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Abstract

We show that linear logic can serve as an expressive frame-
work in which to model a rich variety of combinatorial auc-
tion mechanisms. Due to its resource-sensitive nature, linear
logic can easily represent bids in combinatorial auctions in
which goods may be sold in multiple units, and we show
how it naturally generalises several bidding languages fa-
miliar from the literature. Moreover, the winner determina-
tion problem, i.e., the problem of computing an allocation of
goods to bidders producing a certain amount of revenue for
the auctioneer, can be modelled as the problem of finding a
proof for a particular linear logic sequent.

Introduction

A combinatorial auctior{CA) is a mechanism for one agent
(the auctioneej to sell a set of goods to a number of other
agents (théidderg. While there are several different types
of CAs, in the standard mechanism each bidder first speci-
fies how much they are prepared to pay for any given sub-

Knowledge representation techniques play an important
role in the design obidding languages A bid is an en-
coding of a bidder's (declared) valuation function, which
mapsbundles(subsets of the set of goods on auction) she
might receive to the prices she is prepared to pay for them.
As the number of conceivable bundles grows exponentially
with the number of goods, we require a compact representa-
tion language. Several such languages have been proposed,
e.g., the socalled XOR- and the OR-languages (Nisan 2006)
and languages based on weighted formulas (Boutilier and
Hoos 2001). (In fact, as bidding is a form of communicating
one’s preferences, much of the recent workpraference
modelling (Goldsmith and Junker 2008) is relevant to this
problem.) Importantly, all of the aforementioned bidding
languages are languages faingle-unit CAs, while many
real-world auctions are in fachulti-unit CAs, where there
may be several indistinguishable copies of the same good.

Ouir first objective will be to overcome this limitation and
to design generalisations of standard bidding languages fo

set of the set of goods on auction, and the auctioneer then multi-unit CAs in a systematic and principled way. A natu-

chooses an allocation of goods to bidders that will maximise
the sum of payments collected. The advantage of a combi-
natorial auction over a sequence of simple auctions (one for
each individual good) is that it solves the socakegbosure
problem: in a sequence of simple auctions it would be dif-
ficult for a bidder to decide how much to bid for ites if

she is only interested in obtaining and B together in a

CA she can directly express this preference and there is no

risk of getting stranded with just.

While the idea is intuitively appealing, the CA frame-
work also raises a number of challenging research questions
How can we incentivise bidders to truthfully declare their
valuations (cf.game theorymechanism desig® How can
we solve the combinatorial optimisation problem of com-
puting the best allocation given a set of bids @forith-
mic9? How do we best represent the input of the bidders (cf.
knowledge representatigp Particularly the first two types
of questions have received (and continue to receive) a lot of
attention in the literature. The state of the art is refleated
the recent collection edited by Cramton, Shoham, and Stein-
berg (2006). In this paper, we shall focus on the challenges
for knowledge representation raised by CAs.
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ral basis for such an undertaking is the frameworkraefar

logic (LL). LL is a resource-sensitive logic: to prove a con-
clusion from a set of premises, each premise can be used at
most once (Girard 1987; 1995). This feature makes it pos-
sible to distinguish, for instance, whether a bidder rezgiv
one or two copies of the same good, and bidders can quote
different prices for these situatiohs.

In fact, we can do much more than that: LL turns out
to provide an appropriate framework in which to model a
variety of CA mechanisms—and modelling is not restricted
to the representation of bids. Our contribution is thresfol

e We show that LL can serve as a basis for designing pow-
erful bidding languages for CAs. Our approach subsumes
several existing languages in a single formal framework
and adds a number of new features. Specifically, we can
model the availability of goods in multiple units and we
can distinguish different types of goods, such as goods
that are or are not reusable (by the same bidder) or that
are or are not sharable (amongst several bidders).

e We show that also thevinner determination problem

'In a somewnhat related context (negotiation), similar points
have previously been made by Harland and Winikoff (2002) and
Kiingas and Matskin (2004).



