ¥ satisfies (15). To see this, observe that by definition of mp it follows from b € mp(t)
that b+ € m(t), which means that (b*,t) is a legitimate move for V¥ in A(AP,S) at position m. But
since m is part of 3’s winning strategy f, this means that S, ¢ I- AP (b*). It then follows from (28) that
S,t IF A+(bt). Hence by Proposition 4.3 we obtain that S[p + @], ¢ IF A(b), and then by monotonicity
of A that S,t I A(b). This means that ¥ - (b, t) satisfies (17,) indeed. <

Based on this claim, we define the usual strategy h for 3 in A(S,S). To see why this strategy is
winning for her, we consider an arbitrary h-guided match ¥ of A(S,S)@(ay,r), and focus on the case
where ¥ = (a,, 5, )new is infinite. Observe that because Q7 assigns an odd priority to states in the
initial part A of AP, it cannot be the case that ¥ corresponds to a full f-guided AP (AP S)-match.
Hence, there must be a stage k € w when the match moves out of the initial part of A”, which means
that S, si IF A{a) and (an, Sn)k<n<w is & g-guided match of A(A,S). From this it is straightforward
to derive that X is won by 4. QED

Proof of Theorem 6.3. To define the required map (-)” : pML(X) — pMLD (X), fix a pML-formula €.
We define

€0 = truyn (ac),
where Ag(a¢) is an initialized modal automaton that is equivalent to £, and trym s the translation

associated with the automaton Aé‘w . We leave it for the reader to verify that this map satisfies the
requirements stated by the theorem — the proof follows the same lines as that of Theorem 5.3. QED
7 The single branch property

As a variation of the finite-width property, we consider the single-branch property.

Definition 7.1 A formula £ € uML(X) has the single branch property for p € X if £ is monotone in p,
and, for every tree model (S, ),

S,r I € iff S[p|U],r IF &, for some branch U C S,

where a subset U C S'is a branch if U = {s,, | n < £} for some (finite or infinite) path (s, )n<x starting
at sop =r. <

The syntactic fragment corresponding to this property is the following.
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Definition 7.2 Given a set @ C X such that p € @, we define the fragment ,uMLIIi o by the following
grammar:

pu=plalyleVvelpre|dbie | Op| ey |ve.y,
where ¢ € Q, ¥ € pML(X \ Q) is a Q-free formula and ¢’ € uMLﬁQU{x}. In case @ is the singleton {p},
we will write ,uMLf rather than MML{BZ)}} v} <

Formulas £ in this fragment share with those in MMLZV the property that no p-active subformula of
& may be in the scope of a box modality. The difference with uMLZV lies in the role of conjunctions:
if oo A 1 is a subformula of £ € ,uMLf, then p cannot be active in both conjuncts ;, unless one of
these conjuncts is actually identical to p. All formulas from Example 2.24, except ¢4 and @g, belong
to pMLY.

A further difference with the earlier (and later) languages is that ,uMLf is defined using fragments
of the form ,uMLﬁQ, where the propositional variables in ¢ have a slightly different role than p.
This difference can be best explained by means of an example: where the formula vz.O(x A Op)
does not belong to the fragment ,uMLZV (and does not have the single-branch property), the formula
ve.O(p Aox) € ,U,ML;ZV does have the property.

Our characterization theorem for the single-branch property reads as follows.

Theorem 7.3 There is an effective translation which maps a given pML-formula € to a formula €8 €
uMLf such that

€ has the single branch property for p iff € = &5, (30)

and it is decidable in elementary time whether a given formula & has the single branch property for p.
As before we start with the easy part of the proof.

Proposition 7.4 FEvery formula £ € uMLf has the single branch property with respect to p.

Proof. Let £ be a formula in ,uMLf, then clearly £ is monotone in p. Fix a tree model S with root 7.
We have to show
S,r - & iff S[plU],r I+ &, for some branch U C S. (31)

The direction from right to left follows from the monotonicity of £ in p. For the direction from left to
right, suppose that S, 7 I- £. We need to find a branch U such that S[p[U],r IF €.
Since ¢ is true at 7 in S, 3 has a positional winning strategy f in the game & = £(§,S)Q(¢, s).

CLAM 1 For every k < w there is at most one f-guided match ¥ = (¢, 5 )n<k of length k, such that
p is active in every ¢, but @i # p.

ProOF OF CLAIM We prove the claim by induction on k. Call a match X = (¢, Sn)n<k p-active if p
is active in every ¢,, n < k.

For the base case there is nothing to prove since there is only one match of length 0 altogether,
viz., the match consisting of the starting position (&, 7).

For the inductive case, it suffices to show that if ¥ = (¢, S5 )n<k is a p-active match, then it has
at most one p-active continuation X - (¢k+1, Sg+1). To show this, we distinguish cases as to the shape
of ¢y,.

If oy is a proposition letter, then ¥ is a full match, and thus has no continuation at all. (Observe
that by assumption we must have ¢ = p, but this is not relevant for the argument.) If ¢, = x for
some bound variable z, then (pr41, Sg+1) = (9z, sk), and p is active in §;. If ¢y, is either a disjunction
or a formula of the form ©¢’, then, since we fixed I’s strategy, there is exactly one continuation
Y - (@k+1,Sk+1), and therefore at most one p-active such continuation. Finally, if ¢ = ¢’ A ¢ is a
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conjunction, then by the constraints of well-formed formulas of ,uMLf, at most one of the conjuncts

can be active in p, unless ¢’ or ¢” is identical to p. From this it is immediate that ¥ has at most one
p-active continuation ¥ - (@g41, Sk+1) where pri1 # .
This finishes the proof of the claim. <

We define U C S such that
u € U iff there is a ¢ such that (¢, u) is f-reachable in & and p is active in .

It easily follows from the claim that U is a branch of S. It is now a routine exercise to verify that
(&,7) is a winning position for 3 in £(&, S[p[U]) — she may in fact use the very same strategy f. QED

For the hard part of the proof we involve the following class of automata.

Definition 7.5 A bipartite modal automaton A = (A, B, 0, 2) belongs to the class Autf of single-
branch automata if the one-step language associated with B is the language 1ML(X \ {p}, B), and the
one-step language associated with A is given by the following grammar:

ax=p|Calflanf|T|avVal|l (32)
where a € A and § € 1ML(X \ {p}, B). <

In words, the two key conditions on a bipartite automaton A = (A, B, 0,Q) are that (i) the initial
part A of A can only be accessed from itself through a formula of the form <a (with a € A), and that
(ii), as before, the propositional variable p may ony occur positively in the initial part, and not at all
in the final part of A.

