
ABox Abduction in the Description Logic ALC

Szymon Klarman · Ulle Endriss · Stefan Schlobach

To appear in the Journal of Automated Reasoning
Accepted: February 03, 2010

Abstract Due to the growing popularity of Description Logics-based knowledge rep-

resentation systems, predominantly in the context of Semantic Web applications, there

is a rising demand for tools offering non-standard reasoning services. One particularly

interesting form of reasoning, both from the user as well as the ontology engineering

perspective, is abduction. In this paper we introduce two novel reasoning calculi for

solving ABox abduction problems in the Description Logic ALC, i.e. problems of find-

ing minimal sets of ABox axioms, which when added to the knowledge base enforce

entailment of a requested set of assertions. The algorithms are based on regular con-

nection tableaux and resolution with set-of-support and are proven to be sound and

complete. We elaborate on a number of technical issues involved and discuss some

practical aspects of reasoning with the methods.
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1 Introduction

In recent decades abduction has gained considerable attention in such fields as logic,

artificial intelligence and philosophy of science. It has been widely recognized that the

style of reasoning, usually illustrated as an inference from puzzling observations to

explanatory hypotheses, is in fact inherent in a vast majority of problem solving and

knowledge acquisition tasks. The scope of applications is immense and varies from sci-

entific discovery, over medical and engineering diagnosis, design problems, planning,

language and multimedia interpretation, to example generation in tutoring systems. In

the face of such a widespread and diverse application interest much research has been

devoted to gaining a better understanding of the theoretical foundations of abductive

reasoning [1,16,40] and to developing computational frameworks for abduction, mainly

in the context of logic programming [27,14], but also with certain insightful proposals

founded on the standard logical calculi, such as semantic tableaux [32,33,1] or res-

olution [11,36], targeted at reasoning in propositional, first-order and several modal

logics.

A new, challenging area for exploring the potential of abductive reasoning, which

we aim to address in this paper, is Description Logic (DL) [3]. DL has become a leading

paradigm of logic-based knowledge representation, a status that has been acknowledged

in the course of standardization efforts for the Semantic Web, embracing DLs as the

logical underpinning of the Web Ontology Language [26].1 Due to the growing popular-

ity of the formalism, there has been an ever rising demand for efficient tools providing

different reasoning services for DL knowledge bases. Whereas highly optimized deduc-

tive reasoning algorithms for expressive DLs abound and are readily available [20,24,

29,35], the advances on non-standard types of inference —in particular abduction—

are still very limited, though the need for them is obvious.

In their programmatic paper, Elsenbroich et al. [13] advocate initiating research

on abduction in the context of DL ontologies, supporting their case with several ap-

plication scenarios. For instance, the user of a medical ontology, covering descriptions

of health disorders and their symptoms, should appreciate the possibility of querying

the knowledge base for a short list of plausible diagnoses based on a patient’s medical

record. Ontology engineers, on the other hand, can benefit from having tool support

for identifying minimal sets of axioms that should be inserted into a knowledge base

for a certain entailment to hold [6]. Practically every research community interested in

applying DL/Semantic Web technologies to their specific domains, such as e-Science,

medical informatics, law and AI, computational linguistics or computer-supported en-

gineering and design, can easily extend the list of feasible use cases for abduction over

ontologies.

In this paper we study ABox abduction in DL, i.e. the type of abductive inference

constitutive for problems of finding all minimal sets of ABox axioms, such that added

to the knowledge base each of them triggers entailment of the initially specified set

of ABox assertions. We propose a computational framework for solving this kind of

problems in the DL ALC, and argue for its adequacy and universal character that

can facilitate extensions to more expressive DLs. Our work, being to the best of our

knowledge a so far unique attempt of addressing such a form of reasoning, is thus the

first step towards the creation of practical abductive reasoners for the family of DL

languages.

1 See http://www.w3.org/TR/owl-features/ and http://www.w3.org/TR/owl2-profiles/.



3

T = { Optimist t (Nihilist u ∃owns.Dog) v Happy
∀watches.Comedy v Optimist }

A = { Nihilist(John), Dog(Snoopy) }

Q = Happy(John) ?

Fig. 1 Happy John ABox abduction problem.

Example. For a motivating illustration of the problem, which will serve as the running

example in the remainder of the paper, consider a simple knowledge base (Figure 1)

defined by the terminology T (TBox) and the two assertions given in A (ABox). The

terminology states that every individual who is an optimist or who is a nihilist owning

a dog is happy, whereas every individual who watches only comedies is an optimist.

Moreover, it is known that John is a nihilist and Snoopy a dog. Given this background

one might want to find out what kind of facts, i.e. what ABox assertions, should be

true in the described world for John to be naturally considered a happy individual, or

more formally, for the assertion Happy(John) to be derivable from the knowledge base.

Clearly, there are several alternatives. For instance, one can conjecture that John is an

optimist, which automatically renders him an instance of happy individuals. Another,

more specific guess is that John watches only comedies, as then he is obviously an

optimist, and thus a happy individual. Also, since Nihilist(John) is already in the

knowledge base, the requested statement is entailed by assuming that John owns a

dog, or in particular, that John owns Snoopy, who is already known to be a dog. �

In the presented example, the background knowledge together with the query

Happy(John) form an ABox abduction problem, whereas the briefly listed alternatives

constitute its solutions. Arguably, reasoning tasks of this sort comprise an essential

share of all abduction problems in DL, in particular the majority of cases of potential

attractiveness for end-user applications.