(WDP), i.e., the problem faced by the auctioneer of which
goods to award to which bidder so as to maximise rev-
enue, has a natural counterpart in the logical framework.
Specifically, we show how to build anallocation se-
quent from the goods owned by the auctioneer, the
bids received, and the amount of revenue hoped for, and

from that proof. We stress that we do not intend to propose
LL as analgorithmicframework for solving the WDP. This
will continue to require highly specialised combinatooat
timisation algorithms. Instead, we view this embedding as
an attractive conceptual framework in which to model and
understand a wide variety of different CA mechanisms and

demonstrate that any proof of this sequent corresponds to bidding languages in a principled manner.

an allocation yielding the desired revenue. The WDP then
reduces to a series of calls to a LL theorem prover.

e Going beyond standard CA mechanisms, we also show
how to model more powerful auction mechanisms in LL.
This includes, in particulammixed auctiongCerquides
et al. 2007), in which bidders and auctioneer exchange
transformations of goods rather than plain goods. Gener-
alising even further, we sketch what we dalimula auc-
tions in which the auctioneer sells arbitrary LL formulas
to the bidders (roughly speaking, in standard CAs these
formulas are conjunctions of atomic propositions, while
in mixed auctions they are certain types of implications).

To exemplify our approach, consider the OR-language. An
OR-bid is a list of bundles of goods labelled with a price
(socalledatomic bid3: (B;,w1) OR- - OR(By,wy). This

bid encodes a valuation functian a bundleX of goods is
said to satisfy a set of atomic bids, if it is a superset of each
of the bundles of the atomic bids and if those bundles do not
overlap;v(X) is defined as the maximal sum of prices of any
set of atomic bids satisfied hy. Later, we will show how

to map a multi-unit variant of the OR-language into LL. For
example, if bidder 5 wants to express that she will pay one
monetary unit ¢) for two copies ofp and three monetary
units for obtaining a copy op together with a copy of,
then she can submit the following bid (the LL connectives,
such as® and—o, will be introduced in the next section):

[(p5s @ps) —u] ® [(ps ® q5) — (U u @ u)]

Now, fromps we cannot prove anything, from two copies of
ps We can proveu, from ps andgs we can proveu?, from
two copies ofps and onegs we can still only prove:?, and
from three copies of; and onegs we can prove:?.

Let us also briefly sketch our approach for modelling the
WDP. Each bid is represented by a formal®;, like the

one shown above. The multiset of goods owned by the auc-

tioneer can be represented by a (multiplicative) conjamcti
of these goods, €.0500DS=pRpRq¢RrXr @ r. We

The remainder of this paper is organised as follows. Af-
ter recalling the basic concepts of LL, we first show how to
embed (multi-unit variants of) three important bidding-lan
guages into LL. We then show how to model the problem
of finding a suitable allocation as the problem of finding a
proof for a LL sequent of the kind outlined above and we
provide a formal proof of this correspondence. Before con-
cluding, we discuss a number of possible extensions of the
basic framework, including mixed auctions and general for-
mula auctions.

Background on Linear Logic

In this section, we review the relevant notions from LL. For
full details, the reader is referred to Girard (1995) ancelo
stra (1992). LL provides a resource-sensitive account of
proofs by means of a controlled use of the structural rules
of weakening and contraction within the sequent calculus:

I'FA A AFA
[LAFA CT,AFA

Removing the structural rules, we are lead to split the usual
connectives into two classes, since, for example, theviello
ing presentations of rules are not equivalent anymore:

r-A I"'+B A I'FB
ITFAAB '-AAB

Without structural rules, sequents behave as multisetsrof f
mula occurrences and we have to distinguish connectives
that take the concatenation of contextautiplicativeg and
connectives that demand a shared contadtlitives.

Given a set of positive atomd, the language of LL is
defined as follows (wherge A): L

p|1|L|T|O|LY|L®L | LBL | LeL | L&L | 'L | 7L

Linear negation(-)* is involutive and each formula in LL
can be transformed into an equivalent formula where nega-
tion occurs only at the atomic level. The conjunctiém® B
(“tensor”) means that we have exactly one copy4otnd

w

RA

RA

also need a formula that expresses that each of these ittmsyne copy of B, no more no less. Thus, e.gl,® B ¥ A.

can go to (at most) one of the bidders. For example, for (one
copy of)p and a group of three bidders, this formula would
be (p — p1) & (p — p2) & (p —o p3), using the additive
conjunction operator of LL. LetnAP be the (multiplicative)
conjunction of formulas of this kind for each copy of each
good. Then the auctioneer can achieve a revenusfaind
only if there exists a proof for the following sequent:

GOODS MAP, BID1, ..., BID, - u*

Moreover, the allocation achieving that level of revenue ca
be read off the proof. Solving the WDP then amounts to
finding the largest valué such that the above sequent can
be proved, and then extracting the corresponding allatatio

We might say that in order to sell and B, we need some-
one who buysA and B, while here there is just a buyer for
A. We will not directly use the disjunctiod % B (“par”);
rather we use linear implicatiosd — B := A+ ® B. Lin-
ear implication can be seen as a form of deal: “fiorl sell
you B”. The additive conjunctiotd & B (“with”) intro-
duces a form of choice: we have onedtndB and we can
choose which one. For examplé & B - A, but we do not
have them bothA & B ¥ A ® B. The additive disjunction
A @ B ("plus”) means that we have one df and B, but
we cannot choose, e g4 - A® BbutA® B ¥ A& B.
The exponential$A and? A reintroduce structural rules in
a local way:!-formulas licence (C) and (W) on the lefthand
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Table 1: Sequent Calculus for Intuitionistic LL

side oft; 7-formulas licence (C) and (W) on the right. Intu-
itively, exponential formulas can be copied and erased; the
are relieved from their linear status.

We will use the intuitionistic version of linear logic (ILL.)
obtained by restricting the righthand side of the sequent to
a single formula; so for example we will not haveand %%
in the language. In fact, we will mostly use ILL augmented
with the global weakening rule (W). The reasons for these
choices will become clear later. The rules of the sequent
calculus for ILL are shown in Table 1 (Troelstra 1992).

To control complexity, we can restrict attention to certain
fragments:intuitionistic multiplicative linear logiqIMLL)
using only® and —o; intuitionistic multiplicative additive
linear logic (IMALL) using only ®, —, & and®; andHorn
linear logic (HLL). In the latter, sequents must be of the
form X, T" - Y (Kanovich 1994), wher& andY are ten-
sors of positive atoms, arid is one of the following (with
X, Y; being tensors of positive atoms):

(i) Hornimplications:(X; - Y1) ® - ® (X,, — Y2,)
(79) &-Horn implications:(X; — Y1) & --- & (X, — Y),)

For these fragments we can rely on the following proof-
search complexity results. MLL is NP-complete and so is

MLL with full weakening (W) (Lincoln 1995). The same
results apply for the intuitionistic versions. HLL is NP-
complete, and so is HLL + W (Kanovich 1994). MALL and
IMALL are PSPACE-complete (Lincoln et al. 1992).

Bidding Languages

In this section, we provide three examples for bidding lan-
guages that can be represented using different types of Horn
fragments of LL. These are the well-known and widely used
XOR- and OR-languages (Nisan 2006), as well as the lan-
guage ofk-additive valuations (Chevaleyre et al. 2008),
which itself is an instance of the framework of bidding lan-
guages based on weighted propositional formulas (Boutilie
and Hoos 2001; Uckelman et al. 2009). Importantly, while
all the works just cited discuss bidding languages for auc-
tions in which goods are available gingle units in what
follows we shall present languages that are also suitable fo
multi-unit CAs.

In a multi-unit CA, an auctioneer wants to sell the ele-
ments of a finite multiset of goods1 (with finite multi-
plicity) to a group of bidders. LetM(p) denote the mul-
tiplicity of item p in M. We define the set ohtoms
A = {p1,...,pm} as the set of elements d¥1 ignoring
their multiplicity.

There is an isomorphism between multisets and tensor
formulas of atoms (up to associativity and commutativity):

o~

{my,...,my} m - Qmy

Thus, we can represent each subset M as atensor prod-
uct. Moreover, ifM = A andN = B, then the (disjoint)
union of M and N is isomorphic tod ® B.

We now want to define languages to encegduations
v: P(M) — N, mapping subsets o¥1 to prices?

Atomic Bids

To model prices symbolically, we assume a finite set of dis-
tinct weight atomsV = {ws, ..., w, }. In fact, often we will
use just one weight atom We writeu* for the tensor prod-
uctu ® --- ® u (k times). To associate weights with num-
bers, we define a functiomu! : W — N, with val(u) = 1.

