
Beyond the Regular: A Formalization of Non-Isochronous
Metrical Structure

MSc Thesis (Afstudeerscriptie)

written by

Tom Hendriks
(born September 28th, 1992 in Nijmegen, The Netherlands)

under the supervision of Bastiaan van der Weij MSc and Prof Dr
Henkjan Honing, and submitted to the Board of Examiners in partial

fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
December 20th, 2016 Bastiaan van der Weij MSc

Prof Dr Henkjan Honing
Dr Maria Aloni
Dr Raquel Fernandez
Dr Makiko Sadakata
Prof Dr Benedikt Löwe (chair)





Abstract

Meter perception is the process of inferring metrical structure, a hierarchical and regular mental
framework of beats, from an auditory signal. Research on meter perception revolves around
the question how listeners perform this task. Formal theories provide a complete abstract
representation of metrical structure. Thereby, they provide a clear overview of its key properties
and can be implemented into cognitive models, which may in turn clarify the cognitive processes
behind meter perception.

Most existing formal theories of metrical structure disregard patterns that contain non-
isochronous (unequally spaced) beats, while many musical pieces from non-Western musical
cultures, such as Balkan or African, induce such meters. Recently, London (2012) proposed a
theory of metrical structure that is grounded in empirical perceptual studies and cross-cultural,
by incorporating non-isochronous metrical structure. However, this theory is not formal: it is
not completely and unambiguously specified.

This thesis is concerned with formalization of the theory of London. Formalization reveals
multiple ambiguities and inconsistencies within the theory of London, which are evaluated by
defining additional rules to the formalization and analyzing the effect of these rules on the
space of possible meters. In future research, the proposed formalization may be implemented
into a cognitive model of meter perception. Such a cognitive model may provide insight into
the cognitive processes behind meter perception within a cross-cultural paradigm.
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Chapter 1

Introduction

Any person without sensory or cognitive disabilities can ‘feel the rhythm’ of many musical
pieces (Patel, 2008; Honing, 2012). This feeling is related to an underlying regular pattern
that is called metrical structure by musicologists and cognitive scientists. One of the core
questions within research on cognition and perception of rhythm is how listeners can ‘feel’
this metrical structure. This question has led to many different theories of meter perception:
the way in which a particular metrical structure (a meter) is induced in the listener upon
hearing a sound signal. The 1950s witnessed the rise of formal theories of cognition in general
(e.g., Chomsky, 1956, 1957), followed in the 1970s by formal theories on meter perception in
particular (Longuet-Higgins, 1978).1 A formal theory of metrical structure provides a complete,
abstract representation of metrical structure and specifies rules that unambiguously decide
which patterns can serve as a meter. Formal theories have many advantages; they provide a
clear overview of key properties of metrical structure and they can be implemented into cognitive
models of meter perception. In turn, cognitive models can visualize and clarify the cognitive
processes behind meter perception.

Due to their focus on Western classical music, many theories on meter perception require
that all pulses (or beats) in metrical structure are isochronous (i.e., equally spaced). However,
many musical pieces from non-Western musical cultures, such as Balkan or African, induce a
metrical structure that contains non-isochronous beats as well. Most existing formal theories
do not account for these meters, while some current theories that do account for them, are not
formal. A cognitive theory of metrical structure should be: (1) as simple as possible, while
capturing all relevant details; (2) formal, that is, completely and unambiguously specified; (3)
grounded in empirical perceptual studies and cross-cultural (and therefore incorporating non-
isochronous metrical structure2). Most existing formal theories of metrical structure do not meet
requirement (3) by disregarding non-isochronous metrical structure. Recently, London (2012)
proposed a theory of metrical structure that does meet requirements (1) and (3): it is grounded
in empirical research on perception and incorporates non-isochronous metrical structure within
a theory that is simple with respect to the subject matter. However, the approach of London
is not formal: it leaves some details unspecified and thereby does not meet requirement (2). In
order to meet all three criteria, this thesis proposes a formalization of London’s theory. This
formalization differs from related work by providing an analysis of aspects in London’s theory
that are underspecified. In the current project, we provide a direct formalization of London’s
well-formedness constraints. Then, we show how this formalization generates meters that are
not well-formed according to London’s theory. We address the problems of underspecification

1Indeed, it was Longuet-Higgins (1973) who coined the term cognitive science as a collective name for the
interdisciplinary field of sciences that is most likely to be enriched by artificial intelligence studies; see also Pearce
and Rohrmeier (2012).

2Empirical studies prove that non-isochronous metrical structure is indeed perceivable (e.g., Hannon & Trehub,
2005a, 2005b; Hannon, Soley, & Ullal, 2012; Kalender, Trehub, & Schellenberg, 2013).
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and inconsistency by proposing additional constraints and analyzing their effect on the set of
permissible meters. Before formalization, we provide an overview of literature, as well as an
overview of aspects that have been left open by London’s proposal and which need to be resolved
in order to construct a formalization.

Before theories of meter perception can be discussed, we need to know what meter actually
is. Section 1.1 presents different views on the definition of meter. Subsequently, Section 1.2
provides an overview of the current thesis.

1.1 What is meter?

The definition of meter is a starting point for many books and articles about meter perception
and it is not trivial; researchers wield different meter definitions that do not always agree. This
section discusses some definitions of meter in literature, which properties of meter they generally
agree about and in which they differ.

In most literature, meter is defined as a mental framework of beats or pulses that is, to
some extent, hierarchical and regular. The notion of a mental framework refers to the idea
that meter is a form of structure in the mind of the listener (instead of the musical score,
composer or performer) that guides perception of rhythmic stimuli. The idea of meter as a
mental phenomenon is generally shared among recent literature on meter perception (most
explicitly in Clarke, 1999; Honing, 2012, 2013; more implicitly in Lerdahl & Jackendoff, 1983;
Povel & Essens, 1985; Palmer & Krumhansl, 1990; Temperley, 2007, 2013; London, 2012; Vuust
& Witek, 2014). It relates to the often discussed distinction between meter and rhythm: while
rhythm refers to the actual sound signal, meter is induced in, or constructed by, the listener
(e.g., Clarke, 1999; Honing, 2013).

Ideas of hierarchy and regularity mainly originate from the first formal theories on meter
perception by Longuet-Higgins (1976, 1978) and Lerdahl and Jackendoff (1983). Lerdahl and
Jackendoff (1983) define meter as “a regular pattern of strong and weak beats” (p. 12) that is
inferred by the listener upon hearing a sound signal. Respective theories propose that hierarchy
and regularity help listeners to actually use meter as a framework; when the listener perceives
some beats as stronger than others, they can predict this regular alternation and use this
abstract, mental knowledge to make sense of unfamiliar melodies (Palmer & Krumhansl, 1990).

The exact form of the metrical framework differs among different researchers. Longuet-
Higgins (1976), Lerdahl and Jackendoff (1983) and Palmer and Krumhansl (1990) propose
multi-leveled hierarchies of pulses that are fully regular, while in Povel and Essens (1985), this
mental framework resembles a single isochronous sequence of beats (‘clock’) that is subdivided
only one level below, in a less regular fashion. Here, the respective theories and models come
into play. Depending on these theories, meter definitions of different researchers are sometimes
more strongly hierarchical and regular, and sometimes less.

Lastly, it is a point of discussion whether the metrical framework is discrete. Desain (1992)
argues that meter is not a symbolic notion, but should be seen as a continuous structure of
attentional peaks, that is, an expectancy curve. Likewise, Large and Kolen (1994) propose that
meter perception is a dynamic entrainment process that builds upon resonance, as derived from
ideas on dynamic attending. This theory proposes that perception, attention and memory are
inherently rhythmical; these processes entrain to music and generate ‘anticipatory pulses of
attention’ (Large & Kolen, 1994; Jones & Boltz, 1989). Large and Kolen (1994) deliberately
present no definition of meter that is revised to their theories, as they identify unresolved issues
in their model, so it cannot yet be linked to a theory of meter. Later work does introduce
definitions of meter within this paradigm. For instance, Vuust and Witek (2014) regard meter
as the result of the interplay between external periodicities and internal attending processes.

Meter definitions using entrainment and attending are often associated with models involving
continuity, subsymbolism and flexibility (e.g., Desain, 1992; Large & Kolen, 1994; Vuust &
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Witek, 2014). As it seems natural to think of a mental framework as a discrete structure (for
instance in the form of a tree, line or grid), the ‘entrainment definitions’ might seem incompatible
with the idea of meter as a mental framework. But this is not necessarily the case: ‘entrainment
definitions’ of meter provide information on the cognitive mechanisms behind meter, rather than
defining what meter is. The mental framework of meter might not be discrete, but it can still
be seen as a framework that guides rhythm perception. Even in this continuous view, the other
discussed properties of meter still hold as well: meter is still a mental construct, entrainment
involves oscillations and therefore periodicity (a less strict form of regularity), and when there are
multiple oscillations, a hierarchy emerges of stronger and weaker peaks. Moreover, in resulting
cognitive models, continuous curves can be abstracted to discrete frameworks. The theory of
London (2012) is an example of this. London defines meter as a form of entrainment behavior
that can be learned and allows listeners to synchronize their perception to rhythms they hear.
However, London argues that the corresponding attentional peaks map to time points. Thereby,
London designs a representation of meter that is explicitly discrete, even though he takes ideas
of entrainment and attending into account.

In summary, the generally agreed definition of meter is a mental framework of beats, which
is, to some extent, hierarchical and regular, and may or may not be discrete. Among different
books and articles, there are nuances in this definition in terms of hierarchy, regularity and
discreteness.

1.2 Overview

This thesis is set out as follows. Chapter 2 provides an overview of relevant theories and
models of metrical structure and argues that a cognitive model of metrical structure should
be hierarchical and incorporate non-isochronous meters. It concludes with a discussion of the
theory of London (2012), which incorporates both these requirements, followed by the proposal
of formalization. Chapter 3 discusses related work in formalization of metrical structure and
evaluates the differences between these formalizations and the current formalization. Chapter 4
introduces the formalization, along with a derivation of its agreement with the well-formedness
rules as defined in London. The chapter also introduces additional rules to address inconsis-
tencies within London’s theory. Chapter 5 presents an analysis of the formalization, along with
a discussion of the space of possible meters, and the effect of the proposed additional rules on
this space. Chapter 6 contains a conclusion and suggestions for further research, in which the
formalization may be implemented in a cognitive model that can be tested empirically.

3



Chapter 2

Theories and models of metrical
structure

Music theoretic accounts of meter date back into at least the eighteenth century (for an overview,
see Mirka, 2009). This thesis focuses on studies in the more recent cognitive tradition, that is,
from the late 1960s onward. In these last 50 years, many different theories of meter perception
have been proposed. Some theories are tested with models or experiments, while others only
propose a metrical representation that could be implemented in a model.

This chapter discusses a selection of prominent theories and models of meter perception. The
chapter is divided into four sections. Section 2.1 contains a discussion of theories and models
that are strongly hierarchical. Section 2.2 presents a weakly hierarchical model. Section 2.3
discusses evidence for strongly hierarchical representations. Section 2.4 discusses the theory of
non-isochronous metrical structure by London (2012) and concludes with the current proposal
of formalization. The previous chapter discussed nuances in meter definition with regard to
hierarchy, regularity and discreteness. These factors recur in the theories and models discussed
in the current chapter, and they will occasionally be used to differentiate between the theories
and models.1 Note that theories of meter perception are often built on theories of beat induction,
which is the perception of a single recurring beat instead of a hierarchy of beats (for accounts of
beat induction, see for instance Povel & Essens, 1985; Desain & Honing, 1999; Todd, O’Boyle,
& Lee, 1999; Patel, 2008; Honing, 2012; Todd & Lee, 2015).

2.1 Strongly hierarchical models

This section contains a discussion of strongly hierarchical models. This discussion includes
theories on metrical grammars and metrical grids, which are early formalizations of meter
perception and metrical structure, respectively. The section concludes with a brief overview of
three other strongly hierarchical models that are more formal.

2.1.1 Metrical grammars

Early accounts for formalization of meter perception have arisen in the late 1960s and focus
on the similarities of music and language. Simon (1968) states that appreciation of music
relies on finding and understanding patterns. Inspired by findings in linguistics, Simon (1968)
proposes that music has an underlying hierarchical structure, like language (Chomsky, 1957,
1965). Simon presents an algorithm that determines this underlying structure by looking at
durations only. While Simon’s algorithm works on a large timescale and on phrase structure

1Other differences between theories and models concern whether and how they incorporate performance fac-
tors, such as phrasing and expressive timing. Those factors are beyond the scope of the current project, but an
overview of models especially designed to incorporate expressive timing can be found in Temperley (2013).
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(a) (b)

Figure 2.1: (a) Example of a set of context-free realization rules for a 4
4 meter, from Longuet-

Higgins (1978, Figure 5, p. 150); (b) Example of a rhythm generated by realization rules, from
Longuet-Higgins (1978, Figure 3, p. 150).

instead of meter, the idea that durational values are the most important factor for metrical
interpretation of rhythm, recurs in other work.2 Longuet-Higgins and Steedman (1971) define
an algorithm based on durational values to find the time signature of Bach fugues. Longuet-
Higgins (1976) uses the same idea to design an algorithm that transcribes live performance of
classical melodies into musical notation. Longuet-Higgins and Lee (1982) design a model that
imitates a listener who creates hypothetical groupings of notes through their relative lengths
only. This model places bars in musical scores by working incrementally from left to right
through the score, while following elementary rules based on the relative note lengths (Longuet-
Higgins & Lee, 1982).

The assertion of an underlying structure in music is also found in the formal theory of
metrical grammar by Longuet-Higgins (1978). In contrast to Simon’s (1968) focus on phrase
structure, Longuet-Higgins (1978) aims to develop a formally precise syntactic theory of me-
ter. To reach this goal, Longuet-Higgins (1978) proposes to use computational science as the
language to describe the complexity of perceptual and cognitive processes in the human mind,
in the same way as differential calculus describes theoretical physics. Longuet-Higgins (1978)
argues that the mental representation of music is a structure like syntactic structures in lin-
guistics, where a sentence is not regarded as a sequence of words, but rather as a structure
held together by syntactic relations (Chomsky, 1957). In the same way, rhythm can be de-
scribed syntactically as a tree structure in which every node either represents a note or a rest,
or branches into other nodes (Longuet-Higgins, 1978). Every rhythm is generated by a musical
grammar that represents the meter (Longuet-Higgins, 1978); see Figure 2.1.

The formal theory of Longuet-Higgins (1978) resonates in the formal model of Longuet-
Higgins and Lee (1984). This model particularly focuses on Simon’s (1968) implicit claim
that listeners can arrive at a rhythmic interpretation through relative durations of notes only.3

Longuet-Higgins and Lee (1984) question how listeners perform this task easily, even though
every sequence of note values is in principle rhythmically ambiguous and can be metrically
interpreted in an infinite number of ways. Longuet-Higgins and Lee (1984) regard the work pre-
sented by Longuet-Higgins and Steedman (1971), Longuet-Higgins (1976) and Longuet-Higgins
and Lee (1982) as partial solutions of the problem posed by this question. In order to ob-
tain a complete account for the problem, Longuet-Higgins and Lee (1984) propose a generative
theory based on Lindblom and Sundberg (1969)4, who argue there must be rules that govern
how melodies are built up and propose a generative grammar (Chomsky, 1957) containing tree

2Simon (1968) does not make this idea explicit, but notes that the model makes use of relative durations of
notes only: “nous avons seulement utilisé les durées des notes” (p. 33).

3Other clues like accents, staccato and legato, tonal relationships and lyrics can also be used to arrive at a
rhythmic interpretation, but these clues are not necessary, according to Longuet-Higgins and Lee (1984).

4In the text, Longuet-Higgins and Lee (1984) refer to ‘Lindblom and Sundberg (1972)’, but that article is not
retrievable, while there is an article ‘Lindblom and Sundberg (1970)’ in the reference list of which the version
from 1969 does fit the content (the 1970 version is not retrievable either).
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structures that represent these rules. Longuet-Higgins and Lee (1984) transpose the theory of
Lindblom and Sundberg (1969) from beyond bar level to the rhythms of individual bars. This
approach is based on ideas of Martin (1972), who argues that rhythm in speech (but also mu-
sic) is hierarchical by definition and proposes a formal description of binary trees with accent
levels. In line with Longuet-Higgins (1978), Longuet-Higgins and Lee (1984) argue that a time
signature actually designates “a grammar consisting of a set of context-free realization rules”
(p. 427).

Although every sequence of notes is rhythmically ambiguous, sometimes it is clear to every
listener which metrical interpretation of a given sequence is ‘natural’ (Longuet-Higgins & Lee,
1984). Therefore, Longuet-Higgins and Lee (1984) argue that rhythm perception must be tightly
constrained by assumptions of what is a ‘natural’ interpretation. To account for this, Longuet-
Higgins and Lee (1984) provide a formal definition of syncopation. Now, the ‘natural’ metrical
interpretation of a sequence is the metrical grammar that realizes an unsyncopated rhythm with
respect to this grammar (Longuet-Higgins & Lee, 1984). The listener grasps this interpretation
through the notion of a regular passage, a sequence of bars that are all generated by the same
standard meter, without syncopations (Longuet-Higgins & Lee, 1984). Through an algorithm,
the metrical interpretation can now be built up from the shortest intervals in a formal way
(Longuet-Higgins & Lee, 1984).5

The theory of Longuet-Higgins (1978) and the model of Longuet-Higgins and Lee (1984)
involve a strongly hierarchical and regular sense of meter. Regularity results from explicitly
only taking ‘standard meters’ into account: meters in which all subdivisions on every hier-
archical level are equal. For this, no explicit motivation is given. The need for hierarchical
representations is motivated by Longuet-Higgins (1978) through linguistic arguments along the
lines of Chomsky (1957, 1965). In addition, multiple authors argue that models which use
Markov processes are not suited for formalization of musical patterns (Simon, 1968; Slawson,
1968), in the same way that these models cannot adequately describe grammatical structure
either (as argued by Chomsky, 1956, 1957). Contemporary arguments for hierarchical process-
ing of music emphasize how temporal processing in general makes use of hierarchical principles,
independent of whether the sequences are linguistic, visual, or letter and number sequences
(Simon & Sumner, 1968; Vos, 1973; Palmer & Krumhansl, 1990). A third class of arguments
is music-theoretic, such as the analogy with higher-level hierarchical structures such as sonatas
and movements (Longuet-Higgins, 1976), or the analogy with perceptual hierarchy in tonality
(Palmer & Krumhansl, 1990).

In contrast to Longuet-Higgins (1978) and Longuet-Higgins and Lee (1984), recent theories
of meter perception tend to focus less on linguistic components of meter and more on a motor
component. As will be discussed in Section 2.4.1, involvement of this motor component consti-
tutes theories of meter perception that are grounded in neuroimaging studies and fit well within
present general theories of cognition. In contrast, theories with linguistic motivations provide
a more abstract level of description.

2.1.2 Metrical grids

While theories of metrical grammars formalize the process of meter perception, theories of
metrical grids focus on the formalization of metrical structure only. After such a formalization,
further research develops models that show how this metrical grid is actually induced in the
listener. Among theories of metrical grids, the influential book A Generative Theory of Tonal
Music by Lerdahl and Jackendoff (1983) is a starting point.

Before defining the metrical grid, Lerdahl and Jackendoff (1983) distinguish grouping (spon-
taneous segmentation of the sound signals) and meter (the inferred regular pattern of strong

5Longuet-Higgins and Lee (1984) provide an extension to the algorithm that parses the rhythmic structure
of passages that are syncopated. This extension is based on an additionally proposed rule for phrasing, which is
less elaborated.
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Figure 2.2: Dot notation, from Lerdahl and Jackendoff (1983, example 4.1, p. 68).

and weak beats). Metrical structure is defined separately, as “the regular, hierarchical pattern of
beats to which the listener relates musical events” (Lerdahl & Jackendoff, 1983, p. 17). Lerdahl
and Jackendoff argue that grouping is common to many areas of human cognition and happens
for all music, while metrical structure can only be inferred for some music.

Lerdahl and Jackendoff (1983) also disambiguate the notion of accent in music and define
three different forms: phenomenal accent (any emphasized moment, such as attack points, leaps
and sudden changes), structural accent (an accent caused by gravity in the melodic or harmonic
flow) and metrical accent (a strong beat with respect to metrical context). These accents relate;
for instance, phenomenal accent serves as input for extrapolation of a regular pattern of metrical
accents, the metrical pattern (Lerdahl & Jackendoff, 1983). However, metrical accent is special,
as it is only a mental construct that is relative to the metrical pattern (Lerdahl & Jackendoff,
1983). In turn, this mental metrical pattern is inferred from (but not identical to) patterns
of actual accentuation in music (Lerdahl & Jackendoff, 1983). Once a listener has inferred a
metrical pattern, this pattern is only renounced in the face of strong counterevidence (Lerdahl
& Jackendoff, 1983).

In Lerdahl and Jackendoff (1983), elements that make up the metrical pattern are infinitesi-
mal beats and are represented by dots (following Imbrie, 1973; and Komar, 1971); see Figure 2.2.
Since meter entails periodic alternations of strong and weak beats, Lerdahl and Jackendoff infer
there must be a metrical hierarchy that involves two or more levels of beats (inspired by Yeston,
1976). In this hierarchy, called the metrical grid, strength and level of beats are related: a strong
beat on some level is also a beat (weak or strong) on a higher level (Lerdahl & Jackendoff, 1983).

The notation of Lerdahl and Jackendoff (1983) is strongly hierarchical, but does not nec-
essarily presuppose a regular beat. However, regularity arises from the formulation of metrical
well-formedness rules for metrical structure of tonal music (Lerdahl & Jackendoff, 1983). For
instance, beats must be equally spaced at all metrically important levels, as this is “the norm
in tonal music” (Lerdahl & Jackendoff, 1983, p. 20). Similar reasoning through normativity
appears throughout the book and is not backed by perceptual or cognitive arguments. Instead,
Lerdahl and Jackendoff appeal to intuition; things ‘are heard’ in a certain way or simply ‘must
be’. The approach of Lerdahl and Jackendoff is a first, intuitive attempt to formally define
metrical structure. However, it does yield a metrical representation that is innovative, as it is
provides insight into the metrical hierarchy than the traditional prosodic notation of precur-
sors such as Cooper and Meyer (1960), in which the relation between metrical level and beat
strength is not clear. According to London (2012), the dot notation of Lerdahl and Jackendoff
(1983) “has become ubiquitous in musical analysis” (p. 79).

Lerdahl and Jackendoff (1983) expand their formalization of metrical structure to meter
perception through definition of metrical preference rules. Whereas well-formedness rules de-
cide which metrical interpretations are possible, preference rules govern listeners’ preference of
certain interpretations over others. Together, the well-formedness rules and preference rules
form a model: when one applies the rules to a rhythm, one gets the most preferred metrical
interpretation of that rhythm. However, Lerdahl and Jackendoff do not specify details or rel-
ative weights of the contributing factors they mention (this is remarked as well by Palmer &
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Krumhansl, 1987a; and Clarke, 1999). Therefore, the model of Lerdahl and Jackendoff is not a
formal model, whereas the algorithm of Longuet-Higgins and Lee (1984) is. However, arguments
of both Lerdahl and Jackendoff (1983) and Longuet-Higgins and Lee (1984) for correctness or
‘naturalness’ of certain interpretations appeal to intuition only.

Initially, the metrical well-formedness rules of Lerdahl and Jackendoff (1983) seem restrict-
ing, and it seems that they are claimed to be universal. However, later Lerdahl and Jackendoff
argue that these rules can be altered in order to fit other metrical idioms than classical Western
music. The degree of regularity of Lerdahl and Jackendoffs representation is therefore not fixed,
but depends on the exact formulation of the metrical well-formedness rules. This nuance in the
theory of Lerdahl and Jackendoff is rarely quoted. Indeed, when the application of Lerdahl and
Jackendoffs theory in empirical research will be discussed in the following paragraphs, it will
show that its most restricted version is referred to, as this fits the majority of classical Western
music.

2.1.3 Other strongly hierarchical models

After the theories of Longuet-Higgins (1978) and Lerdahl and Jackendoff (1983), other re-
searchers have developed models that are also strongly hierarchical, discrete and regular, but
more formal. For instance, Parncutt (1994) provides a quantitative model in which perceived
meter is the simultaneous perception of different isochronous pulses. The model determines
salience of the pulses in phenomenal accents through occurrence (number of events matching
the isochronous template) and tempo (how closely the pulse train approximates 100 beats per
minute)6 and superimposes the most salient pulse templates to create a metrical hierarchy
(Parncutt, 1994). Metrical accents derived from this hierarchy agree well with experimental
results (Parncutt, 1994). The filter-based model of Todd (1994) proposes frequency-domain
filters that output a set of periodicities. A culture-specific top-down process then matches the
output with metrical patterns (Todd, 1994). As argued by Clarke (1999), both the models of
Parncutt and Todd are inspired by the idea that meter perception also has a motor component.
In Section 2.4.1, we will see how recent findings account for further substantiated models of
meter perception with a motor component.

