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Abstract. The term ‘recursive’ has had different meanings during the
past two centuries among various communities of scholars. Its historical
epistemology has already been described by Soare (1996) with respect
to the mathematicians, logicians, and recursive-function theorists. The
computer practitioners, on the other hand, are discussed in this paper by
focusing on the definition and implementation of the ALGOL60 program-
ming language. Recursion entered ALGOL60 in two novel ways: (i) syn-
tactically with what we now call BNF notation, and (ii) dynamically by
means of the recursive procedure. As is shown, both (i) and (ii) were in-
troduced by linguistically-inclined programmers who were not versed in
logic and who, rather unconventionally, abstracted away from the down-
to-earth practicalities of their computing machines. By the end of the
1960s, some computer practitioners had become aware of the theoreti-
cal insignificance of the recursive procedure in terms of computability,
though without relying on recursive-function theory. The presented re-
sults help us to better understand the technological ancestry of modern-
day computer science, in the hope that contemporary researchers can
more easily build upon its past.
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1 Introduction

In his paper, Computability and Recursion [41], Soare explained the origin of
computability, the origin of recursion, and how both concepts were brought to-
gether in the 1930s by Gödel, Church, Kleene, Turing, and others. I summarize
part of Soare’s paper below, omitting most of his bibliographical references.

The origin of computability can be briefly described by mentioning the Baby-
lonians, Euclid, al-Khwarizmi, Pascal, Leibniz, and Babbage. Leibniz searched
for a universal language and a calculus of reasoning. Babbage invented his pro-
grammable Analytic Engine and formulated what we now call Babbage’s Thesis,
which states that “the whole of the development and operations of analysis are
now capable of being executed by machinery” [13, p.57].
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The notion of recursion dates back to the late-19th century mathematicians
Dedekind and Peano, who used the principle of defining a function by induction.
This principle played an important role in the foundations of mathematics (cf.
the work of Skolem, Hilbert, Ackermann, Gödel, and Péter) and was only much
later called ‘primitive recursion’ by Péter (1934) and Kleene (1936).

To describe how both the concepts of computability and recursion were
brought together, Soare mentioned Hilbert’s work, the Entscheidungsproblem,
and Gödel’s incompleteness theorems. Gödel knew that not all effectively cal-
culable functions were included in his ‘recursive functions’ (1931), which would
therefore later be called ‘primitive recursive functions’. Based on a suggestion
from Herbrand, Gödel searched for a more general class of functions, resulting in
his ‘general recursive functions’ (1934), later to be called ‘recursive functions’.

Only in 1936, in a paper of Church [8], did ‘recursively’ connote ‘effectively’
or ‘computably’ for the first time. Later work of Kleene and Post reinforced this
connotation but only inside their newly built community of recursive-function
theorists. Neither Gödel nor Turing ever used the adjective ‘recursive’ to con-
note ‘computable’. And, most people outside the subject, such as the computer
practitioners addressed in this paper and mathematicians, have never associated
‘recursive’ with ‘computable’ or ‘decidable’.

Soare’s historical epistemology of the term ‘recursive’, summarized above, il-
lustrates nicely the different communities of scholars. In this paper, the meaning
of the term ‘recursive’ is studied further but with respect to the computer prac-
titioners of the late 1950s and early 1960s. Starting with an historical context
(Section 2), syntactic recursion is described (Section 3), followed by dynamic
recursion (Section 4). Both forms of recursion were introduced by computer pro-
grammers who, like many of their colleagues, were not acquainted with recursive-
function theory, let alone logic in general (Section 5).

2 Historical Context

With the advent of the programmable computing machine, a new community
of numerical analysts emerged. Unlike e.g., the logicians and the electrical en-
gineers, the numerical analysts, by their very profession, took programming se-
riously [20, p.3]. Several of them gradually became more involved in seeking
specific techniques to overcome the tediousness in programming their machines.
Two such, and important, techniques were what we now call Backus-Naur-Form
(BNF) notation and the recursive procedure. Both entered the arena of program-
ming languages via the ALGOL60 language [18, 19].