In this paper we introduce a framework for solving ABox abduction problems in

the DL ALC. As its central part we define two reasoning calculi, based on refine-

ments of two well-known automated theorem proving techniques: regular connection

tableaux and resolution with set-of-support. Both proof methods, enjoying the benefits

of connection-driven decision procedures for satisfiability, in the sense originally for-

mulated by Bibel [7], exhibit a goal-oriented behavior in solving abductive problems.

Roughly, the approach allows for conducting the search only among those formulas that

have good chances of contributing to the abductive solution, discarding possibly large

parts of the knowledge base that are irrelevant for the problem. Next to the calculi,

we define a special clausal transformation of DL axioms, which uses the techniques

of flattening and Skolemization of formulas under standard translation, and finally we

specify a procedure of reconstructing abductive solutions from the parts of the proofs

generated by the calculi. The whole method is proven sound and complete.

The presentation of the work is organized as follows. In the next section we set out

the formal framework for ABox abduction in ALC, introducing basic notions and dis-

cussing the requirements for the procedure. We also review other work related to the

problem. In Section 3 we provide a detailed account of our approach, describing the

transformation of DL formulas, the two calculi and the method of reconstructing solu-

tions. Section 4 contains the proofs of some logical properties of the framework, notably
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soundness and completeness, and addresses additional constraints typically applied for

restricting the space of abductive solutions. Finally, we conclude the paper with a

summary and a discussion of the results.

2 Problem definition

DLs are a family of logical languages intended particularly for representing knowledge

about a domain of application. With their rich means of expressiveness and epistemi-

cally motivated clustering of knowledge bases into the terminological and factual layer,

DLs provide a wide range of interesting contexts for investigating and applying forms

of abductive reasoning. ABox abduction, for the first time formally identified in [13],

comes here as conceptually the simplest, nevertheless computationally very demanding

type of abduction, which requires reasoning over both layers of the knowledge base. In

this section we introduce the preliminary notions and discuss the background necessary

for explaining and justifying our approach to solving ABox abduction problems.

2.1 Preliminaries

A signature of a DL language L consists of a set of individual names NI , a set of concept

names NC and a set of simple roles NR [4]. The semantics is given by an interpretation

I = (∆I , ·I), where∆I is a non-empty domain of individuals and ·I is an interpretation

function defining the meaning of the vocabulary by mapping every individual name to

an individual from ∆I , every concept name to a subset of individuals, and every role

name to a set of pairs of individuals from the domain. By default, we also treat > (top

concept) and ⊥ (bottom concept), where >I = ∆I , ⊥I = ∅, as fixed symbols in the

language. The remainder of the semantics is defined inductively on the construction

rules for complex expressions available in the given language. In the following, we will

consider only languages including concept constructors presented in Table 1.

Constructor Syntax Semantics

concept negation ¬C ∆I \ CI

concept intersection C uD CI ∩DI

concept union C tD CI ∪DI

existential restriction ∃r.C {x | ∃y(〈x, y〉 ∈ rI ∧ y ∈ CI)}
universal restriction ∀r.C {x | ∀y(〈x, y〉 ∈ rI → y ∈ CI)}

nominal {a} {aI}
Table 1 The syntax and semantics of complex concept constructors.

A DL knowledge base K = (T ,A) consists of a TBox T and an ABox A. The TBox

is a formal representation of the terminological part of the knowledge base, establishing

relationships between concepts and roles. We allow the liberal representation of general

TBoxes, based on general concept inclusions (GCIs), that is, axioms of the type C v D,

where C and D are arbitrary concept descriptions. In this case C is said to be a

subconcept of D. The equivalence of concepts, denoted as C ≡ D, is an abbreviation
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for two GCIs holding between C and D and vice versa. The ABox of a knowledge base

consists of a set of assertions about individuals, of the form C(a) or r(a, b), where a, b

are names of individuals, C is a concept description, and r is a role. The former states

that a is an instance of C, whereas the latter expresses that individual a is related to

b via role r.

The semantics of TBox and ABox axioms is defined in a standard way, presented

in Table 2. An interpretation ·I satisfies an axiom if and only if the semantics of the

axiom is respected under ·I . An interpretation is a model of a knowledge base when it

satisfies all its axioms. Finally, we say that a knowledge base is satisfiable if and only

if it has at least one model. Else, the knowledge base is unsatisfiable.

Axiom Semantics

C v D CI ⊆ DI

C ≡ D CI = DI

C(a) aI ∈ CI

r(a, b) 〈aI , bI〉 ∈ rI

Table 2 Semantics of DL axioms.

2.2 ABox abduction problems and solutions

The following two definitions introduce the central notions of ABox abduction problem

and solution to such a problem.

Definition 1 (ABox abduction problem) Let LK and LQ be DLs, K = (T ,A)

a knowledge base in LK and Φ a set of ABox assertions in LQ, denoted as the

abductive query. We call the tuple 〈K, Φ〉 an ABox abduction problem iff K 2 Φ
and K ∪ Φ 2 ⊥.

Definition 2 (ABox abduction solution) Let LS be a DL and A a set of ABox

assertions in LS . A is a (plain) solution to abductive problem 〈K, Φ〉 iff K ∪ A � Φ.

Moreover, we call A:

1. consistent iff K ∪A 2 ⊥.

2. relevant iff A 2 Φ.

3. minimal iff there is no solution B to 〈K, Φ〉 that is minimal with respect to

A. We say that B is minimal with respect to A iff there exists a renaming

ρ : N?
I (B) 7→ N?

I (A), where N?
I (B) and N?

I (A) are the sets of individual names

from A and B that do not occur in K, such that A � ρB, but for every renaming

% : N?
I (A) 7→ N?

I (B) it holds that B 2 %A.