Let W® be the set of all finite tensor products of atoms
in W, modulo commutativity (including the “empty” prod-
uctl). Thatis W® = {1, wy, we, w1 @ws, . ..}. We extend
val to W® by stipulatingval(1) = 0 andval(¢y ® ) =
val(p)+val(y). In particular, this means thatl(u*) = k.

Definition 1. An atomic bid is a formula of the forlB —o
w, whereB is a tensor product of atoms id andw € W.

In a CA, given a bidB — w, we can work with two al-
ternative assumptionsio free disposa#t the bidder’s side,
meaning that the bidder will pay if she receivesexactly

B, andfree disposakt the bidder’s side, meaning that the
bid is satisfied whenever the bidder receia¢deastB. In

the sequel, unless otherwise stated, we will always assume

2For ease of notation, we shall assutne N.



free disposal. To model free disposal, we will use ILL with
weakening (W)

Definition 2. Every bid formulasiD generates a valuation
vgip Mapping multiset’ C M to prices:

vgip(X) = max{val(w’) | w' € W¥ and X, BID I w'}

Definition 2 applies to atomic bids as well as to the more
powerful bidding languages we will define in the sequel. In
the case of atomic bidsiD = (B — w), it simply says that
vB_ow(X) = w wheneverX is equal to a superset of the
multiset isomorphic td3, andvp .., (X) = 0 otherwise.

In case the only weight atom usedusi.e., if W = {u},
then Definition 2 can be simplified and we obtéin:

vgip(X) = max{k | X,BID - uk}

XOR-bids

An XOR-bid (By,w1) XOR - - - XOR (By, wy) expresses that

a bidder would like to get at most one of the bundles she
specifies, for the associated price (Nisan 2006). In LL, this
idea can be captured via the additive conjuncti&ii (

Definition 3. An XOR-bid is a formula of the form
(Bl —o0 wl) &Z & (Bg —0 wg),

where eachB; is a tensor product of atoms id and each
w; IS a weight atom from.

Definition 2 provides the semantics for XOR-bids by fixing
the valuation functions they generate.
Example 4. Given an XOR-bid(p — u) & (¢ —o
w) & (p® g ® r — z), suppose the auctioneer provides
{p,p,q,7,s}. Using these goods, it is possible to satisfy
each of the atomic bids in the XOR-bid. For example, the
auctioneer can satisfy the bid produciag
P,grPpRIAT oz =z
PPgTSPRI®r —~zkz
ppg;Ts s, (p—ou)&(g—ow)&(p@qRr —2)k =2

However, we have to choose which atomic bid to satisfy,

according to the meaning &f.

Example 5. We define two classes of valuation functions,
adapting their definitions from Nisan (2006) to the multi-
unit case. The simple additive valuatian,X) = |X| for

X C M, can be expressed via the following formula, which
is exponential in size in the number of items.i (we
slightly abuse the notation identifying the multigetwith
the corresponding tensor formula):

&BQM(B —o0 ulBl)

The simple unit demand valuation(X) = 1 for X #
andv(0) = 0, can be expressed in the XOR-language via:

&L

(P —w) & & (pm — u)

3Alternatively, we could use the additive constant of linear logic
T and write bidsB ® T — w to make it explicit in the syntax that
a bidder has free disposal.

“We can define® = 1. Using weakening (to represent free
disposal), from- 1 we getI" + 1, for anyI'. So every bid pro-
ducesu?, since it will always be satisfied by any allocation (also
by allocating nothing), e.gn, p ® ¢ — u* F 1 will be provable.

We say that a valuatiom : P(M) — N is monotonic

if and only if for all X;, X, C M, if X; C X, then
v(X;7) < v(X3). Recall that we can model both free dis-
posal or the lack thereof simply by usikgwith and with-

out weakening (W), respectively. Following Nisan (2006)
and Cerquides et al. (2007) we can easily prove that, also
in our framework, the XOR-language without free disposal
can express all valuations and the XOR-language with free
disposal is fully expressive over the space of monotonic val
uations.

Proposition 6. The following hold:

(1) Every valuationv : P(M) — N is generated by some

XOR-bid without free disposal.

(2) XOR-bids with free disposal generate all monotonic valu-

ations and only those.