Proposition 7.6 Let A = (Ao, A1,0,Q) be a bipartite modal automaton in Autf, Then there is a
translation try : A — pML such that try(a) € pMLY for every state a € Ag.

Proof. We prove this proposition using a (minor) variation of Proposition 3.22, where we define
the fragment F(Q) := uMLﬁQ only for subsets ¢ C PROP such that p € Q. (It is easy to check
that this modification does not have an effect on the proof of the proposition.) The verification that
(i) pMLB = {,uMLK/Q | p € Q C PROP} satisfies the properties (EP), (SP1), (SP2) and (AC,) for
n € {u,v}, can be established by routine proofs. We may prove that (ii) for all a € A, the formula
©(a) belongs to the set uML?p 1A by a straightforward formula induction on the formulas generated by
the grammar (32). And, finally, as in the earlier cases it is easy to show the existence of a translation
tr: B — pML(X\ {p}); from this it is immediate that (iii) tr(b) € ;LML‘{’IV)}7 for all b € B. QED

Note that it follows from Proposition 7.6 and Proposition 7.4 that initialized automata in IAutf
have the single branch property.

We now turn to the key definition of this section, viz., the transformation (-)® of a disjunctive
automaton into an Autf -structure. This construction is very similar to the one we used in the section
on the finite-width property; the difference lies in the one-step translation, where now, in order to
translate a disjunct m A VB, we do not consider all ways to write B as a union B = B; U By, but only
the ones where B is either empty or a singleton.

Definition 7.7 Let (-)” : 1DML(X, A) — 1ML(X, A & A1) be the one-step translation given by the
following inductive definition:

(rAVB)P = (xAVBY)V\/{rAObAVBY | {b}UB, =B}
1B = 1
(avp)B = ofvpB.
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Let A = (A,0,Q) be a disjunctive modal automaton which is positive in p. We define the automa-
ton AP as the bipartite structure (A%, ©F QF) where AP := AW AL, and the maps ©F and QF are
given by putting

08(a) = 0O(a)? q 0B (a) = Qa)
0B(at) = ©1(a) an QBat) = Qa),
for an arbitrary state a € A. <

We leave it for the reader to verify the following proposition.

Proposition 7.8 Let A{a) be an initialized disjunctive modal automaton which is positive in p. Then
its transformation AP (a) belongs to the class IAuth.

We are now ready for the main technical lemma of this section.

Proposition 7.9 Let A{a) be an initialized disjunctive modal autornaton which is positive in p. If
Alay) has the single-branch property, then Ala;) = AB(az).

Proof. Let A = (A,0,Q) be a disjunctive modal automaton, and assume that A{ay) has the single
branch property, where a; € A. In order to prove the equivalence of A(a;) and AP (a;), it suffices to
take an arbitrary w-unravelled Kripke tree (S, r) and prove that

S, 7 I Alay) iff S,r - AB(ag). (33)

Our proof of (33) is very similar to that of the corresponding statement (19) in the proof of
Proposition 5.9. For this reason we will focus on the details where the two proofs differ.

We first consider the direction from left to right of (33). Assume that S, I- A{ar), then it follows
from the single branch property of A{a) that there is a path (up),<, starting at r and such that,
with U := {u, | n < s}, we have S[p|U],r IF A{ar). Without loss of generality we may assume that
(Un)n<r is of mazimal length, that is, either kK = w, or kK < w and op(uy—1) = &; it follows that in
particular, » € U. By monotonicity of AP it suffices to show that S[p[U],r IF AP {ar); that is, we need
to supply 3 with a winning strategy h in the game AZ := A(AZ S[p|U])Q(as,r). In order to define
this strategy, we will make use of two auxiliary strategies: let f and g be positional winning strategies
for 3 in the acceptance games A(A, S[p|U]) and A(AB S[p[U]) itself, respectively. By Fact 3.12 and
the disjunctivity of A we may assume without loss of generality that at any position (a,s) that is
winning for 3 in A(A, S[p[U]), the marking picked by f assigns a singleton to each t € og(s).

The condition that 3 will maintain when playing A” is the following.

With ¥ = (an, $n)n<k a partial match of AP, one of the following holds:
(tp) (T;B) (ak, sx) € ALX U and ¥ is an f-guided match of A(A,S[pB[U]),
(t3) (ar,81) € A+~ x S for some [ < k such that S[p[U], s; IF A (a;),
and (a;, s;)1<i<k is a g-guided A(AP S[p|U])-match.
Observe that this corresponds seamlessly to the condition (}g) featuring in the finite-width case.

CrLAIM 1 Let ¥ be a partial match of AP satisfying (5). Then 3 has a legitimate move guaranteeing
that, after any response move by V, (f5) holds again.

PRrROOF OF CLAIM Let ¥ = (ay, Sp)n<k be as in the claim. Leaving the easy case, where X satisfies
(1%), as a exercise for the reader, we focus on the case where (1}) holds. Here the final position (ay, s)
of ¥ is a winning position for 3 in A(A, S[p[U]), and with m : og(si) — PA being the marking given
by 3’s positional winning strategy f, we have o(sy), m IF* 7 A VB for some disjunct 7 A VB of O(az).
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If s;, is the last point of the branch U, we define m® : op(sy) — PA® by putting m?(t) := m(t)*,
and we leave it for the reader to verify that m?, as a move for 3in A(AZ, S[p|U], satisfies the conditions
of the claim.

Alternatively, let u € og(sp) N U be the (unique) successor of s, on the branch U. By our
assumption on m, there is a unique state b € A such that m(u) = {b}. As in the finite-width case, u
has a sibling u € ogr(si) \ U such that S,u < S,u, and hence, S[p — @], u € S[p — &],u. Now define
mP : og(sk) — PAP by putting

[ m@um@)t ift=u
m® (1) = { m(t)*+ if t # u.

In order to show that m? is a legitimate move for 3 in A(AP S[p|U]) at position (ay, si), we define
By := U, m(t). Then clearly B = {b} U B> and so it suffices to prove that

o(sg),m? IF Ob A VBy. (34)

The proof of (34) proceeds exactly as that of (22) in the finite-width case. We omit the details, as
we do for the proof that, for any response move (¢,¢) by V to 3’s move m?, the resulting continuation
¥ - (t, c) satisfies condition (fg). <

Based on this claim it is straightforward to define a winning strategy h for 3 in AZ. This proves
the direction from left to right of (33).