ABox abduction, in the above sense, is the problem of finding a set of assertions A

that, when added to the knowledge base K, triggers entailment of a desired set of ABox

axioms Φ, which otherwise does not follow from K. The notion of entailment and its

symbol |= are understood here simply as the classical consequence relation, meaning

that A entails B (A |= B) if every model of A is at the same time a model of B. We
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generalize the definition proposed in [13] by allowing multiple assertions as elements of

an abductive query, interpreting them as implicitly connected by conjunction. We also

adopt a purely logical perspective on abductive reasoning, and depart from the tra-

ditional, philosophically influenced nomenclature, which silently implies the existence

of an explanatory or causal relationship between the premise and a conclusion of the

inference. Instead of explanandum and explanans, common in the literature, e.g. Elsen-

broich [12], we use the neutral notions of the query and a solution to the problem.2

The only constitutive feature of an abductive problem in this setting is, therefore, inde-

termination of the truth value of the query given the background knowledge, whereas

that of a solution is its potential of forcing this value to true when coupled with the

knowledge base.

Since the space of abductive solutions can be in principle infinite, it is common

to employ additional constraints to narrow it down, at least by excluding obviously

unacceptable solutions, and even further, to a fragment of a higher pragmatic value

from the application perspective. The choices proposed here, widely approved in the

studies on the subject, e.g. Aliseda [1], Paul [36], should be to our opinion the least

controversial, as they embrace arguably the most intuitive and universal criteria used

in all applications of abductive reasoning.

– The consistency requirement discards solutions inconsistent with the knowledge

base. For instance, if ¬Optimist(John) followed from the knowledge base, in the

introductory example, then Optimist(John) would not be a consistent solution to

the problem. Obviously, it is not rational to conjuncture something that is neces-

sarily false.

– The relevance condition filters out those solutions that entail the query without any

contribution of the background knowledge. Such outcomes trivialize the problem

instead of really solving it, as it is the case, for example, with solution Happy(John)

to the happy John problem.

– The requirement for minimality or simplicity of abduced hypotheses is often a sub-

ject of debate in the literature, and in fact, several different, incompatible criteria

have been proposed. Since it is not our intention to favor any particular view on

abduction, we refrain from adjudicating between the proposals, and instead abide

by the weakest and most fundamental notion of minimal solutions in the analytical

sense of Quine’s prime implicants [37]. The minimality criterion in this meaning

ensures that solutions do not contain superfluous information, i.e. that one does

not abduce more than is necessary. Clearly, there is no point in conjecturing that

(OptimistuNihilist)(John) if Optimist(John) alone is already sufficient to solve

the problem. Naturally, one can easily plug in a stronger notion of minimality on

top of this one.

We will further address the problem of selection criteria, including the computational

aspects of their verification, in Sections 4.2 and 4.3.

In this paper we restrict our attention to ABox abduction problems, the knowledge

bases of which are expressed in ALC, the basic attributive language with complex

concept negation, which is the most prominent fragment of DL, covering an essential

part of expressive means available in DLs. The syntax of the queries and abductive

solutions is restricted to the conjunctive variant of ALC, namely ALE . The syntax of

the two languages is recapped in Table 3. Noticeably, in ALE the union constructor is

2 The variability of the abductive context has been recently highlighted also by Gabbay and
Woods [19].
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ALC : > | ⊥ | A | ¬C | C uD | C tD | ∀r.C | ∃r.C
ALE : > | ⊥ | A | ¬A | C uD | ∀r.C | ∃r.C

Table 3 Concept constructors in the DLs ALC and ALE.

prohibited and use of negation is reserved only for atomic concepts. No new expressive

means with respect to ALC are introduced.

The syntactic restriction that we use is typically applied in the context of abduction,

e.g. Aliseda [1], Elsenbroich [12], for obtaining fine-grained and interesting problems

and solutions. For instance, the assertion (Optimistt∀watches.Comedy)(John) would

not be a legal ALE solution to the happy John problem, although it does solve the prob-

lem in the ALC language. Still, among ALE solutions one can find separately all the

disjuncts comprising this assertion, i.e. Optimist(John) and ∀watches.Comedy(John),

which in most cases is exactly what one seeks through abductive reasoning: a list of

alternative ways the world should be for the query to hold. Given such knowledge it

follows analytically that also the disjunctions of these alternatives solve the problem.

There are, however, also other types of disjunctive solutions that cannot be recon-

structed in a similar manner. For instance if ∀watches.(Comedy t Musical)(John)

was a valid ALC solution to the problem, then only ∀watches.Comedy(John) and

∀watches.Musical(John) would be retrieved in ALE , where the union of the two

(∀watches.Comedyt∀watches.Musical)(John) is obviously not equivalent to the orig-

inal ALC assertion. Admittedly, in such cases the disjunctive solutions are simply lost

and unrecoverable.

2.3 Related work

A discussion on the place for abduction in the context of DLs has been initiated by

Elsenbroich et al. [13], who introduced a broad classification of the relevant types of

abductive problems, coined some of the basic terminology, provided a number of use

case scenarios, and finally outlined a far-reaching research programme on the subject.

The call for tool support for abductive reasoning required in ontology engineering has

been repeated also by Bada et al. [6].

Before that abduction in DL has been studied only by Colucci et al. [10], who

proposed a tableaux-based algorithm for concept abduction, the problem of finding all

subconcepts of a given concept, in order to support so-called matchmaking tasks. Also

some attention has been given by Espinosa et al. [15], reported by Möller and Neu-

mann [34], to the problem of facilitating interpretation of visual data using ontologies

with DL rules. There, the authors discuss a simple inference mechanism for ABox ab-

duction over the rule bodies, which suggests ways of enhancing the conceptualization

of the data. Admittedly, the approach taken in both cases is quite narrowly scoped.