Proof. (1) Given a functiorw: P(M) — N, for each pair
(X,h) € v, define an atomic bidz; ® --- ® x; — h)
wherezr; ® --- ® 2, = X andh is a weight symbol for
h. Joining all the atomic bids vi&, we have a complex
bid &;BID,; generating the functiong,,sp,. Now, for any
Y C M we getug,gp, (Y) = v(Y), sincethe onlyw’ we
can prove with the sequent &;BID; + w' is the weight
associated with".

(2) In one direction, if a functiorv is generated by an
XOR-bid BID with free disposal, then, giveX; C Xo,

if X;,B8ID F w', by applying weakening, we also have
X,,BID F w’. Hence,{w | X1,BID - w'} C {w
X,,BID F w'} and thereforev(X;) < v(X3). For the
other direction, we can take the construction in the proof
of part (1), but now allowing for weakening. O

OR-bids

An OR-bid (B;,w;) OR- - - OR(By, w,) states that a bidder
agrees to receive any number of disjoint bundles at the sum
of their prices (Nisan 2006). The appropriate LL connective
for modelling this kind of semantics is the tensar)(

Definition 7. An OR-bid is a formula of the form
(Bl —o wl) R...Q (Bg —o U}g),

where eachB; is a tensor product of atoms id and each
w; IS a weight atom fromvy.

The intended meaning of a tensor/OR-bid is that the bidder
would pay the sum of the correspondimg for each bundle

of goodsB; she gets. The formal semantics of OR-bids is
again given by Definition 2.

The usual condition on OR-bids, namely that the required
bundles of goods do not overlap, works well if goods are
available in single units: since we are here considering the
multi-unit case, the condition of not being allowed to over-
lap is replaced by imposing that the right amount of goods
is provided in order to satisfy the atomic bids in the OR-bid.
For example, the OR-bi¢p, 1) OR(p, 1) will be fully satis-
fied only if the auctioneer provides two copiespofThis is
the meaning of the provability of a sequent containing OR-
bids in Definition 2.



Example 8. Given an OR-bidp ® ¢ — v) ® (¢ — w), The class ok-additive languages are a special case of the
suppose the auctioneer providgs ¢}. The OR-bid can be  family of languages based on weighted propositional for-
satisfied in two possible ways: mulas (Uckelman et al. 2009). Such languages have been
P, ¢, p®qg—ovkv widely studied in the Al literature; for the specific use in
P4, p®q—ov,(q— w)F v W CAs they have first been proposed by Boutilier and Hoos
QL (2001). AgoalbaseG is a set of pairgp, w), whereyp is

Pa(pP®g—ev)@(q—ew) v a proposition (in classical logic) and is a weight. G in-

or: Y duces a valuation that maps any assignment of truth values
9wk w ;
pdd—owrw to atoms to the sum of the weights of the formulas that are
— - satisfied by that assignment (which we can think of as a bun-
pq,(p®q—v),g ewkw oL dle of goods). A characterisation gfadditive valuations
Pq,(P®qg—v)®(q—w)kw in logical terms is provided by Uckelman et al. (2009); the
The definition of the valuation generated by OR-bids then class ofk-additive functions is proved to be equivalent to the
lets us take the maximumefandv. class of functions generated by goalbasepasitive cubes

i.e., conjunctions of positive literalép; A - - - A pg, w).
A difference between the OR-language and goalbase lan-
guages (including:-additive languages) is that the accepted

Example 9. In the OR-language we can express the simple
additive valuation by means of the following formula:

‘ ‘ atomic bids may overlap. For example,G¢h={(p A ¢, 5),
_ ® (pi ~w)@--- @ (pi — )] (p,3)}, the allocation ofp and ¢ will satisfy both atomic
€{lm} M(p) times bids. In our framework, this means that the allocated goods

. o are not consumed within a goalbase. We define atomic bids
Observe that the OR-language is only attractive if we do as- 5t interpret goods as beimgusableas formulas of the

sume free disposal (i.e., weakening); without it, it has the ¢, (B; — B, ® w;), whereB, is a tensor of atoms.
same expressive power as the simple language of atomic ’ Lo ’

bids. For example, without free dispos@l,— u*) ® (g —o
u*") andp ® ¢ — u***" generate the same valuation. (Bi — B1®@wi) ® -+ @ (By — By ® wy),