The final model that is important with regard to the current project, is the probabilistic
model of Temperley (2007), that utilizes the metrical grid of Lerdahl and Jackendoff (1983);
see Figure 2.3. According to Temperley, deriving the meter from a given rhythmical pattern
of onsets is equal to aligning the correct metrical grid to the pattern. In order to find the
most probable metrical grid, Temperley uses Bayes’ Theorem: the probability of a certain grid
given some onset pattern is proportionate to the probability of that onset pattern given the
grid, multiplied by the probability of that grid in general. To calculate the latter two factors,
the model uses a generative approach: it calculates the probability that the onset pattern
is generated by the grid and the probability of different possible grids being generated at all
(Temperley, 2007). By training the model on a data set, the required parameters to calculate
both factors are established. Temperleys model yields positive results, especially on the lower
levels of the metrical hierarchy. Another advantage of probabilistic models is that they can
be used to simulate effects of enculturation on rhythm perception. Van der Weij, Pearce, and
Honing (2016) present such a model.

2.2 A weakly hierarchical model

Apart from strongly hierarchical theories of metrical structure, theories have been proposed
that postulate a smaller amount of levels. This section discusses the clock model of Povel and

6A pulse is more salient when its rate more closely approximates 100 beats per minute (Parncutt, 1994).
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Figure 2.3: Metrical grids pertaining to time signatures, from Temperley (2007, Fig. 3.2, p. 25).

| | | . . . | . . | . . | | . .

Figure 2.4: A temporal pattern, after Povel and Essens (1985, Fig. 2, p. 416).

Essens (1985). The next section will argue that strongly hierarchical models are favored over
weakly hierarchical models.

The model of Povel and Essens (1985) is an extension to Povel (1981), who does not assert
a multi-leveled hierarchy of beats, but rather one beat level and one subdivision level below.
In Povel and Essens, the notion of an internal clock is central.7 The listener uses this clock to
specify temporal structure in auditory patterns (Povel & Essens, 1985). The clock is hierarchical
in the following sense: it has a unit (equally spaced pulsing) that has a location (or phase) and
subdivisions (Povel & Essens, 1985). In the model of Povel and Essens, temporal patterns are
represented by isochronous frames of potential onsets, such that there is either an onset or
silence at every point on the frame (see Figure 2.4). Now, finding the correct meter of a given
rhythm consists of aligning the clock that best fits the pattern and determining the best fitting
subdivision.

The model of Povel and Essens (1985) falls apart into a clock model and a subdivision
model. In the clock model, the fit of the clock is mainly determined by accents. This is in
accordance with Lerdahl and Jackendoff (1983), but while Lerdahl and Jackendoff formulate
many preference rules, Povel and Essens incorporate only three clues, based on tone onsets only
(without information on pitch, duration or loudness). These clues are provided by Povel and
Okkerman (1981) and are as follows: every isolated tone receives an accent; in a series of two
tones, the second tone receives an accent; in a series of three or more tones, the first and final
tone both receive an accent. The model of Povel and Essens now uses these rules to indicate
the accented notes in every onset pattern. Then, the model extracts the best clock from the
resulting accent patterns by collecting counterevidence for every clock (Povel & Essens, 1985).
This counterevidence is determined by how many ‘clock ticks’ coincide with unaccented events
or silences, including a parameter that weights the penalty of the latter relative to the former
(Povel & Essens, 1985). The model also takes into account that the duration of the clock unit
should be a divisor of the stimulus period, such that it keeps in phase (Povel & Essens, 1985).

The subdivision model of Povel and Essens (1985) attempts to find the correct subdivisions
of a clock and relies on arguments about coding complexity. Povel and Essens presume that
note onsets between clock ticks are represented in the model by a code that represents how the

7Povel and Essens (1985) avoid music-theoretic terms like ‘beat’, as they intend to regard temporal patterns
in general, rather than musical patterns only.
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clock is divided into (potentially irregular) subdivisions. Povel and Essens further suppose that
the efficiency of the code for subdivisions is inversely related to the number of symbols needed
in the code. Equal intervals give the simplest coding (as an equal division can be represented
by fewer symbols), non-regular intervals give a more complex coding (Povel & Essens, 1985).

The idea of coding makes the model of Povel and Essens (1985) intrinsically different from
models like Longuet-Higgins and Lee (1984) and Lerdahl and Jackendoff (1983). In the latter
two models, the rhythm is perceived as relating to a metrical framework that is already in the
mind, whereas in Povel and Essens, the rhythm is heard only within in a single beat framework
(the clock) and is further coded by subdivisions that exactly describe the rhythm. Essens (1995)
describes an additional difference: in Povel and Essens, hierarchy is based on a higher level time
unit (i.e., the clock or beat), whereas in Longuet-Higgins and Lee, the hierarchy is built up from
the smallest interval.8 Apart from this difference, the model of Povel and Essens (1985) can be
seen as weakly hierarchical (the subdivision level cannot be further divided into different levels)
and less regular (a clock might be subdivided into unequal time spans).

The model of Povel and Essens (1985) is tested through different experiments. Povel and
Essens themselves test the model by creating multiple permutations from one temporal template.
In these permutations, only the order of inter-onset intervals (the duration between the onsets,
or attack points, of two beats) is changed, such that type or number of certain intervals does
not affect the results (Povel & Essens, 1985). Now, the model groups these patterns into nine
categories on the basis of how strongly the best clock per pattern is induced (Povel & Essens,
1985). This induction strength decreases per category and depends on how many clock ticks
coincide with unaccented elements or silence (Povel & Essens, 1985). In one experiment, Povel
and Essens find that both learning time and reproduction deviation increase per category (with
the exception of one outlier). In another experiment, the best clock is additionally induced
by adding a low-pitched isochronous sequence, which significantly improved learning time and
reproduction accuracy (Povel & Essens, 1985). Again, clock strength categories are also a
significant factor between results (Povel & Essens, 1985). However, in this experiment, all
clocks had a time unit of four, which might imply a bias in stimuli patterns. It should also
be noted that reproduction paradigms require conscious attention while this process may be
unconscious and effortless (as remarked by Huron, 2006). In all, these two experiments indicate
that the clock model of Povel and Essens is at least an accurate model of beat induction.

A third experiment in Povel and Essens (1985) tests the subdivision model; essentially the
meter perception part of the model. This experiment is based on the finding that the same se-
quence combined with different additional low-pitched clocks is often judged as different (Povel
& Essens, 1985). According to Povel and Essens, this could be due to the different coding of the
subdivisions of the clock. To test this hypothesis, Povel and Essens design pairs of sequences
combined with additional clocks of either length three or four and test the correspondence of
theoretic complexity predictions with complexity judgments by participants. Povel and Essens
find that theoretic predictions are close to actual judgments, but as Essens (1995) later com-
ments, it does not take interference by the induction strength of the clock into full account.
Therefore, the experiment of Povel and Essens does not imply whether the subdivision model
is accurate on itself. Essens (1995) resolves this confound in an improved experiment that sep-
arates the fit of the clock (C-score) and subdivision complexity. In an immediate reproduction
task, Essens (1995) finds that only C-score has a significant effect. In contrast to Povel and
Essens (1985), Essens (1995) concludes that the subdivision model does not capture coding of
temporal sequences well.

Shmulevich and Povel (2000) aim to improve the subdivision model of Povel and Essens
(1985) as follows: they formalize the coding complexity aspect by weighting the different possi-

8Essens (1995) mentions that Essens and Povel (1985) found no support for the hypothesis that the smallest
interval is used for structuring the sequence. Because of this, Essens argues that the model of Povel and Essens
(1985) is favored over the model of Longuet-Higgins and Lee (1984).
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bilities of subdivision and adding a score for repetitions. The parameters are determined by a
complexity judgment task in Essens (1995) and optimized to increase correlation (Shmulevich
& Povel, 2000). Shmulevich and Povel test the subdivision model by comparing its results
in a complexity judgment task with two other measures of complexity: Tanguiane (1993) and
Lempel and Ziv (1976). The latter two measures have low correlation scores, while the model
of Shmulevich and Povel scores high. Shmulevich and Povel conclude that their measure is ro-
bust, as the parameters found from one set of patterns yield high predictive power for another
set. This is true, but it might also imply that the measure of Shmulevich and Povel was ‘best
prepared’ of all measures, as it was trained on similar data. Indeed, the Tanguiane measure and
the Lempel and Ziv measure also show low correlation with Essens’s (1995) study, which was
used to train Shmulevich and Povel’s (2000) model. Furthermore, the measure of Shmulevich
and Povel is the only measure that is based on an empirically tested model of rhythm perception
to begin with. It might therefore be that the high correlation score of the Shmulevich and Povel
measure is mainly caused by the fact that it is fitted to similar data. Altogether, the study by
Shmulevich and Povel (2000) attempts to prove the cognitive reality of the subdivision model
of Povel and Essens (1985), but multiple factors undermine the strength of the evidence.

In summary, the clock model of Povel and Essens (1985) is supported by different experi-
ments, but the cognitive reality of the subdivision model is doubtful. The established part of
the model of Povel and Essens is therefore mainly a model for beat induction. This part does
not account for hierarchy and therefore falls short of being a good cognitive model for meter
perception.

2.3 Evidence for strongly hierarchical representations

This section discusses evidence for strongly hierarchical representations. First, studies are pre-
sented that support the models of Longuet-Higgins and Lee (1984) and Lerdahl and Jackendoff
(1983) in particular. The section concludes with general evidence for the cognitive reality of a
strongly hierarchical representation of meter.

One of the predictions of Longuet-Higgins and Lee (1984) was recently confirmed in an
EEG study: in participants without advanced music training, Ladinig, Honing, Háden, and
Winkler (2009) found that syncopation on a more salient position evokes a stronger response. In
both attentive and electrophysiological preattentive conditions (as obtained through Mismatch
Negativity responses in event-related brain potentials), participants are better at detecting
syncopations on stronger metrical positions than at weaker metrical positions (Ladinig et al.,
2009).9

The theory of Lerdahl and Jackendoff (1983) also performs well in models and experiments,
even when restricted for regularity as mentioned in Section 2.1.2. Palmer and Krumhansl
(1987a) investigated whether participants judged segments of musical phrases in a Bach fugue
as complete and compared different conditions in which either the pitch pattern or the temporal
pattern was preserved. The judgments correlated significantly with the theory of Lerdahl and
Jackendoff on metrical structure (Palmer & Krumhansl, 1987a). In a similar experiment, there
was no correlation, but Palmer and Krumhansl (1987a) argue that this might be due to the
average trial length being too short to firmly establish a metrical structure in the listener.
Furthermore, Palmer and Krumhansl (1987b) found agreement with metrical predictions of
Lerdahl and Jackendoff in three out of four phrase judgment tasks of classical music that was
either altered in pitch or temporal pattern.

In an extensive and controlled study, Palmer and Krumhansl (1990) find several sources of
evidence for the representation of Lerdahl and Jackendoff (1983). First, frequency distributions
of note events in compositions correlated with the theoretically predicted ‘handprint’ of meter

9The result for the preattentive condition in slightly weakened in Ladinig, Honing, Háden, and Winkler (2011).
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by Lerdahl and Jackendoff, independent from composer or style (Palmer & Krumhansl, 1990).
Second, goodness-of-fit judgments (rating the fit of single temporal events in a given metrical
context), correlated significantly with the music-theoretic predictions (Palmer & Krumhansl,
1990). Third, a discrimination task (correctly remembering whether two beats relative to a
context beat are the same or different) showed that discrimination judgments were more ac-
curate for events in metrically strong than metrically weak locations (Palmer & Krumhansl,
1990). Furthermore, Palmer and Krumhansl (1990) found that the respective compositional,
perceptual and memory evidences are all highly correlated with each other and are reinforced
by musical experience: in both the goodness-of-fit judgment and discrimination task, musicians
discriminated more hierarchical levels than non-musicians (and also more than was suggested by
the instruction). In summary, Palmer and Krumhansl (1990) show that perception and memory
of temporal relationships is dependent on the meter that is suggested by the temporal context,
and argue that this reflects a mental hierarchical framework of accents.

In all, multiple empirical studies support the strongly hierarchical models of metrical gram-
mars and metrical grids, while we have seen in Section 2.2 that there is only empirical support
for the beat induction aspect of the weakly hierarchical model of Povel and Essens (1985). Apart
from this, there is more evidence for the cognitive reality of a strongly hierarchical representation
of metrical structure. Thul and Toussaint (2008) tested the outcome closeness of different math-
ematical models to human measures. Models and human performance were tested on widely
different data sets: Povel and Essens (1985), Shmulevich and Povel (2000), Essens (1995) and
Fitch and Rosenfeld (2007). Thul and Toussaint (2008) found that models that use a metrical
hierarchy of weights (such as Longuet-Higgins & Lee, 1984, Smith & Honing, 2006, Keith, 1991
and Toussaint, 2002) to calculate syncopation more closely model the measure ‘human meter
complexity’ (how well people track the underlying metrical beat, or pulse, of a rhythm) than
other models. However, these models less closely model human reproduction quality. Whereas
the data of both Povel and Essens (1985) and Shmulevich and Povel (2000) have been used
in Thul and Thoussaint’s assessment, the models of these papers were not tested. This is re-
grettable, since this could have provided supplementary indication of the cognitive validity of
these models with respect to the strongly hierarchical models. Additionally, it should be noted
that the study of Thul and Toussaint (2008) evaluates perceptual or performance complexity
measures derived from models instead of the cognitive reality of the models themselves.

Strongly hierarchical representations of metrical structure are not only supported by behav-
ioral studies (Palmer & Krumhansl, 1990), but also by electrophysiological evidence. In the
earlier mentioned article by Ladinig et al. (2009), a significantly different event-related brain
potential was found for strong and weak syncopations. This indicates that there is a level on
which omission of a beat evokes a strong response, a level on which omission evokes a weak
response and a level on which it evokes no response – hence, a hierarchy of at least three distinc-
tive levels. As Ladinig et al. (2009) found, this also holds for listeners without extensive music
training. In another study of event-related brain potentials, Schaefer, Vlek, and Desain (2011)
did not only find a significant difference in signals between accented and unaccented events, but
also further differentiation of unaccented events.

In conclusion, there is much empirical evidence that a strongly hierarchical approach is
favorable over a weakly hierarchical approach. Both behavioral and electrophysiological evidence
points to cognitive reality of multi-leveled hierarchical metrical structure. Furthermore, the
weakly hierarchical model of Povel and Essens (1985) does not describe meter perception more
accurately than the strongly hierarchical models.

2.4 Non-isochronous metrical structure

This section is concerned with the theory of London (2012), as presented in the book Hearing in
Time: Psychological Aspects of Musical Meter. Like the theories of Longuet-Higgins (1978) and
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Lerdahl and Jackendoff (1983), the theory of London involves a strongly hierarchical represen-
tation of meter. However, Longuet-Higgins (1978) and Lerdahl and Jackendoff (1983) mainly
focus on Western classical music, while London takes an approach that is cross-cultural and
grounded in empirical evidence. Furthermore, London’s theory investigates which structures
are perceivable as meters through formulation of well-formedness constraints, along with many
examples of perceivable meters.

This section first presents the motivation and perceptual grounding for London’s (2012)
theory. Subsequently, we evaluate London’s motivations with regard to recent findings on the
motor component of meter perception. Then, the theory and representation of London will be
explained. The final subsection argues why London’s theory best fits the goals of the current
thesis. It also discusses the ways in which the theory of London is not formal and how this
leads to underspecifications and inconsistencies.

2.4.1 Motivation and perceptual grounding

As discussed in Section 1.1, London (2012) defines meter as a form of entrainment behavior that
can be learned and allows listeners to synchronize their perception to rhythms they hear. This
view is inspired by time-continuous entrainment models such as Large and Jones (1999), in which
the mind acts to rhythm as a resonating system. Such a system entrains to periodicities in music
and thereby generates peaks in attentional energy or expectation (Large & Jones, 1999; London,
2012). Large and Palmer (2002) extend this single beat view to a system in which multiple
oscillations of different periodicities combine into a metrical expectancy curve with multiple
peaks (London, 2012). London (2012) takes this system as a starting point for his entrainment
theory and explains how the attentional peaks of the system mark infinitesimal time points on
which musical events of relatively greater salience are expected. Through identification of these
time points, London constructs a discrete model motivated by time-continuous processes.

Before constructing a representation of meter, London (2012) explores the temporal con-
straints on perception of periodicities. Backed by literature on cognition and perception (such
as cortical processing), London states that entrainment only occurs for periodicities from about
100 ms to 5-6 seconds. Moreover, a sense of beat is only felt in the subrange of 200-250 ms to
about 2 seconds, with a preference region around 600 ms, or 100 beats per minute (London,
2012). London theorizes that these differences, along with structuring, account for “hierar-
chically integrated cycles of attention and expectation” (p. 46) and therefore a hierarchical
structure with multiple levels.

London’s (2012) ideas about meter are not only motivated by these temporal constraints, but
also by neurobiological research. While in the 1960-80s the origin of meter was mainly sought
in language (as we have seen in Section 2.1.1), more recently there is also attention to the idea
that meter has a motor component.10 Evidence for this idea has been found in various studies.
In an fMRI study, Chen, Penhune, and Zatorre (2008) found that listening to musical rhythms
activates multiple motor areas in the brain. These areas are not only related to motor control
and learning (basal ganglia) and integration of sensory and motor information (cerebellum),
but also execution of movement (pre-motor cortex and supplementary motor area), and they
were activated even in the absence of movement (Chen et al., 2008; London, 2012). In an MEG
study, Iversen, Repp, and Patel (2009) found that metrical interpretation had an effect in the
beta range response, which likely plays a role in motor processing. Additionally, several studies
(Phillips-Silver & Trainor, 2005, 2007, 2008; Trainor, Gao, Lei, Lehtovaara, & Harris, 2009;
Wang & Tsai, 2009) found that stimulation of the vestibular system (by head movement or
directly through galvanic stimulation) influences rhythm perception. On top of that, Todd and
Lee (2015) argue through their comprehensive survey of brain research that for every brain area

10There is still much research on the relation between music and language as well, see for instance Mithen
(2007) or Patel (2008).
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associated with rhythm perception, there is a close correlation with the vestibular sensory-motor
network.11

As noted by Phillips-Silver and Trainor (2007), the way in which metrical beat is extracted
from body movement could be explained through the dynamic attending theory of Jones and
Boltz (1989). This way, the just proved importance of motor aspects is represented in en-
trainment theories like London’s (2012), who concludes that meter is “a kind of sensorimotor
entrainment” (p. 48) or “a kind of virtual motion” (p. 132). In general, entrainment is one of the
promising aspects in London’s approach, as also more recent EEG research found that rhythmic
stimuli elicited spontaneous emergence of an internal representation of beat, possibly indicating
neuronal entrainment (Nozaradan, Peretz, & Mouraux, 2012). The idea of entrainment adds
the important nuance that meter perception is an automatic process: even though it happens in
the listener, it does not require their conscious effort (London, 2012, p. 68). However, London
also argues that this entrainment behavior is highly practiced (p. 4), just like motor behavior
is highly practiced in general. Furthermore, it has both conscious and subconscious aspects,
depending on the time frame (London, 2012, note 5.3, p. 202).

2.4.2 Evaluation of the motivation

In the previous subsection, we have seen that the motivation for London’s (2012) theory relies
partially on research on the motor component of meter perception. Meanwhile, there are recent
developments in this area that are not taken into account by London. These recent developments
go further than motor areas in the brain and the vestibular system alone and might challenge
London’s views. In order to judge whether London’s motivation still holds, this subsection
discusses these recent developments.

Recent accounts on the motor component of meter perception are related to the introduction
of theories on embodied cognition within music cognition by Iyer (2002).12 Embodied cognition is
the idea that “cognition is an activity that is structured by the body situated in its environment”
(Iyer, 2002, pp. 388–389). In this idea, perception is based on the sensory-motor capacities of
the body and has evolved together with motor action (Iyer, 2002). Applied to music, and in
our case, to beat and meter, the theory postulates that “we may use our bodily movements to
help parse the metric structure of music” (Toiviainen, Luck, & Thompson, 2010, p. 59). The
major addition here is the role of the whole body on top of the role of the vestibular system and
motor areas in the brain.

An important theory that incorporates embodied cognition is the sensory-motor theory
of Todd and Lee (2015). Originally formulated by Todd et al. (1999), before the emergence
of embodied cognition within music cognition, it asserts that the internal representation of
the musculoskeletal system mediates beat induction, even when one does not actually move.
Partially in contrast to the idea of London (2012), this theory claims that beat induction is not a
passive process but rather a sensory-guided action (Todd et al., 1999).13 Indeed, Todd and Lee
argue that their explanation of beat induction is incompatible with oscillator-based approaches
such as Large and Kolen (1994) and Large and Jones (1999). Instead, Todd and Lee propose
that beat induction is mediated through two distinct sensory-motor circuits, in which oscillators
are unnecessary from both an explanatory and an evolutionary viewpoint. This is in conflict
with the ideas of London, who argues that metrical entrainment is “a form of coupled oscillation
or resonance” (p. 48). As we have seen, London earlier also cites the studies of Large and Jones
(1999) and Large and Palmer (2002) to illustrate this view. However, it is not clear whether
oscillators are essential to London’s theory and representation, so it can be argued that the

11For a more complete and comprehensive overview of this brain research, see London (2012) or Todd and Lee
(2015).

12Seemingly independently from Iyer (2002), Leman (2007) proposes a similar theory.
13Note that Todd et al. (1999) and Todd and Lee (2015) focus on beat induction; no account for meter

perception is given.
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sensory-motor theory does not directly challenge the ideas of London.
Todd and Lee (2015) mention several studies that stress a link between musical beats and

the body. For instance, Styns, van Noorden, Moelants, and Leman (2007) show that music
influences the rate in which people walk. In a perceptual task, Todd, Cousins, and Lee (2007)
found that 16 % of variation in preferred beat rate can be predicted from anthropometric
factors, suggesting direct influence of the body to perception of rhythm. Additionally, Dahl,
Huron, Brod, and Altenmüller (2014) found that body dimensions influence preferred dance
tempo. Todd and Lee (2015) link these results to McAuley, Jones, Holub, Johnston, and Miller
(2006). While McAuley et al. (2006) themselves do not offer an explanation for the finding that
children have shorter preferred beat periods than adults, Todd and Lee (2015) propose this
may be because they have smaller bodies. However, as Repp (2007a) remarks, this entails that
there should be a sex difference as well, since women are significantly smaller than men. This
difference was not found in either McAuley et al. (2006) or Todd et al. (2007), challenging the
results of those studies (Repp, 2007a). However, Dahl et al. (2014) did report this sex difference
and proved in a second experiment that this sex difference is fully due to the corresponding
height difference. It remains unclear why this difference did not appear in the studies of McAuley
et al. (2006) and Todd et al. (2007). Lastly, in a kinetic analysis of body movements, Toiviainen
et al. (2010) showed that pulsations on different levels of metrical hierarchy can simultaneously
be embodied in music-induced movement (with faster levels in the extremities of the body and
slower levels in the central parts). This finding is especially relevant to the current study, as
this is a statement of meter rather than beat only. However, it does not necessarily entail that
movements help parse metrical structure, as postulated by Toiviainen et al. (2010) . Hence, the
collection of mentioned articles does not constitute convincing evidence for the sensory-motor
theory with respect to metrical structure.

In addition to practical evidence, Todd and Lee (2015) introduce multiple theoretic motiva-
tions for the sensory-motor theory. However, many of those are too speculative to be accepted
as evidence. For instance, Todd and Lee claim that the theory might predict why some animal
species exhibit beat induction (e.g., humans and birds) and some do not (e.g., primates): as
humans and birds are both bipedal, their typical bodily movement patterns (eigenmovements)
are different from those in primates, which are quadrupedal. As remarked by Bregman, Iversen,
Lichman, Reinhart, and Patel (2013), these results are also predicted by the vocal learning the-
ory of Patel (2006), that states that only species capable of complex vocal learning have the
capacity to synchronize their movements to a musical beat. However, as Bregman et al. (2013)
note, informal observations have shown that horses, which are vocal non-learners, occasionally
move in synchrony with a musical beat as well. Whether horses actually synchronize is yet to
be scientifically tested, but this challenges the vocal learning theory (Bregman et al., 2013).
Now, Todd and Lee argue that the sensory-motor theory can account for this through a special
property of a horse’s body: its pendular long neck. However, this account is speculative and
requires further elaboration; it entails that any bipedal species and any species with a long neck
synchronizes to a beat, from kangaroo to giraffe (unless they are withheld by other reasons).14

In conclusion, more research is needed before either theory can be deemed more plausible.
Regarding the early state of the sensory-motor theory and its lack of strong evidence, a more

nuanced view may be favored. In such a view, meter perception does have a motor component
that might be rooted in embodied cognition, but to what extent is yet to be determined.
Such a combined view can be seen in Naveda and Leman (2011), who hypothesize that meter
might stem from a musical-choreographic form in dance, but has further developed independent
of body. In a case study of dance (with topological gesture analysis) and music recordings
of Afro-Brazilian samba, Naveda and Leman (2011) find that typical aspects of meter, such
as symmetry, periodicity and preference rules (for tempo and distribution of metrical levels),

14On the other hand, vocal learning theory has the same problem of having to prove capacity of synchronization
for a wide range of vocal learners like bats and dolphins (Patel, 2014).
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reflect properties in dance and human body morphology. Naveda and Leman (2011, p. 492)
explicitly do not claim that dance is fully responsible for meter, but argue that meter and dance
do affect each other. The idea of involvement of dance (without the full sensory-motor theory)
suggests a more nuanced view on the role of embodied cognition on meter perception. This view
less undermines the oscillator part of London’s (2012) theory than the sensory-motor theory
of Todd and Lee (2015) does; regardless of whether or not oscillators are essential to London’s
(2012) theory.