The first one, although essentially based on similar principles as ours, is limited to

unfoldable, acyclic terminologies in the DL ALN . Potential extensions towards more

expressive DLs, in particular ones offering at least all boolean operations in concept

descriptions, do not seem trivial and would definitely require significant revisions in

the employed calculus. Moreover, the approach is unsuitable for harder reasoning tasks,

such as ABox abduction, considered in this paper. The second framework, presented
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by Espinosa et al., does not in fact involve genuine abductive reasoning for DL, but

merely abduction over rules accompanying DL ontologies. Thus the style of inference

used there falls much closer to the paradigm of abductive logic programming, whereas

DL reasoning occurs only in the most standard form, as a support for deductive parts

of the process. Both methods are therefore of a little help for the goal of this work,

which is to propose a universal framework for ABox abduction in DL. Even though

our focus is on the DL ALC, we want the approach to be generic, so that lifting it to

more expressive extensions of ALC is possible.

Other loosely related work includes results on the computational complexity of con-

cept abduction in DL EL, obtained by Bienvenu [8], and some proposals concerning

other reasoning tasks, which reveal some affinity with the abductive style of inference.

The latter include the work of Schlobach et al. [39] on debugging incoherent terminolo-

gies, where the problem is to find a minimally unsatisfiable subset of TBox axioms, and

the proposals of Kalyanpur et al. [28], and later Horridge et al. [23], on finding justi-

fications, i.e. minimal sets of axioms of an ontology that make a particular entailment

of the ontology hold. Both tasks can be seen as borderline cases of abduction, where

the query (the bottom concept in the former problem, and the specified entailment in

the latter) already follows from the knowledge base, but still one has to check why it is

the case, i.e. which subset of the ontology exactly guarantees the entailment. Regard-

less of this similarity, the formal properties of both problems permit a much simpler

computational treatment, based on looking up into the inference graph generated by a

standard DL reasoner, or even using the reasoner as a black-box. Hence, the solutions

discussed by the cited authors bare no significant overlap with ours, which conversely,

rest on deep adaptations of the standard automated reasoning techniques. On a differ-

ent note, the works on justifications offer some interesting procedural explications of

the notion of precision, which is closely related to our notion of minimality, but which

in this paper is provided only with a semantic interpretation.

From the logical perspective, an important contribution has been delivered by

Mayer and Pirri [32,33] and Aliseda-Llera [1], who laid down foundations for uni-

versal tableaux-based algorithms for abduction in propositional, modal logics (MLs)

and first-order logic (FOL). Prior to these, quite different approaches to abduction in

logic, built on linear resolution, have been investigated by Cox and Pietrzykowski [11]

and employed in several applications. The main idea, promoted by these authors, of

grounding abductive reasoning on the standard refutation proof systems has largely

shaped the conceptual basis of the framework presented here, although a shift towards

DLs presents a number of technical challenges not occurring in the case of logics ad-

dressed in the cited works. Moreover, we account for a goal-oriented style of reasoning,

which was also not considered by the others. Such an approach to abduction in logic has

only been studied by Elsenbroich [12], but rather than building on standard calculi, this

work is based on the goal-directed approach to deduction of Gabbay and Olivetti [17,

18], and as such remains hardly comparable to ours. Likewise, goal-oriented abduction

in the context of logic programming, as discussed e.g. by Kakas et al. [27], is incom-

mensurable with the algorithms discussed here due to the fundamental discrepancy

between the properties of the underlying formalisms.
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2.4 Requirements

Based on a number of insights coming from the literature on abduction, DLs, and au-

tomated reasoning techniques, we have identified the following high-level requirements

as the guiding principles for constructing the framework for ABox abduction.

– Universality and flexibility : The framework should be universal enough to be able

to accommodate different expressive extensions of DL, thus enabling relatively uni-

form treatment of all DLs. Further, as signaled in Section 2.1, it should not in-

corporate any selection criteria for delimiting the scope of solutions, apart from

ones that are supported by a firm epistemological justification, such as consistency,

relevance and minimality in the sense defined above. Finally, it should not be con-

fined to a particular search strategy, e.g. depth-first or breadth-first, leaving the

issue open to customization. At the same time it has to be sufficiently flexible to

allow tuning the solving strategy with respect to different dimensions. Preferably,

one should be able to model within the framework a specific interpretation of the

notion of best hypothesis, which is central to abduction, and adjust the balance of

completeness/efficiency trade-off, inherent in abductive reasoning, according to the

requirements of concrete application scenarios.

– Utilization of standard reasoning methods: Given the state-of-the-art advancements

in the field of automated reasoning, especially concerning FOL, MLs and DLs, it is

highly desirable to build the framework on reasoning calculi that offer good chances

for integration with existing reasoners, thus facilitating reuse of well-developed and

broadly applied methodologies and transfer of verified optimization techniques.

In particular, since current DL reasoners are based almost exclusively on semantic

tableaux [20,24,35] and resolution [29], the choice of refinements of these techniques

as the foundation for abductive reasoning tools for DL knowledge bases seems most

natural and promising.

– Goal-orientedness: Considering the issues of efficiency and basic principles of intelli-

gent problem solving, ideally, the algorithm should exhibit a goal-oriented behavior.

The reasoning should start from the abductive query as the goal to be explained

and conduct a form of backward-chaining search for solutions through the formulas

in the knowledge base. Consequently, the employed proof strategies should allow for

a selective use of the background knowledge, such that those parts of the knowledge

base that cannot contribute to solving the problem are not considered and thus do

not introduce extra computational burden for reasoning. As will be pointed out in

the beginning of the next section, one way of achieving goal-orientedness in this

sense is employing connection-driven proof strategies [30].