In order to prove the opposite, right-to-left, direction of (33), our line of reasoning is the same as
in the finite-width case. Again we leave the details for the reader. QED

Proof of Theorem 7.3. Given a formula £ € yML(X), we define

fB = trDéuB (df)
It is not difficult to verify that this map (-)” : uML(X) — ML (X) satisfies the requirements stated by
the theorem — the proof follows exactly the same lines as that of Theorem 5.3. QED
8 Continuity

In this section we prove one of our main results, namely, we give a syntactic characterization of the
continuous fragment of the modal u-calculus. We recall the definition of continuity.

Definition 8.1 A p-formula £ € yML(X) is continuous in p € X if
S, sl & iff S[plU], s IF &, for some finite subset U C S
for every pointed model (S, s). <

We leave it for the reader to verify that continuity implies monotonicity: Any formula that is
continuous in p is also monotone in p.

The property of continuity is of interest for at least two reasons: its link to the well-known topo-
logical notion of Scott continuity [27] (which also explains the name ‘continuity’), and its connection
with the notion of constructivity.
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Scott topology Recall that a complete lattice P is a partially ordered set (P, <) in which each subset
has a greatest lower bound (called the meet) and a least upper bound (called the join). If U is a subset
of the lattice, we denote by A U the meet of U and by \/ U the join of U. For example, for all sets S,
the power set P(S), ordered by set inclusion, is a complete lattice.

Given a complete lattice (P, <), a subset D C P is directed if for every pair dy,ds € D there is a
d € D such that d; < d and ds < d. A subset U C P is called Scott open if it upward closed (that is,
if u e U and u < v then v € U), and satisfies, for any directed D C P, the property that U N D # &
whenever \/ D € U. It is not hard to prove that the Scott open sets indeed provide a topology, the
so-called Scott topology. For the associated topological notion of continuity, let (P, <) and (P’, <’) be
two complete lattices. A map f : P — P’ is Scott continuous if for all Scott opens U’ C P’, the set
f7L[U’] is Scott open. It is a standard result that a map f : P — P’ is Scott continuous iff f preserves
directed joins (that is, if D C P is directed, then f(\/ D) = \/' f[D]).

To connect this to our notion of continuity, recall from the introduction that, given a formula &, a
proposition letter p and a model S = (S, R, V'), the map §§ : P(S) — P(S) is defined by

&EU)={seS|SpUl,slk&} (35)

Now the link is given by the following Proposition. The (routine) proof of this Proposition is left as
an exercise for the reader.

Proposition 8.2 A p-formula £ is continuous in p iff for all models S = (S, R,V'), the map fIS) :
P(S) — P(S) is Scott continuous.

Constructivity Basically, a formula is constructive if the ordinal approximation of its least fixpoint
is always reached in at most w steps.

Given a formula £ and a model S = (S, R, V'), we define, by induction on i < w, a map {; :P(S) —
P(S). We let & be the identity map, and for i < w define &*! := & o &}, where & is as in (35). A
monotone formula £ is bounded in p if for some natural number n, the least fixpoint of £ is always
reached in n steps (that is, (@) = (@) for all models S), and constructive in p if the least
fixpoint is always reached in w many steps (that is, for all models S = (S, R, V'), the least fixpoint of
the map &, is equal to J{¢, (@) | i < w}.

n [40], Otto proved that it is decidable in exponential time whether a basic modal formula is
bounded (and whether a given formula of the modal p-calculus is equivalent to a basic modal formula).
But to the best of our knowledge, decidability of constructivity (that is, the problem whether a given
p-formula is constructive in p) is an open problem. In passing we mention that Czarnecki [16] found,
for each ordinal 8 < w?, a formula &g for which 3 is the least ordinal such that the least fixpoint of &5
is always reached in 3 steps.

The connection between the notions of continuity and constructivity is an intriguing one. It is
a routine exercise to prove that continuity implies constructivity: if £ is continuous in p, then it is
also constructive in p. The opposite inclusion does not hold, as the examples & (p) = Op A OOL
and &(p) = va.p A Oz testify. However, in the previous examples, we have pp.§&; = pp.00L and
up.&o = pp.L. That is, in each case there is a continuous formula ; that is equivalent to & ‘modulo
an application of the least fixpoint operation’. This suggests the following question concerning the link
between continuity and constructivity. Can we find, for any formula ¢ € uML which is constructive in
p, a continuous formula v such that up.£ = up.yb? We leave this as an open problem, as we do with
the broader question whether there is a ‘nice’ syntactic fragment of the modal p-calculus that captures
constructivity in the sense that a formula £ is constructive in p iff it is equivalent to a formula & which
belongs to the given fragment (and which would preferably be effectively obtainable from &).

We now turn to the main result of this section, namely, our characterization result for continuity.
Our approach here is based on the observation that continuity can be seen as the combination of
monotonicity, the finite depth property and the finite width property.
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Proposition 8.3 A u-formula £ is continuous in p iff it is monotone in p and has both the finite
depth and the finite width property with respect to p.

Proof. It is fairly easy to see that if a p-calculus formula ¢ is continuous in p, then it has both the
finite depth and the finite width property for p. For some detail, let (S,r) be a tree model such that
S,r Ik &. Assuming that & is continuous in p, we can find a finite set U C S such that S[p|U] IF . Now
consider the set TU := {s € S| U C R*[s|}. Since U is finite, the set 1U is a subtree of S that is both
noetherian and finitely branching; and since U C 1U, it follows by monotonicity that S[p[(1U)] IF &.
This suffices to show that ¢ has both the finite depth property and the finite width property for p.

For the opposite implication, assume that £ € uML has all three properties mentioned. Fix a Kripke
structure S = (S, R, V') and a point s € S. We have to show

S, s - & iff S[plU], s Ik &, for some finite subset U C S.

The direction from right to left follows from the fact that £ is monotone in p. For the opposite direction,
suppose that S, s |- £. Let T, with root 7, be a tree unravelling of (S, s), with f : T — S denoting the
canonical bounded morphism.

Since ¢ has the finite width property with respect to p, there is a downward closed subset Uy C T
which is finitely branching and such that T[p[U;],r IF . But £ also has the finite depth property with
respect to p. Hence there is a subset Us of T such that U, is downward closed, does not contain any
infinite path and satisfies T[p[U; N Us], r IF €. By Konig’s Lemma, the set U := Uy N Us is finite.