The ‘nuanced dance view’ was further supported by Lee, Barrett, Kim, Lim, and Lee (2015),
who found enhanced meter perception in participants viewing a dance video. Lee et al. (2015)
also showed larger enhancement for participants who were familiar with the choreography. Fur-
thermore, this view is in line with findings that dance is used as a means of maintaining non-
isochronous meters, such as Balkan aksak (Fracile, 2003), Romanian, Bulgarian and Macedonian
dance (Proca-Ciortea, 1969; Rice, 1994, 2000; Singer, 1974) and Norwegian springar (Haugen,
2015). In turn, non-isochronous meters fit well into the theory of London (2012).

In contradiction to the earlier discussed argument of Todd and Lee (2015), it should be noted
that the sensory-motor theory is not necessarily incompatible with oscillator-based approaches.
In the theory of Todd and Lee (2015), oscillators might seem unnecessary to explain beat
induction, but this does actually not preclude that entrainment processes in the brain do play
a role in beat induction or meter perception. Furthermore, in many of the aforementioned
articles, instead of the brain, now the body functions as a resonating system (e.g., Styns et
al., 2007; Dahl et al., 2014). This way, many views on embodied meter perception still have
an entrainment aspect and are therefore indeed compatible with the theory of London (2012).
So even when embodied cognition to great extent influences meter perception, this does not
challenge the theory of London. Indeed, embodied cognition reinforces the aforementioned idea
that periodicity rather than regularity is central to meter perception. As we have seen in the
previous subsection, this latter idea fits into London’s theory of meter perception.

In conclusion, recent developments on the motor component of meter perception do not
necessarily undermine the theory of London (2012). Rather, ideas on embodied cognition fit
within London’s point of view that meter perception is a from of entrainment behavior.

2.4.3 Theory and representation

In his theory, London (2012) proposes the following representation of metrical structure. The
hierarchically integrated cycles mentioned in Section 2.4.1 are represented within a cyclical
representation of meter (London, 2012). In the corresponding diagram, the outer circle repre-
sents one full period of the meter (a measure) over which time flows clockwise (London, 2012);
see Figure 2.5. On this circle, dots represent peaks of ‘entrained sensorimotor attention’, or
“temporal targets for actual or virtual motor behaviors” (London, 2012, p. 83), in line with
Section 2.4.1. The twelve o’clock position marks the downbeat (the strongest beat) of the meter
(London, 2012). The cycle that contains all dots (i.e., the outer circle) is called the N cycle, in
which N is the number of dots on the cycle, or its cardinality (London, 2012). There can be
multiple cycles in one metric pattern; the meter of Figure 2.5 has two cycles apart from the N
cycle (London, 2012). These cycles are called subcycles and they represent the way in which a
set of attentional peaks coordinates (London, 2012). Note that this is roughly equivalent to a
linear metrical representation consisting of different levels, such as in Lerdahl and Jackendoff
(1983). Hence, London (2012) argues that the proposed cyclical representation of meter relates
attentional models to strongly hierarchical notions of metrical structure. One of the cycles
carries the tactus, which is the most salient pulse (London, 2012), or in motor terms, the pulse
to which a listener would tap their foot (Lerdahl & Jackendoff, 1983).15 This cycle is called
the beat cycle and may be the N cycle, but is more often a subcycle, as the tactus level usually

15For a more elaborate discussion of the tactus, see London (2012, p. 30–33).
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Figure 2.5: Cyclical representation of meter with higher levels drawn within the circle, after
London (2012, fig. 5.6, p. 87). Arrows indicate the direction of temporal flow.

includes at least one level of subdivision (London, 2012). Another cycle that gets a specific
name is the half-measure. This cycle divides the N cycle in two halves, but these halves need
not necessarily be equal (London, 2012). Analogously, a cycle that divides the N cycle in three
thirds (which need not necessarily be equal either), is called a third-measure (London, 2012).
Finally, London (2012) adds that each attentional peak has some amount of temporal spread,
although this spread is constrained by the number of cycles on which this beat occurs.

For the determination of which meters can and cannot exist, London (2012) is inspired by
the metrical well-formedness rules of Lerdahl and Jackendoff (1983) that define which meters
are musically possible instead of which meters are typical for a specific style. However, while the
well-formedness rules of Lerdahl and Jackendoff are based on intuitions, London (2012) defines
a set of constraints that are grounded in perception and structure (such as global combinatoric
constraints), thereby addressing the problem of appeal to intuition only. By defining constraints
in this way, London (2012) aims to include the widest possible range of meters from both Western
and non-Western cultures. We have seen that this was possible as well in the theory of Lerdahl
and Jackendoff, but it was not developed in detail.

London’s (2012) well-formedness constraints are defined on the cyclical representation of
meter. The first group of constraints (“WFC 1.1-4” in London, 2012) is temporal. These
constraints are grounded in perception as mentioned before: inter-onset intervals on the N cycle
are at least ≈ 100 ms, the inter-onset intervals on the beat cycle should all lie between ≈
400 ms and ≈ 1200 ms, and the maximum duration for the full cycle is ≈ 5000 ms (London,
2012). The second group of constraints (“WFC 2.1-3”) are minimal structural requirements
on the beat cycle: there must be one, which must involve at least two beats (London, 2012).
The third group of constraints (“WFC 3.1-3”) concerns ‘formal requirements’, namely that
all cycles are continuous, have the same total period and are all in phase (London, 2012).
These are requirements of entrainment: if these constraints are violated, patterns are no longer
hierarchically coherent; for instance, a downbeat is not articulated at all levels, or subcycles do
not properly nest (see London, 2012, pp. 92–94). There is also one special constraint (“WFC
3.4”) that requires that time points on a subcycle are not adjacent on the next lowest cycle
(London, 2012). London argues that this constraint ensures that beats and subdivisions on the
same cycle are not mixed up. In all, London argues that the above well-formedness constraints
collectively “create and maintain the hierarchic integrity of the meter” (p. 97). The well-
formedness constraints of London are reprinted in Section 4.2.
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The well-formedness constraints by London (2012) make it possible that there are meters
that contain non-isochronous pulses, henceforth non-isochronous meters.16 Rhythms that in-
duce non-isochronous meters in listeners are relatively rare in Western music, but do occur in
other musical cultures, such as Balkan (Proca-Ciortea, 1969; Singer, 1974; Rice, 1994; Fracile,
2003), African (Kauffman, 1980; Locke, 1982, 1998; Patel, 2008), Arabian (Touma, 1996),
Indian (Morris, 1998; Clayton, 2008) and Scandinavian music (Kvifte, 2007; Haugen, 2015).
Furthermore, comparative studies with adults and infants show that there is no innate predis-
position for isochronous meters; experience and enculturation overrule the supposed cognitive
complexity of non-isochronous meters (Hannon & Trehub, 2005a, 2005b; Hannon et al., 2012;
Kalender et al., 2013). This means that non-isochronous meters are not ‘harder to grasp’ than
common Western meters. Since the notation of London makes non-isochronous meters possible
and gives them the same status as isochronous meters, this representation is more cognitively
plausible and less culture-specific than the others. This makes the metrical representation of
London also less regular than some of the other discussed representations. As we have seen in
the Section 2.4.1, the focus of London is on periodicities of pulses rather than their regularity.17

Of course, not all non-isochronous patterns can serve as meters. London (2012) realizes
this and therefore investigates which properties make some non-isochronous meters “‘regular
enough’ to function as a timing framework for sensorimotor-based entrainment” (p. 121). This
investigation is spread out over Chapters 8 and 9 of London’s book and it consists of perceptual
constraints, examples and the notion of maximal evenness. Maximal evenness is the mathemat-
ical distribution of beats in a relatively regular or even way (London, 2012, p. 131). The notion
was originally developed by Clough and Douthett (1991) in the context of scales and interval
classes (London, 2012).

In order to explain the effect of maximal evenness, London (2012) borrows two more terms
from studies on scale structure: ambiguity and contradiction.18 These two notions relate to the
different ways in which pitch distance between two tones can be measured: generic interval size
and specific interval size (London, 2012, p. 130; Rahn, 1991, p. 34). Generic size refers to the
number of scale degrees between the tones; for example, two for both C-E (C to D and D to E)
and D-F (D to E and E to F) in the diatonic collection (London, 2012; Rahn, 1991). Specific
size refers to the number of semitones between the tones; for example, four for C-E and five for
D-F (London, 2012; Rahn, 1991). As London (2012, pp. 129–130) explains, ambiguity occurs in
scale structure when the pitch intervals between two pairs of tones have the same specific size
but contrasting generic sizes. London provides the following example of ambiguity within the
diatonic collection: the specific size of both F-B and B-F is six semitones, but interval F-B has
a generic size of three scale degrees (F to G, G to A and A to B; it is an augmented fourth),
while B-F has a generic size of four scale degrees (B to C, C to D, D to E and E to F; it is a
diminished fifth). Contradiction is a more severe form of discrepancy, in which one interval is
larger in terms of specific size, while the other is larger in terms of generic size (London, 2012).
This may happen for exotic scales, see Rahn (1991, p. 36).

Ambiguity and contradiction can be translated to the domain of metrical structure, in which
units of the N cycle form the specific intervals and all higher-level periodicities form the generic
intervals (London, 2012). These higher-level periodicities are beat intervals, and categories of

16In literature, these meters are also called ‘complex’, ‘irregular’, ‘odd’, ‘additive’ or ‘asymmetric’. However,
not all meters that fit the above definition are necessarily perceived as complex or irregular, as we will see later.
Neither can all of these meters be described by an odd number, additive patterns or asymmetric figures. Because
of these reasons, this thesis follows London (2012) in calling these meters non-isochronous.

17Sethares and Staley (2001) showed earlier that focusing on periodicities makes for a good account of non-
isochronous meters.

18This ambiguity as a property of meter is not to be confused with London’s (2012) ‘metric ambiguity’, which
refers to duration patterns that “may give rise to different metric construals on different listening occasions”
(p. 106). The metrical phenomena of ambiguity and contradiction should also not be confused with ambiguities
and contradictions within London’s theory itself, which will be explored in Section 5.1. Wherever confusion may
arise, it will be specified which notion of ambiguity or contradiction is referred to.
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beat intervals will hereafter be referred to as beat classes. For instance, as explained in London
(2012, p. 131), when a beat of 2 units (two N cycle inter-onset intervals) occurs on the same
level as a beat of 4 units (which can be subdivided as 2+2), ambiguity arises: the same specific
interval of 4 units may amount to a different generic interval of one beat (the 4-unit beat) or two
beats (two 2-unit beats). Verify that a contradiction would arise in more extreme cases, such as
the coexistence of a 5-unit beat and a 2-unit beat on the same level. London (2012) argues that
maximal evenness precludes ambiguity and contradiction within metrical structure and ensures
that the different levels of the formalization remain distinct. This way, it ensures that different
beat intervals still fall within the same temporal range, such that beats and subdivisions do not
get mixed up perceptually (London, 2012). Apart from this, maximal evenness ensures that
attentional energy is optimally distributed, and it optimizes periodic motor behavior (London,
2012). Thereby, maximal evenness is also motivated through the motor component of meter
perception (London, 2012).

London (2012) favors maximal evenness over the stricter rule that on every level of the
metrical structure, every strong beat is either spaced two or three beats apart, as in Lerdahl
and Jackendoff (1983). This is because there can be meters are subdivision patterns of four
or five elements under constraints of maximal evenness (e.g., London, 2012, pp. 144, 155, 161–
162), while on the other hand, patterns that do abide by the rule of two or three, are not always
maximally even (e.g., London, 2012, p. 164).

In many structures discussed by London (2012), the lowest level (the N cycle) is an isochronous
pattern (though subject to potential expressive variation), such that the non-isochronous beats
can be understood relative to this isochronous embedding (London, 2012), or common fast
pulse (Kauffman, 1980; Kvifte, 2007). In fact, these are the structures that he refers to as non-
isochronous meters (see London, 2012, p. 124). The focus in London therefore lies on these me-
ters, although he also explores the properties of meters in which the N cycle is non-isochronous
(see London, 2012, pp. 121–123). London concludes the well-formedness constraints with reg-
ularity requirements, of which most (“WFC 4.1.1-3”) concern structures with non-isochronous
elements on the N cycle (and avoid ambiguity and contradiction and this level). The last
two constraints (“WFC 4.2.1-2”) formulate a rule on maximal evenness for meters with an
isochronous N cycle: a non-isochronous beat cycle must either be maximally even, or the cycle
above the beat cycle must be maximally even (London, 2012). London (p. 158) argues that
this way, maximal evenness is regarded for the meter as a whole and not on each individual
subcycle. One could say that the cycle above a beat cycle can ‘stabilize’ the beat cycle if it is
not maximally even. London also argues that these constraints, together with well-formedness
constraint 3.4, ensure that no ambiguities and contradictions arise within metrical structure.
We will see in Section 5.1 that the latter claim does not hold for all cases.

On account of all well-formedness constraints together, the representation of London (2012)
aims to only regard patterns (whether isochronous on all levels or not) as well-formed if they can
cognitively serve as a meter. An example of a well-formed non-isochronous meter in London’s
(2012) cyclical representation is shown in Figure 2.6.

London (2012, pp. 94–97) has additional remarks on the influence of tempo and absolute
duration. London calls the description of all cycles that constitute a particular meter its metrical
type. Metrical types may be further individuated on the basis of the absolute durations of inter-
onset intervals within one of the cycles (London, 2012). Through temporal constraints, these
factors interact and can thereby define which metrical types are possible at which tempo, and
which cycles may serve as the beat cycle at that tempo (London, 2012). In this respect, one
metrical type can have different tempo-dependent varieties, which are called tempo-metrical
types (London, 2012). London’s theory does not imply that there is a tempo-metrical type for
every single tempo. Rather, there are only a few categorically distinct tempo-metrical types for
each metrical type, which, at increasing tempi, change into one another via “transition zones”
(London, 2012, p. 95).
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Figure 2.6: Example of London’s (2012) representation of a permissible non-isochronous meter
with a 2-2-2-3 structure, after London (2012, fig. 8.2, p. 124).

London’s (2012) distinction between different tempo-metrical types of the same metrical type
is somewhat confusing. London argues that this distinction “does not mean that each tempo-
metrical type is defined in terms of the level heard as the tactus” (p. 95). Rather, London
seems to imply that distinct tempo-metrical types constitute to categorically distinct patterns
of perception, or ‘complex gestalts’ (p. 96). London seems to argue that now, within the same
tempo-metrical type, or pattern of perception, still different levels can be heard as the tactus
level. London does not make himself entirely clear in the explanation of this nuance, especially
given the fact that tempo itself does influence which level can be perceived as the tactus through
the temporal well-formedness constraints. In all, it is clear that tempo influences whether or not
a particular meter can be perceived – and if so, that it can be perceived in different particular
ways.

In summary, London’s (2012) theory of metrical structure meets the requirements of sim-
plicity and perception as presented in Chapter 1 of this thesis. The theory uses ideas of dynamic
attending theory and recent findings about neuronal entrainment, the motor area in the brain
and the vestibular system. Thereby, London’s approach is cross-cultural, as it builds on peri-
odicity rather than strict regularity, accounting for non-isochronous metrical structure as well
as isochronous metrical structure. Furthermore, London’s theory makes use of perceptual con-
straints, instead of intuitive rules such as in Lerdahl and Jackendoff (1983) and Longuet-Higgins
and Lee (1984). Moreover, London provides many examples of perceivable meters outside of
Western classical music, which stresses the cross-cultural aspects of his approach. All the while,
London’s (2012) metrical representation is discrete, which constitutes to simplicity.

As we have seen in Section 2.3, various studies suggest that strongly hierarchical representa-
tions of metrical structure are preferred over weakly hierarchical representations. Furthermore,
throughout the current section, we have seen that non-isochronous metrical structure is an im-
portant part of metrical entrainment. London’s (2012) theory of metrical structure includes
both these aspects. Because of this, in combination with being grounded in perceptual studies,
it best fits the goals of the current thesis. However, London’s theory does not meet the require-
ment of formality. The next subsection will discuss why formalization of London’s theory is
necessary.
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2.4.4 Formalization

London’s (2012) has one important disadvantage: it is not formal. London’s metrical repre-
sentation is not defined in a formal way (for instance, as a cyclical graph) and neither are the
well-formedness constraints. Furthermore, the theory leaves multiple details unspecified. This
causes problems of underspecification and inconsistency.

The following details are not fully specified in the representation of London (2012). First,
the influence of tempo on metrical structure. This is the distinction between different tempo-
metrical types of the same metrical type, which can be deemed confusing, as discussed in the
previous subsection. Second, presence of a downbeat. This concerns the question whether
every meter contains one beat that is perceived as stronger than all others. As we will see
in Section 3.3.3, London’s (2012) well-formedness constraints do not specify a downbeat and
the theory is ambiguous about it. Third, perceivable length of subdivision patterns. London’s
theory is ambiguous on what is the greatest perceivable length of subdivisions within one beat,
and the well-formedness constraints do not specify this either. This point will be discussed
in more detail in Section 5.1.1. Fourth, possible organizations of non-tactus subcycles. The
well-formedness constraints of London do not make clear whether subcycles may be unevenly
organized, as long as the beat cycle is maximally even. This point will be discussed in detail in
Section 5.1.3.

There are also several inconsistencies between London’s (2012) well-formedness constraints
and theory. This happens with regard to the metrical phenomena of ambiguity and contradiction
as presented in the previous subsection. London claims that the well-formedness constraints on
maximal evenness jointly exclude any structure that involves ambiguity or contradiction, but
we will see in Section 5.1.2 that this is not the case. There are related inconsistencies between
London’s theory and well-formedness constraints with regard to beat class ratios, which are the
relative proportions of beat classes on the same level. Some beat class ratios (such as two beats
having a ratio of 4:7) are not allowed by London’s theory through arguments of combinatorics,
decomposition and again ambiguity, but do pass the well-formedness constraints. Section 5.1.2
of this thesis contains a more detailed discussion of these inconsistencies and where they are
found.

Additionally, London’s (2012) theory does not give a clear overview of all perceivable meters;
it does provide all perceivable meters for a few periodicities, but a recount makes clear that
some structures are missing. Because of the above underspecifications and inconsistencies, it
is not clear whether London would include or exclude the missing structures from the repre-
sentation. Similarly, London’s theory is sometimes inconsistent with the provided examples, or
the lack thereof. Sometimes, London’s theory contains examples that are not allowed by the
well-formedness constraints, or does not mention certain structures (within lists of perceivable
structures) that should be permitted by the well-formedness constraints. Several instances of
these inconsistencies will be discussed in Section 5.1.

In this thesis, we propose a formalization of London’s theory. Formalization will specify
London’s theory and address ambiguities and inconsistencies in the theory, in order to provide
a clear and unambiguous overview of all perceivable meters. Finally, formalization may help to
implement London’s theory and representation in a formal cognitive model of meter perception,
such that the theory can be tested empirically. There are already formalization projects on the
theory of London in literature. Chapter 3 will discuss these projects and provide an overview
of aspects that have been left open by London’s proposal. In Chapter 4, we construct the
formalization of the current project.

21



Chapter 3

Related work in formalizing metrical
structure

Apart from the current project, other authors have also performed formalization projects on
the theory of London (2012). This chapter discusses these projects and provides an overview of
aspects that have been left open by London’s proposal. Section 3.1 discusses the formalization
of Forth (2012); Section 3.2 discusses the formalization of Gotham (2015). The discussions in
both sections include the respective advantages and disadvantages of these projects, as well as
their relevance for the current project. In Section 3.3, open ends in the theory of London with
regard to formalization will be evaluated. This evaluation will include the respective approaches
of Forth and Gotham, as well as the current approach. Section 3.4 concludes this chapter with
general remarks on the formalizations of Forth and Gotham with regard to the current project.

3.1 Metrical trees in conceptual spaces

Forth (2012) captures London’s (2012) theory of meter formally through a tree representation.
Forth’s trees represent tempo-metrical types and are formally described by a tuple (called a
metrical tree) that consists of six sets and one integer. Three of the sets in the metrical tree
describe the structure of the tree mathematically as a graph with vertices (or nodes), edges
and vertex labels (Forth, 2012). Forth presents five definitions that capture that a tree is a
connected, undirected graph containing no cycles and seventeen definitions to describe other
properties of the tree, such as that it is perfect (every path from root to leaf is of equal length)
and ordered (there is a total ordering for the children of each node). Every node represents
a beat on a given level and every leaf node represents a beat on the N cycle (Forth, 2012).
Three more sets describe the absolute timepoints of every node, the pulse inter-onset interval
values of every node and the attentional energy values of every leaf node (Forth, 2012). Lastly,
the one integer of the metrical tree denotes which level is the tactus cycle (Forth, 2012). Five
more definitions and twelve constraints decide which possible instances of metrical trees are
perceptually metrical, comparable to London’s well-formedness constraints (Forth, 2012). Note
that Forth’s constraints are different from those of London: in Forth the maximum duration is
6000 ms (instead of 5000 ms) and all beat intervals on the tactus level should be in between 200
and 2000 ms (instead of 400 to 1200 ms). A permissible meter in Forth’s (2012) representation
is shown in Figure 3.1.

As Forth’s (2012) formalization incorporates absolute timepoints on all tree nodes, it enables
unequal subdivision not only at slower levels, but also at the fastest level. This means that there
is no common fast pulse in Forth’s formalization that corresponds with an isochronous embed-
ding, relative to which non-isochronous beats are understood. This way, Forth’s formalization
captures how unequal subdivision can be internalized instead of counted, and it “allows for mi-
crorhythmic details to be considered as part of metrical structure, rather than either being left
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Figure 3.1: Example of Forth’s (2012) representation of a permissible meter with a 2-2-2-
3 pattern (London’s (2012) representation for this meter is shown in Figure 2.6), from Forth
(2012, fig. 5.2d, p. 118). Every set is a vertex label of the tree and denote a beat on a given level,
‘onset’ denotes the absolute point in time where the beat starts, ‘pioi’ the inter-onset interval
between consecutive beats on the same level, and ‘attn’ the degree of attentional energy of every
leaf node (Forth, 2012).

unaccounted for, or potentially misleadingly being considered as random or stylistic deviation
from an abstract Western-centric theoretical conceptualisation of metre” (pp. 104–105). Forth
here refers to Norwegian springar music, in which the beats are systemically unequally subdi-
vided in a way that can not be described in terms of an underlying common fast pulse (Kvifte,
2007).1 Meters that do not contain microrhythmic details still have a place in the formalization,
as they are the structures without variation in timing or attentional energy, and they are seen as
“prototypical of real-world patterns of entrainment” (Forth, 2012, p. 105). Such a prototypical
meter is shown in Figure 3.1: the pioi-values in the second and third level are unequal, but in
the lowest level they are equal.

Forth’s (2012) project takes place in the framework of conceptual spaces of Gärdenfors
(2000). Conceptual spaces provide a way of modeling cognitive representations; a conceptual
space is defined as a “set of quality dimensions with a geometrical structure” (Gärdenfors,
2000, p. 24). As summarized by Forth, within this framework “concepts can be represented ge-
ometrically within perceptually-grounded quality dimensions, and where distance in the space
corresponds to similarity” (Forth, 2012, p. 13). Forth explains that incorporation of individ-
ual timing relationships and attentional energy patterns requires conceptual spaces of higher
dimensionality than incorporation of only prototypical structures. However, Forth argues that
the addition of new dimensions is natural within this framework. Hereby, Forth’s formalization
forms a coherent whole that fits the framework in which it is defined.

3.2 Formalizing relationships

Gotham (2015) has undertaken another formalization project that is relevant to London’s (2012)
theory. Gotham’s main goal is to visualize the different relationships that exist between metrical
structures, focusing on relationships between mixed metrical structures. Gotham (2015, note 1)
argues for the term mixed instead of non-isochronous, as the latter refers to more kinds of

1Arguably, music that can be described in terms of a common fast pulse, is not necessarily perceived this
way either. Rice (2000) argues that Bulgarian musicians do not count an underlying pulse to keep track of the
alternating patterns of two and three pulses, but instead have internalized this two-to-three relationship (see
Gotham, 2015, note 36).

23



9

4

2

1 1

2

1 1

5

2

1 1

3

1 1 1

Figure 3.2: Tree structure after Gotham (2015, Figure 1).

non-isochrony than the formally different beat types, such as non-isochronous subdivisions, as
we have seen in Forth (2012).

Gotham (2015) is particularly interested in mixed meters as these meters facilitate many
compositional possibilities, while an overview of these possibilities has been lacking so far
(Gotham, 2015). In order to visualize relationships between metrical structures, Gotham uses
formalisms to define the metrical structures themselves. Gotham uses more than one represen-
tation, since different relationships apply to different aspects of a meter’s structure. Therefore,
some relationships can more easily be defined on some representations, while other represen-
tations are more suitable for other relationships. The formalisms of Gotham are all based on
three initial criteria. The most important and strict criterion is that the majority of temporal
events should be metrical (Gotham, 2015). Gotham admits that this excludes the earlier dis-
cussed springar repertoire, but argues that “mixed meter is not a part of that musical language
anyway (higher levels tend to be isochronous)” (Gotham, 2015, note 9). Note that Gotham
here departs from Forth (2012) by not including structural microrhythmic details. This is a
deliberate choice, as we have seen that Gotham explicitly only aims to investigate mixed meters.
Gotham’s other criteria are the presence of a common fast pulse and grouping all pulses into
twos and threes (excluding swing rhythms, see Gotham, 2015, note 12). Both these criteria can
be relaxed for some relationships (Gotham, 2015).