The framework for ABox abduction, presented in the subsequent sections, uses a

connection-based variant of semantic tableaux and a refinement of the resolution cal-

culus. It involves standard transformation techniques for DL axioms, which can embed

almost all expressive means of DLs, and finally, it does not depend on any selection

criteria apart from those discussed in Definition 2. All known optimizations, search

strategies, heuristics or other augmentations, which can be easily implemented in the

calculi, are not intrinsic to the framework, and left merely as options. Our belief is that

such a setting guarantees, to a sufficient extent, satisfaction of the requirements.
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3 Computing solutions

In this section we present the computational framework for solving ABox abduction

problems in the DL ALC. We start with a general overview of the approach, indicating

its formal and conceptual foundations, and provide an outline of its structure. In the

subsequent parts we proceed with presenting the details. We close the section with an

example of solving an ABox abduction problem in the framework.

3.1 Roadmap: A high-level overview

The reasoning mechanism constitutive to our approach to solving ABox abduction

problems rests on two observations concerning the model-theoretic and proof-theoretic

aspects of abductive inference, respectively.

On the model-theoretic side, solving an abduction problem can be seen as finding

a formula that is unsatisfiable in all those models of the knowledge base in which the

abductive query is not satisfied, therefore a formula that can eliminate all unintended

models of the background knowledge. To solve a problem, one requires an overview

of those models, or at least of their parts, in order to decide which formulas can

succeed in eliminating them. This observation, endorsed by several authors [11,32,33,

1] and followed here, can be exploited within standard refutation proof systems such

as resolution and semantic tableaux, which given the negated abductive query along

with the knowledge base as input, provide a necessary insight into the structure of all

the unintended models. In this context, recall that open branches in a tableau tree can

be associated with possible models of the input, while resolvents in a resolution proof

represent constraints that have to be satisfied in every such model.

From the proof-theoretic perspective, as shown elsewhere [30], the goal-oriented

strategy of solving abduction problems, so typically employed by human reasoners,

in which one sets the abductive query as the goal and moves backwards through the

constraints of the knowledge base, setting intermediate goals, in order to identify con-

secutive, more indirect solutions, can be formally reinterpreted in terms of connection

proof methods, in the sense originating from the works of Bibel [7] and Andrews [2].

These techniques, giving rise to a family of decision procedures for satisfiability in a

number of logics, make central use of the notion of connection, i.e. an occurrence of

complementary literals in two formulas in clausal form. Following the path of connec-

tions, one can easily identify all fragments of the knowledge base that are semantically

interrelated, and so can be potentially relevant for solving a given abductive problem.

Our framework for ABox abduction incorporates features of both FOL and ML

reasoning techniques. Thus we rely heavily on the well-known correspondence results

between DL and the multi-modal logic Kn [38], and further, through the so-called

standard translation, to FOL [9]. The proof system is based on the methods of regular

connection tableaux [21] and resolution with set-of-support [31], both sound and com-

plete reasoning calculi for FOL, and both hinging on connection-driven proof strategies.

Let us now roughly describe the procedure for solving an ABox abduction problem

〈K, Φ〉. Given the input transformed into FOL, we attempt to construct a refutation

proof for K � Φ. For this we use either of the two calculi, hence initiating the proof with

¬Φ and trying to show that K∪¬Φ ` ⊥. Notice that the proof succeeds if it is possible

to close all branches of the tableau tree or derive an empty resolvent, respectively.

At each stage of the construction of the proof it is possible to force its completion
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by adding a suitable conjunctive formula A, which either closes all open branches or

contradicts some resolvent. Such a formula will be a plain solution to the translated

problem 〈K, Φ〉, as obviously it follows that K∪A � Φ. After transforming A from FOL

back to DL, for which one has to account for an underlying relational structure of an

essentially modal character, we obtain a set of ABox assertions that solve the original

problem. The following sections address particular aspects of the framework.

1. In Section 3.2 we present the transformation of DL formulas into a clausal form,

which uses the standard translation to FOL, but at the same time also encodes the

modal structure of the formulas.

2. In Section 3.3 we elaborate on the two reasoning calculi, providing details of the

proof construction rules.

3. Section 3.4 accounts for the aspects of bookkeeping of the relational structure

underlying the proofs. To this end we introduce the notion of an abductive graph.

Further, we define the conditions under which reverse transformation from FOL to

the DL ALE is possible.

4. Section 3.5 describes the procedure of reverse transformation, i.e. of retrieving

solutions from a proof. This defines our target notion of a `ABox-solution to an

ABox abduction problem.

The procedure `ABox described in this section computes plain solutions to an ABox

abduction problem. How to extend the basic method to also account for consistency,

relevance and minimality will be discussed in Sections 4.2 and 4.3.

3.2 Transformation

A complete transformation of DL formulas into the representation required by the ab-

ductive procedure comprises translation into Negation Normal Form of TBox axioms

and concept descriptions in ABox assertions, followed by a reduction to Conjunctive

Normal Form and flattening of the clauses, i.e. extraction of nested concept descrip-

tions from quantification restrictions. Finally, all the clauses are Skolemized, while

their modal structure is recorded in a way which enables a faithful reconstruction of

the Kripke models underlying the abductive proofs. Overall, we obtain an equisatis-

fiable and structure-preserving transformation of the input DL formulas. The entire

transformation procedure is summarized in Table 7, while in the following paragraphs

we discuss its particular fragments.

We start by extending the signature of the language with a set Fsko = {f1, f2, . . .}
of Skolem functions and a set P = {P1, P2, . . .} containing non-DL predicates, possibly

of different arity. We also assume there is an infinite set Var = {x1, x2, . . .} of variables.