We claim that

S[plf[U]) I €.

To see this, define U’ := f~![f[U]], then clearly U C U’. By monotonicity it follows from T[p[U], IF &
that T[plU’],r Ik & It is straightforward to verify that T[p[U’],r € S[p|f[U]], s, and so we find that
Siplf[U]], s IF € by invariance under bisimilarity (Fact 2.20). This suffices, since clearly f[U] is finite.
QED

The syntactic fragment corresponding to continuity can be defined as follows.

Definition 8.4 Given a set P C X, we define the fragment uMLg by the following grammar:

pu=plY|eVelohe|Op| ur.y,

where ¢ € uML(X \ P) is a P-free formula and ¢’ € ,uMLgu{x}. In case P is a singleton, say, P = {p},
we will write ,uMLg rather than MML{CP}. <

Observe that this fragment is the intersection of the fragments MMLZV and MML;? (defined in, re-
spectively, Definition 5.2 and 6.2). That is, ,uMLg consists of those formulas £ € ,uML]]DV[ such that no
p-active subformula i of £ occurs in the scope of either a box modality or a greatest fixpoint operator.
For instance, all formulas from Example 2.24 belong to ,uMLg , except @4 and 5.

From these observations, the earlier results on puML)!, yML)" and pMLY, and Proposition 8.3 the
following is immediate.

Proposition 8.5 FEvery formula £ € ,uMLg s continuous in p.

Our characterization then is as follows. As mentioned in the introduction, an earlier presentation
of this result was given by the first author in [24]. Note that van Benthem [3] gave a characterization
of the first-order formulas that are continuous (or ‘finitely distributive’; in his terminology) in a given
predicate letter P.
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Theorem 8.6 There is an effective translation which, given a pML-formula &, computes a formula
€€ € ML (p) such that
¢ is continuous in p iff € = ¢, (36)

and it is decidable in elementary time whether a given formula £ is continuous in p.
The automata characterizing continuity are defined as follows.

Definition 8.7 A bipartite modal automaton A = (Ag, A1,©,Q) belongs to the class Autg of p-
continuous automata if, relative to this partition, A is both a finite-width and a finite-depth automaton,
with respect to p. <

Proposition 8.8 Let A = (Ag, A1,0,Q) be a bipartite modal automaton in Autg. Then there is a
translation try : A — uML such that tra(a) € ,uMLg for every state a € Ag.

The proof of Proposition 8.8 is straightforward, on the basis of the corresponding proofs for the
finite-depth and the finite-width automata.
We are now ready for the main technical lemma of this section.

Proposition 8.9 Let A(ar) be an initialized disjunctive modal automaton which is positive in p. If
Alaz) is continuous in p, then Alas) = AP {a;).

Proof. Let A(as) be as in the formulation of the proposition, then A(as) obviously is monotone in p.
The proposition then follows from the following chain of equivalences and implications:

A{ar) is continuous in p
A<a1> as both the finite width and the finite depth property for p ~ (Proposition 8.3)
Alar) = AW (a;) and A(as) has the finite depth property for p (Proposition 5.9)
Alar) = A" (a;) and A" (a;) has the finite depth property for p (obvious)
Alar) = AW (a7) and AW (a) = AP (a)) (Proposition 6.9)
Alar) = AP (ag) (obvious)
QED

Proof of Theorem 8.6. Given a formula { € uML(X), define

c
&Y = trDQ/[WD (dg).
It is then straightforward to show that & = £ iff £ is continuous in p, and this characterization can
also be used to prove the decidability of continuity. (Alternatively and more efficiently, we can use

Proposition 8.3, together with the decidability of each of the three properties mentioned there that
are, jointly taken, equivalent to continuity.) QED

9 Full and complete additivity

The last two properties of formulas that we look at both concern the way in which the semantics of
the formula depends on the proposition letter p being true at some single point.
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Definition 9.1 A formula £ € pML is fully additive in p if we have
S,s Ik £ iff S[plu], s I &, for some u € V (p),

completely additive in p if
S, s - & iff S[plu], s I+ &, for some u € S,

and normal if S[p — @], s Iff &, for every pointed model (S, s). Here and in the sequel we write S[p[u]
instead of S[p[{u}]. <

The properties defined in Definition 9.1 go back to Jénsson & Tarski [33, 34], as do the terms
‘completely additive’ and ‘normal’; we have introduced the term ‘fully additive’ here. It is easy to see
(especially using the definitions in terms of the semantic map (pi that we gave in the introduction),
that full additivity is equivalent to the combination of normality and complete additivity.

In the context of modal logic, the property of full additivity is of interest for at least two reasons:
its role in the duality theory of modal logic [44], and its link with the notion of safety for bisimulations.

Discrete duality In the algebraic approach to modal logic, two dualities feature prominently: a
topological duality linking modal algebras to certain topological Kripke frames consisting of a relational
structure which is expanded with a nicely fitting Stone topology, and a discrete duality connecting
ordinary Kripke frames to so-called perfect modal algebras. The latter structures consist of a complete
and atomic Boolean algebra, which is expanded with an additional operation that is fully additive
(that is, preserves all joins of the algebra). This discrete duality, formulated by Thomasson [43], is
based on a 1-1 correspondence, going back to Jénsson & Tarski [33, 34], between the fully additive
maps on the power set of S and the binary relations on S. Here, the relation associated with a fully
additive map f on PS is given as

Qr=A{(s,8) | se f({s'H}, (37)
while conversely, every binary relation R on S gives rise to the fully additive map (R) defined by
(RY(U) :={se S|R[s|]NU # @}. (38)

In other words, the discrete duality concerns the semantics of the modal diamond.

Safety for bisimulation A second and more specific reason for studying full additivity concerns
its key role in the characterization of formulas that are safe for bisimulation. To define this notion,
consider a formula «a(z,y) in some appropriate language for describing Kripke models. This formula
induces, on every Kripke model S, a binary relation RS := {(s,t) | S |= a(s,t)}. Given two models S
and S, we call a relation Z C S x S’ an a-bisimulation if it is a bisimulation for the relations Ri and
RS (in the sense of Definition 2.10, with RS and RS replacing the relations R and R’, respectively),
and we say that « is safe for bisimulation if every ordinary bisimulation is also an a-bisimulation.
This notion was introduced by van Benthem [4], who also gave a characterization of the safe fragment
of first-order logic, that is, the set of first-order formulas a(z,y) that are safe for bisimulation.