It is interesting to remark that the usual characterisation where eachB; is a tensor product of atoms id and each
of the expressivity of the OR-language for single-unit CAs ), is a weight atom fron.
(Nisan 2006) cannot straightforwardly be extended to the
multi-unit case. In the single-unit case, OR-expressi@ms g
erate functions such thav (X UY") > v(X)+v(Y'), when-
everX NY = (. If we try to apply the same condition to
the multi-unit case, taking the disjoint union &f andY’,
we do not arrive at a correct characterisation of the expres-
sivity of the OR-language. Take the expressam: (p —
u) ® (p® p — u). We have that the generated function atomic bids in(> are satisfied:
will provide a value of 1 of{p, p}, vor({p, p}) = 1, which v who®w
is less thanw({p}) + v({p}) = 2. The problem is con- — eL

. : / . [ [
nected with the interpretation of the marginal value that ca PaTP®q PIGIVLWFUIW
P,PR®G—pR®I®V,WHFVRW

Definition 10. A k-additive bid is a formula of the form

The semantics ok-additive bids is given by Definition 2.
Note that we can also mix different kinds of bids, e.g., bids
that do and do not consume goods (OR- Aratlditive bids).
We will discuss in more detail the relationship between dif-
ferent types of resources later.

Example 11. Suppose? = {(p® g - p R ¢ ® v), (p —o

p ® w)}. If the auctioneer providep and g, then all the

be associated with various copies of a same item. Moreover, ®L
since we are dealing with multisets of finite multiplicitiiet pEp PRWPRG PRIV VW o
valuations generated by our languages cannot grow arbitrar PGP~ PROWPRG—oPRIRIUVFVROW
ily, so at a certain point the function generated by the OR- Regarding the expressivity éfadditive bids, it is possible
expression will provide a constant value. to adapt the relevant results of Uckelman et al. (2009) to the
We leave the full investigation of the expressivity of our ~ case of multiple units and to our LL framework.

tensor language to future work. Remark 12. Intuitionistic (and classical) logic can be

. translated into LL (Girard 1995). Define the translation
K-additive Languages ()" as follows: p* = p, (AA B)* = A* & B*, A —

The language of:-additive valuations (Chevaleyre et al. B = !(4%) — B*, (AV B)* = A* ® B*. We have
2008) is based on the idea of specifying weights for the that: I' k. A if and only if II'™ +, A*. So we can
marginal valuations derived from sets of goods, rather than translate any goalbase into a LL formula with the same log-

direcﬂy Specifying the values of full bundles. LM[]{;] be ical behaviour, in the sense that they will be satisfied by the
the set of all multisetd” C M such that]Y| < k. A same sets of resources. However, the full power of exponen-
valuationv is called k-additive if there exists a mapping tials makes LL with weakening, though decidable (Kopylov
v M[k] — Z such thatv(X) = Y {v'(Y) | Y C 1995), exponential-space hard (Urquhart 2000), while full

X andY € MJ[k]}. The notion ofk-additivity gives rise LL is undecidable (Lincoln et al. 1992). Thus, while in
to a bidding language: by specifying a (marginal, possibly Principle one can model the interaction of bounded and un-
negative) price for each bundle of size k (as an atomic bounded resources (sets and multisets) in LL, the price to
bid) we can represent and thus. pay is complexity.



The Allocation Problem

In this section, we formulate the problem of computing an
allocation producing a certain amount of revenue as the
problem of finding a proof for a LL sequent. This allows
us, at least in principle, to model the winner determination
problem as a series of calls to a LL theorem prover.

Let M again be a multiset of goods owned by the auction-
eer, and letV = {1, ...,n} be the set of bidders. We add to

the set of atomsd = {p1,...,pn} all atomSp{ to express
that the good; is allocated to the individugl. From now

on, we will assume that bids are defined using these indexed then we are done.

names of goods, i.e., biddgre N must express her bid
using the set of atomg?, ..., pl, }.

In order to express that each (copy of) a good may be
allocated to any of the bidders (but not to more than one),
we shall use the following formula:

Q&jen(p — p)IMP
peA
Given bidsBiD,, ..., BID,, anallocationyielding revenue
kis a functiona : M — N U {*} with >~ vgpp, (4;) = k,
whereA; = a~!(i) anda~!(x) are the unallocated goods.
We now define the concept aflocation sequenwhich is
intended to capture the problem, faced by the auctioneer, of
finding a feasible allocation returning a particular revenu
We restrict ourselves to the caselof = {u}. We takeM
and\ to be fixed, andvapr to be defined accordingly.