We refer generically to any term, a variable or a Skolem term, using letters t, t1, t2, . . .,

and write t = t1, . . . , tn to denote their sequence. We use ·? to mark introduction of

new symbols: x? a new variable, f? a new function and P ? a new non-DL predicate.

Arbitrary predicates, DL or non-DL, are denoted by capital letters L,L1, L2, . . .. We

assume that in such contexts ¬Li stands for the complement of Li. Below we present

an outline of the three stages of transformation, marked by τ¬, τu and τxt , for NNF,

CNF (involving flattening) and Skolemization, respectively. The layering of the process

is rather schematic, as in practice it should be much more efficient to interleave the

transformation steps belonging to different stages.
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τ¬(¬¬C) = τ¬(C) τ¬(¬(C tD)) = τ¬(¬C) u τ¬(¬D)
τ¬(¬A) = ¬A τ¬(¬(C uD)) = τ¬(¬C) t τ¬(¬D)
τ¬(A) = A τ¬(¬∀r.C) = ∃r.τ¬(¬C)

τ¬(¬⊥) = ¬⊥ τ¬(¬∃r.C) = ∀r.τ¬(¬C)
τ¬(⊥) = ⊥ τ¬(C tD) = τ¬(C) t τ¬(D)
τ¬(>) = ¬⊥ τ¬(C uD) = τ¬(C) u τ¬(D)

τ¬(¬>) = ⊥ τ¬(∀r.C) = ∀r.τ¬(C)
τ¬(∃r.C) = ∃r.τ¬(C)

Table 4 Negation Normal Form transformation.

τu(
⊔

1≤i≤n Ci) =
⊔

1≤i≤n Ci, for Ci ∈ {L, ∀r.P, ∃r.P}
τu(B t (C tD) t E) = τu(B t C tD t E)
τu(B t (C uD) t E) = τu(B t C t E), τu(B tD t E)

τu(B t ∀r.C tD) = τu(B t ∀r.P ? tD), τu(¬P ? t C)
τu(B t ∃r.C tD) = τu(B t ∃r.P ? tD), τu(¬P ? t C)

Table 5 Conjunctive Normal Form transformation with flattening of the axioms.

The NNF and CNF transformations of ALC concept descriptions, presented in

Tables 4 and 5, are standard and do not require any comments. The flattening tech-

nique, included in Table 5, is also a relatively common practice, used for instance in

[41] and [23]. Under flattening the qualifying concept descriptions in the quantification

restrictions are replaced with new predicate symbols, which are then related to the

descriptions by means of separate GCIs. Such an approach is desirable for facilitating

connection-driven construction of proofs, as given a flattened formula one obtains a

direct access to all its literals at any depth. Figure 2 presents a small example of the

transformation.

¬(Optimist t (Nihilist u ∃owns.Dog)) tHappy ¬Optimist tHappy
¬Nihilist t ∀owns.P1 tHappy
¬P1 t ¬Dog

¬(∀watches.Comedy) tOptimist ∃watches.P2 tOptimist
¬P2 t ¬Comedy

Nihilist Nihilist
Dog Dog

¬Happy ¬Happy

Fig. 2 Happy John problem: NNF and CNF transformations and flattening.

The transformation of a concept description through τ¬ and τu results in a set of

unions. With every such union C = C1 t . . . t Cn we associate the clause comprising

all its disjuncts Cl = {C1, . . . , Cn}. Within any set of such clauses Γ we distinguish

the subset of their roots R(Γ ), i.e. all those clauses that do not contain a literal ¬Pi
for any Pi ∈ P, and the remaining subset of the non-root clauses nR(Γ ).

Finally, all clauses are translated to FOL, as presented in Table 6, by means of

the transformation τxt , where the subscript contains a single term and the superscript

a possibly empty sequence of variables. The translation function takes as the input

a clause Cl ∈ Γ along with the set of all non-root clauses nR(Γ ). All quantifica-
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tion restrictions in the clause are replaced with the corresponding FOL expressions

according to the standard translation, while the predicates are suitably Skolemized.

During this process the modal structure of every clause, originally encoded in its quan-

tification restrictions, is extracted and recorded as the so-called modal core µ of the

clause, i.e. the graph describing role relationships between the terms occurring in the

Skolemized clause. The modal cores of clauses are used later in the process of finding

well-formed ABox solutions to abduction problems. The output of the transformation

includes therefore a set of Skolemized clauses (so-called τ -clauses), each one accom-

panied by its modal core. Observe, that in order to Skolemize flattened formulas in a

τxx ({A} ∪ Cl) = {A(x)} ∪ τxx (Cl) µ := µ(Cl)
τxx ({¬A} ∪ Cl) = {¬A(x)} ∪ τxx (Cl) µ := µ(Cl)

τxx ({∀r.Pi} ∪ Cl) = {¬r(x, x?), Pi(x, x
?)} ∪ τxx (Cl), µ := {r(x, x?)} ∪ µ(Cl)

{¬Pi(x, x?)} ∪ τx,x
?

x? (Cl ′) µ := µ(Cl ′)
for every {¬Pi} ∪ Cl ′ ∈ nR(Γ )

τxx ({∃r.Pi} ∪ Cl) = {r(x, f?(x)} ∪ τxx (Cl), µ := {r(x, f?(x))} ∪ µ(Cl)
{Pi(x)} ∪ τxx (Cl), µ := {r(x, f?(x))} ∪ µ(Cl)
{¬Pi(x)} ∪ τx

f?(x)
(Cl ′) µ := µ(Cl ′)

for every {¬Pi} ∪ Cl ′ ∈ nR(Γ )

Table 6 Skolemization and the modal core.

satisfiability preserving manner, the non-DL predicates have to be used for carrying

over all universally bound variables into separated subformulas. The sequences of these

variables are noted down as the superscripts of the transformation function. This way

all Skolem functions that might possibly occur on the deeper levels of the nestings,

obtain appropriate arguments. Since non-DL predicates uniquely identify the points of

split, it is guaranteed that the connection can be established only in the original place

and that all variables originally shared between a sub– and their superformulas will

be fine-tuned by unification. An example of Skolemized clauses along with their modal

cores is given in Figure 3.