Gotham (2015) uses four different mathematical representations of metrical structure. The
first representation is an ordered succession of twos and threes, separated by nested brackets that
“differentiate between different higher-level groupings of the same beat succession” (Gotham,
2015, p. 2). For instance, ((2, 2)(2, 3)) denotes that there are three beats of two units (duple
beats) and one beat of three units (triple beat). On the next level, the first two duple beats
are grouped together while the last duple beat is grouped with the triple beat. The second
representation is Forth’s (2012) tree formalization, of which Gotham explains that this repre-
sentation is favored because it is both mathematically formal and yields an intuitive graphical
representation. However, Gotham presents a less elaborated version of Forth’s trees. An ex-
ample of Gotham’s trees for the same ((2, 2)(2, 3)) meter is provided in Figure 3.2. Two other
representations are simplifications in which the order of the beats is not important (Gotham,
2015). The first of these is called the meter vector and it denotes how many duple beats and
triple beats the meter has (Gotham, 2015); for example, {3, 1} for ((2, 2)(2, 3)). The second
shows the number of units per level of the meter (Gotham, 2015); for example, 〈9 4〉, denoting
nine units on the lowest level and four units on the next level – the only way to group four units
is to respectively have two units and one unit on the subsequent level. Note that indeed, the
examples of the latter two representations also represent meters that are similar to ((2, 2)(2, 3)),
but in which the beats may be in a different order. Together, the different representations help
to formally define relationships between different mixed meters.
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3.3 Open ends

In the process of formalizing the theory of London (2012), several open ends are stumbled
upon. This section evaluates these open ends. This evaluation also contains a discussion of
the choices made by Forth (2012) and Gotham (2015) with respect to the open ends and
investigations on whether elements of the formalizations of Forth and Gotham are also useful
in the current framework. Where this is not the case, novel proposals for addressing the open
ends are provided. This will account for the design of a formalization that best suits the current
approach.

3.3.1 Isochrony of the fastest pulse

This open end concerns the question whether to incorporate meters with a non-isochronous
fastest pulse. London’s (2012) well-formedness constraints 4.1.1, 4.1.2 and 4.1.3 explicitly allow
for meters in which the inter-onset intervals on the N cycle are non-isochronous. On pp. 121–
123, London substantiates this choice by two arguments: rapid non-isochronous rhythms can
be produced without mental subdivision (Repp, London, & Keller, 2005), and subdivision cat-
egories in very fast beats cannot be defined as consisting of two or three pulses, as these are
too fast to perceive as such (Polak, 2010). This entails that there are meters in which there
is no common fast pulse that guides the perception of the (possibly non-isochronous) slower
beats that are multiples of this fast pulse. Instead, these meters may have a slower pulse that
is isochronous, that guides perception of the (possibly non-isochronous) faster beats that are
subdivisions of this common slow pulse (Kvifte, 2007). The isochronous pulse may be the tac-
tus, but it may also be an even slower pulse (Polak & London, 2014). Structures without a
common fast pulse are included in London’s theory (pp. 121–123), but without much further
information. Instead, more emphasis is put on structures that are isochronous on the fastest
level (London, 2012, pp. 123–170). Microrhythmic details do recur in London’s ‘Many Meters
Hypothesis’, but in all, this factor is not central in the theory.

More than London’s (2012) theory, Forth’s (2012) formalization explicitly includes metrical
structure with a non-isochronous fastest pulse, by actively incorporating these structures into
the representation and discussing them. The different approaches of London and Forth are
reflected in the way they respectively treat the metrical phenomenon of ambiguity (see London,
2012, pp. 130–131, 134–135; Forth, 2012, p. 105). As we have seen in Section 2.4.3, London
does not tolerate ambiguities within the representation. In contrast, Forth argues in favor
of metrical ambiguity in order to fully account for microrhythmic details and “extreme non-
isochronous meters” (p. 105), as Kvifte (2004) argues for their meaningfulness to springar music.
Furthermore, in Forth’s formalization, there are relatively few restrictions as to which non-
isochronous structures are allowed (note that there is no common slow pulse either). Because
of this, Forth’s formalization will consider more structures metrical than London’s theory does;
and indeed, Forth’s formalization incorporates structures that may not be considered well-
formed or metrical at all (Forth, 2012, pp. 105, 147). This is a deliberate choice, as Forth’s
definition of conceptual spaces of meter “explicitly aims to encompass all theoretically possible
metrical structures that can be derived from the first principles of perceptual and physiological
limitations” (p. 147), even though large parts of these spaces may not correspond to perceptually
relevant structures. In conclusion, Forth puts more emphasis on designing a wider framework
in which no possibility is excluded, while London puts more emphasis on specifying a smaller
region of well-formed structures.

This difference between Forth (2012) and London (2012) on handling metrical ambiguity is
also reflected in their respective consideration of maximal evenness. Forth does not consider
maximal evenness at all, while it is central in London’s theory, namely to exclude metrical am-
biguity. Although Forth does not explicitly argue against maximal evenness itself, principles of
maximal evenness are probably deliberately ruled out because of Forth’s tolerance to ambiguity.
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In order to account for microrhythmic details, Forth’s (2012) approach requires conceptual
spaces of higher dimensionality. More concretely, Forth defines two sets (consisting of real
values representing absolute timepoints of the tree nodes and their pulse inter-onset interval
values) with as many elements as there are beats in the representation. This amounts to a large
number of possible meters, which limits its applicability in frameworks other than conceptual
spaces, and makes Forth’s formalization less suitable within the current project. The number of
possible meters under a given set of rules or constraints will often be subject of later discussions
and will hereafter be referred to as the metrical space.

As we have seen, the approach of Gotham (2015) is different with regard to this aspect.
Gotham’s main focus is on mixed meters and therefore not on microrhythmic details. Indeed,
Gotham defines in the ‘hard criterion’ that the majority of temporal events should be metrical,
and in a softer criterion the presence of a common fast pulse. However, in cases in which this
latter criterion is relaxed, Gotham’s formalization approaches Forth’s formalization; in the other
cases, it is closer to London’s theory. Therefore, the formalisms of Gotham are only suitable as
long as the initial criteria are strictly followed.

As London’s (2012) main focus lies on meters with an isochronous fastest pulse, only those
meters will be incorporated in the current formalization, in the interest of simplicity. Of course,
important information is omitted by this simplification, and it will be harder to account for swing
rhythms and springar rhythms, but the simplification makes it more feasible to investigate non-
isochronous meters that do have a common fast pulse. This includes the metrical structure
of many musical cultures, see Polak and London (2014, Table 7.1).2 Furthermore, this choice
restricts the metrical space and also makes the formalization itself simpler mathematically. This
means that London’s well-formedness constraints 4.1.1-3 are not formalized. Instead, we add a
constraint which requires that the fastest pulse in the meter is isochronous.3

This entails that the current approach includes only the meters that are called ‘mixed meters’
in Gotham (2015). However, as this term, like any other term than a neologism, gives rise to
confusion (see Gotham, 2015, note 1), this thesis maintains the name ‘non-isochronous meters’
for this class of meters. As structures that do have a non-isochronous fastest pulse may be the
subject of future research, the broader sense of this term may be reestablished later.

3.3.2 Influence of tempo

This open end concerns tempo and its influence on tactus salience (which level is the tactus
level) and meter finding. As we have seen in Section 2.4.3, London’s (2012) tempo-metrical
types account for categorically distinct ways in which ways a particular meter can be perceived
and whether it can be perceived at all. In the same section, it was argued that the form of this
account is somewhat confusing: London argues that the different tempo-metrical types are not
distinguished by which level can be perceived as the tactus, while tempo itself does influence
which level can be perceived as the tactus through the temporal well-formedness constraints.

A formal theory requires hard boundaries. In London (2012), not only the “transition zones”
between different tempo-metrical types, but also the perceptual thresholds of tactus salience
and meter finding are repeatedly addressed as being around or between some values. In order to
get an unambiguous formalization, these vague boundaries should be defined as single threshold
values, but it is an open question which values should be picked. Moreover, choosing single
values has an effect on the aforementioned transition zones, which may have minor theoretical
implications. Note that single threshold values need not necessarily be fixed, as they can be
defined as parameters of the formalization.

Forth (2012) takes tempo into account by defining sets of absolute timepoints and inter-onset
interval values and by defining temporal constrains. As was the case for the previous open end,

2This table lists different possibilities in terms of which levels are non-isochronous. Both ‘type 1’ and ‘type 3’
of this table are represented in the current formalization.

3This comes close to the first edition of London (2012), see London (2012, note 5.4, p. 202).
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this makes the metrical space very large and therefore less suitable within the current project.
In contrast, Gotham (2015) does not take tempo into account at all, as the focus lies on

relations between meters rather than the meters themselves. In Gotham’s formalization, there
is a notion of relative tempo (via multiples, such that translation of subdivision structures from
one metrical level to another can be defined), but not absolute tempo in the sense of an absolute
time span between metrical units. This makes Gotham’s theory less suitable within the current
project, because it does not integrate an important aspect of London’s (2012) theory.

The current formalization aims to incorporate the influence of tempo, but in a simple way.
Therefore, it disregards the continuous transition zones and instead makes tempo a property of
metrical structure. Now, a formalization of London’s (2012) theory should have a clear link to
continuity of time, so it is important that the tempo is indicated by a real number (otherwise,
the notion of tempo becomes ‘granular’ on an arbitrary level). Like in Forth (2012), such a
choice gives rise to an infinite number of possible meters, but in the current formalization,
these meters can still be categorized into a finite number of structures. Even though the tempo
property is part of the description of a tempo-metrical type in the formalization, one should
see it separately. Tempo is not an actual structural property of a specific meter, but a property
that constraints which metrical structures can exist within which temporal range.

3.3.3 Presence of a downbeat

The presence of a downbeat in London’s (2012) representation is not sufficiently specified. That
is, it is unclear whether there is one beat that is perceived as stronger than all others, such
that different rotations of the same meter around this point are categorically distinct. On p. 83,
London states that the twelve o’clock position of the cycle marks the location of the downbeat.
However, it is subsequently stated that there is not an explicit measure of relative strengths
or amplitudes of each attentional peak (London, 2012). Though London mentions that the
alignment of component cycles does give an implicit weighting, there is never one downbeat;
there is always at least one beat that is visually equivalent to the beat at twelve o’clock. Often,
there is a subcycle in London’s representation that represents the half-measure, such that there
is only one beat that is weighted equally to the beat on the twelve o’clock position, namely the
other beat of this half-measure cycle. However, in general, every beat on the highest subcycle
in London’s representation is equally weighted to the beat on the twelve o’clock position, so this
might be more than one beat as well. This way, the downbeat is not fully represented visually.
Moreover, none of the well-formedness constraints of London states that there is one downbeat
that is weighted heavier than any other beat on the cycle.

However, the downbeat has been a point of consideration in the development of London’s
(2012) well-formedness constraints: well-formedness constraint 3.3 precludes structures that do
not coordinate and thereby have more than one downbeat (see London, 2012, p. 94). Further-
more, London, pp. 136–137 states that the orientation of beats relative to the downbeat in
non-isochronous meters makes a difference for distinguishing different metrical organizations.
London argues that a pattern that consists of three short beats and one long beat (“S-S-S-L”)
has “four distinct permutations”, and “these phase rotations should be regarded as metrically
distinct variants of a given beat cycle; they are [non-isochronous] subtypes of the basic S-S-S-L
metrical type” (p. 137). There is clearly a sense of downbeat through this argument.

On the other hand, in pp. 137–139, London (2012) agrees with Locke (1998) that some non-
isochronous meters are accentless: there are different beats, but there are no relative accents,
in contrast to the accented metrical hierarchy in Western 4

4 meter. Consequently, when there is
no accent, it can be said that there is no downbeat. However, London argues on the contrary
that the rotations are still different, and this gives rise to the listener calling one beat the first
and construing a downbeat themselves (London, 2012). It might be that there is no downbeat
in the sense of phenomenal accent in the rhythm, because such an accent is not needed to
determine the length of the cycle, as this is clear from the asymmetry of the pattern (London,
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2012). However, the listener does place a metrical accent somewhere to define where cycle
begins. Now, listeners might disagree over which beat is the first, but for every listener, there
is a downbeat indeed (London, 2012, pp. 137–142).

In all, London (2012) argues for a downbeat that makes different rotations of non-isochronous
meters non-equivalent, but the downbeat is not fully represented visually and not articulated
in the well-formedness constraints. It is therefore an open choice whether to define a downbeat
in the formalization.

Forth (2012) explicitly defines the downbeat in the representation (which is in every level
the nodes that coincide with the root of the metrical tree, p. 112). However, in terms of
weighting, it is questionable whether this downbeat is really distinct in Forth’s formalization.
This problem emerges in Forth’s discussion on the appointment of attentional energy values to
the beats. Forth proposes to appoint each N cycle timepoint with a real number that represents
the degree of attentional energy on that point. However, Forth argues that “the degree of
attentional energy associated with any pulse may be a combination of many factors” (p. 113)
and is therefore beyond the scope of that project. Because of this, Forth chooses to default all
attentional energy values to 1. As a possible alternative, Forth proposes to appoint the degrees
in terms of alignment such as in Lerdahl and Jackendoff (1983) (which would in fact return
the aforementioned problem as in London, 2012), but he argues that “further evidence should
be sought before incorporating such an assumption into the model” (Forth, 2012, p. 113). In
this sense, the different beats in Forth’s formalization or not really distinct. The presence of a
downbeat is taken for granted in Gotham (2015), but not explicitly articulated in any of the
formalisms, nor visually present.

The current formalization will incorporate a downbeat as this decision follows the theory of
London (2012) most closely. This will happen in a similar way as in Forth (2012): the downbeat
will be made explicit in the mathematical structure of the formalization: the requirement will
be added that there is always one layer that consists of only one beat (namely, the first beat of
the meter, equivalent to the twelve o’clock position in London, 2012), making this beat stand
out from the others as the downbeat. Distinction of the downbeat in terms of weighting will be
incorporated different with respect to Forth, as definition of a set of attentional values would
make the metrical space larger again. Instead, we use London’s assertion that the alignment of
cycles may serve to assign weights to all beats. To this end, a function is incorporated in the
formalization that provides a relative weight to the pulses on the N cycle by looking at their
alignment. This function, called the saliency function, is completely dependent on the meter,
such that it does not increase the metrical space. This way, London’s ideas about weighting by
alignment may later be incorporated in formal cognitive models of meter finding.

It should be noted that a saliency function entails the additional claim that for every pulse
level, the pulses that do not align with pulses on a higher level will be assumed to be equivalent.
For instance, in a 3-2-2-2 structure, the second and third beat of the triplet will be assumed to
be equivalent to each other, and also to every second beat of the duplets. Empirical evidence in
either existing articles (e.g., serial distance effects in Palmer & Krumhansl, 1990, pp. 737–738)
or further research may suggest that these beats are not equivalent, or that there should be an
absolute weighting of pulses instead of a relative weighting. Because of the claim made by this
equivalence assumption, the saliency function is not used as a basis of the other constraints and
is only used to appoint a downbeat and a relative weighting that may later be used in a cognitive
model. In further research, an advanced version of the representation may be designed, which
would contain a more advanced or absolute weighting. If this is the case, the current saliency
function can serve to show where and how future empirical evidence for non-equivalence of
beats or absolute weighting can be incorporated in the current formalization. For now, the
equivalence assumption can safely be made, as the saliency function will stand apart from the
metrical structure.

Addition of a downbeat fits best within a different visual representation. Ideas on visual
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representation will be presented in the next subsection.

3.3.4 Visual representation

The visual representation of metrical structure is not an open end in terms of underspecification
or inconsistency in London’s (2012) theory, as London unambiguously explains what the visual
representation looks like. Rather, this is about visual detail that can be changed when visualiz-
ing a formalization. Indeed, London’s visual representation has the important disadvantage that
it does not make the highly hierarchical sense of meter in London fully clear (only indirectly:
different weights can be found in the alignment of the subcycles). Other visual representations
may be more fit to make hierarchy explicit, such as that of Lerdahl and Jackendoff (1983) or
the tree representation of Forth (2012). Also, with regard to the previous point, selection of a
different representation may help to visually define a downbeat. Additionally, Lerdahl (2015)
argues that complex metrical structures would be difficult to read in the visual representation
of London.

Both Forth (2012) and Gotham (2015) use different visual representations than London
(2012). For Gotham, this choice has no consequences on the theoretical understanding of
meter in the representation. For Forth, this choice seemingly does influence the theoretical
understanding of meter in the representation. However, it is important to note that Forth’s
(2012) choice for a different visual representation than London should not be confused with the
theoretical choice for a different framework. Forth notes that there are important differences
between Forth’s formalization and London’s representation: Forth, pp. 106–108 argues that his
formalization is not time-continuous and dynamic in the sense that London’s theory is. However,
these are not consequences of Forth’s choice for a different visual representation. Rather, the
visual representation of Forth is a consequence of the theoretical framework of geometric spaces.

As argued above, London’s (2012) cyclical visual representation can without problems be
changed in the current formalization. This thesis makes use of linear hierarchical dot rep-
resentation of Lerdahl and Jackendoff (1983) to visualize the structures of the formalization.
Such a representation more clearly visualizes the added downbeat and hierarchy in general than
London’s representation.

By this choice, we also lose an advantage of London’s (2012) cyclical representation: it
clearly visualizes how meter perception is an attentional entrainment process that is stable,
recurring and periodical (London, 2012). However, the current choice affects the representation
only visually, and we will see in Section 4.1 how the proposed formalization also codes London’s
cyclical representation. If in future research, this formalization is implemented in a cognitive
model that aims to follow London’s ideas on meter perception (rather than on metrical structure
only), it is important that London’s ideas on stability and recurrence are incorporated.

3.3.5 Length of subdivision patterns

The theory of London (2012) is a underspecified about the maximum length of subdivision
patterns. Although London unambiguously makes clear that the length of permissible sub-
division structures is not arbitrarily constrained to 2 or 3, but constrained by the temporal
well-formedness constraints, London’s theory remains ambiguous about where the maximum
lies. This is a problem that would rather appear in the analysis of the formalization than as
an open end before formalization,4 but Forth (2012) and Gotham (2015) already consider this
factor in the definitions of their formalizations.

While Forth’s (2012) formalization is less restricted than the theory of London (2012) in
terms of microrhythmic details and metrical ambiguity, Forth’s formalization is more restricted
with regard to subdivision structure. Forth (2012) requires that each node of the metrical tree

4Indeed, Section 5.1.1 discusses this underspecification in more detail.
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can either have zero, two or three child nodes, following one of Lerdahl and Jackendoff’s (1983)
metrical well-formedness rules. Forth’s restriction that the number of child notes cannot be one,
agrees with London’s well-formedness constraint 3.4 (Forth, 2012), but that the number of child
nodes cannot be four or more does not agree with London’s theory. Forth deliberately chooses
to not allow for beat groups of more than three multiples in order to preserve uniformity within
the formalization. This choice can also be defended by relative sparseness of groupings with
larger multiples and by the following numerical argument. Every natural number larger than
three can be defined as a sum of only twos and threes. Thus, for every structure in which there
are groupings of multiples larger than three, we can find a roughly equivalent structure that
only has twos and threes – Forth makes a similar argument on p. 115. However, this entails
that in Forth, some subdivisions will have a cognitive meaning, while others are artifactual.

In Gotham (2015), all levels are grouped in twos and threes as an initial criterion, but this
is again a ‘soft criterion’. In cases in which the criterion is relaxed, Gotham’s formalization
approaches London’s (2012) theory; in the other cases, it is closer to Forth (2012). Note that
here, the ‘relaxed case’ is closer to London’s theory than to Forth’s, while it was the other way
around for the open end regarding non-isochrony of the fastest pulse.

Notwithstanding arguments for restricting subdivision patterns to twos and threes only,
London (2012) argues that groupings of large multiples are indeed perceivable (pp. 125, 132–
133), and discusses multiple instances of structures containing such groupings (pp. 144, 155, 161–
162). As the current project attempts to formalize London’s theory as a goal on its own, there
is therefore no reason to disregard groupings of multiples larger than three by forehand. There-
fore, the current formalization maintains London’s idea that there are no a priori restrictions
on length of subdivision patterns. This also means that we cannot directly use the metrical
representation of either Forth (2012) or Gotham (2015).5

3.4 General remarks and conclusion

As we have seen in the previous section, many aspects of the respective formalizations by Forth
(2012) and Gotham (2015) make those formalizations unsuitable for the current project. These
aspects jointly illustrate why this thesis proposes a novel formalization instead of taking one of
the existing formalization projects as a starting point.

The largest difference between the current formalization on the one hand and Forth (2012)
and Gotham (2015) on the other hand, is the perspective. Forth formalizes London’s (2012)
theory because of practical considerations and not to analyze the theory itself. Related to this
difference, Forth formalizes the ‘Many Meters Hypothesis’ of London, while the current project
formalizes metrical structure as defined and constrained in London. Gotham’s main goal is
the understanding of mutual relationships between meters. In contrast, the current approach
focuses on the theory of London as a main goal. The choice for this theory is motivated by
literature research in Chapter 2 that was aimed to find the optimal cognitive theory of metrical
structure as defined in Chapter 1. Therefore, in Section 3.3 we analyzed the aspects in London’s
theory that are underspecified. In Chapter 4, we will provide a direct formalization of London’s
well-formedness constraints; in Chapter 5, we will show how this formalization generates meters
that are not well-formed according to London’s theory. We address the problems of underspec-
ification and inconsistency by proposing additional constraints and analyzing their effect on
the set of permissible meters. These factors constitute the main difference between the current
formalization and related work.

The difference in perspective between the different approaches is not only reflected in the
different choices with regard to the open ends, as discussed in the previous section, but also in

5Even though Gotham’s (2015) criterion of twos and threes is soft, meters are explicitly defined in twos and
threes in all of his formalizations. Thereby, Gotham gives no account of structures with subdivision patterns of
larger multiples, nor on the constraints that would hold on such structures.
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structural differences between the current formalization and those of Forth and Gotham. As
these differences can be better appreciated when the current formalization is more clear, they
will be discussed at adequate locations in the next chapter.
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Chapter 4

Method

This chapter concerns the current proposal for formalization of the well-formedness constraints
of London (2012). The chapter is divided into three sections. Section 4.1 contains the definitions
and constraints of the current formalization, along with a clarification and several examples.
Section 4.2 provides an informal derivation of the way in which London’s definitions and well-
formedness constraints follow from the current formalization, to show agreement between the
current formalization and London’s well-formedness constraints. As discussed in Section 2.4.4,
London’s theory is not described in formal terms, and several details of the theory are not
completely specified. Furthermore, there are inconsistencies between London’s well-formedness
constraints, theory and examples. To address these inconsistencies, we suggest several additional
constraints in Section 4.3. Subsequently, Chapter 5 will discuss how these additional constraints
affect agreement between London’s (2012) theory and well-formedness constraints.

4.1 Definitions and constraints

Definition 1. Let a meter be a 3-tuple M = (L, c, u) in which:

• L is a set of levels `0, ..., `k in which k = #L− 1. Every level `x is a set of beats, such that
every beat is represented by a natural number n. We say that x is the level index of `x,
and that `x is the x-th level of L. We call L the structure of the meter.

• c ∈ N is a constant that denotes the tactus level index, such that `c is the tactus level.

• u ∈ R is a constant that denotes the temporal unit, measured in milliseconds.

In a meter M , the structure L represents the levels `x of beats n and their coordination. The
tactus level index c denotes which level `x is the tactus level `c, and temporal unit u is the
duration of any beat interval on the zeroth level `0, giving a measure of tempo. An instance of
a meter can be compared to an instance of a tempo-metrical type (at a given tempo) in London
(2012): The levels of a meter correspond to cycles in London, its beats correspond to attentional
peaks and the structure as a whole to the metrical type (the alignment of the cycles). The tactus
level is the beat cycle of London and the value of the temporal unit corresponds to one inter-
onset interval on the N cycle (and therefore the shortest inter-onset interval of the meter).
Note that the two constants c and u formally have the same status, although semantically, they
are of a different order: the tactus level index is a structural property of the meter, while the
temporal unit is a temporal property that can be used to tell within which temporal range a
structure L (with a given tactus level c) is perceivable as a meter; see also Section 3.3.2. We
call this range the temporal frame of the meter.

An example of the visual representation of meter is provided in Figure 4.1. In this example,
structure L consists of three levels, corresponding to rows in the dot notation. The bottom
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u = 279.3 ms
2 •

→ 1 • • •
0 • • • • • • •

0 1 2 3 4 5 6

Figure 4.1: Dot representation for the meter M = ({{0, 1, 2, 3, 4, 5, 6}, {0, 3, 5}, {0}}, 1, 279.3).

L in formal representation Convenient notation

{{0, 1}, {0}} 2

{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {0, 4, 7, 10}, {0}} 4-3-3-3

{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {0, 4, 7, 10}, {0, 7}, {0}} 4-3|3-3

{{0, 1, 2, ..., 15}, {0, 2, 4, 6, 8, 10, 12, 14}, {0, 4, 8, 12}, {0, 8}, {0}} 2-2|2-2||2-2|2-2

Table 4.1: Examples of the convenient notation.

row corresponds to `0 = {0, 1, 2, 3, 4, 5, 6}, the middle row to `1 = {0, 3, 5} and the top row to
`2 = {0}. Reading the columns instead of rows, we see which beat exists on which level(s).
The arrow before row 1 denotes that the tactus level is the first level, `1, and the statement
‘u = 279.3 ms’ denotes the value of constant u.