Definition 13. The allocation sequent for revenueand
bidsBiD4, ..., BID,, is defined as the following LL sequent:

M, MAP,BID1, ...,BID, F u”

We are now ready to state the relationship between proofs
and actual allocations.

Proposition 14. Givenn bids in any of the bidding lan-
guages introduced (XOR, ORsadditive), every allocation
« with revenué; provides a proofr of an allocation sequent
for k, and vice versa, every proafof an allocation sequent
for k provides an allocationx with revenuek.

MAP =

1)

Proof. We sketch the main steps of the proof.

(=) Leta : M — N U {x} be an allocation for
BID4,...,BID, yielding revenuek. W.l.o.g. assume the
first | < n are the bidders receiving a nonempty bun-
dle. LetA,,..., A; be those nonempty subsets.bf, i.e.,
k= ngz vein, (A;). For eachj <[, we defineA; as the
multiset of atoms ir4; indexed with the name of biddgr

By definition, if vep, (A7) = val(w), then A%, BID; I w.

So we can start building the prosf applying @R):
Al BID1 F wy Al BID; F wy

1 1 l l
A1,y Qhyy ey @1y -+, Qg ,BID1, ..., BIDIF w1 @ -+ @ wy
————

1
Al Al

SFormula (1) is required in order for our approach to work with

For eachzg: € AfU---U Al, we use axioms; F a;; so we
get by application of-{oL):

1 1 l 1
aj; - aj @1y .y Qpyyee5 ALy, a5, ,BID1, ..., BID; F wj
1 J l
ai,...,|aj,a; — aj|...,an;,BID1,...,BID; - w;

From eachu; —o a? we can buildvAp, inferring, byn—1

applications of &L), the formulalcn(a; — aj).

If Aq,...,A; equals the full multiset of goods\,
Otherwise, we can weaken the
proof by introducing atoms ina~!(x) and formulas
(c—oct) &+ & (c —o ), for eachec € a1 ().

(«) Given any proofr of an allocation sequent, we can
transform it as follows. First, we can move the applicatibn o
weakening down. Then we can also delay the application of
& in such a way that every application dtR) is below any
application of ®R).® So we obtain a proaf’ such that there

is no application of weakening an&l() above the step:

’
s

’
M ,awaj,bl,..

by Fuf @
where M’ C M, a — a; are some of the-conjuncts
composingMAP, and eacth; may be an atomic bid, a part

of a k-additive bid, a part of an OR-bid, or an atom in an
XOR-bid. Sincer’ is proved without weakening ard, 7’

is provable in MLL. Sequents in MLL afgalancedLincoln

et al. 1992): the number of positive and negative atoms oc-
curring in the sequent must be the same. So, using step (2),
we can defined; = {a; | a; € 7'}, since those are the
goods actually used to satisfy bidszih O

In this way, we could import known algorithms for winner
determination for CAs into our framework. On the other
hand, given a proof in the fragments we saw, we can trans-
form it into a cut-free proof in polynomial time (Girard, Sce
drov, and Scott 1992). In a cut-free proof, each connective
is visited exactly once, so given a proof of the allocation se
guent, we can retrieve an allocation in polynomial time.

For the three languages presented, allocation sequents be-
long to HLL, so the complexity of checking whether revenue
k is attainable is in NP (Kanovich 1994), meaning that our
form of modelling the problem does not increase complexity
with respect to the standard approach (Cramton, Shoham,
and Steinberg 2006). Of course, Proposition 14 only pro-
vides a method for solving thaecision varianif the WDP.

In practice, we will want to find the maximal revenksuch
that«* is provable. This can be achieved by using binary
search over possible values bfand checking the corre-
sponding allocation sequents in turn.

Extensions
Next, we discuss several extensions of our basic framework

k-additive languages, since here we have to model that, on the one for modelling CAs in LL. We shall restrict ourselves to brief

hand, goods areeusablewithin the bid of a single bidder and, on
the other, goods are nsharableacross the bids of distinct bidders.

If we were to restrict attention to XOR- and OR-languages, then we
could do without indexed goods and without formula (1).

examples illustrating the main ideas.

SPermutation rules in LL have been fully investigated by
Galmiche and Perrier (1994).