The ALGOL60 Language

In October 1955, various German and Swiss mathematicians had come together
in Darmstadt, Germany, to attend a meeting, called Elektronische Rechenmaschi-
nen und Informationsverarbeitung. It marked the beginning of an international
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effort involved in creating a universal programming language. Several partici-
pants of the meeting stressed the need for one universal and machine-independent

algorithmic language [5, p.5]. Programs in that language were meant to allow
people to communicate algorithms with each other without having to execute
them on a machine [6, p.139]. The adjective universal referred to the aspiration
that everybody would communicate with each other in the same algorithmic
language. The machine independence expressed the desire that the language
would be designed without having a specific machine in mind [5, p.6]. Of equal
importance is the adjective algorithmic. It emphasized the fact that numerical
computations were intended to be the main (if not the only) application domain
of the language [25, p.101].

By 1958, the Swiss and Germans were collaborating with the Americans by
holding an ACM1-GaMM2 meeting in Zürich. The chosen name for the universal
programming language was initially IAL (International Algorithmic Language),
later denoted as ALGOL58, but would by January 1960 change into ALGOL (Algo-
rithmic Language) [5, p.31], and denoted as ALGOL60 in this text. As languages,
ALGOL58 and ALGOL60 would be drastically different [5, p.35].

This “ALGOLEffort” would quickly become more international: e.g., the Dutch
Edsger W. Dijkstra and the Dane Peter Naur joined. The latter became the edi-
tor of the ALGOL60 report [2], a document that became the standard for defining
programming languages [5, p.35] for several decades3. After the publication of
that report, Naur also initiated an ALGOL Bulletin, which served the purpose
of discussing properties of ALGOL and promoting its use as a programming lan-
guage [35, p.6].

The FORTRAN System

Prior to joining the ALGOL Effort and contrary to the Europeans, the Americans
already had several programming systems. One of them was FORTRAN (FORmula
TRANslator), invented by John Backus and his team. As early as December 1953,
Backus had proposed the FORTRAN project to his boss at IBM [4]. In contrast
to ALGOL60, FORTRAN became a de facto standard programming language for
scientific computing [5, 38, p.11, p.525]. However, while ALGOL60 was machine
independent, FORTRAN had six machine dependent language constructs [5, p.15].

Compared to other existing programming systems of the 1950s, FORTRAN

was, in hindsight, the first high-level system that met two seemingly contrasting
requirements. First, a FORTRAN program could be translated into machine code
at a sufficiently low cost. Second, the obtained machine code was sufficiently
economical in comparison to code that was hand written by an expert machine-
level programmer. To meet these requirements, Backus and his team focused
on the design of the translator and not on that of the language [38, 40, p.525,
p.233].

1 Association for Computing Machinery
2 Gesellschaft für Angewandte Mathematik und Mechanik
3 Even today, ALGOL-like programming languages are used in industry (e.g., C, Java),

and studied in certain branches of theoretical computer science (e.g., [26, 27]).
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<digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
< integer> := <digit> | < integer><digit>

< realPart> := < integer> | < integer>.< integer>

< real> := < realPart> | +< realPart> | −< realPart>

Table 1. An example in Backus Naur Form.

After his FORTRAN years, Backus participated in the ALGOL Effort and made
a significant contribution to formal syntax, as described next.

3 Syntactic Recursion: BNF Notation

Prior to 1959, computer practitioners described syntax informally, e.g., in ver-
bose English. As an example, consider the definition: A real number is

any sequence of decimal digits with a decimal point preceding or inter-
vening between any 2 digits or following a sequence of digits, all of this
optionally preceded by a plus or minus sign.

The previous passage is similar to how a real number in IAL was defined syn-
tactically4. By including machine-dependent constants, which express the finite-
storage limitations of the machine, the previous definition can be extended to:

The number must be less than 1038 in absolute value and greater than
10−38 in absolute value.

The previous two passages, together, constitute the original definition of a real
number in FORTRAN [16].