The link with the notion of full additivity is provided by the discrete duality just described: the
idea is that we can encode the transformations (37) and (38) in the syntax of the ambient logic, which
in our context is monadic second-order logic (MS0). More specifically, we already saw how a formula
a(z,y) induces a binary relation RS on every Kripke model. Now consider a formula 3(x;p), where
x is an individual variable and p is a monadic predicate, which, in the style of modal correspondence
theory, we will also think of as a proposition letter. Such an MSO-formula § induces a map fg on any

Kripke model S, given by fE(U) ={se€S|Sp— U] B(s;p)}.
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Now, given an MSO-formula «(x,y), define the formula

o™ (z;p) = Jy(a(z,y) Ap(y)), (39)

where p is a fresh monadic predicate, and conversely, given an MSO-formula [S(z;p) which is fully
additive in p, define the formula

B, y) := B(x)[Az.2=y/p(2)], (40)

where y is a fresh individual variable, and [Az.z=y/p(z)] is the substitution replacing all atomic
formulas of the form p(z) by z = y. It is not hard to show that o*(x;p) is always fully additive in p,
and we leave it for the reader to verify that (39) and (40) encode, respectively, (38) and (37), in the
sense that

(RZ) = fa- and Qg5 = Rj .

(03

As a manifestation of the discrete duality, we find that « = (a*(z;p))«(y) and 8 = (B«(x, y))* (z;p).
The key observation, which can be proved by a routine argument, is now that

a(z,y) is safe for bisimulation iff o*(xz;p) is bisimulation invariant. (41)

At this point we invoke the Janin-Walukiewicz Theorem [32], which states that an MSO-formula (z) is
bisimulation invariant iff is equivalent to (the standard translation of) a yML-formula v, which may
be effectively obtained from . Combining this with (41), we obtain that

afx,y) is safe for bisimulation iff o*(2;p) = (a*(z;p))°. (42)

In particular, an MSO-formula «(z,y) is safe for bisimulation iff the MSO-formula a*(x; p) is equivalent
to a pML-formula that is fully additive in p.

Thus, a syntactic characterization of the fully additive modal p-formulas also yields a syntactic
characterization of the safe fragment of monadic second-order logic: Suppose that F,, C pML charac-
terizes (modulo equivalence) the fragment of the modal u-calculus that characterizes full additivity in
p, then the set {(ST,(¢))«(z,y) | ¢ € F,} characterizes (modulo equivalence) the bisimulation-safe
fragment of MSO; here ST, : uML — MSO denotes some standard truth-preserving translation mapping
pML-formulas to MSO-formulas with one free individual variable z. Such a characterization was first
obtained by Hollenberg [30]; we will come back to his results in Remark 9.11.

We now turn to our syntactic characterizations of the fully and completely additive modal fixpoint
formulas.

Definition 9.2 Given a set P C X, we define the fragment uMLE by the following grammar:
pu=plLleVelony|Op| ey

where p € P, 1) € uML(X\ P) is a P-free formula and ¢’ € ,uMLgu{z}. Similarly, we define the fragment
uML;f‘ by induction in the following way:

pu=plL|v|eVe oAy | S| pz.p,

where p € P, ¢ € pML(X \ P) is a P-free formula and ¢’ € MML?,U{w}. In case P is a singleton, say,
P = {p}, we will write pMLg and uML;‘ rather than, respectively, uMpr} and uMpr}. <
We let the grammars of Definition 9.2 speak for itself. Of the formulas from Example 2.24, g, @2

and 3 belong to uMLg ; these formulas also belong to ,uML;;‘, as does ¢1. The difference between the

fragments uML;' and pMLY is that p-free formulas belong to yML/! but not to uMLY (except the formula
).
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Theorem 9.3 (i) There is an effective translation which, given a pML-formula &, computes a formula
¢F e pMLE such that

¢ is fully additive in p iff € = €7, (43)

and it is decidable in elementary time whether a given formula & is fully additive in p.
(ii) Similarly, there is an effective translation which, given a pML-formula £, computes a formula
¢4 e ,uML;;x such that

¢ is completely additive in p iff &€ = €4, (44)
and it is decidable in elementary time whether a given formula & is completely additive in p.

In the sequel we will only prove the first part of Theorem 9.3, the proof for complete additivity is
a variant of this. We first consider the easy direction of Theorem 9.3(i).

Proposition 9.4 Every formula £ € ,uML]I; is fully additive in p.

Proof. Let £ be a formula in pMLg , then clearly ¢ is monotone in p. Fix a tree model S with root 7.
We have to show
S,r - & iff Splu], r I €, for some point u € V(p). (45)

The direction from right to left follows from the monotonicity of £ in p. For the direction from left to
right, suppose that S,r I £&. We need to find a point u € V(p) such that S[plu],r IF &.

Since ¢ is true at r in S, 3 has a positional winning strategy f in the game & = £(&,S)Q(¢, s).
Similar to the proof of Proposition 7.4, we can prove the following claim.

CLAM 1 For every k < w there is at most one f-guided match ¥ = (¢, s, )n<k of length k, such that
p is active in every .

In proving this claim, the difference with the single-branch case is that now, the only p-active
conjunctions are of the form p A 1, where 9 is not p-active. Hence, a partial match ending in a
position with such a conjunction, will have exactly one p-active continuation.

It follows from Claim 1 that there is a unique mazimal p-active match ¥ = (g, Sp)n<s-

CLAIM 2 ¥ is finite and its last position is the unique position in ¥ of the form (p, ).

ProOF OF CLAIM It is easy to see that ¥ must be finite, since otherwise, being f-guided, it should
be won by 3, while the only p-active bound variables of £ are least fixpoint variables (cf. the proof of
Proposition 6.4 in the finite-depth case). It should also be clear that ¥ can have at most one position
of the form (p, s) (since at such a position the match will be over).

We may thus consider the final position (p,r) of X. It follows by maximality of ¥ that ¢ cannot
be of the form = (with x a bound variable of &), C¢’, wo A 1, or o V 1 — in the latter case, both
disjuncts ¢; would be p-active. Hence the only possibility left is that ¢ = p indeed. <

To finish the proof, let u € S be the state such that the pair (p,u) is the final position of 3. It
is easy to check that (&,r) is a winning position for 3 in (£, S[plu]) — she may use the very same
strategy f as in £(¢,S). QED

For the proof of the hard direction of Theorem 9.3, we introduce the following class of automata.