As a formally defined instance of a structure L does not always give a clear overview of
its structural organization, we also adopt London’s (2012) convenient notation of numbers
separated by punctuation marks to refer to different structures (e.g., 3-2-2 for {{0, 1, 2, 3, 4, 5, 6},
{0, 3, 5}, {0}} in Figure 4.1). In this notation, natural numbers represent the length of the beat
intervals on the first level `1 (in terms of units of the zeroth level `0). Arrangements on the
second and higher levels are shown by bars. For completeness, we add another convention
that beat arrangements on levels higher than the second level are represented by multiple bars.
Every possible structure L can unambiguously be represented by the convenient notation; for a
few examples, see Table 4.1. For London’s (2012) visual representation of these structures, see
Figure 4.2.

On the sets in the meter definition, we define two orders:

Definition 2. On L, we define the strict total order <, such that for all `x, `y ∈ L, it holds
that `x < `y ⇐⇒ `x ) `y. We say that level `y is higher than (or above) level `x if `x < `y.

The levels `x of a meter are ordered, and every next level `x+1 is strictly contained in the level
below, `x. This ensures that we can speak unambiguously about the height of a level and say
that one level is above or below another level. The definition restricts the possible number of
levels of a meter and makes sure that the number of beats monotonically decreases by increasing
level. Because of the strictness of the order, no two levels can be equal. Furthermore, a beat
can only be present in a given level if it is also a beat in all lower levels.

Definition 3. On every level `x, we define the strict total order < of the natural numbers on
the beats of that level.

The beats n on every level `x are ordered in the same way as the natural numbers. That is, beat
0 comes before beat 1, beat 1 comes before beat 4, etc. This ensures that we can unambiguously
refer to the different beats in a level.

Through the above definitions, the current formalization is structurally different from Forth’s
(2012) formalization. While Forth’s trees are familiar mathematical objects for those with a
background in graph theory, the current formalization offers a more compact structure by
only defining a set and multiple subsets that jointly constitute a hierarchy. Because of this,
the current formalization is less similar to familiar mathematical objects, but also requires
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Figure 4.2: London’s (2012) representation for the four meters from Table 4.1.

less definitions than Forth’s formalization. Furthermore, the current approach does not allow
microrhythmic details into the formalization, in contrast to Forth. This restricts metrical space.

Now that we have defined a meter, let us turn to well-formedness of meters. Well-formedness
is defined by meeting eight constraints, C1 to C8. Basic structural constraints C1, C2 and
C3 ensure proper hierarchical organization of the meter. Temporal constraints C4, C5 and C6
place perceptual boundaries on the temporal unit u. Advanced structural constraints C7 and
C8 restrict the possible relations between beats, both within and between levels. We say that
a meter is well-formed if and only if the constraints C1 to C8 all hold:

C1 Existence of a lowest level.
∃`0 ∈ L ∃p ∈ N [L0 = {n ∈ N | n < p}]

The meter M has a lowest level, which is the zeroth level `0, that contains a given number p
of beats n, such that the beats of this level are represented by consecutive natural numbers
0, 1, 2, ..., p − 1. We call p the period of the meter and it denotes the total number of beats
in the meter (analogous to the cardinality in London, 2012). From this constraint, it directly
follows that p = #`0. The lowest level `0 can be compared to the N cycle in London (2012)
and is essentially the common fast pulse of the model, as it is the fastest level and it is defined
as a series of isochronous units. Through this, constraint C1 fills the open end of isochrony of
the fastest pulse, as discussed in Section 3.3.1.

By requiring the existence of a lowest level, C1 ensures that no structure is empty in terms of
levels. By the requirement that this lowest level is the zeroth level, `0, there is by definition 2 no
level that contains any beats which are not in the lowest level `0. Hence, we can unambiguously
refer to `0 as the lowest level.

C2 The highest level contains only the first beat (the number 0).
`k = {0}

The highest level `k (with k = #L− 1 by definition 1) contains exactly one beat, which is the
natural number 0. By this constraint in combination with definition 2, it holds that 0 is a beat
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on all levels and it is the only beat that exists on all levels. Furthermore, by definition 3, it
is the zeroth beat of all levels. Because of these reasons, we call the beat represented by the
natural number 0 the downbeat of the meter.

Defining a downbeat in the formalization is a divergence from London’s (2012) well-formedness
constraints. The motivation for this addition has been discussed in Section 3.3.3. Definition of
the downbeat (or rather, the constraint that the highest level contains only the downbeat) has
no implications on other constraints, except for C3 (for this implication, see the explanation
at C3). However, it does have structural implications. In combination with definition 2, C2
ensures that the downbeat is in all levels, and therefore all levels coordinate. Also, if a level
has only one beat, then by C2 with definition 2, there is no level above this level. This ensures
hierarchical organization of meters.

C3 Existence of the tactus level.
c < #L− 1

The tactus level, `c, is one of the levels in the structure L and it is not the highest level `k. This
latter aspect is not found explicitly in London’s (2012) well-formedness constraints, due to the
fact that in London (2012), it is not clear whether there is a highest level that only contains
a downbeat. As we have just seen, there is such a level in the current formalization by C2.
Given this fact, London’s (2012) well-formedness constraint 2.2 (“the beat cycle must involve
at least two beats”, p. 92) becomes equivalent with the statement that the tactus level is not
the highest level. This is by the following reasoning: If the tactus level has at least two beats,
it cannot be the highest level, as the highest level has only one beat by C2. Conversely, the
highest level is strictly included all levels below by definition 2, so if the tactus level is not the
highest level, it is below the highest level and must therefore have strictly more than one beat.

Similarly, as the structure has a lowest level by C1 (which is by definition 2 either the tactus
level or a strict superset of it), the lowest level contains at least two beats, which entails that
for every structure L, p ≥ 2. This also entails that every structure has at least two levels, since
if it were the case that #L ≤ 1, then #L − 1 ≤ 0 such that c < 0 while c ∈ N. This property
of the structure is not defined in London (2012) either, but follows again from the requirement
that the highest level the contains only the downbeat.

Before we formulate constraints C4 to C8, we introduce some more definitions that represent
different notions of distance between the beats of a meter. In order to more straightforwardly
define one of these notions, we first define the notion of metrical position.

Definition 4. Let n ∈ `x be a beat such that `x ∈ L is level with index x. For these n, x, we
define the metrical position of beat n on level `x as follows:
mp(n, x) = #{m | m ∈ `x ∧m < n}

The metrical position of a beat n at a given level `x is equal to the number of beats that
preceded it at that same level. The metrical position indicates the order number (zeroth, first,
second, etc.) of the beat on that level.

An example of the indication of metrical position is shown in Figure 4.3. In this structure,
beat 5 (indicated by the arrow) is preceded by five beats on level `0, and therefore its metrical
position on level `0 is 5; it is the fifth beat (counting from zero) in `0. In contrast, on `1, beat
5 is preceded by only two beats, hence its metrical position on level `1 is 2.

Now, we can define different notions of distance. Henceforth, the term distance in general
refers to the difference between any two beats (or, more correctly, beat onsets) on a given level.
This difference can be measured in three ways.

First, it can be measured as the absolute time that elapses between the two beats, in
milliseconds. This time span is expressed by a real number and is independent of the level
on which we are looking. We call this time span the absolute distance and it will recur in
definition 9.
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Figure 4.3: Beat 5 highlighted in a meter with structure 3-2-2; M = ({{0, 1, 2, 3, 4, 5, 6}, {0, 3, 5},
{0}}, c, u), with c and u omitted for readability.
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Figure 4.4: Unit distance and metrical distance between beats 2 and 7 in a 2-3|2-2 meter;
M = ({{0, 1, 2, 3, 4, 5, 6, 7, 8}, {0, 2, 5, 7}, {0, 5}, {0}}, c, u), with c and u omitted for readability.

Second, the difference can be measured as the number of unit intervals, or simply units,
between the two beats. In this notion, one unit is the duration between two adjacent beats
on the lowest level (note that one unit is equal to u, the temporal unit). As we are looking at
the number of units, it does not matter what the value of the temporal unit is. Hence, this
difference is expressed by a natural number that represents a multiple of the temporal unit. We
call this difference the unit distance, and like absolute distance, unit distance is independent of
level. Unit distance will be formally defined in definition 5.

Third, the difference can be measured as the number of beat intervals between the two beats
on the level in question. In this notion, one beat interval is the duration between two beats that
are adjacent on the level in question. As we are looking at the number of beat intervals, it does
not matter what the durations of these intervals are in terms of unit distance or absolute dis-
tance. Instead, we are looking at the difference in the metrical position of the beats on the level
in question, expressed relatively to the other beats on that same level. We call this difference
the metrical distance. This distance will be formally defined in definition 6. The distinction
between unit distance and metrical distance is the formal version of London’s (2012) distinction
between specific and generic interval size, respectively, as discussed in Section 2.4.3. Figure 4.4
contains an example of this distinction, by showing the metrical distance between beats 2 and
7 on both `0 and `1 in a meter with structure 2-3|2-2, as well as the unit distance between
these beats. The following two formal definitions will explain how exactly these distances are
calculated.

Note that in general, the current proposal differentiates distance and interval as follows:
distance denotes the difference between any two beats, while interval refers to the difference
between two beats that are adjacent with regard to the definition in question.

Now, we introduce formal definition of unit distance and metrical distance:
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Definition 5. Let m,n ∈ `x be beats such that `x ∈ L is a level with index x. For these m,n,
we define the circular unit distance between m and n as follows:
UD(m,n) = (n−m) mod p

The circular unit distance between beat m and n is the difference (in units) between m and n
under modulo of the period of the meter. We define the unit distance in a circular way, since
meter is periodic and circular in London’s (2012) theory and visual representation. Circularity
is ensured by the modulo operator. As we do not define a non-circular unit distance, we will
hereafter refer to the circular unit distance simply as the unit distance.

An example of calculating unit distance is shown in Figure 4.4. The indicated unit distance
(that is, the unit distance between beats 2 and 7) is 5 units: UD(2, 7) = (7 − 2) mod 9 = 5.
In contrast, the unit distance between beats 7 and 2 is 4 units: UD(7, 2) = (2 − 7) mod 9 =
(−5) mod 9 = 4.

Note that ‘mod’ in this definition refers the binary operator that finds the remainder of
Euclidean division or floored division, such that, for instance, UD(7, 2) with period 9 is equal
to 4 and not to −5, as is the case for truncated division. As argued above, unit distance is
independent of level, and indeed, it is not measured with respect to any level. The unit distance
between two beats m and n is 0 if and only if m and n are the same beat. One might intuitively
think that the distance between two the same beats is a full period p, but by the modulo operator
in the definition, this is 0. This has potentially counterintuitive consequences for definition 7,
but we will see that these do not give rise to semantic problems.

Definition 6. Let m,n ∈ `x be beats such that `x ∈ L is a level with level index x. For these
m,n, x, we define the circular metrical distance between m and n on level `x as follows:
MDx(m,n) = (mp(n, x)−mp(m,x)) mod #`x

The circular metrical distance between beats m and n on a given level `x is the difference
between the metrical positions of m and n on that level, under modulo of the total number of
beats in that level. Like unit distance, metrical distance is defined in a circular way, which is
again shown by the modulo operator. As is the case of unit distance, hereafter we will refer to
the circular metrical distance simply as the metrical distance.

An example of calculating metrical distance is shown in Figure 4.4. The indicated metrical
distance on level `1 (that is, the metrical distance between beats 2 and 7 on `1) is 2 beat
intervals, as the metrical position of beat 7 on `1 is 3, and the metrical position of beat 2 on `1
is 1. In contrast, the indicated metrical distance on `0 (that is, the metrical distance between
beats 2 and 7 on `0) is 5 beat intervals: as the metrical positions of beats 2 and 7 on `0 are 2
and 7, respectively.

In contrast to unit distance, metrical distance is dependent on the level: it looks at the
position (or order number) of the beats in that level relative to the other beats. Note that the
metrical distance between two beats on a given level is 1 if and only if the beats are adjacent
on that level. Furthermore, the metrical distance between two beats is 0 on all levels if and
only if the two beats in question are the same. Again, this has potentially counterintuitive
consequences for definition 7, which again do not give rise to problems. Finally, the metrical
distance between two beats on level `0 is equal to their unit distance (see also Figure 4.4).

The next definition is necessary for the formal definition of maximal evenness (definition 11).
It will come in handy as well for other constraints, such C6 (temporal limitation of the tactus
level) and later additional constraints in Section 4.3, such as explicit exclusion of metrical
ambiguity, and restriction of the number of beat classes.

Definition 7. For two variables x, d such that `x ∈ L is a level and d ∈ N, we define the unit
distance set Q(x, d) as follows:
q ∈ Q(x, d) ⇐⇒ ∃m,n ∈ `x s.t. [MDx(m,n) = d ∧UD(m,n) = q]
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Figure 4.5: Meter with structure 3-2|2-2; M = ({{0, 1, 2, 3, 4, 5, 6, 7, 8}, {0, 3, 5, 7}, {0, 5}, {0}}, c, u),
with c and u omitted for readability.

The unit distance set contains the unit distances between all beat pairs m,n on level `x that
are separated by metrical distance d. In other words, Q(x, d) is the set of the unit distances
q between every pair m,n ∈ `x between which the metrical distance is equal to predefined
variable d. For example, the unit distance set of level `1 in a meter with a 3-2|2-2 structure (see
Figure 4.5) for metrical distance d = 1 is the set that contains the unit distances between the
beat pairs on level `1 of this structure between which the metrical distance is 1 (that is, they are
adjacent on level `1). These are the pairs (0, 3), (3, 5), (5, 7) and (7, 0), between which the unit
distances are respectively 3, 2, 2 and 2. Therefore, Q(1, 1) = {2, 3}. Likewise, the unit distance
set for level `1 with metrical distance d = 2 contains the unit distances between the pairs (0, 5),
(3, 7), (5, 0) and (7, 3), which are respectively 5, 4, 4 and 5. Therefore, Q(1, 2) = {4, 5}.

The definition of the unit distance set is inspired by the work of Clough and Douthett (1991,
p. 94–97) on maximal evenness in scale theory. It is defined for every level `x in the structure
and every d ∈ N, but is non-empty only for d < #`x, as the metrical distance between two
beats on a level never exceeds the total number of beats of that level. In fact, given that `x is
a level in the structure, the unit distance set is always non-empty for every d < #`x, because
one can always find a pair of beats m,n on level `x such that the metrical distance between m
and n on `x is equal to any number between 0 and #`x.

Note that for all levels `x, the unit distance set for d = 0 is {0}, because in this case, every
m = n, so the unit distance between all beats m and n is 0. Also, for all levels `x, the unit
distance set for d = 1 is the set of all unit intervals between beats that are adjacent on that level,
which is used in definition 9 (and thereby in constraint C6). Furthermore, the unit distance set
for the lowest level `0 and d = 1 is {1}, as on the lowest level, there is one unit between each
pair of adjacent beats. In general, for all d ≤ #`0−1 it holds that the unit distance set on level
`0 is {d}, as on the lowest level, there are d units between each pair of beats between which the
metrical distance is d.

For all d, the unit distance set for the highest level `k is either {0} or the empty set, since
the highest level contains only one beat, and both unit distance and metrical distance between
the same beat are 0 by definition 5 and 6, respectively. One might intuitively think that the
unit distance set is {p} for this case, by assigning the case d = 1 to the idea m and n being two
‘adjacent downbeats’. However, as metrical distance is circular, we cannot speak of ‘adjacent
downbeats’. Therefore, there is no case d = 1, hence the unit distance set is empty for this
metrical distance. Similarly, for all levels `x, the unit distance set is empty when d ≥ #`x.

The unit distance set provides a measure of beat distribution for a given level `x, as it lists
all the unit distances that exist between given pairs of beats (the choice of pairs depends on d).
For all d, the set has one element when the beats are evenly distributed on that level (i.e., all
beats are isochronous on that level), while it has multiple values when the beats are unevenly
distributed (except for d = 0 as above). The actual number of elements in the set and their
mutual differences indicate the extent to which the beats on `x are distributed unevenly.

The next two definitions are important with regard to absolute durations in milliseconds
instead of units or position in the level.
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Definition 8. We define the absolute period a of a meter M as a := p ∗ u

We get the absolute period by multiplying the period, p, which is measured in units, by the
value of the temporal unit, u, measured in milliseconds. It follows that a ∈ R and is measured
in milliseconds.

Definition 9. For every variable x such that `x ∈ L is a level, we define the absolute beat
interval set as follows:
I(x) = {i | i = q ∗ u ∧ q ∈ Q(x, 1)}

The absolute beat interval set contains the values of the unit distance set for level `x with d = 1,
multiplied by the value of the temporal unit, u. Thereby, it returns the set of absolute distances
(in ms) between the pairs of beats that are adjacent on that level, that is, it returns the absolute
beat intervals on that level. For an example, see Figure 4.6. The absolute beat interval set I(x)
of level `1 for this meter is I(1) = {440 ms, 660 ms}.

Note that in particular, the absolute beat interval set for the lowest level is {u ms}, as the
lowest level is isochronous and all absolute beat intervals have a duration of u ms. The absolute
beat interval set of the highest level is {0 ms}, as there is only one beat on the highest level,
and both metrical distance and unit distance are circular.

Before we can define the temporal constraints C4, C5 and C6, we will define four param-
eters. As discussed in Section 2.4.3, London (2012) puts perceptual temporal constraints on
the tempo-metrical types. These constraints are obtained from empirical research, in which
high degrees of task-dependency and inter-subject variation were found (London, 2012, p. 27).
Because of this, we define these boundaries as parameters of the formalization, which can be
tweaked to suit individual (or cross-cultural) differences.

Definition 10. We define the following four perceptual limit parameters:

• The minimum unit interval, umin, in ms;

• The maximum absolute period, amax, in ms;

• The minimum tactus beat interval, imin, in ms;

• The maximum tactus beat interval imax, in ms.

For the current project, we choose the values as defined in London’s (2012) well-formedness
constraints, which are the following: umin = 100 ms, amax = 5000 ms, imin = 400 ms, imax =
1200 ms.

Definition of perceptual limits as parameters is another divergence from the formalization
of Forth (2012). Through this parameter definition, the perceptual limits can take any value
in the current formalization, while in Forth, these perceptual limits are fixed in the definitions
(pp. 110, 112, 119).

The temporal constraints C4, C5 and C6 are derived from the temporal constraints in
London (2012):

C4 Unit interval limitation.
u ≥ umin

The value of the temporal unit u is greater than the minimum unit interval umin. This constraint
defines the duration of the metric floor, as the shortest beat intervals cannot be perceived as
such when the tempo is too high.

C5 Absolute period limitation.
a ≤ amax
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Figure 4.6: Dot representation for meter with structure 3-2|2-2; M =
({{0, 1, 2, 3, 4, 5, 6, 7, 8}, {0, 3, 5, 7}, {0, 5}, {0}}, 1, 220).

The absolute period a of the meter is less than the maximum absolute period amax. This
constraint defines the duration of the metric ceiling, as metrical entrainment is limited to periods
shorter than amax.

If we have amax = 5000 ms and umin = 100 ms, then p ≤ 50, since p = a
u by definition 8. We

can conclude that for these values of amax and umin, p is constrained by structural constraint
C3 and temporal constraint C5 to be 2 ≤ p ≤ 50.

C6 Temporal tactus level limitation.
∀i ∈ I(c) [imin ≤ i ≤ imax]

All absolute beat intervals on the tactus level are in between the minimum and maximum tactus
beat interval imin and imax. This way, no beat in the tactus level is too fast or too slow to be
perceived as a tactus. As the tactus level may be non-isochronous, there might be multiple beat
intervals on the tactus level, which all need to be taken into account.

For an example, see Figure 4.6. The absolute beat interval set I(x) of the tactus level `c
for this meter is I(c) = {440 ms, 660 ms}, which is within the required range, hence this meter
meets constraint C6. Note that not every level `x in which the absolute beat intervals fall
within the range required by C6, is ‘a tactus level’; by definition 1, there is only one tactus
level `c, as the tactus level is determined by the constant c. We can see this for the current
example (Figure 4.6): I(2) = {880 ms, 1100 ms}, which falls within the required range, but
c 6= 2. What this does mean, is that C6 does not only permit the meter with structure 3-2|2-2,
tactus level index c = 1 and temporal unit u = 220 ms, but also permits a different meter with
the same structure and temporal unit, but with `2 as the tactus level (notwithstanding that
this meter might violate one of the other constraints).

Dependent on the particular structure L of a meter, temporal constraints C4, C5 and C6
restrict the possible values of u such that the meter is still well-formed. For example, a meter
3-2|2-2 with c = 1 (Figure 4.6) is ill-formed for u > 400 ms, since then, one of the elements of
the absolute beat interval set, I(c), exceeds imax = 1200 ms. A meter with structure 3-2|2-2 is
also ill-formed for u < 200 ms, as this makes one of the elements of the absolute beat interval
set less than imin = 400 ms. Often, the imin and imax are the most restricting parameters, but
for meters with lengthy subdivision patterns or large periods, umin and amax respectively come
into play as well.

As mentioned earlier this section, the last two constraints, C7 and C8, restrict the possible
relations between beats, both within and between levels:

C7 Principle of non-adjacency.
∀`x ∈ L ∀m,n ∈ `x [MDx(m,n) = 1→ (m /∈ `x+1 ∨ n /∈ `x+1)]

Every two adjacent beats m and n on a given level `x are not both in the level directly above `x
(recall that the metrical distance between two beats on a given level is 1 if and only if the beats
are adjacent on that level). This constraint ensures that any two beats on a given level are not
adjacent on the level below, as motivated by London’s (2012) well-formedness constraint 3.4.
London argued that this constraint ensures that beats and subdivisions on the same cycle are
not mixed up.
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Figure 4.7: Dot representation for an ill-formed meter with structure 3-2|2-2|2; M =
({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {0, 3, 5, 7, 9}, {0, 5, 9}, {0}}, c, u), with c and u omitted for read-
ability.

For an example, see Figure 4.7. This is an ill-formed meter, since we can find the following
violation to C7: there is a level `x (namely, `1) such that there is a beat m and a beat n in `x
(namely, the beats 9 and 0) that are adjacent on level `1 (i.e., MD1(9, 0) = 1) and are both also
a beat in `2.

Note that C7 is always met on the highest level `k, as there is no `k+1, so both arguments
of the disjunction in C7 are true, which makes the conclusion of the implication true.

In combination with definition 2, C7 requires that every level contains at most half of the
beats of the level directly below (as two adjacent beats are never allowed to both be in the next
level). This puts constraints on the maximum number of levels in a structure. For umin = 100
ms and amax = 5000 ms, we had p ≤ 50. Therefore, #`0 ≤ 50 ⇒ #`1 ≤ 25 ⇒ #`2 ≤ 12 ⇒
#`3 ≤ 6⇒ #`4 ≤ 3⇒ #`5 ≤ 1. But if a level has only one beat, then by C2 with definition 2,
there is no level above this level. So there cannot be a level `6 under the current perceptual
limit parameter settings, and therefore, all structures have six (`0 to `5) or less levels. When
the perceptual limit parameters are changed, there may be another maximum value for the
period p. In this case, there may be another maximum number of levels as well; these values
are flexible. Note that this again diverges from the formalization of Forth (2012). Not only
the perceptual limits are fixed in the formalization of Forth, as discussed above, but also the
maximum number of levels (see Forth, 2012, p. 114).

Before we can define the last constraint C8 of maximal evenness, we first define maximal
evenness as a property of a level.

Definition 11. A level `x is maximally even iff #`x ≥ 2 and ∀d ∈ N ∀q, r ∈ Q(x, d) [|q−r| ≤ 1]

A level is maximally even if and only if it has at least two beats, and for every metrical distance
d, the difference between all elements of its unit distance set is at most 1. For an example, see
Figure 4.8. Level `1 of this structure is not maximally even, because there is a metrical distance
d (namely, 2), such that there are unit distances q and r in the unit distance set of level `1
between which the difference is greater than 1 (namely, 4 and 6, as Q(1, 2) = {4, 5, 6}). Note
that `2 however is maximally even, since it has two beats, the unit distance set is for d = 0 is
{0}, the unit distance set for d = 1 is {6} and the unit distance set for all d ≥ 2 is empty.

Definition 11 entails that the unit distance set for any level is not allowed to have more than
two elements, since if it does, there are unit distances q and r in the unit distance set such that
|q− r| > 1. Note that the set is allowed to have one element, since then q = r, so the difference
between all unit distances q and r is 0.

The latter part of this definition is motivated by the formal definition of maximal evenness
in Clough and Douthett (1991, p. 96). In the current formalization, there is an additional
requirement that a level needs to have at least two beats, since maximal evenness is a measure
of beat distribution, and it makes no sense for a level with only one beat to call its ‘beat
distribution’ maximally even. Also, such a level cannot serve to stabilize a tactus level that is
not maximally even, so this requirement is also important with regard to the next constraint.
Note that proving maximal evenness for a given level is not needed for all d ∈ N, but only for
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Figure 4.8: Dot representation for meter with structure 3-3|2-2-2; M =
({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {0, 3, 6, 8, 10}, {0, 6}, {0}}, 1, 300).