Enriching the Language

In LL, we can distinguish betweesharablegoods, between
bidders reusablegoods, for one bidder, and simple consum-
able goods. The idea that LL may be useful in designing
bidding languages that can distinguish sharable from non-
sharable goods has already been hinted at by Boutilier and
Hoos (2001). We can define a bounded form of exponential
as!‘p, meaning that we can useat most/ times (Girard,
Scedrov, and Scott 1992). We can then define the full avail-
ability of a good for the bidders 4§ where is big enough,
so!‘p can be shared by all bidders demanding it. In order to
express the reusability of a good for a single bidgewe

can write!“p’, which will satisfy only bidderj’s bids. In or-

der to make explicit that can reuse as much as she likes,
we can add the formulg? — “p’ to j’s bid formula.

Mixed Auctions

In mixed auctiongCerquides et al. 2007), bids are encod-
ing valuations over multisets tfansformations A transfor-
mation is an input-output paid, O) of multisets of goods,
indicating to the auctioneer that the bidder is willing topr
duceO if supplied with I (as well as to pay an associated
price). An atomic bid (I, O), w) will be satisfied by the al-
location of transformatiol’, O') if I’ is enough to satisfy
the bidder's demand (I’ © I) andO is enough to satisfy
the auctioneer’'s demar@ (O’ C O). In LL, we can define
mixed atomic bids ag§ — O ® w. We can define bidding
languages on top of atomic bids as before; and the valuation
generated by a complex mixed B is given by:

veip (I, 0) = max{val(w') | w' € W¥® andI,BID - O@w'}

Example 15. Suppose the auctioneer’s available inplut

is {p, ¢} and she wants to obtain an outp(tof (at least)
{r, s}, using the following transformations offered by the
bidders:p - r®t® v, t — s ® p ® u. Since the sequent

is provable, there is a feasible allocation:
[¢,P]1,p =~ rRtQRu,t osQRpRuF[rlslo@pRuv

As in the work of Cerquides et al. (2007), the XOR-language
can be proved to be fully expressive with respect to valua-

tions defined over transformations. Moreover, an allocatio
of transformations to bidders in the sense of Cerquides et al
(2007) provides a proaf of the sequent

I,BID4,...,BID, F O @ u¥,

and,vice versagiven a proofr we can define an allocation
as we did in the previous section.

Formula Auctions

We could in principle generalise the languages we saw al-
lowing for any kind of formula to be a bid. Generalising
even further, we could replack! (a tensor of atoms) with
an arbitrary formulad. This leads to what we call for-
mula auction in which, intuitively speaking, the auction-
eer owns a “big” formulaA, the bidders submit their bids
BID4,...,BID, (arbitrary formulas, using an indexed alpha-
bet), and the WDP amounts to finding “small” formulas
By,...,B,suchthatA - B ®...9B, andBj, BID; F w;

(Wherijf is the indexed version dB;) for all biddersj and

the sum of the values of the weight atomsis maximal. (If
desired, this can also be combined with the specification of
a required output for the auctioneer.)

Interestingly, our approach also extends to this very gen-
eral form of one-to-many negotiation. Indeed, it is possibl
to construct ainglesequent that corresponds to the WDP:

A,MAP,BID1, ..., BID,, F C[u"]

®3)

Here,C is the output which may contain a tensor formula

u® representing payments; amhp is a generalisation of
formula (1) that can be defined by induction on formulas.
The provability of sequent (3) entails the feasibility o&th
exchange (the demands match the supplies). The complex-
ity bounds of the proof search for sequent (3) will depend
exclusively on the language in which formulas are defined.

Conclusion

We have argued that linear logic provides a powerful formal
framework in which to model combinatorial auctions. Not
only does LL allow us to extend several of the standard bid-
ding languages to the multi-unit case in a generic manner,
but we can also model the procedural aspects of auctions
inside the logical framework, by relating the winner deter-
mination problem of auctions to the notion of provability.
Future work will include (1) the use gfroof netgGirard
1995) to simplify the structure of proofs and to provide a
semantic (functional) interpretation of the auction itsahd
(2) modelling objective functions other than sum-taking so
as to extend the approach from combinatorial auctions (with
utilitarian aggregation) to other forms of resource altmra
(e.g., fair division with egalitarian aggregation).
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