Definition 9.5 A bipartite modal automaton A = (A, B,0,Q) belongs to the class Autfj of finite-
width automata if the one-step language associated with B is the language 1ML(X \ {p}, B), and the
one-step language associated with A is given by the following grammar:

az=p|CalL|fAalaVa (46)
where a € A and 8 € 1ML(X \ {p}, B). <
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Proposition 9.6 Let A = (A, B,0,Q) be a bipartite modal automaton in Autfj. Then there is a
translation try : A — uML such that tra(a) € ,uMLf for every state a € A.

Proof. Once more we will apply Proposition 3.22. Since it is fairly obvious that A satisfies the
conditions (ii) and (iii) of mentioned proposition, and that yMLY := {uMLE | P C, PROP} satisfies the
properties (EP), (SP2) and (CA,,), we only show that uML!" satisfies the first substitution property.
For this purpose we will prove, by induction on ¢, that o[¢/z] belongs to the fragment pMLE
whenever ¢ € /‘MLgu {a} and ¢ € puMLE. We leave the easy cases as exercises to the reader, and note
that the case where ¢ = uy.’ is dealt with exactly as in the proof of Proposition 5.6. We focus on
the case where ¢ is of the form y A ¢’ because ¢’ € uMLE y and x is PU {z}-free. Tt then follows

PU{z
that x[¢)/z] = x is P-free, and by induction that ¢'[1)/x] € uMLE. But from this it is immediate that
o[/x] = x[¢/z] A ¢'[tp/7] belongs to the fragment uMLE indeed. QED

As before, our main result is based on a transformation of an arbitrary disjunctive automaton into
an automaton in the class Autf .

Definition 9.7 Let (-)¥ : 1DML(X, A) — 1ML(X, A W A1) be the one-step translation given by the
following inductive definition:

T AVBt ifpen
(nAVB) = L ifpgmand B=o
\/{rAObAVBs [ {b}UB, =B} ifpgnand B# o
1F = 1
(aVvB)F = ol v g,

Let A = (A,0,9) be a disjunctive modal automaton which is positive in p. Without loss of
generality we may assume that for every a € A and every disjunct 7 A VB of O(a), either p or —p (but
not both) is a conjunct of m. (If not, we may replace 7 A VB with the formula (7 Ap) A VBV (7 A
—p) A VB.) We define the automaton A" as the structure (A¥, ©F, QF), where A¥ := AW A+, and
the maps ©F and QF are given by putting

0f(a) = 0(a)f q OF(a@) =1
OF(at) = ©1(a) a QF(al) = Q)
for an arbitrary state a € A. <

Proposition 9.8 Let A(a) be an initialized disjunctive modal automaton which is positive in p. Then
its transformation A¥ (ar) belongs to the class IAutg.

Proposition 9.9 Let A{a) be an initialized disjunctive modal automaton which is positive in p. If
Alay) is fully additive in p, then Alar) = AF{ay).

Proof. Let A = (A, 0,Q) be a disjunctive modal automaton, and assume that, for some state ay € A,
A(ay) is fully additive in p. In order to prove the equivalence of A(a;) and A (as), it suffices to take
an arbitrary w-unravelled Kripke tree (S,r) and prove that

S,r Ik Alag) iff S,r IF A (ay). (47)

Our proof of (47) is very similar to that of the corresponding statements in the proofs of Proposi-
tion 7.9 and Proposition 6.9; for this reason we will be brief, often referring for details to these earlier
proofs.
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We first consider the direction from left to right of (47). Assume that S,r I- A{as), then it follows
by the full additivity of A(a) in p that there is a point u € V(p) such that Splu],r IF A(ar). Let
p = (Un)n<m be the unique path from r = ug to u = uy,, and define U := {t,, | n < m} to be the set
of points on this path. By monotonicity of A" it suffices to show that S[p[u],r I- Af{as); that is, we
need to supply 3 with a winning strategy h in the game A := A(AF S[plu])@(ar,r). We will write
0y 1= Og[py) and o’ := (o7, 0g) for the coalgebraic unfolding map of the Kripke structure S[p[u].

In order to define the strategy h, we will make use of positional winning strategies f and ¢ for 3 in
the acceptance games A(A, S[plu]) and A(AF,S[p|u]) itself, respectively. By Fact 3.12 we may assume
without loss generality that at any position (a,s) that is winning for 3 in A(A, S[p|u]), the marking
picked by f assigns a singleton to each t € og(s).

The condition that 3 will maintain when playing A" is the following.

With ¥ = (an, $n)n<k a partial match of A, one of the following holds:
(tp) (T%) (ak, sk) € Alx U and ¥ is an f-guided match of A(A,S[@;{u]),
(t7) (ai,81) € A+ x S for some | < k such that S[plu], s; IF A" (a;),
and (a;, s;)i<i<k is a g-guided A(A", S[p|u])

CrLAIM 1 Let ¥ be a partial match of A" satisfying (). Then 3 has a legitimate move guaranteeing
that, after any response move by V, (fz) holds again.

ProOOF OF CLAIM The proof of this claim is a subtle variation on that of the corresponding claim
in the single-branch case. Let ¥ = (ap, Sn)n<k be as in the claim. Leaving the easy case, where ¥
satisfies (1%), as a exercise for the reader, we focus on the case where (1}) holds.

Here the path (s,)n<k = (Un)n<k is an initial segment of the branch U, and the final position
(ak, sk) of ¥ is a winning position for 3 in A(A, S[plu]). With m : og(si) — PA being the marking
given by 3’s positional winning strategy f, we have o' (sy), m IF* ©(ay). We now distinguish cases.

If s, = u is the last point of the branch U, then S[plu], s;. I p, and so we have ¢’(s;), m IF! 7 AVB
for some disjunct m A VB of ©(ay) such that p is a conjunct of w. (Here we use the fact that for
every disjunct T A VB of ©(a), either p or —p is a conjunct of 7). We define the A"-marking m*" on
or(sk) by putting m* (t) := m(t)*, and we leave it for the reader to verify that m!’, as a move for 3
in A(AT,S[plu]), satisfies the conditions of the claim.