In short, both FORTRAN and IAL were defined informally. FORTRAN was defined
with and IALwas defined without finite-storage limitations in mind. The informal
definitions were ambiguous, incomplete, and often lengthy: FORTRAN’s and IAL’s
syntax were very cumbersome to use in practice [5, p.26,27].

In 1959 at the IFIP congress in Zürich, Backus came to the rescue. Inspired
by logic but not understanding much of it himself5, Backus introduced a formal
notation not unlike Post’s production rules [18]. However, Backus’s paper [1]
almost went unnoticed; it was Naur who grasped its potential and, who, after
making some small but important modifications, used it to define ALGOL60’s
syntax. The notation is therefore called Backus Naur Form [3, 18].

Continuing with our running example of the real numbers, the BNF equivalent
of the first passage, presented above, is depicted in Table 1. With | denoting
logical or, Line 1 expresses that a digit is either 0 or 1 or 2 or . . . or 9. Line 2, in
turn, recursively defines an integer to be either a digit or an integer concatenated

4 For the actual definition in IAL, see [30, p.9].
5 As explained by Backus himself in [39, p.17].
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with a digit. Line 3 defines the real part of a real number to either be an integer
or an integer followed by a decimal point and another integer. Finally, Line 4
defines a real number to have no sign, a plus sign, or a minus sign.

Note that Table 1 is only the BNF equivalent of the first passage, presented
above. The finite-storage limitations of the machine (cf. the second passage)
can not be expressed concisely in BNF notation. Indeed, the syntactic recursion,
exemplified in Line 2 in Table 1, is what made BNF notation so concise: Line 2
allows an arbitrarily large but finite integer to be written down in ALGOL60 and,
hence, also integers that simply could not fit in every computer’s memory!

Backus’s conceptual leap of abstracting away the computing machine’s finite
limitations cannot be stressed enough. Unlike his work during the FORTRAN years,
where he focused on the design of the translator to obtain efficient machine code,
Backus’s abstraction allowed him to solely focus on the language. On the one
hand, Backus was of course aided by IAL’s abstraction of finite storage. On
the other hand, as we shall see, many computer practitioners did not let go of
machine-specific features while designing a programming language.

4 Dynamic Recursion: the Recursive Procedure

During the early 1960s, there were research groups (of computer practitioners)
that were mainly led by linguistic ideals and there were groups that were primar-
ily led by machine-related features. To illustrate this, emphasis will be laid below
on Dijkstra’s linguistic views6 towards programming-language design, which he
described in his 1963 paper [10], i.e., three years after ALGOL60 had already been
defined in [2].

Dijkstra’s Linguistic Ideology

In order to discuss programming-language design, Dijkstra first suggested con-
sidering any English text that respects five restrictions:

1. Words of more than 15 letters are forbidden.
2. The total number of letters of three consecutive words may not be greater

than 40.
3. Sentences of more than 60 words are not allowed.
4. In one and the same sentence, the same word may not be used twice as a

subject.
5. A list of 2000 words is given and each word in that list may not be used.

Dijkstra remarked that (i) the readability of any text respecting 1-5 is not neces-
sarily hindered and (ii) one can read such a text while being completely ignorant
of the existence of restrictions 1-5. However, constructing a correct English text
can become very problematic if more restrictions are added to the above list or
especially if they impose highly implicit conditions [10, p.31].

6 I have no evidence to suggest that Dijkstra was influenced by Chomsky.
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Dijkstra then distinguished between a natural language and a programming
language, by considering two scenarios. In Scenario 1, a speaker communicates
with a listener by talking in English. In Scenario 2, a programmer communi-
cates with a computer by programming. Dijkstra explained the difference be-
tween both scenarios: a listener is rather unpredictable in his reactions, while a
computer can, essentially, be completely understood and, hence, be predictable.
To exploit this advantage that a computer can have over a human, Dijkstra
stressed the importance of avoiding an unnecessarily complicated language, and
expressed his disappointment with ALGOL60 in this respect [10, p.33,34].