1 ≤ d ≤ #`x − 1. This is because of two things. First, recall that the unit distance set for
d = 0 is {0} for all levels `x, so the difference between all unit distances q and r in the set is
0. Second, for all `x and d ≥ #`x, the unit distance set is empty, so trivially the difference
between all unit distances q and r in the unit distance set is at most one, as there are no such
q and r. Finally, the lowest level, `0, is always maximally even, as its unit distance set is {d}
for all metrical distances d ≤ #`0 − 1.

C8 Principle of maximal evenness.
`c is maximally even or `c+1 is maximally even.

Either the tactus level, `c, or the level directly above the tactus level, `c+1, is maximally even,
or both are. Level `c+1 exists by C2, which requires that the tactus level `c is not the highest
level. Since `c+1 often recurs in later discussion, we will hereafter refer to it as the super-tactus
level.

If a structure abide by the principle of maximal evenness, we call this structure as a whole
maximally even, as it is maximally even in the global sense used by London (2012). For example,
the meter in Figure 4.8 is maximally even, since its super-tactus level is maximally even.

Because every maximally even level has at least two beats by definition 11, C8 indirectly
puts an additional restriction on the the tactus level, namely, it has at least two beats. However,
this is not a problem, as this is also required in London’s (2012) well-formedness constraint 2.2,
and we have seen that it already followed from C2 as well. Note that this does not make C2
unnecessary, as it also has other structural functions, such as ensuring that the tactus level `c
is one of the levels in the structure and ensuring that the downbeat is a beat on all levels.

Finally, we define metrical saliency.

Definition 12. Over `0, we define the metrical saliency of every beat n ∈ `0 as follows:
S(n) = #{x ∈ N | `x ∈ L ∧ n ∈ `x}

The metrical saliency of a beat is the number of levels in which it appears. In this definition,
the downbeat is the most salient beat of the meter, as by C2, it is the only beat that exists on
all levels of a meter. This definition is motivated by Section 3.3.3 and resembles the definitions
of strength in Lerdahl and Jackendoff (1983) and weight in Longuet-Higgins and Lee (1984), as
both defined for isochronous meters.

4.2 Derivation of London’s well-formedness constraints from
the formalization

In this section, we will construct proofs of London’s (2012) well-formedness constraints, taking
the definitions and constraints of the current formalization as premises. Note that the proofs
cannot be fully formal, as London’s theory is not formal. The definitions and constraints are
reproduced from London, pp. 191–192.
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“Definition. A meter is a coordinated set of periodic temporal cycles of senso-
rimotor attention.”
As can be seen, the definition of meter in the current formalization is different. However, the
current formalization can still be used to describe a coordinated set of periodic temporal cycles
of sensorimotor attention. The levels in the current representation are the periodic temporal
cycles in London (2012) and they are temporal through temporal unit u. The structure in the
current representation represents the full coordinated set of cycles in London (2012) and the
tactus level is the beat cycle. Furthermore, by the temporal unit, different tempo-metrical types
of the same metrical type can be differentiated.

“Definition. The lowest level of the metrical cycle involves the shortest IOI and
includes all of the attentional peaks in the cycle; it is referred to as the N cycle, as
N = number of attentional peaks present.”
The N cycle of London (2012) is the zeroth level in the current formalization. Its existence is
ensured by C1. By definition 2, this level contains all attentional peaks of the structure.

The fact that `0 involves the shortest inter-onset intervals can be drawn by computing the
absolute beat interval set (definition 9) of all levels. As the unit distances between adjacent
beats on any level `x such that x 6= 0 are multiples of unit distances between adjacent beats
on `0 through definition 2, the absolute inter-onset intervals of beats on higher levels are also
multiples of the absolute intervals on `0. Therefore, the elements of absolute beat interval set
of `0 are smaller than all elements of the absolute beat interval set for any other level `x.

“Definition. Higher levels, involving larger IOIs than those present in the N cycle,
are referred to as subcycles.”
Exactly all levels `x such that x 6= 0 are subcycles in this definition and by the same argumen-
tation as above, they all involve larger inter-onset intervals.

“WFC 1.1: IOIs between attentional peaks on the N cycle must be greater than ≈
100 ms.”
This follows directly from C4. The exact value is made into a single threshold value, but is
flexible through its definition as a parameter in definition 11.

“WFC 1.2: The beat cycle involves those attentional peaks whose IOIs fall be-
tween ≈ 400 ms and ≈ 1200 ms.”
This follows directly from C6. The remarks at the previous well-formedness constraint apply
here as well.

“WFC 1.3: A meter may have only one beat cycle.”
For every meter, its tactus level is defined by constant c which can have only one value at a
time. But as all `x within a meter are unique by definition 2, there can be only one `x such
that x = c and therefore only one tactus level for every meter. As explained at C6, there can
be multiple levels that may serve as tactus level for a given structure and given temporal unit,
but any meter can have only one tactus at a time.

“WFC 1.4: The maximum duration for any or all cycles is ≈ 5000 ms.”
This follows directly from C5. The remarks for well-formedness constraint 1.1 apply here as
well. Note that all levels should have the same duration for this constraint to hold, but this
follows from the fact that all levels coordinate, as 0 is a beat on all levels by the combination
of C2 and definition 2.

“WFC 2.1: A meter must have a beat cycle.”
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This follows directly from C3, which ensures that the tactus level constant c denotes a level in
the structure.

“WFC 2.2: The beat cycle must involve at least two beats.”
This follows from C3 as well, as argued below its definition: By definition 2, the highest level
is strictly included in all levels below, and by C3, the tactus level is not the highest level.
Therefore, the tactus level is below the highest level, so the highest level (containing exactly
one beat by C2) is strictly included in the tactus level, which entails that the tactus level must
have strictly more than one beat, hence at least two beats.

“WFC 2.3: The N cycle may serve as the beat cycle.”
This is a possibility rather than a restriction and there is no rule in the formalization that
forbids this. This is the case c = 0 and we can create meters for which this holds, as long as
that is permissible through the temporal constraints C4, C5 and C6. In practice, c = 0 can
only hold when p ≤ 12, as for p = 13, C5 requires that u ≤ 384.6, while since c = 0, u ≥ 400
by C6.

“WFC 3.1: All cycles must have the same total period/duration.”
This follows from the fact that all levels coordinate, as 0 is a beat on all levels by combination
of C2 and definition 2.

“WFC 3.2: All cycles must be continuous.”
As definition 5 and 6 are defined on the full period and circular, there are no discontinuities.

“WFC 3.3: The N cycle and all subcycles must begin and end at the same temporal
location: that is, they must all be in phase.”
This follows from the fact that 0 is a beat on all levels by combination of C2 and definition 2.

“WFC 3.4: Each subcycle must connect nonadjacent time points on the next lowest
cycle.”
This follows directly from C7.

“WFCs 4.1.1-3” (omitted - these rules are trivially met as the interonset intervals on the
lowest level are always isochronous in this formalization: interonset intervals are absolute dis-
tances between adjacent units, all units are consecutive by C1 and there is only one u per meter
by definition 1)

“WFC 4.2.1: If the IOIs on the N cycle are isochronous, then the beat cycle
need not be.”
Like WFC 2.3, this is a possibility rather than a restriction. As we have seen directly above,
the beats on the zeroth level are always isochronous. Indeed, the tactus level need not be
isochronous as long as the other constraints are met, and we have seen that we can create
meters for which this holds (see for instance the meter in Figure 4.8 that passes C8).

“WFC 4.2.2: If the beat cycle is NI, then either (1) it is maximally even or (2) the
cycle above the beat cycle, in most cases the half-measure cycle, must be maximally
even.”
This follows directly from C8 (with definition 11).
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3 •
2 • •

→ 1 • • • • •
0 • • • • • • • • • • • •

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.9: Meter with structure 4-2|2-2-2, that is ill-formed with respect to C9; M =
({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {0, 4, 6, 8, 10}, {0, 6}, {0}}, 1, u), with u omitted for readability.

4.3 Additional constraints

As discussed in Section 2.4.4, there are several inconsistencies between London’s (2012) well-
formedness constraints and theory (see also Section 5.1). Because of this, the current sec-
tion introduces additional constraints that are not explicitly present in London’s (2012) well-
formedness constraints. Some of the additional constraints are motivated through personal
communication with Justin London (October 30, 2016) about inconsistencies in London (2012).
Where this is the case, it will be indicated.

In most cases, the current formalization is weaker than London’s (2012) theory: it in-
cludes structures that are not allowed by London (2012). In Section 4.3.1, four strengthening
constraints are presented that strengthen the formalization in different ways and by different
motivations. There are also cases in which the formalization is stronger than London’s (2012)
theory. For these cases, the principle of maximal evenness (C8) is redefined in Section 4.3.2.
In future research, some of the additional constraints may be useful for implementation of the
formalization in a cognitive model. To this end, effects of the additional constraints will be an-
alyzed per constraint in Chapter 5.3. The analysis will focus on general effects as well as effects
on individual structures. Additionally, the analysis will visualize the disagreements between the
theory and well-formedness constraints of London (2012).

4.3.1 Strengthening constraints

As we have seen in Section 2.4.3, London’s (2012) theory argues for avoiding the metrical phe-
nomena of ambiguity and contradiction within metrical structure (this is confirmed by London,
personal communication, October 30, 2016). London’s (2012) well-formedness constraints 3.4,
4.1.2, 4.1.3 and 4.2.2 are meant to rule out these phenomena (p. 131), and they partially do
(though indirectly), but not on all levels. Therefore, the first additional constraint concerns
explicit exclusion of structures in which ambiguity or contradiction occurs on any level:

C9 Exclusion of ambiguity and contradiction.
∀`x ∈ L [max Q(x, 1) < 2 ∗min Q(x, 1)]

In every level, the longest beat interval is not equal to or longer than twice the shortest beat
interval. This constraint compares the minimal and maximal elements of the unit distance set
of the adjacent beats (hence d = 1) on all levels `x. We can speak of a minimal and maximal
element of the unit distance set, since this set is finite for all levels `x (every level has a finite
number of beats since p is finite by C5).

An example of a meter that does not meet this constraint is shown in Figure 4.9. In this
meter, the unit distance set of level `1 is {2, 4}. Note that this meter does meet the structural
well-formedness constraints, including C8, since the super-tactus level is maximally even.

As stated above, avoiding ambiguity and contradiction on all levels is not directly repre-
sented in the well-formedness constraints of London (2012). However, part of it is represented
in London’s (2012) well-formedness constraint 4.1.2. This constraint avoids ambiguity and con-
tradiction on the lowest level when this level is non-isochronous, by requiring that the length of
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2 • •

→ 1 • • • • •
0 • • • • • • • • • •

0 1 2 3 4 5 6 7 8 9

Figure 4.10: Meter with structure 2-2-2|2-2, that is ill-formed with respect to C10; M =
({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 2, 4, 6, 8}, {0, 6}, {0}}, 1, u), with u omitted for readability.

the shortest beat on this level is more than half the length of the longest beat (London, 2012).
However, this well-formedness constraint was not included in the current formalization, as it
only holds for cases in which the lowest level is non-isochronous, which is never the case in
the current formalization. The constraint therefore has no effect on the current formalization.
Furthermore, it only holds for the lowest level, while we have seen that London (2012; personal
communication, October 30, 2016) argues for avoiding this restriction on all levels of metrical
structure. Therefore, addition of C9 may be a good complement to the current formalization
such that it better reflects London’s (2012) theory. The effect of C9 is discussed in Section 5.3.1.

The second additional constraint was also designed to increase regularity of the possible
structures:

C10 Half/third-measure rule.
∀`x ∈ L [2 ≤ #`x ≤ 3→ ∀q, r ∈ Q(x, 1) : |q − r| ≤ 1]

Any level that has two or three beats (that is, it can serve as a half-measure or third-measure,
see Section 2.4.3) should be maximally even. An example of a meter that does not meet this
constraint is given in Figure 4.10. In this meter, level `2 has two beats, but Q(2, 1) = {4, 6}.
Note that this meter does meet all other structural well-formedness constraints, including C9.

Note that C10 makes a difference only when the level in question is not the lowest level `0
or the tactus level `c: the lowest level `0 is always maximally even as argued before, and by C8,
the tactus level is always maximally even when it has two or three beats (as in this case, there
cannot be a super-tactus level with more than one beat by C7).

C10 is less grounded within the theory of London (2012) and more artificially designed to
remove structures that are intuitively wrong, but on which London’s (2012) theory does not
specify whether they are allowed. The constraint is designed for cases in which the tactus level
is maximally even, so by C8, the super-tactus level (potentially a half- or third-measure) need
not be maximally even. C10 requires that in this case, any half- or third-measure should still
be maximally even. As we will see in Section 5.3.2, C10 does address problematic cases, but
the idea behind it is not as clearly a goal in London’s (2012) theory as avoiding ambiguity is.
Therefore, C9 is a more logical extension to London’s (2012) well-formedness constraints than
C10. Note also that the 2-2-2|2-2 meter of Figure 4.10 intuitively is not necessarily problematic,
as it is in fact a 3-2 meter with duple subdivision.

The third additional constraint is motivated by personal communication with London (Oc-
tober 30, 2016):

C11 Maximum of two beat classes.
∀`x ∈ L [#Q(x, 1) ≤ 2]

For every level, the unit distance set for metrical distance d = 1 has at most two elements. That
is, there are maximally two different beat intervals (beat classes) on each level.

An example of a meter that does not meet C11 is given in Figure 4.11. We can find the
following violation for `1: Q(1, 1) = {3, 4, 5}.

C11 follows from London’s (personal communication, October 30, 2016) proposal for a
“covering law” that there cannot be more than two beat classes. In the current formalization,
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2 • •

→ 1 • • • •
0 • • • • • • • • • • • • • • • •

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.11: Meter with structure 4-4|3-5, that is ill-formed with respect to C11; M =
({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {0, 4, 8, 11}, {0, 8}, {0}}, 1, u), with u omitted for
readability.

we take the strong form of the proposal: there cannot be more than two beat classes at any
level. An alternative is to apply this rule to the tactus level only. The effect of C11 is discussed
in Section 5.3.3.

Arguably, it is not entirely natural to eliminate structures with three beat classes a priori.
Therefore, we propose one last additional constraint that eliminates many uncommon structures
through a more general consideration:

C12 Meta-rule of temporal frame.
For all well-formed meters M = (L, c, u), there is a meter M ′ = (L′, c′, u′) and a meter
M ′′ = (L′′, c′′, u′′) such that the following four statements hold:

1. L = L′ = L′′

2. c = c′ = c′′

3. u′ > u′′ + 100 ms

4. M ′ and M ′′ are both well-formed.

For every well-formed meter, there are two other well-formed meters that are the same as the
meter in question, but their temporal unit values are mutually 100 ms apart. In other words,
every well-formed meter must have a temporal frame of 100 ms; there must be a range of 100
ms within which the temporal unit u can move without violating another constraint of the
formalization.

This constraint is aimed at all points in which London’s (2012) well-formedness constraints
are less strict than the theory. It is motivated by the fact that many meters that are irregular in
some way (or have large subdivision patterns), can only perceived as that meter within a small
temporal frame. The constraint is designed to eliminate these cases by excluding all meters
that are only well-formed within a u-range that is smaller than 100 ms (that is, meters that can
only exist at very specific tempos). Indeed, a meter that (for a given c) is only allowed when
100 ≤ u ≤ 102 arguably does not have a meaning, as the grounds for its perceivability are very
limited. This way, constraint C12 also discards the occurrence of limit cases: meters that can
only be perceived when u is confined to one specific value. Such limit cases are an artifact of
formalization (they are the result of defining hard boundaries) and are therefore undesirable,
though useful to visualize extremities.

Intuitively, it is straightforward to eliminate structures with a small temporal range, but
mathematically, this has to be defined on a meta-level. In this sense, C12 is different from the
other constraints. Note that the fixed range of 100 ms could be changed into a parameter as
well (Section 5.3.4 discusses the choice for the 100 ms range).

Alternative to introducing the extra constraint C12, it is also an option to tweak the val-
ues of the perceptual limit parameters such that they include less meters. However, in that
case the undesirable presence of limit cases and other extreme cases (structures that are only
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Figure 4.12: Meter with structure 3-3-3|3-2-2, that is ill-formed
with respect to C8, but well-formed with respect to C13; M =
({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {0, 3, 6, 9, 12, 14}, {0, 9}, {0}}, 1, u), with u
omitted for readability.

allowed within a very specific temporal frame) will be maintained. C12 avoids this problem.
Furthermore, in Section 5.3.4, we will see that C12 has a large effect on metrical space.

4.3.2 A weakening constraint

The theory of London (2012) sometimes allows for meters that are not maximally even, but in
which there is a half-measure that abides by another principle, the principle of rhythmic oddity,
as a compensation. This principle refers to the finding of Arom (1991) that central African
musical practice often includes odd half-measures for even N cycles (London, 2012). More
specifically, these half-measures follow the rule that their beat intervals arrange as follows:
N/2 + 1 versus N/2− 1. Some meters for which this holds, are permitted by London’s (2012)
well-formedness constraints (and thereby also by the formalization), because they also have
a maximally even beat cycle. However, London’s (2012) well-formedness constraints do not
permit meters that abide by the principle of rhythmic oddity but do not have a maximally even
beat cycle (because these meters are not maximally even by well-formedness constraint 4.2.2).
Therefore, we define one weakening constraint that relaxes the principle of maximal evenness
and makes use of the principle of rhythmic oddity. This constraint is specifically designed to
include meters that do not have a maximally even tactus level, but do abide by the principle of
rhythmic oddity. For this, we first formally define rhythmic oddity.

Definition 13. A level `x is rhythmically odd iff #`x = 2 and ∀q, r ∈ Q(x, 1) [|q − r| ≤ 2].

A level `x is rhythmically odd if it is a half-measure (i.e., has exactly two beats) on which the
difference between the unit distances is at most 2. An example of a meter with a level that is
rhythmically odd is shown in Figure 4.12. In the structure of this meter, level `2 has two beats
and the unit distances on this level are 9 and 7.

Now, we can define constraint C13 as an adjustment of C8 that relaxes it to include the
concerned meters.

C13 Principle of maximal evenness with rhythmic oddity.
At least one of the following statements holds:

• `c is maximally even

• `c+1 is maximally even

• `c is rhythmically odd

• `c+1 is rhythmically odd

This constraint is a weakened adjustment of C8 and can therefore replace C8. For an example
of a meter that does not meet C8 but does meet C13, see again Figure 4.12. This meter fails C8,
as both the tactus level `c and super-tactus level `c+1 are not maximally even (Q(1, 2) = {4, 5, 6}
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and Q(2, 1) = {7, 9}). However, this meter meets C13 as the super-tactus `c+1 is rhythmically
odd as shown above.

If this constraint is combined with C10, the latter constraint restricts exactly the cases in
which C13 relaxes C8, so C10 and C13 cannot combine meaningfully. The effect of C13 is
discussed in Section 5.3.5.
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Chapter 5

Analysis

This chapter contains an analysis of the current formalization of the theory and representation
of London (2012). As discussed in Section 2.4.4, London’s (2012) theory is not described in
formal terms, and several details of the theory are not completely specified. Section 2.4.4 also
showed that there are inconsistencies between London’s (2012) well-formedness constraints, the-
ory and examples. Section 5.1 will show for which structures and groups of structures the current
formalization reveals inconsistencies between London’s (2012) well-formedness constraints and
theory. In Section 5.2, a large testset of structures is constructed and analyzed, which gives
insight into the metrical space associated with the formalization (recall from Section 3.3.1 that
metrical space refers to the number of possible meters under a given set of rules or constraints).
In Section 5.3, the effect of additional constraints will be investigated on both individual struc-
tures and the general testset of Section 5.2. Finally, Section 5.4 provides a summary and
recommendations with regard to the additional constraints.

5.1 Individual points of difference

This section discusses both individual structures and groups of structures for which the for-
malization has revealed that London’s (2012) well-formedness constraints are inconsistent with
the theory. The inconsistencies are categorized into four main points. Additionally, through
personal communication, the current view of Justin London on some of the inconsistencies is
taken into account. This discussion includes London’s (personal communication, October 30,
2016) remarks whenever they diverge from the original theory.

5.1.1 Length of subdivision patterns

London (2012) states that subdivision patterns are at most seven to nine beats long (p. 132).
London (2012) argues that this is due to timing constraints, cues in the musical surface for
interpolation of levels and interpolation because of subjective rhythmization (the “propensity to
impose a sense of accent or grouping on a series of identical tones”; London, 2012, p. 13). As
the timing constraints are vague, London (2012, p. 134) sets the “practical limit” of subdivision
pattern length to six, but does not strongly commit to this limit. In the discussion of possible
meters, London (2012) argues that a 5-7 pattern in a 12-cycle and an 8-8 pattern in a 16-
cycle might be possible (pp. 155, 161). On the other hand, London (personal communication,
October 30, 2016) argues that all structures with subdivision patterns of 6 beats or more are
problematic, referring to a study by Repp (2007b). In this numerosity judgment task (judging
the number of tones in rapid tone sequences) participants generally enumerated a sequence of
up to 5 tones accurately, but their judgments became inaccurate for sequences with 6 tones or
more (Repp, 2007b).
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The current formalization is less strict with regard to length of subdivision patterns than
London’s (2012) theory. Through interplay of C4, C5 and C6, the formalization allows meters
that have subdivision structures of up to twelve elements (e.g., a 11-11 pattern with c = 1
and 100 ≤ u ≤ 109.1). Even though these structures are only possible within a very restricted
temporal frame, they are formally permitted within the formalization. The limit cases are a
12-12 structure for c = 1, in which u must be exactly 100, and a 12 structure for c = 0, in which
400 ≤ u ≤ 416.7 (recall that c = 0 is not possible with p ≥ 13).

5.1.2 Number and proportions of beat classes

As discussed in Section 2.4.3, London (2012) argues that some proportions between beat classes
cannot be perceived as such, because this would give rise to the metrical phenomena of ambiguity
or contradiction, and thereby confusion of levels. Apart from ambiguity and contradiction, other
factors interfere as well. London (2012, p. 134) argues that beat class ratios of 2:3 or 3:4 are
not problematic, but other ratios of the form J : J + 1 (with J a positive integer) tend to
approximate the 1:1-ratio to such extent that these proportions will sound like a 1:1 proportion
played with rubato. For ratios of the form J : J + N (with 1 < N < J), London (2012) argues
that the long beat tends to decompose into two short beats; 7-4 becomes 3-4-4 or 4-3-4. Ratios
of the form J : J+N (with N ≥ J) give ambiguity or contradiction, which is resolved as follows:
in the case J = N , we get an isochronous meter (3-6 turns into 3-3-3) and in the case J < N
we get a proportion of J : N − J (2-5 turns into 2-2-3) (London, 2012). London (2012) argues
that through arithmetic on beat classes (with 8 taken as the maximum beat class length by the
argument in the previous subsection), every structure will either be isochronous or have a beat
class ratio of the form J : J + 1 (pp. 134–135). This way, only 2:3 and 3:4 (apart from 1:1, of
course) do not suffer from these perceptual and combinatorial effects (London, 2012, p. 135).

Furthermore, London (2012) argues for a maximum of two different beat classes on every
level, as the existence of three beat classes will often give rise to ambiguity because of their
mutual proportions: when we have beat classes with mutual ratios 2:3:4, the smallest beat
class, 2, could be seen as a subdivision unit of the biggest beat class, 4 (being 2+2). In the
case 4:5:6, the 6 easily decomposes into 3+3 such that we get 3:4:5 (London, 2012). In turn,
3:4:5 is problematic as well, but not impossible, and London (2012, pp. 161–162) does give
instances of structures with such beat classes. In general, London (2012) sometimes argues for
specific instances of meters in which beat class ratios do not abide by the arguments he gives
on pp. 134–145.

A governing rule about number and proportions of beat classes can be found in London’s
(2012) well-formedness constraints, namely in those that concern maximal evenness. These
constraints put explicit borders on the permissible proportions of different beats on the same
level. By the definition of maximal evenness, the beat cycle is only maximally even if there are
at most two different beat classes, which are related as J : J + 1 with J a positive integer.

However, the constraints are not complete. As mentioned in Section 2.4.3, London’s (2012)
well-formedness constraint 4.2.2 is formulated in such a way that it captures that the meter
should be ‘globally’ maximally even, and that a maximally even cycle above the beat cycle
stabilizes a beat cycle that is not maximally even. However, this formulation of London’s
(2012) well-formedness constraint 4.2.2 also entails that ambiguities and contradictions may
occur. In the case that the cycle above the beat cycle is maximally even, anything goes for the
beat cycle by well-formedness constraint 4.2.2. Vice versa, when the beat cycle is maximally
even, anything goes for all levels above or below the beat cycle, by the same constraint. This
phenomenon is reflected in the formalization as well.

In terms of J : J + 1-ratios, the formalization permits meters that have ratios of up to
11:12 (limit case is the meter with structure 11-12, c = 1 and u = 100). Restrictions are
mainly brought up by temporal constraints C4, C5 and C6, as in the previous point. This,
of course, is consistent with London’s (2012) theory. There are also inconsistencies on the side
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of small integers: London (2012) sometimes abstains from listing structures with 3:4-ratios in
the overviews (such as the structures 4-3 or 4-4-3). However, London (personal communication,
October 30, 2016) argues that London’s (2012) theory is inconsistent here and that all those
meters should be allowed, though ratios with higher numbers than 5 might be problematic (as
motivated through Repp, 2007b). Through this argument, the maximally permissible ratio of
the form J : J + 1 is 4:5.