If sp # wu, then p is false at si. Let ugy1 € ogr(sk) be the (unique) successor of s = ug on the
branch U. By our assumption on m, there is a unique state b € A such that m(ug4+1) = {b}. Note
that in this situation, we have that o(sy), m IF! m A VB for some disjunct m A VB of ©(as) such that
B # @ and —p is a conjunct of 7. From this we may infer that the translation (7 A VB) is not equal
to L, but of the form \/ {m A Ob A VB3 | {b} U B, = B}. In order to define a suitable marking m”,
we continue as in the single-branch case. Let u be the unique successor of si in U, let b be the unique
state in A such that m(u) = {b}, and let u € o \ U be some sibling of u such that S,u € S,u. Define

[ m@)um@)t ift=u
m (1) = { m(t)* if t # u.

The verification, that with this definition the marking m* meets all the specifications of the claim, is
exactly as in the proof of Proposition 7.9, and so we omit the details. <

On the basis of Claim 1 we may define, in the by now familiar way, a strategy h for 3 which is
winning for her in A(AF,S[pJu]). We omit the details.

The opposite direction of (47) can be proved by a similar argument as in the proof of Proposi-
tion 6.9, so again we omit the details. QED
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Proof of Theorem 9.3. As mentioned earlier on, we only cover part (i) of the theorem explicitly,
part (ii) can be proved by a fairly obvious variation of this.
To define the required map (-)* : uML(X) — pMLY (X), fix a pML-formula £. We define

" = trpye (dg),

where D¢(d¢) is an initialized disjunctive modal automaton that is equivalent to &, and tr]D)g/lF is

the translation associated with the automaton Dé‘/m . We leave it for the reader to verify that this
map satisfies the requirements stated by the theorem — the proof follows the same lines as that of
Theorem 5.3. QED

We finish this section with a series of remarks that provide some context to our results.

Remark 9.10 There are interesting connections between the fragments ,uMLf; and /JML?, and the
language PDL of propositional dynamic logic [29]. Since PDL is by nature a poly-modal language, to
make our point we momentarily switch to the poly-modal p-calculus. Carreiro & Venema [13] showed
that PDL has the same expressive power as the fragment of uML in which the formula construction
pz.p is allowed only if ¢ is completely additive with respect to x. More precisely, define the set ML
of formulas by the following grammar:

pu=q|-p|eVellae]|pgy,

where ¢ is an arbitrary proposition letter, and ¢’ belongs to the fragment ILLML"; N paML. Then there
are inductive, truth-preserving translations from PDL to p4ML and vice versa [13]. <

Remark 9.11 Hollenberg’s characterization [30] of the fully additive fragment? of the modal pu-
calculus has a strong connection with propositional dynamic logic as well. He defines the sets of
extended p-formulas ¢ and so-called p-programs 7 by the following simultaneous induction (again we
take a poly-modal perspective):

¢ = qlopleVel(meluge
T u= al|le?| w47 |mw| T,

where ¢ is an arbitrary propositional variable, and « is an atomic program; in uq., ¢ may only occur
positively in . Hollenberg proves that a formula ¢ is fully additive in p iff £ is equivalent to a formula
of the form (m)p, where 7 is a p-free p-program.

Comparing Hollenberg’s result to ours, while his characterization is clearly well-suited to find the
safe fragment of monadic second-order logic, our result has the advantage of directly providing a
characterizing fragment inside the modal p-calculus. But in any case, there are direct translations
between our fragment and Hollenberg’s.

From Hollenberg’s fragment to ours, by a simultaneous induction on formulas and programs one
may define a translation (-)™ mapping a formula ¢ in Hollenberg’s language to a formula ¢™ € uML,
and, for each p-program =, a function f : uML — pML, in such a way that f, restricts to the fragment
pMLE if 7 is P-free. Some key clauses in this definition are ((m)p)7 := fz(©7), fu2(p) =¥ A ¢, and
far () := px.pV fz(x), where x is a fresh variable.

Conversely, by a straightforward formula induction one may provide, for each formula ¢ € uMLE, a
collection {m, | p € P} of P-free p-programs such that

¢=\/{(m)p|peP}

4Note that Hollenberg’s terminology clashes with ours: what he calls ‘completely additive’ is what we call “fully
additive’.
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The key induction step here is for a formula of the form pz.£, where we may infer from the above
equivalence that pz.§ = \/{(7};m,)p | p € P\ {z}}.

We refrain from giving more details here, referring the interested reader to section 3 of Carreiro &
Venema [13], where very similar translations between PDL and ppML are defined (cf. Remark 9.10),
or to Carreiro [10]. <

Remark 9.12 As another variation of the properties of full and complete additivity, a formula £ € uML
is finitely additive in p € X if, for every Kripke model S,

g(Ux)=U{gm 1 xex},

for any finite collection X of subsets of S. This condition can be equivalently expressed by requiring
that the formula £ is both additive (£(pV p') = &(p) V £(p')) and normal (£(L) = L) in p. In the
case of basic modal logic, the two properties can be shown to be equivalent (through a straightforward
argument based on finite trees of depth not exceeding the modal depth of £), but this is not so in the
case of the modal p-calculus. For instance, consider the formula vy.uz.(p A Oy) V Oz, expressing the
existence of an infinite path, starting at the current state, where p holds infinitely often. It is easy to
see that this formula is finitely but neither fully nor completely additive in p.

We leave it as an open problem to characterize the finitely p-additive fragment of uML. <

10 Conclusions

We finish the paper with drawing some conclusions, listing some issues for discussion, and suggesting
some questions for further research.

This paper contributes to the theory of the modal p-calculus by proving some model-theoretic
results. For a number of semantic properties pertaining to formulas of the modal p-calculus, we
provided a corresponding syntactic fragment, showing that a p-formula £ has the given property iff
it is equivalent to a formula &’ in the corresponding fragment. Since this formula & will always be
effectively obtainable from &, as a corollary, for each of the properties under discussion, we prove that
it is decidable in elementary time whether a given p-calculus formula has the property or not.

The properties that we study have in common that they all concern the dependence of the truth
of the formula at stake, on a single proposition letter p. In each case the semantic condition on £ will
be that &, if true at a certain state in a certain model, will remain true if we restrict the set of states
where p holds, to a special subset of the state space. Important examples include the properties of full
additivity and continuity, where the special subsets are the singletons and the finite sets, respectively.

Our proofs for these characterization results will be fairly uniform in nature, employing the well-
known correspondence between formulas of the modal p-calculus, and modal automata. In fact, the
effectively defined maps on formulas are induced by rather simple transformations on modal automata,
based on composing a bipartite automaton A’ from an arbitrary (disjunctive) automaton A, where the
final part of A consists of the automaton Al and its initial part of another modification of A. This
modification is always obtained by applying a straightforward one-step translation to the transition
map of A, by redefining its priority map, or by a combination of these operations.