Dijkstra subsequently applied his ideology to ALGOL60. Just as in his Eng-
lish-language example, Dijkstra wanted to reduce the number of ‘unnecessary’
restrictions in ALGOL60. To do so, he presented examples in which he advocated
for dynamic instead of static constructions since they make the language more
systematic and powerful. For example, concerning arrays, Dijkstra suggested
removing the explicit specification of an array’s subscript bounds, since they
become determined at run time any way. Omitting the array bounds, in turn,
resulted in more freedom, for, now there was no reason to restrain an array to
being rectangular, it could just as well be triangular, etc. [10, p.36].

Dijkstra’s ideology led him to the extreme of omitting all type indications
and, hence, transferring all the type checking to the run-time system [10, p.36],
which, as many observed, would have a negative effect on computation time
—an observation that Dijkstra did not contradict, cf. [9, 10, p.312, p.41]. These
references also show that, according to Dijkstra, generalization of a programming
language allowed for simplification in compiler building and this would in the
long term prevail over the short-term efficiency problems that concerned many
computer practitioners.

Dijkstra’s Ideology Led to Recursive Procedures

In his pursuit for a general language, Dijkstra advocated for run-time construc-
tions (cf. above). In terms of procedure calls, he had been no different in 1959–60,
as described below.

During the ALGOL Effort, the Germans Samelson and Bauer were strong pro-
ponents for what we today call static memory management. Their ALCOR com-
piler of the ALGOL60 language statically allocated all procedures (i.e., prior to
execution). This implementation choice, which they took in the interest of effi-
ciency, forced them to restrict the way ALGOL60 was used by disallowing proce-
dures to call other procedures and, hence, recursive procedure calls in particular.
As the English-language example has illustrated, it is no surprise that Dijkstra
opposed Samelson and Bauer’s language restriction: Dijkstra wanted any proce-
dure to be able to call any other procedure in an ALGOL60 program [9, 36].

Dijkstra’s quest to generalize led him to use the well-known concept of a
stack (i.e., a continuous portion of computer memory) as a run-time object,
rather than a mere compile-time object as was the case in Samelson and Bauer’s
ALCOR compiler. In current-day terminology: Dijkstra proposed to use dynamic

memory management to implement his general procedure calls [9, 36]. By doing
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so, he in 1960, together with his colleague Zonneveld, became internationally the
first to build an ALGOL60 compiler that could handle recursive procedures [19].

During the 1960s, recursive procedures remained controversial, however, and
Dijkstra was one of its few strong advocates. His linguistic views were in sharp
contrast to those led by specific machine features, as Strachey’s words from 1962
illustrate:

I think the question of simplifying or reducing a language in order to
make the object program more efficient is extremely important. I disagree
fundamentally with Dijkstra, about the necessity of having everything
as general as possible in all possible occasions as I think that this is a
purely theoretical approach [. . .] [29, p.368]

To summarize, many computer practitioners indirectly took specific machine
features into account while discussing a machine-independent language, such as
ALGOL60. Since they believed that recursive procedures were inefficient to exe-
cute, they wanted to restrict the way in which ALGOL60 was used by eschewing
recursive procedures [29]. This bottom-up approach (i.e., from machine to lan-
guage) is in sharp contrast to Dijkstra’s top-down approach in which language
was studied before any machine-related features were addressed [10].

5 Theoretical Insignificance of the Recursive Procedure

Backus, Naur, and Dijkstra had an aptitude for linguistics and were not versed
in logic and certainly not in recursive-function theory (cf. [39, 12, 14, p.17, p.346,
p.298]). In fact, the great majority of computer practitioners of the 1960s were
not aware of the theoretical insignificance of the recursive procedure in terms of
computability, as is illustrated by Sammet’s 1969 book:

Recursive procedures were introduced by ALGOL. They certainly should
be considered a significant contribution to the technology, but it is not
clear how great a one. The advocates of this facility claim that many
important problems cannot be solved without it; on the other hand,
people continue to solve numerous important problems without it and
even in a few cases manage to handle (sometimes in an awkward way)
some of the problems which the recursion proponents claim cannot be
done. [37, p.193].