The formalization also permits meters that have J : J + N (with 1 < N < J) ratios on the
tactus level, as long as the super-tactus level is maximally even. Herewith, the formalization
allows for instance a 3-5|3-5 structure with c = 1 and 133.3 ≤ u ≤ 240, but also 5-5-5|5-9
with c = 1 and 100 ≤ u ≤ 133.3. The temporal frame decreases by increasing ratio, but many
of these structures are possible within the formalization. In contrast, London (2012) does not
allow for either structure, but in personal communication, London (October 30, 2016) adds that
the first structure is allowed.1 On the other hand, London (2012) argues that 3-5, 4-6-6 and
5-7 are perceivable as well, while neither are maximally even, but in personal communication,
London (October 30, 2016) argues against the latter two structures, remaining ambivalent on
the 3-5 structure.

Apart from this, the formalization also supports meters with more extreme beat class ratios.
The structure 2-4|2-4 with c = 1 and 200 ≤ u ≤ 300 is allowed for its maximally even super-
tactus level, which is of course not allowed in London (2012), as it clearly gives rise to the
metrical phenomenon of ambiguity. Limit cases are structures in which the longest beat class is
three times the shortest beat class (e.g., 2-2-2-2|2-6 with c = 1 and u = 200), but these are only
limit cases by the fact that C6 puts restrictions on the absolute beat intervals on the tactus
level (and not by considerations on maximal evenness). In all, the formalization enables many
structures that are metrically ambiguous or contradictory.

Likewise, the formalization permits meters that have three beat classes, such as 4-4|3-5 with
c = 1, which London (2012) doubtingly allows. In contrast, London (2012) more firmly allows
for a 4-3|4-5 structure, while this structure is not maximally even, as neither the tactus level
nor the super-tactus level are maximally even, such that this structure is discarded by C8 of
the formalization. However, in personal communication, London (October 30, 2016) argues
against this structure. Instead, London (personal communication, October 30, 2016) proposes
a covering law that forbids any structure with three beat classes in general. This covering law
was the motivation for C11 of the current formalization.

In the extreme, the formalization allows for meters that have more than three beat classes,
as the following meters are all allowed (although temporal frames decrease): 5-2|4-3 with c = 1
and 200 ≤ u ≤ 240, 3-4-5|6-7 with c = 1 and 133.3 ≤ u ≤ 171.4, 8-3-5|4-6-7 with c = 1 and
133.3 ≤ u ≤ 150, and finally 6-9-10|5-8-4-7 with c = 1 and 100 ≤ u ≤ 102.0. This proves that
London’s (2012) well-formedness constraints are not specified sufficiently with regard to number
and proportions of beat classes.

5.1.3 Existence and organization of intermediate levels

The theory of London (2012) leaves unspecified whether there are levels that are neither the
lowest level nor the tactus level (except for the super-tactus level if the tactus level is not
maximally even), henceforth intermediate levels. This means that as long as there is a tactus
level that is maximally even, it is not relevant whether there is any other level. For instance,
London (2012) theory explicitly allows for a 2-2-2-2-2-2 meter, but does not mention the option
of a 2-2|2-2|2-2 meter, which is also present in the formalization (for c = 0 such that 400 ≤ u ≤
416.7, c = 1 such that 200 ≤ u ≤ 416.7 and c = 2 such that 100 ≤ u ≤ 300) and distinct from
any similar meter, such as 4-4-4 with c = 1 with 100 ≤ u ≤ 300.

1That is, provided that further subdivision structure does not give rise to ambiguity. However, the idea of
subdivision structure with respect to a given beat does not apply to the current formalization, as it refers to
approaches in which there is no common fast pulse.
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Likewise, London’s (2012) theory does not specify how possible intermediate levels are orga-
nized. Again, this relates to the way in which London’s (2012) well-formedness constraint 4.2.2
is defined. As long as there is a maximally even tactus level, intermediate levels may be orga-
nized in any possible way. This is reflected in the formalization, that allows for structures like
2-2-2-2-2-2|2-2 (for c = 1 and 200 ≤ u ≤ 312.5), even though this meter is metrically ambiguous
and does not occur in the list of possible structures with cardinality 16 in London (2012). The
same holds for intermediate levels that are not above the tactus level, but in between the lowest
level and tactus level, such as the structure 4-2|4-2|4-2 with c = 2 and 100 ≤ u ≤ 200 is allowed
in the formalization). It is not clear whether the subdivisions in this structure give rise to
metrical ambiguity.2

5.1.4 Relaxed maximal evenness

As we have seen in the previous subsections, London’s (2012) well-formedness constraints about
maximal evenness are meant to avoid the metrical phenomena of ambiguity and contradiction,
but cannot always preclude ambiguity or contradiction, because some maximally even structures
do have ambiguities or contradictions. Vice versa, there are structures that are not maximally
even, but do not give rise to ambiguity or contradiction. This is for instance the case for the
aforementioned 3-5 structure (London, 2012, p. 153). In fact, this structure is rhythmically odd
as defined in Section 4.3.2.

Other structures for which this holds are 4-6-6, 5-7 and 4-3|4-5. These structures are all
deemed possible by London (2012), even though 4-6-6 does not abide by the principle of rhythmic
oddity either. Now, in personal communication, London argues against these structures, but
does so because of general reasons (length of subdivision and existence of three beat classes) and
not because of considerations on maximal evenness. Indeed, London (personal communication,
October 30, 2016) argues that meters may not have to be as maximally even as proposed in
London (2012). For instance, London (personal communication, October 30, 2016) proposes
that ideas of maximal evenness may be relaxed to include structures like 3-3-3|3-2-2, which is
not maximally even by London’s (2012) well-formedness constraints. On the other hand, London
(2012, p. 164) convincingly argues that the 3-3-3-3-2-2 pattern (without the half-measure) acts a
surface rhythm rather than a mode of metric entrainment. The underlying meter of this surface
rhythm either has an isochronous structure (e.g., 2-2|2-2|2-2|2-2) or the non-isochronous but
maximally even structure 3-3-3-3-4 (London, 2012). The relation between non-isochronous
metrical structure and non-isochronous surface rhythm is subtle, as surface rhythm is not only
distracting, but also an important cue for metric entrainment. Mental maintenance of especially
non-isochronous meters depends on the surface rhythm, as the surface rhythm articulates the
beat cycle (London, 2012, pp. 150–151).3

5.2 Metrical space

This section presents the construction of a set of meters, the testset, that is used to visualize
a significant part of the metrical space of the current formalization. Discussion of this testset
includes how the number of possible structures behaves by increasing period, and the role of
C8 (the principle of maximal evenness) in this. In the next section, this testset will be used to
analyze the effect of the additional constraints from Section 4.3.

2In personal communication, London (October 30, 2016) suggests that subdivision ratios of 1:2 are allowed
for levels lower than the tactus. But again, this refers to approaches in which there is no common fast pulse, and
therefore does not apply to the current formalization.

3However, in other musical cultures, enculturated association may favor a non-isochronous metrical interpre-
tation in other situations as well. London (2012, p. 150) hints to this, but for a more elaborate discussion of this,
see van der Weij, Pearce, and Honing (2016)
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The testset is formulated such that it contains meters that have period 2 to 18 and are
well-formed with regard to C1 to C8, with the default perceptual limit parameter settings
(umin = 100 ms, amax = 5000 ms, imin = 400 ms, imax = 1200ms). Like in the previous section,
the temporal unit u remain undefined, and instead the temporal frame (as constrained by C4,
C5 and C6) is calculated, such that it becomes clear which structures are possible at all. A
meter will be regarded as well-formed when there is at least one value of u such that the meter
is well-formed. In this definition, limit cases are included.

For feasibility reasons, the testset does not include meters that have a period of 19 or greater.
This is because number and complexity of possible structures increases exponentially per period
until the maximum p = 50, while the temporal frame in which these structures can be perceived
as meters decreases (and therefore the relative relevance of these structures decreases as well).
For similar reasons, the testset only includes meters in which the tactus level is level `1 (c = 1),
plus all structures that have only two levels, such that the tactus level is necessarily `0 (c = 0).
These are the meters with structures 2, 3, etc., up to and including 12 (for a meter with structure
13, C5 requires that u ≤ 384.6, while C6 requires that u ≥ 400). The testset includes these
meters for the reason that the minimal period would otherwise be 4, which gives a substantially
incomplete view of metrical space. Other meters with c = 0 are not included, but adding this
class would not increase metrical space dramatically, as it is smaller than the class of meters
with c = 1 and the maximal period of meters with c = 0 is 12 through C6. Excluding meters in
which c > 1 does not imply a dramatic change either. There is a significant amount of meters
with c = 2, but meters with c = 3 can only exist within small temporal frames (100 ≤ u ≤ 150)
because of C6, while by the same constraint, c = 4 is not possible at all. In future research,
the constraints of the current formalization may be defined algorithmically, such that metrical
space can be computed algorithmically and the full metrical space can be taken into account,
that is, all possible meters under the current formalization. Appendix A provides the set of
rules (and some examples) under which the testset was systematically constructed, as well as
construction of the testset without C8.

A full overview of the number of structures per period in the testset is provided in Table 5.1.
This table also shows the effect of the principle of maximal evenness (C8), by providing the
number of structures that can be generated without this constraint (for periods up to 16, because
of feasibility). Figure 5.1 shows a graphical plot of Table 5.1. This figure visualizes how the
number of structures increases exponentially with increasing period. Especially in the case
that C8 is not taken into account, the exponential relationship between period and possible
structures is evident. Trend line y = 0.3556e0.5482x has a determination coefficient of R2 = 0.995
and extrapolation to maximum period p = 50 gives 2.9∗1011 structures (notwithstanding effects
that would arise for large periods).4 Indeed, C8 is an important constraint with regard to the
size of the metrical space. For the period range 2-16, only 24% of the structures that is allowed
under C1-7 is allowed by C8; for p = 16 only, this percentage is 18% and for extrapolation to
p = 50 (with trend line y = 0.295e0.4281x, R2 = 0.985), this is 0.20%.

Addition of C8 to C1-7 also makes the number of structures dependent on whether the
period is an even or an odd number; there are less structures with even periods than structures
with odd periods. This is probably due to an effect for meters that are not maximally even
on the tactus level, such that the super-tactus level must be maximally even. Often, this level
consists of two beats. For even meters, a level of two beats is only maximally even when both
intervals are equal (e.g., for p = 16: two beat intervals of 8 units), while for odd meters, there
are two ways to get a maximally even level of two beats (e.g., for p = 15: there is one beat
interval of 7 units and one beat interval of 8 units). Therefore, under C8 there are more options
for odd meters.

In general, it is remarkable that the metrical space associated with the formalization is
much larger than the numbers presented by London (2012, Table 9.6, p. 169) in an overview.

4Trend lines were calculated using Microsoft Excel 2010.
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p No. of structures No. without C8

2 1 1

3 1 1

4 2 2

5 3 3

6 3 5

7 6 8

8 7 14

9 12 23

10 12 42

11 37 80

12 39 144

13 100 266

14 99 490

15 242 895

16 287 1563

17 660 -

18 550 -

Total 1-16 851 3537

Total 1-18 2061 n/a

Table 5.1: Number of possible structures in the testset per period. The third column represents
the number of possible structures without the principle of maximal evenness, C8, for periods
up to 16.

This is partially due to the fact that London’s (2012) overview does not intend to give a com-
plete overview of metrical space (it only counts non-isochronous rotations) and the fact that
the numbers in London’s (2012) overview are incorrectly counted in some cases (London, per-
sonal communication, October 30, 2016). However, the difference mainly originates from the
inconsistencies between London’s (2012) theory and well-formedness constraints as discussed in
Section 5.1. Indeed, London (personal communication, October 30, 2016) confirmed that Hear-
ing in Time does not list all structures that are possible under the well-formedness constraints,
as to avoid structures that have three beat classes, involve ambiguity or contradiction, or are
likely to decompose (such as 3-5). This is another reason to analyze the effect of additional
constraints on metrical space, as the constraints may restrict metrical space to such extent that
it more resembles Table 9.6 in London (2012), as well as the ideas of London as formulated
through personal communication (October 30, 2016). Because of this reason, we will regard
restriction of the testset generally as a virtue.

5.3 Effect of additional constraints

This section provides an overview of the effect of additional constraints by discussing individual
examples (along the lines of Section 5.1) as well as the effect of the constraints on the testset.

5.3.1 Exclusion of ambiguity and contradiction

The effect of addition of C9 (exclusion of ambiguity and contradiction) is shown in the respective
column of Table 5.2 and Figure 5.2 (see also Appendix A). The effect is notable: C9 permits
only 768 of the 2061 testset meters (37 %). Furthermore, the percentage of structures permitted
by C9, relative to C1-8 only, decreases by increasing period (see Figure 5.3). However, there
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Figure 5.1: Number of possible structures in the testset, plotted on log scale to the period.

is only an effect for p ≥ 11.
Constraint C9 excludes a notable part of the structures discussed in Section 5.1.2 (structures

that have multiple different beat classes, or beat classes with large ratios). C9 excludes all beat
class ratios of the form J : J + N with N ≥ J , as well as many structures in which there are
three beat classes. However, the constraint does permit structures with three beat classes as
long as the longest beat is not twice as long as the shortest beat. This is for instance the case for
the structure 4-4|3-5 with c = 1 and 133.3 ≤ u ≤ 240, but also the more exotic structure 7-7|5-8
with c = 1 and 100 ≤ u ≤ 150 is permitted by C9. The maximum number of beat classes
becomes five instead of seven (e.g., the structure 5-6-7|8-9 with c = 1 and 100 ≤ u ≤ 133.3
is still possible). As an additional advantage, C9 restricts possibilities in the organization of
intermediate levels (Section 5.1.3), as it prohibits any metrical ambiguities there as well (e.g.,
the structure 2-2-2-2-2-2|2-2). The large drop of possible structures by C9 is due to these two
effects.

On the other hand, C9 does not prohibit any structure which was allowed by both the initial
formalization and London (2012) or London (personal communication, October 30, 2016). In
other words, the constraint does not create disagreements where there were none initially; it
does not make the formalization profusely stricter. Therefore, C9 is a suitable supplement to
the formalization.

5.3.2 Half/third-measure rule

Constraint C10 (the half/third-measure rule) was specifically designed to eliminate structures
with an uneven organization on intermediate levels (see Section 5.1.3). Indeed, the constraint
prohibits these structures and thereby decreases metrical space; see the respective column of
Table 5.2 and Figure 5.2 (see also Appendix A). This effect is much lower than for C9; C10
permits 1635 of 2061 structures in the testset (79%). Also, this percentage does not decrease
by increasing period and instead stabilizes around 80% (see Figure 5.3). As is the case for C9,
C10 only affects the testset for p ≥ 11.

As expected, excluded structures fall in the category of uneven intermediate levels. Here,
C10 is slightly stricter than C9 (e.g., while C9 does not exclude structure 2-2-2|2-2, C10
does). In general, C10 eliminates structures of which the tactus level is maximally even, but
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the higher organization is not. In this, it is stricter than C9, as C10 also excludes structures that
are moderately uneven, while C9 only excludes structures that explicitly give rise to metrical
ambiguity or contradiction. Whether or not this is desirable, depends on where one prefers to
put the boundaries of well-formedness.

In another sense, C10 is less strict than C9, as it permits structures that are very uneven
on a level below the maximally even level (which is by C8 either the tactus level or the super-
tactus level). Therefore, C10 alone does not sufficiently rule out structures that are metrically
ambiguous; as long as the half- or third-measure is maximally even, structures with large beat
class ratios are not excluded by this constraint. However, C10 has another advantage: for every
structure that it eliminates from the testset, there is another structure within the testset that
has the same organization (and same tactus level) as the eliminated structure, except that it
lacks the intermediate level that was the ground for elimination by C10. For example, structure
2-2-2|2-2 with c = 1 is not allowed by C10, but 2-2-2-2-2 with c = 1 remains in the testset (for
200 ≤ u ≤ 500). This is because C10 only excludes structures in which there is a level that
is not needed to maintain maximal evenness of the full structure, as otherwise this level would
have been maximally even itself by C8.

5.3.3 Beat class maximum

By eliminating structures with three or more beat classes, C11 restricts metrical space as well,
see the respective column of Table 5.2 and Figure 5.2 (see also Appendix A). The effect is
somewhat less strong than for C9, but stronger than for C10: C11 permits 907 out of 2061
structures of the testset (44 %). Furthermore, the percentage of structures permitted by C11,
relative to C1-8 only, decreases by increasing period (see Figure 5.3). The elimination effect
is strongest at structures with odd periods, lowering their prevalence over the structures with
even periods. As was the case for the previous two constraints, there is only an effect for p ≥ 11.

Just like C10, C11 has some overlap with C9, as it mainly works on beat classes (see
Section 5.1.2). Many structures that are eliminated by C9 because of their beat class ratios are
also eliminated by C11 on grounds of number of beat classes and vice versa; when there are
multiple beat classes, there is a higher chance that some of their mutual ratios are problematic.
Of course, there are also differences. C11 is stricter than C9 with regard to number of beat
classes: we have seen that there can still be five beat classes when only C9 is applied (such as
5-6-7|8-9 with c = 1 and 100 ≤ u ≤ 133.3), while C11 eliminates these structures. In turn,
C11 is less strict with regard to beat class ratios than C9, as there can still be large ratios
between beat classes when only C11 is applied (such as 2-2-2-2|2-6 with c = 1 and u = 200),
while these structures are excluded by C9.

5.3.4 Meta-rule of temporal frame

The effect of addition of C12 (the meta-rule of temporal frame) is shown in the respective
column of Table 5.2 and Figure 5.2 (see also Appendix A). The effect is the largest so far: C12
permits only 538 of the 2061 testset meters (26 %). Furthermore, the percentage of structures
permitted by C12, relative to C1-8 only, decreases by increasing period, more than for any
other additional constraint (see Figure 5.3). The effect starts at p = 10, where the constraint
eliminates structure 10 with c = 0 as this structure is only allowed for 400 ≤ u ≤ 500 (through
C5 and C6), such that for all u′ and u′′, u′ ≯ u′′ + 100 ms. For p ≥ 11, the percentage of
allowed structures quickly drops further. This is because C12 reinforces the boundaries placed
by temporal constraints C4, C5 and C6. For instance, all subdivision patterns of 6 or longer
are eliminated by C12 (except when c = 0), because of the following: By C4, no beat is shorter
than 100 ms. This means that the absolute distance between beats that are adjacent on the
tactus level must be more than 200 ms in order to abide by C12. But since C6 requires that
no beat on the tactus level is longer than 1200 ms, the unit distance between beats that are
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adjacent on the tactus level may not be larger than 5 (since when this is 6, the absolute distance
drops beneath 200 ms). Through this, C12 is the only additional constraint that attacks the
problem of disagreement with regard to length of subdivision patterns (see Section 5.1.1).

For p ≥ 17, the effect of adding C12 becomes so large that it stops the exponential growth
of possible meters with increasing period. This is also due to reinforcement of the temporal
constraints. For meters in which c = 1 and a tactus level that has 2s, the minimum value of u
is 200 ms by C6 (since if u ≤ 200, the absolute beat interval set has an element that is smaller
than 400). However, when p ≥ 17, the maximum value of u is 294.1 by C5, which makes the
temporal frame of u smaller than 100 ms. Therefore, all structures with p ≥ 17 which have any
2s are eliminated under C12 (e.g., 3-3-3|3-3-2). For p ≥ 22, a similar problem arises for 3s,
such that structures may only have 4s and 5s under C12 (as we have already seen that 6s are
not allowed under C12). Furthermore, no meter with p ≥ 25 is allowed at all by C12, as then
by C5, u ≤ 200, while u ≥ 100 by C4. Because of this ceiling, the testset can be extended to
p = 50 for the case of C12 with minimal effort. A full overview of the number of structures
that are allowed by C12 per period in this extended testset is provided in Figure 5.4 (see also
Appendix A). Note that we still only regard meters with c = 1 (plus the exceptions for c = 0).
The total number of extended testset structures that are permitted by C12 is 757.

The temporal unit frame range of 100 ms in the definition of C12 is rather strict. The range
was chosen arbitrarily, but not at random: it is exactly the range that eliminates structures
with subdivision patterns larger than 5 (as favored by London, 2012; and London, personal
communication, October 30, 2016), ratios of the form J : J + 1 in which J ≥ 5 (as favored
by London, 2012) and many more ratios on which there is disagreement between London’s
(2012) theory and well-formedness constraints. This way, C12 addresses these disagreements
(Section 5.1.1–3) all at once and is stricter than any of the other three additional constraints. In
a sense, it is too strict, as the 100 ms range eliminates any meter with p ≥ 25. Future research
may provide a more suitable range.

On the other hand, in some cases C12 is less strict than the other additional constraints.
For instance, C12 permits some structures that have three beat classes, such as the structure
4-4|3-5 with c = 1 and 133.3 ≤ u ≤ 240. This disagrees with London (personal communication,
October 30, 2016), but on the other hand, it seems intuitive to not a priori disregard structures
that have three beat classes. Rather, these structures should be disregarded only when they are
unlikely (i.e., only possible within a small temporal frame). C12 is also less strict than C9 in
the case of structures that have an uneven organization of intermediate levels. This is effect is
most notable for 12 ≤ p ≤ 16, where the period is large enough for these structures to emerge,
but not large enough for C12 to eliminate them by excluding 2s for p ≥ 17. Because of this, we
also regard the effect of C9 and C12 combined. As can be seen in the corresponding column
of Table 5.2 and Figure 5.2, only 473 of the 2061 testset structures are permitted by C9+C12
(23 %); see also Figure 5.3. In the extended testset (i.e. the testset including p > 18), the total
number of permitted structures becomes 676. A full overview of the structures permitted by
C12 (per period, with and without C9) is provided in Figure 5.4.

Constraint C12 incorporates a form of perceptual stability into the formalization. The
percept of a meter that is only perceivable within a very specific time frame, is probably not
very stable; that is, it is likely to transition into a similar percept that is easier to maintain.
In a possible future implementation of the formalization in a cognitive model, stability can be
assigned in more natural ways than a hard constraint like C12. Chapter 6 will discuss some
speculations of how stability could be implemented in such a model.

5.3.5 Principle of maximal evenness with rhythmic oddity

As analyzing the effect of C13 on the testset requires tedious construction of another testset, we
will only look at its effects on individual meters. This will give an impression of the advantages
and problems of C13. However, we can predict two general effects. First, the number of
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p C1-8 C9 C10 C11 C12 C9+C12

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 2 2 2 2 2 2

5 3 3 3 3 3 3

6 3 3 3 3 3 3

7 6 6 6 6 6 6

8 7 7 7 7 7 7

9 12 12 12 12 12 12

10 12 12 12 12 11 11

11 37 29 31 29 26 26

12 39 23 27 35 25 21

13 100 55 88 64 58 53

14 99 56 76 67 62 55

15 242 92 193 97 108 90

16 287 121 212 153 146 117

17 660 193 531 203 37 37

18 550 152 430 212 30 28

Total 2061 768 1635 907 538 473

Table 5.2: Number of possible structures in the testset per period. Every column represents
one constraint that is added to the formalization with only constraints C1-8 (the last column
represents addition of both C9 and C12 to C1-8).
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Figure 5.2: Number of possible structures in the testset per period under the constraints C1-8,
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permissible meters under C1-7+C13 will be more than under C1-8 (as C13 adds a disjunction
to C8), but less than under C1-7 (as C13 does define boundaries that are not there for C1-7).
Second, C13 reverses the relative prevalence of structures with odd-numbered period which was
discussed in Section 5.2. This is because for even periods, there are now three ways to get a
permissible level of two beats (e.g., for p = 16: 8|8, 7|9 and 9|7, which was only 8|8 with C8),
while for odd periods, there are still only two ways to get a permissible level of two beats (e.g.,
for p = 15, 7|8 and 8|7).

As discussed in Section 4.3.2, C13 was designed to relax the principle of maximal evenness
(strictness of this principle was identified as a problem in Section 5.1.4). C13 is a weakened
version of C8 that relaxes the principle of maximal evenness in order to include meters that do
not have a maximally even tactus level or super-tactus level, but do abide by the principle of
rhythmic oddity.

By its addition of a disjunction with respect to C8, C13 includes structures to the for-
malization that were not permitted by C8. As we have seen in Section 4.3.2, one of these
structures is 3-3-3|3-2-2. This structure was not allowed by London’s (2012) theory nor the
well-formedness constraints, but London (personal communication, October 30, 2016) proposes
that this structure may be permissible.

The converse holds for the structures 3-5, 5-7 and 4-3|4-5, as discussed in Section 5.1.2 and
5.1.4; that is, London (2012) defends these structures, while London (personal communication,
October 30, 2016) retracts them (remaining ambivalent on 3-5), although he argues that this is
because of general reasons (length of subdivision and existence of three beat classes) and not
because of considerations on maximal evenness. Like for 3-3-3|3-2-2 in the previous paragraph,
London (personal communication, October 30, 2016) in general argues that meters may not
have to be as maximally even as proposed in London (2012). Note that a rhythmically odd
level always has exactly two beats, so structure 4-6-6 is still impermissible under C13.