Discussion

1. As mentioned in the introduction, pure logic-based proofs for our results are possible in almost all
cases — the exception being the single-branch property where we only have automata-theoretic
proofs. In fact, logic-based proofs were given in the dissertation of the first author [25]. The
main advantage of the automata-theoretic approach is that it allows for transparant and uniform
proofs based on simple transformations of automata.
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In any case, the difference between the two approaches should not be exaggerated. Recall that
the particular shape of our automata is logic-based: the transition map of our structures uses
so-called one-step formulas, and many of our proofs are based on semantic properties of and
syntactic manipulations on these very simple modal formulas. In some sense then, our paper is
also a contribution to the model theory of modal automata.

. As mentioned in the introduction we have not undertaken an in-depth study of the computational
complezity of the various problems of which we established the decidability. It shouldd be clear
that the algorithms that we have presented here are not optimal. In particular, in order to
find out whether a formula ¢ has, say, the finite width property, it is not needed to compute
its translation £V it suffices to check whether the initialized automata D{(d¢) and ]D)?’(d@ are
equivalent. To obtain a good upper bound here, one should know the exact size and weight of the
automaton D¢ in terms of the size || of . Fact 3.14(ii) gives a doubly exponential weight for De,
but we conjecture that a tighter bound is possible. We leave this, and other complexity-theoretic
matters, as questions for further research.

. There are some variations of our results that are not hard to prove. To start with, all characteri-
zation results (and their proofs) can be easily restricted to the setting of basic (i.e., fixpoint-free)
modal logic. For instance, if we define the fragment MLg by the following grammar:

pu=plyYloVelohe|Op

where 1) € uML(X \ {p}) is a p-free formula, then we can show that our map (-)¢ maps formulas
in ML to MLS. As a result we find that a basic modal logic formula ¢ is continuous in p iff £ = ¢¢,
so that MLg characterizes continuity-in-p for basic modal logic.

. Recall that in the presentation of the language uML (as in Definition 2.13), the standard restriction
on the occurrence of the least fixpoint operator px is that it can be applied only to formulas that
are positive in z, i.e., belong to the language ML} . We get interesting logics by restricting the
application of p-operators even further. This applies in particular to the fragments puMLP | uMLE
and pMLA discussed in this paper. For Q € {D,C, A}, let QML be the version of the modal
p~calculus of which the formulas are given by the following grammar:

pu=plop|eVel|Op|ury, (48)

where p is a propositional variable, and the formation of the formula px.@ is subject to the
constraint that the formula ¢’ belongs to the fragment uMLY. We already saw in Remark 9.10
that the language paML is effectively equivalent to PDL. It is not hard to prove that the logic
upML is effectively equivalent to the alternation-free fragment of the modal u-calculus, whereas
it seems that the logic ucML has not been used or studied much (although it was mentioned
under the name ‘w-p-calculus’ by van Benthem [5], and it is related, and perhaps equivalent in
expressive power, to the logic CPDL of concurrent propositional dynamic logic, cf. Carreiro [10,
section 3.2] for more information).

These logics become particularly interesting in the light of the Janin-Walukiewicz Theorem [32].
Recall that this result states that the modal p-calculus is the bisimulation-invariant fragment
of monadic second-order logic (MSO), in brief: yML = MS0/<. For each of the logics ugML, with
Q € {D,C, A} we can prove the following version of this result:

/JQML = MSDQ/@,

where MSQg is a variant of MSO where we quantify over a restricted collection Pg(S) of subsets
of the model S. More specifically, Pp(S) consists of the so-called noetherian sets of a Kripke
model [23], Pc(S) is the collection of finite subsets of S [12] (so that MSOp is weak monadic
second-order logic), and P4(S) is the set of so-called generalized finite chains in S [11].

45



5.

In section 2 we proved a strengthened version of the Lyndon Theorem for the modal p-calculus
proved by D’Agostino and Hollenberg [17]. In the same vein as the other results in this paper,
we can also strengthen their Los-Tarski Theorem.

We say that a formula £ € uML is preserved under substructures if S;s IF £ implies §';s I+ &,
whenever S’ is a substructure of S (in the standard model-theoretic sense). D’Agostino and
Hollenberg proved that a p-formula £ is preserved under substructures iff it is equivalent to a
universal formula, that is, a formula in the O-free fragment yuMLY given by the following grammar:

pu=qlqleVelene| ol pz.p|ve.e.

We can reprove this result by our means; given a disjunctive automaton D = (D, ©, ), define the
automaton DY = (D,0Y,Q) where OV is given by the one-step translation based on the clause
(r e VB)Y := 7 AO\/ B. One may then show that an initialized disjunctive automaton D{d) is
preserved under taking substructures iff D(d) = DY (d). From this the result of D’Agostino and
Hollenberg easily follows, and as a bonus we find that it is decidable in elementary time whether
a given formula ¢ € uML has this property.

Questions

Finally, we mention some open problems for further research.

1.

It would be interesting to find out the exact complexity of the problems discussed in this paper.
This would include establishing suitable lower bounds.

As mentioned in the section on continuity, it would be good to know whether the p-calculus
formulas that are constructive in p admit a good syntactic characterization. In particular, we
would like to clarify the connection between the notions of continuity and constructivity. Can
we find, for any formula £ € pML which is constructive in p, a continuous formula v such that

pp.§ = pupp?

. Similarly, we would be curious to see a syntactic characterization of the finitely p-additive frag-

ment of the modal p-calculus (cf. Remark 9.12).

While, as already mentioned, some variations of our results are easy to obtain, there are some
interesting variations of the problems considered here as well. For instance, it is not so clear how
to adapt our characterisation results to other fixpoint logics like PDL or CTL. A second direction
to take here would be to look for coalgebraic generalisations of our results. In recent years it has
been shown that many results on the modal p-calculus, including the link with automata theory,
can be generalized to the far wider setting of coalgebraic modal logic [36, 15, 26, 21].

. Not directly related to the results in this paper, but in our opinion one of the most interesting

open model-theoretic problems concerning the modal p-calculus is whether ML admits a natural
abstract characterization in the form of a Lindstrém theorem. Going back to de Rijke [42], there
are various Lindstrom-type characterizations of basic modal logic (see for instance [6, 41, 37, 20])
but to the best of our knowledge no abstract characterizations of fixpoint logics have been
established yet.
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