Given that ALGOL60’s definition allows one to express potentially unbounded
while loops [2], it immediately follows from Kleene’s normal form theorem7 that
recursive procedures are not needed. That is, the expressive power of ALGOL60
is not reduced by discarding recursive procedures.

7 Presented in Minsky’s popular 1967 book [23, p.184], but already published by
Kleene in 1936 in [17]. See also Harel’s [15] in which he explains the relationship
between Kleene’s normal form theorem and the while construct.
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Dijkstra and some others, however, did realize by the late 1960s that the re-
cursive procedure was indeed superfluous in terms of computability, though they
based themselves on the technically sophisticated work of Böhm and Jacopini [7]
which did not depend on Kleene’s normal form theorem8, as explained in [15].

In general, it is safe to say that recursive-function theory did not influence the
computer practitioners during the 1960s. Or did it? In a two-page 1960 letter [33]
the recursive-function theorist Rice explained exactly the theoretical significance
of “general recursive functions” and its practical implications in programming.
Nevertheless, I speculate that his message went unnoticed to many. In fact, he
tried to convey the very same message five years later [34].

6 Related Work

Some additional observations are mentioned here. First, the practical usefulness
of the recursive procedure was not understood by most computer practitioners
during the ALGOL Effort [25, 31, p.160, p.86]. Second, it was John McCarthy who
urged to add the recursive procedure to the ALGOL60 language. This was after
he had already introduced recursion in his LISP language [39, p.27]. Although
inspired by Church’s lambda calculus, he was not aware of the relevance of
LISP’s recursion in terms of computability [22, p.176,190]. Finally, it should also
be noted that Dijkstra was not the first inventor of the run-time stack principle,
i.e., of a technique to implement recursive procedure calls (cf. [28, p.37,38]).

In his Ph.D. thesis, Priestley has examined the influence of logic on the evo-
lution of notations for expressing computer programs. He argues that logic was
deliberately employed by designers to obtain a model for theoretically under-
standing programming languages [32, p.3]. This paper, however, along with my
thesis [28], suggests otherwise. Priestley’s account is nevertheless impressive: his
Chapter 6, for instance, describes how McCarthy, during the 1960s, led a com-
munity of computer practitioners from compiler-based semantics to denotational
semantics. His observations show that it took several years for the community
as a whole to switch from bottom-up to top-down reasoning.

The historian Mahoney has stressed the diversity among the creators and
practitioners of what we now call computer science. Different groups of people
saw different possibilities in computing [21]. In this paper, however, I have solely
focused on some of those involved in the ALGOL Effort. Other views towards
computing are for instance Lehmer’s and Von Neumann’s, as explained in [24].
Finally, the reader may wish to study De Beer’s thesis [5] as a secondary source:
it covers ALGOL60 in greater generality, compared to this paper.

7 Conclusions

The epistemology of the term ‘recursive’ was very different for the linguistically-
inspired computer practitioners such as Backus, Naur, and Dijkstra, compared to

8 In the case of Dijkstra, see his 1968 paper [11] in which he describes the work of
Böhm and Jacopini [7].
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the logicians (e.g., Gödel), the recursive-function theorists (e.g., Kleene), and the
many computer practitioners who primarily reasoned bottom-up (e.g., Samelson,
Bauer, Strachey) during the early 1960s. Backus’s and Naur’s syntactic recur-
sion required the conceptual leap of abstracting away the finite limitations of
practical computing machines. For Dijkstra, inclusion of the recursive procedure
in the ALGOL60 language led to a simplification in terms of language design and
subsequent compiler building; he did not consider it to be a hindrance in terms
of computation time as many others did. By making the conceptual leap from
compile-time to run-time usage of the stack, Dijkstra was able to implement
recursive-procedure calls in a relatively simple manner, although he was not the
first to do so. Dijkstra and many others did not, however, see any immediate
practical value in using the recursive procedure during programming, nor were
they aware of the theoretical insignificance of the recursive procedure in terms
of computability when ALGOL60 was designed and implemented.
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