As the previous two paragraphs show, C13 has consequences for cases of doubt, but it
also has more severe implications. For instance, it allows for the structures 4-6 (with c = 1
and 100 ≤ u ≤ 200) and 2-4 (with c = 1 and 200 ≤ u ≤ 300). To prevent this, C13 could be
formulated differently such that the tactus level is not allowed to be the level of rhythmic oddity,
but this eliminates the structure 3-5. Furthermore, C13 in general aggravates the problem of
C8 that in some cases, all proportions and number of beat classes are allowed on the tactus
level (as discussed in Section 5.1.2): for C13, not only a maximally even super-tactus level, but
also a rhythmically odd super-tactus level makes any distribution on the tactus level possible.
This latter problem can only be addressed through intervention by one of the other additional
rules, such as C9 or C12. C9 would eliminate 2-4 but not 4-6, while C12 would eliminate
both structures. However, it is doubtful whether the principle of rhythmic oddity is a general
solution for the problem that maximal evenness is too strict (as posed in Section 5.1.4), and
whether it has a cognitive ground.

5.4 Summary and recommendations

In this chapter, we examined the effect of the additional constraints from Section 4.3 on the
formalization. Of the additional constraints, C9 (exclusion of ambiguity and contradiction) and
C12 (meta-rule of temporal frame) exclude the most structures.

C9 fits well in the theory of London (2012), as it is a generalization of London’s (2012) well-
formedness constraint 4.1.2, and we have seen in Section 4.3.1 that London (2012; personal com-
munication, October 30, 2016) argues against ambiguity and contradiction. Furthermore, C9
does not eliminate structures that are explicitly allowed by London (2012) or London (personal
communication, October 30, 2016). Therefore, it is a suitable supplement to the formalization.
As C9 also shows that a constraint for maximal evenness alone does not sufficiently restrict the
possibilities for a well-formed meter, future research may provide a general alternative to the
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combination of C8 (principle of maximal evenness) and C9 that is more restricting. Ideally,
such a rule would be grounded in perceptual studies and also address the problem that the
principle of maximal evenness is too strict, which is not satisfactorily addressed by C13.

C12 also fits well within the theory of London (2012), as it addresses inconsistencies with
regard to length of subdivision, number and proportions of beat classes and existence and
organization of intermediate levels. Furthermore, it incorporates a form of perceptual stability
into the formalization and combines well with C9 (the constraints complement each other). As
it is currently too strict, another temporal frame may be chosen, or the idea of this constraint
could be incorporated in another way through implementation in a cognitive model.

In contrast to C9 and C12, C10 (the half/third-measure rule) only eliminates a limited
part of metrical space. C10 fits less natural within the theory of London (2012), and although
it does eliminate structures with uneven intermediate levels, the constraint does not sufficiently
rule out structures that are metrically ambiguous. On the other hand, C10 eliminates some
moderately uneven structures that are not excluded by C9. Furthermore, for all structures
that it eliminates, there is another structure within the testset that has a similar organization.
In all, C10 is less recommendable than C9 or C12. The same holds for C11 (the beat class
maximum), which fits the governing rule of London (personal communication, October 30,
2016), but eliminates structures with three beat classes a priori instead of eliminating them
through considerations that are more general.

In summary, it is recommendable to add C9 and C12 to the formalization. However, it might
be better if further research does not unthinkingly add these constraints to the formalization,
but rather focuses on development of a general, perceptual rule of maximal evenness, and/or
development of a cognitive model, such that temporal effects can be implemented in more
natural ways.
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Chapter 6

Conclusion and future directions

The aim of this thesis was to obtain a formalization of non-isochronous metrical structure. As
argued in Chapter 1, a cognitive theory of metrical structure should be: (1) as simple as possible,
while capturing all relevant details; (2) formal, that is, completely and unambiguously specified;
(3) grounded in empirical perceptual studies and cross-cultural (and therefore incorporating
non-isochronous metrical structure).

Chapter 2 has shown that most existing formal theories do not meet requirement (3) by
disregarding non-isochronous metrical structure. The theory of London (2012) does meet re-
quirements (1) and (3), but is not formal and thereby does not meet requirement (2). In this
thesis, we have therefore formalized the theory of London. In this formalization (Chapter 4),
every meter is presented by a tuple that contains its structure (a set of levels, which are in
turn sets of beats), a tactus level index and a temporal unit. The temporal unit functions to
define a temporal frame within which a structure can be perceived as a meter. The formal-
ization contains eight constraints, of which three basic structural constraints, three temporal
constraints and two advanced structural constraints. Together, the constraints agree with the
well-formedness constraints in London. Apart from these constraints, additional constraints
were formulated to account for inconsistencies within the theory of London.

The current formalization took a perspective that differs from related work (Chapter 3) by
aiming to specify the theory of London (2012) and analyzing its ambiguities and inconsistencies.
This analysis (Chapter 5) identified several inconsistencies between London’s theory and well-
formedness constraints. The most important inconsistencies were the following: London’s theory
is stricter than the well-formedness constraints with regard to perceivable length of subdivision
patterns, permissible number and proportions of beat classes and possible organizations of
intermediate levels than the well-formedness constraints. London’s theory is less strict than the
well-formedness constraints with regard to the principle of maximal evenness. Chapter 5 also
analyzed the number of possible meters, or metrical space, under the current formalization, as
well as effects of the additional constraints on the metrical space. The chapter also regarded
how the additional constraints did or did not rule out specific inconsistencies. Future research
may provide a general, perceptual rule as an alternative to the principle of maximal evenness,
as this principle does not yet give a fully satisfactory account of regularity within meter – it is
both too strict and not strict enough.

Apart from providing a general regularity rule, future research may extend the formalization
to include meters with a non-isochronous lowest level. For instance, this could be done by not
taking a single temporal unit u, but a set of constants representing every beat interval on the
lowest level. In such a definition, there is no common fast pulse. Indeed, in such a definition,
there may not be any isochronous level at all, so no common slow pulse either (see Section 3.3.1).
In order to get a common slow pulse model, another constraint should be added that requires
that one of the levels in the meter is (almost) isochronous. In such a model, temporal unit u
could be also be replaced by a temporal constant on the tactus level, full period or ‘the level
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that is isochronous’ as above, potentially differing per meter. In all, such extensions provide an
alternative interpretation for the open end discussed in Section 3.3.1.

A general idea for future research is implementation of the current formalization in a cog-
nitive model of meter perception. Such a model could for instance be the probabilistic model
of Temperley (2007) or the model of van der Weij et al. (2016) that focuses more on simulating
enculturation. In such a model, data sets of non-isochronous meters in different cultures could
assign typical onset patterns for rhythms associated with every possible meter, as well as a prior
probability to every meter. By training the model to different data sets, cultural differences
with regard to meter perception may be modeled as well. After training, the model may be
tested empirically to investigate its cognitive validity. Of course, it is important to decide which
(if any) additional constraints from Chapter 5 are used for implementation. Besides its use-
fulness for implementation, algorithmic description of the constraints may also provide a more
complete image of the metrical space under the formalization.

A future probabilistic model may take perceptual factors into account. The most pressing
factor to investigate is the influence of tempo. Rather than by a single value, prior probability of
every meter could be represented by a probability distribution (a bell-shaped curve) as a function
of tempo. Now, the requirement could be added that probability functions of meters with
large temporal frames have a bigger area-under-the-curve than probability functions of meters
with smaller temporal frames. Alternatively, a prior probability function could be assigned
to tactus intervals themselves (with the optimum of the probability function on 600 ms, the
preference region for the tactus; see London, 2012, pp. 30–31) which yields an optimal value
for the temporal unit u per meter (depending on the unit distances in the tactus level). In
turn, the probability of a meter for a given value of u could be derived from this. Through
such probability functions, extreme meters may be perceivable in some cases, but probability
of another, less extreme meter may be higher for that particular case and value of u, such that
these unstable percepts are likely to transition into similar, more stable meters. This would be
a more natural way of modeling stability than is provided by the additional constraint C12 of
the current formalization. Furthermore, this way tempo can be fully separated again from the
structural properties of different meters. In turn, this may also bring transition zones between
tempo-metrical types (as discussed in Section 2.4.3) back into focus, by mapping the way in
which probability curves of similar meters overlap at changing tempos (representing overlapping
percepts for the same structure or similar structures).

An advanced version of the model may implement the severity of metric changes as well. In
musical practice, the meter of a piece is often subject to slight changes, such as the addition
or deletion of certain metrical levels (London, 2012; Gotham, 2015). These changes do not
drastically change how the meter of the piece is perceived, because its periodicity and global
structure are preserved, even though the meter after the change is theoretically distinct from
the meter before the change (e.g., a 2-2 structure with c = 1 and u = 300 ms versus a 2-2|2-2
structure with c = 2 and u = 150 ms). To distinguish between these subtle changes and more
drastic changes, operations (along the lines of the relationships of Gotham, 2015) could be
defined on meters, such that metrical changes are form-preserving if and only if the new meter
is a result of such an operation applied to the old meter. These operations could be formally
defined (for instance as relations), or again data sets may be used to incorporate this factor
probabilistically, such as defining the probability of different subtle changes in a given meter.
This way, the model may implement London’s (2012) ideas on metric entrainment as a dynamic
process, including ideas of stability and recurrence of meter.

Apart from redefining the above properties of meter, there are many more possibilities for
implementation of the formalization in a probabilistic model. For instance, a similar Gaussian
approach could be applied to the location of attentional peaks under temporal spread as dis-
cussed in Section 2.4.3. Furthermore, a probabilistic model could incorporate individual factors,
such as individually differing metric floors or optimal tactus intervals. Moreover, advanced ver-

64



sions of the proposed cognitive model may reinvoke the possibility of a non-isochronous N-cycle,
as was dropped in the current formalization. An alternative to a probabilistic model would be
a cognitive model that describes the process of meter construction through interpolation (as
described, for instance, in London, 2012, pp. 146–151).

In summary, this thesis may arouse the development of a formal cognitive model of meter
perception that is based on the theory of London (2012). Such a cognitive model may provide
insight into the cognitive processes behind meter perception within a cross-cultural paradigm.
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Appendix A

Systematic construction of meters
for analysis

This appendix provides the set of rules under which the testset of Section 5.2 was systematically
constructed. Note again that the testset only includes meters with c = 1, plus all structures
that have only two levels, such that necessarily c = 0.

A.1 Testset construction for C1-8

Systematic construction of the testset has been performed under the following rules. The testset
was constructed per period. For every period, first the maximum possible number of beats on
level `1 was determined, henceforth bmax (with b the number of beats on a level `1 with a given
organization). Because of C7 (the principle of non-adjacency), the minimum subdivision length
is 2, which entails that bmax = bp2c (if b is higher than this, there will be forbidden beat intervals
of 1 unit). Recall that p is the period of the meter, or the total number of beats on the lowest
level `0. Now, for every b < bmax, all possible distributions of beats were determined. Then,
for every distribution of beats, all allowed permutations and higher-level organizations were
determined. Finally, all possibilities were summed, which gave the total number of structures
for the relevant period.

With regard to meeting the constraints (including the temporal constraints C4, C5 and C6),
the following considerations were taken into account for determining all possible distributions
of beats and all their permutations:

• For b = 1, there is only one distribution with one permutation and therefore one structure,
which is the structure p. Note that b = 1 is only possible for p ≤ 12. This is because with
b = 1, level `1 has only one beat, so `1 cannot be the tactus level by C3, hence c = 0.
But this entails that u ≥ 400 by C6, while for structures with p ≥ 13, C5 requires that
u ≤ 384.6.

• For b = 2, there is only one distribution as well, which is the distribution that is as close
as possible to dividing the structure exactly in half. If p is even, this distribution has one
permutation (e.g., 6-6 for p = 12); if p is odd, there are two permutations (e.g., 6-7 and
7-6 for p = 13). Note that any other distribution of 2 beats over any p is not maximally
even.

• For b = 3, there is only one distribution as well, which is as close as possible to dividing
the structure exactly in three. If p is divisible by 3, there is one permutation (e.g., 5-5-5
for p = 15); if not, there are three permutations (e.g., 5-5-6, 5-6-5 and 6-5-5 for p = 16).
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• For all b ≥ 4, the possibility of higher order structuring makes structures possible in which
tactus level `1 is not maximally even, but super-tactus level `2 is (this is not a possibility
for b < 4 as this would violate C7 on level `2). The general procedure for counting the
total number of possibilities for b ≥ 4 is therefore as follows. First, determine all possible
maximally even structures; then, determine the structures in which `1 is not maximally
even, but `2 is. These can be found by dividing p in two parts that are as close as possible
to two exact halves. Within these two parts, every combination of beat classes is possible,
as long as two requirements are met. First, there is no beat class of length 1 because of
C7. Second, the longest beat interval is not more than three times as long as the shortest
beat interval. This is because on the tactus level (which is `1 in this testset), the shortest
beat interval is at least 400 ms by C6, such that three times the shortest beat interval
will exceed 1200 ms, violating C6. When all possible distributions are given, determine
all possible permutations for these possible distributions. For the structures of which `1 is
maximally even, only cyclic permutations need to be taken into account, but keep in mind
that these are allowed without and with additional organization on higher levels. Some
(but not all) of these organizations lead to double-counting for being maximally even on
`2 as well.

We present the following example for p = 15 and b = 4. The only structure that is maxi-
mally even on `1 is 4-4-4-3, which has four permutations, and its higher-organized version
4-4|4-3, which also has four permutations. For the structures that are not maximally even
on `1, the distribution in `2 is 8|7 (the case 7|8 is taken into account through including
all permutations on `1). As b = 4, both beats on `2 have to be cut into two to get the
distribution on `1. This way, 7 becomes either 5-2 or 4-3 and 8 becomes either 4-4, 5-3 or
6-2. One of the possibilities is 6-2|5-2, in which the following permutations are possible:
swapping 6-2 (two options), swapping 5-2 (two options) and swapping the two groups 6-2
and 5-2 (two options). Together, this amounts to 2 ∗ 2 ∗ 2 = 8 permutations. The other
possibilities are as follows (P denotes the number of permutations): 5-3|5-2 (2∗2∗2 = 8P),
4-4|5-2 (2 ∗ 1 ∗ 2 = 4P, as 4-4 cannot be swapped), 6-2|4-3 (8P) and 5-3|4-3 (8P). 4-4|4-
3 is not taken into account, as this structure was already counted above because it is
maximally even on `1 as well.

The following considerations were borne in mind for higher numbers of b:

• For b = 5, higher level organization of structures in which `1 is maximally even may be
either x-x|x-x-x or x-x-x|x-x. Also, the number of permutations for the case in which `1
is not maximally even increases, as there are different ways to organize super-tactus level
`2. For example, for p = 15, we either have that 7 becomes 3-2-2 while 8 becomes 4-4, 5-3
or 6-2, or we have that 7 becomes 5-2 or 4-3, while 8 becomes 3-3-2 or 4-2-2.

• For b ≥ 6, structures in which `1 is maximally even can be organized on higher levels in
an increasing number of ways, and there may be more than two beats on `2. For example,
for b = 8, we have the following. One beat: x-x-x-x-x-x-x-x; two beats: x-x|x-x-x-x-x-x,
x-x-x|x-x-x-x-x, 4x|4x, 5x|3x, 6x|2x; three beats: 2x|2x|4x, 2x|3x|3x , 2x|4x|2x, 3x|2x|3x,
3x|3x|2x, 4x|2x|2x; four beats: 2x|2x|2x|2x. For b ≥ 8, there may also be more than one
beat on `3 (e.g., x-x|x-x||x-x|x-x for b = 8). As long as C7 is met, any organization on
higher levels is possible.

• For b ≥ 6, structures in which `1 is not maximally even, not only a level `2 with two beats
may stabilize this, but also a level `2 with three beats. For example, for p = 16 and b = 6,
the distribution in `2 is either 8|8 or 6|5|5. For 8|8, we either have that one 8 becomes
2-2-2-2 while the other 8 becomes 4-4, 5-3 or 6-2, or one 8 becomes 3-3-2 or 4-2-2 while
the other 8 becomes 3-3-2 or 4-2-2 as well. For 6|5|5, we either have that 6 becomes 3-3
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b Possible distributions and permutations

1 11§ (with c = 0; 1P, 0§)

2 6-5§ (2P, 0§)

3 4-4-3 (3P)

4 3-3-3-2 (4P)
3-3|3-2 (4P)
4-3-2-2; not maximally even, but:

4-2|3-2∗,‡,§, 4-2|2-3∗,‡,§, 2-4|3-2∗,‡,§, 2-4|2-3∗,‡,§,
3-2|4-2∗,‡,§, 3-2|2-4∗,‡,§, 2-3|3-2∗,‡,§, 2-3|2-4∗,‡,§ (8P, 0∗,‡,§)

5 3-2-2-2-2 (5P)
3-2|2-2-2 (5P, 2†)
3-2-2|2-2 (5P, 2†)

Table A.1: All possible structures for meters with period 11 and c = 1 (including the structure
11 with c = 0). The P-number represents the number of permutations for every distribution.
Structures that are not allowed by additional constraints are marked with the following symbols:
C9∗, C10†, C11‡, C12§. The number of permissible permutations under the constraints is
shown through the same symbols. The total number of structures for p = 11 under C1-8 is 37,
and under the additional constraints respectively 29∗,‡, 31† and 26§.

or 4-2 (the 5s always become 3-2). The number of permutations increases as well: for
instance, 3-3-2|4-2-2 has 3 ∗ 3 ∗ 2 = 18 permutations, and 4-2|3-2|3-2 as 2 ∗ 2 ∗ 2 ∗ 3 = 24
permutations. Keep in mind that a maximally even `2 may divide the number of beats
on `1 in an uneven way (e.g., 4-4|2-2-2-2).

• For b ≥ 8 with structures in which `1 is not maximally even, also a level `2 with four
beats may compensate for this. This is theoretically possible from p = 16, but matters
first at p = 18 (as for all structures such that b = 8 and p = 16 or p = 17, `1 is maximally
even). Keep in mind that `2 with four beats means that there might be an `3 with
two beats, so for every permissible structure x-x|x-x|x-x|x-x there is also a permissible
structure x-x|x-x||x-x|x-x.

• Some structures are symmetric and thereby have less cyclic permutations than the value
of b suggests. For example, the maximally even structure 3-3-2|3-3-2 has only three
distinct cyclic permutations, even though b = 6. Note however that structures like 3-3-2-
3-3-2, 3-3|2-3-3-2 and 3-3|2-3|3-2 are all unique structures (which all have three cyclical
permutations).

• Beware of double-counting structures in which `1 is maximally even that may emerge from
the systematic construction of structures in which `2 is maximally even. Some examples
of this are more obvious than others. An example of a less obvious duplicate is 3-3|2-3|3-2
(maximally even on `1) as one of the permutations of structure 3-3|3-2|3-2 (not maximally
even on `1).

An example of construction of the testset for period 11 is shown in table A.1.

A.2 Testset construction without C8

The testset version for C1 to C7 (without C8) was constructed in a more combinatorial way,
as considerations of maximal evenness did not play a role. Like above, the testset was con-
structed for all possible values of b given p. Then, the different distributions were determined
by dividing the beats from the extreme uneven to an increasingly more even way. It was taken

74



into consideration that the longest beat interval of the tactus level cannot be more than three
times the shortest beat interval of that level by C6. It was also taken into consideration that no
beat interval has a length of 1 unit by C7. All possible permutations were taken into account,
which was done by combinatorics (e.g., there are 12 permutations of the sequence x-y-z-z and
24 permutations of x-y-z-a). Summation of the possible permutations per distribution delivered
the total of all `1-possibilities for given p and b. Subsequently, this number was multiplied by
the number of possibilities for higher level organization. This number depends on b: for b = 4,
there are 2 possibilities (with or without an extra beat on `2); for b = 5, there are 3 (a beat
such that x-x|x-x-x, a beat such that x-x-x|x-x or no beat, hence x-x-x-x-x); for b = 6, there
are 5 (x-x|x-x-x-x, x-x-x|x-x-x, x-x-x-x|x-x, x-x|x-x|x-x and x-x-x-x-x-x). For higher b = 7, 8, 9
there are respectively 8, 14 and 25 possibilities of higher level organization.

For instance, for p = 15 with b = 4, the possibilities are as follows: 6-5-2-2 (12P), 6-4-3-2
(24P), 6-3-3-3 (4P), 5-5-3-2 (12P), 5-4-4-2 (12P), 5-4-3-3 (12P) and 4-4-4-3 (4P), giving a total
of 80. Multiplication by 2 because b = 4 gives 160 structures for p = 15 with b = 4.

An example of the testset for p = 11 for all b is given in Table A.2.

A.3 Testset construction with additional constraints

The behavior of the testset under the additional constraints was analyzed by taking the testset
for C1 to C8, selectively marking the structures that are not allowed by the additional constraint
in question and counting the number of structures that remain. Often, full groups of structures
can be eliminated this way, but in some cases, only some permutations are eliminated. The
guidelines for elimination are listed below.

• C9: Eliminate all structures in which there is a beat class ratio of 2:1 or higher on any
level. On `1, these are all the structures in which 4s or larger are combined with 2s, 6s
or larger with 3s, etc., such that C9 eliminates all permutations for that distribution.
Apart from that, structures in which the higher level grouping gives rise to ambiguity or
contradiction are also eliminated (e.g., 3-2-3|2-2, as this gives 8|4 on `2, or 2-2-2-2|2-2 for
the same reason). For some structures in which `1 is maximally even, this only holds for
some cyclic permutations (e.g., 3-2-2-3|2-2 is eliminated while 2-3-2-2|3-2 is not).

• C10: Eliminate all structures in which the highest level has two or three elements but
is not maximally even. For instance, this eliminates three of the cyclical permutations of
2-2|3-2-2, but not the two other cyclic permutations 3-2|2-2-2 and 2-3|2-2-2.

• C11: Eliminate all structures in which there are three or more beat classes. On `1, this
always eliminates entire groups of distributions, but on higher levels, this may depend on
cyclic permutations. The latter situation only happens for structures with p ≥ 15, since
then, `1 may be maximally even such that `2 may have a distribution with three different
beat intervals (e.g., 3-2|2-2-2|2-2, but not its cyclic permutation 2-2|3-2-2|2-2).

• C12: This constraint acts as a meta-rule on temporal frame, but an equivalent object-level
rule system can be derived through analyzing temporal frames for groups of structures.
This rule system is listed below, along with its respective motivations.

– Eliminate the structures 10, 11 and 12 from the testset.

Recall that for c = 0, I(c) = {u}. Now, by C6, u ≥ 400. But for p ≥ 10, u ≤
5000/10 = 500 by C5. Therefore, 400 ≤ u ≤ 500, such that C12 is not met, as there
are no u′ and u′′ such that 400 ≤ u′′ ≤ u′ ≤ 500 while u′ > u′′ + 100.

– Eliminate all structures that have a 6 on `1.
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With a 6 on the tactus level, it must be that u ≤ 200, as otherwise there is an i
in I(c) such that i > 1200, which fails C6. But by C4, u ≥ 100, and therefore
100 ≤ u ≤ 200 such that C12 is not met.

– Eliminate all structures in which there is a beat class ratio of 2:1 or higher on `1 (the
beat class ratio on higher levels is less restricted).

Suppose that there is a beat class ratio on `1 that is at least 2:1. Suppose now that
the shortest beat at the tactus level is j temporal units, so j ∗ u. Now, the longest
beat is at least 2j ∗ u. By C6, for all i ∈ I(c) it must hold that 400 ≤ i ≤ 1200. In
particular, j ∗ u ≥ 400 while 2j ∗ u ≤ 1200. Now, u ≥ 400/j, but u ≤ 1200/2j, so
400/j ≤ u ≤ 600/j. For any j ≥ 2 (j 6= 1 by C7), u must be between two values
that are less than 100 ms apart. Hence, C12 is not met.

– For p ≥ 17, eliminate all structures that have a 2 on `1.

Since p ≥ 17, u ≤ 5000/17 = 294.1 by C5, while with a 2 on the tactus level, it must
be that u ≥ 200 (otherwise there is an i in I(c) such that i < 400, which fails C6).
Therefore, 200 ≤ u ≤ 294.1 such that C12 is not met.

– For p ≥ 22, eliminate all structures that have a 3 on `1.

Since p ≥ 22, u ≤ 5000/22 = 227.3 by C5, while with a 3 on the tactus level, it must
be that u ≥ 133.3 (otherwise there is an i in I(c) such that i < 400, which fails C6).
Therefore, 133.3 ≤ u ≤ 227.3 such that C12 is not met.

– For p ≥ 25, eliminate all structures.

Since p ≥ 25, u ≤ 5000/25 = 200 by C5, while u ≥ 100 by C4. Therefore, 100 ≤
u ≤ 200 such that C12 is not met.

Because of the strictness of the rule system, the testset under C12 has been constructed
as well for p > 18, as for these structures, C12 only allows combinations of 5s, 4s and 3s.

• C9 + C12: Eliminate all structures that are not allowed by C9 or C12 (or both). For
p > 18, construct the testset under C12 as above and eliminate all structures that are
not allowed by C9.

All possible structures for p = 11 under the different additional constraints are given through
the symbols in Table A.1.
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b Possible distributions No. P ∗ Total

1 11 (with c = 0) 1 1 1

2 8-3 2 1 2
7-4 2 1 2
6-5 2 1 2

3 6-3-2 6 1 6
5-4-2 6 1 6
5-3-3 3 1 3
4-4-3 3 1 3

4 5-2-2-2 4 2 8
4-3-2-2 12 2 24
3-3-3-2 4 2 8

5 3-2-2-2-2 5 3 15

Table A.2: All possible structures under C1-7 for meters with period 11 and c = 1 (including
the structure 11 with c = 0). ‘No. P’ denotes the number of permutations, ‘∗’ the higher level
multiplier. The total number of structures for p = 11 is 80.
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