Table 7 presents the complete procedure for computing the τ -transformation of the

formulas that comprise the input of an ABox abduction problem, i.e. a knowledge base,

consisting of TBox and ABox axioms, and the negated query. The latter case requires a

slightly more elaborate approach, as the assertions in the query are implicitly connected

by conjunction. The negation of the query is, therefore, equivalent to the disjunction

of the negations of those assertions, which has to be properly reflected in defining the

resulting root clauses and their modal cores.

As a final remark concerning transformation, we note that in practice it is not

necessary to thoroughly pre-process the knowledge base via all the translation rules

defined above. Since the proof procedures used in the framework are connection-driven

it is possible to benefit from their specific character also on the level of transformation,

rendering it equally goal-oriented. Notice that, having a formula translated into NNF,

one can easily answer whether it is relevant for a given part of the proof. Given such

knowledge, the remainder of the transformation of the formula can be deferred until a

particular connection is actually requested.
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{¬Optimist,Happy} | 1 : {¬Optimist(x1),Happy(x1)}
{¬Nihilist, ∀owns.P1,Happy} | 2 : {¬Nihilist(x1),¬owns(x1, x2), P1(x1, x2),Happy(x1)}

{¬P1,¬Dog} | 3 : {¬P1(x1, x2),¬Dog(x2)}

{∃watches.P2,Optimist} | 4 : {watches(x1, f1(x1)),Optimist(x1)}
| 5 : {P2(x1),Optimist(x1)}

{¬P2,¬Comedy} | 6 : {¬P2(x1),¬Comedy(f1(x1))}

{Nihilist} | 7 : {Nihilist(John)}
{Dog} | 8 : {Dog(Snoopy)}

{¬Happy} | 9 : {¬Happy(John)}

1, 3, 6, 7, 8, 9 : µ = ∅
2 : µ = {owns(x1, x2)}

4, 5 : µ = {watches(x1, f1(x1))}

Fig. 3 Happy John problem: Skolemization and the modal core.

3.3 Tableaux and resolution-based abduction

Semantic tableaux [21] and resolution [5] are the two best known and most commonly

used automated reasoning methods for FOL, with a plethora of refinements, optimiza-

tion techniques and extensions to other logics available. In the following we explain the

procedure of solving abductive problems based on application of two variants of the

calculi: regular connection tableaux and resolution with set-of-support. Our approach di-

verges from similar proposals presented in the literature [11,32,33,1], which differently,

refer to the standard tableau and linear resolution in addressing abductive inference.

We assume acquaintance with the basics of both calculi and only briefly characterize

them below in order to introduce the respective refinements.

A clause tableau is a labeled tree, whose nodes are literals and whose root contains

a set of clauses. The tree is developed by consecutive applications of the beta expansion

rule to the clauses. Each clause can be expanded only once on a branch. Whenever

a branch contains complementary literals or the symbol ⊥, the closure rule can be

applied. A tableau is saturated if no more expansion steps are possible. A tree T is a

tableau refutation proof of Φ from K, denoted as K ` Φ, if the root of T contains K∪¬Φ
and all branches of T are closed. A regular connection tableau is a clause tableau, whose

construction is restricted by the following conditions:

– Connectedness: A clause can be expanded on a branch only if it contains a literal

that is complementary to the literal in the current leaf.

– Regularity : A clause can be expanded on a branch only if it does not contain a

literal that already occurs on the branch.

Table 8 summarizes the inference rules applicable in regular connection tableaux.

The resolution method is based on repetitive application of two inference rules —

binary resolution and factoring— to a set of clauses. On every application of a rule, a

new clause, a resolvent or a factor, is generated and added to the set of all clauses. A

resolution deduction of Φ from a set of clauses K, denoted as K ` Φ, is a derivation of an

empty clause from K∪¬Φ by means of the rules. The inference halts when none of the

rules can be applied anymore. In such a case it is said that the resulting set of clauses is

saturated. A resolution deduction of Φ from K is a deduction with set-of-support S ⊆ K
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axiom transformation COMPUTE τ(ϕ):

IF ϕ = C ≡ D
THEN OUTPUT τ(ϕ) = τ(C v D) ∪ τ(D v C)

IF ϕ = C v D
THEN Γ := τu ◦ τ¬(¬C tD)

OUTPUT τ(ϕ) = {τx?x? (Cl) | Cl ∈ R(Γ )}

IF ϕ = C(a)
THEN Γ := τu ◦ τ¬(C)
OUTPUT τ(ϕ) = {τa(Cl) | Cl ∈ R(Γ )}

IF ϕ = r(a, b)
THEN µ({r(a, b)}) = {r(a, b)}
OUTPUT τ(ϕ) = {{r(a, b)}}

IF ϕ = ¬r(a, b)
THEN µ({¬r(a, b)}) = {r(a, b)}
OUTPUT τ(ϕ) = {{¬r(a, b)}}

knowledge base transformation COMPUTE τ(K), for K = (T ,A):

OUTPUT τ(K) = {τ(ϕ) | ϕ ∈ T ∪ A}
negated query transformation COMPUTE τ(¬Φ), for Φ = {ϕ1, . . . , ϕn}:

Γ := R(τ(¬ϕ1))× . . .×R(τ(¬ϕn)), where:
¬ϕ = ¬r(a, b) iff ϕ = r(a, b); ¬ϕ = ¬C(a) iff ϕ = C(a)
R(τ(¬Φ)) := {

⋃
1≤i≤n Cli | 〈Cl1, . . . ,Cln〉 ∈ Γ}

µ(
⋃

1≤i≤n Cli) :=
⋃

1≤i≤n µ(Cli)

nR(τ(¬Φ)) :=
⋃
ϕ∈Φ nR(τ(¬ϕ))

OUTPUT τ(¬Φ) = R(τ(¬Φ)) ∪ nR(τ(¬Φ))

Table 7 Complete τ -transformation procedure.

if every resolvent has at least one parent that is (a factor of) a resolvent or (a factor

of) a member of S. Table 9 presents the two inference rules used in resolution with

set-of-support.3

In case of both methods we shall assume that the selection procedure for inference

steps is fair, i.e. that no clause that can be potentially used in the proof is persistently

omitted. We also require that all variables in a clause included to the proof are consis-

tently renamed, in order to avoid unintended interactions with already used variables.

Under certain conditions concerning the choice of the first clause to be expanded on

the tableau and the choice of the set-of-support for resolution, which we highlight in

Section 4, the calculi are sound and complete for FOL [21,31]. As for now, let us take it

for granted that in the context of abduction the choice of the negated abductive query

as the initial clause or the set-of-support is sufficient to satisfy these conditions.

Both reasoning methods share some important formal similarities. First, they em-

ploy a connection-driven proof strategy, which means that a clause can be included in

a proof, constructed by any of the methods, only if it can be connected to it. More

3 Note that derivation of Cl from Cl ∪ {⊥}, included in Table 9, should be seen as a special
case of an application of the binary resolution rule. Since by definition ⊥ = L ∧ ¬L it follows
that Cl ∪ {⊥} can be replaced in S with clauses Cl ∪ {L} and Cl ∪ {¬L}, which can be
subsequently resolved against each other, resulting in clause Cl .
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{L1, . . . , Ln} ∈ K L1

...
...

...

¬L ¬L2 ⊥
L1 | . . . | Ln × ×

β − rule Branch closure

iff there exists an MGU σ of L and Li for some
1 ≤ i ≤ n, and σ is applied to the whole tableau;
for no 1 ≤ i ≤ n there is Li on the branch above.

iff there exists an MGU σ of
L1 and L2 and σ is applied to

the whole tableau.

Table 8 Regular connection tableau rules.

Cl1 ∪ {L1} ∈ K Cl2 ∪ {¬L2} ∈ S Cl ∪ {⊥} ∈ S Cl ∪ {L1, L2} ∈ S
σ(Cl1 ∪ Cl2) ∈ S Cl ∈ S σ(Cl ∪ {L1}) ∈ S

Binary resolution Factoring

iff there exists an MGU σ of L1 and L2.

Table 9 Resolution with set-of-support rules.

specifically, a clause Cl ∪ {L1(t1)} can be connected to an abductive proof through a

literal L2(t2) occurring in that proof either as the leaf of an open branch or a literal

in a resolvent only if there exists an MGU σ of L1(t1) and ¬L2(t2). As mentioned in

the opening of this section, the proofs constructed according to such a strategy are

typically structured in a more intuitive manner and involve less redundancy, in the

sense of employing inference steps over clauses that are semantically irrelevant for the

goal to be proved, and as such do not contribute to the proof. Second, both calculi

are refutation proof systems. To prove that a certain conclusion is entailed by a set

of premises one proves that the union of the premises and the negated conclusion is

unsatisfiable. This characteristic makes both calculi especially attractive for abductive

applications, allowing to identify all possible solutions of an abductive problem by at-

tempting to construct a refutation proof for the negated abductive query, given the

knowledge base.

Let us refer to a sample ABox abduction problem 〈K, Φ〉. Consider a borderline case

when the query actually follows from the knowledge base. In such a situation there has

to exist a refutation proof for K � Φ, i.e. a closed tableau tree or a resolution deduction

of an empty clause, initiated by ¬Φ, with K as the set of premises. Naturally, both

calculi operate only on FOL clauses, therefore the input has to be provided under the

τ -transformation. The critical point here is to carefully select the initial clause for the

tableau and the set-of-support in the resolution proof. In the latter case we will use

R(τ(¬Φ)), i.e. the set of all root clauses obtained through transformation of the negated

query, as defined in Table 7. In the tableau setting, we will be initiating alternative

proofs with consecutive clauses from that set. If the proof τ(K) ∪ τ(¬Φ) ` ⊥ succeeds
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we clearly do not deal with a genuine abductive problem, as no additional formula is

needed to entail the query. Otherwise, we can identify such formulas by analyzing the

structure of possible partial proofs constructed by either of the calculi. Observe, that at

every stage of a proof it is possible to construct a formula A that forces its completion

by simply closing all open branches of the tableau or enabling derivation of an empty

clause via resolution. The simplest way of constructing A is to pick literals that are

unifiable with the complements of the leaves of open branches of the tableau, or with

the complements of the literals comprising any of the resolvents, and connect them

with the conjunction symbol. Such a formula would obviously complete the proofs of

the query, and thus it could be seen as a solution to the translated problem 〈K, Φ〉, as

obviously τ(K)∪A∪ τ(¬Φ) ` ⊥ and therefore K∪A � Φ. Since both calculi are sound

and complete for FOL it is guaranteed that every such solution will be found at some

point, provided it satisfies certain syntactic and semantic requirements. Eventually, we

will be interested only in the formulas that can be translated back to the DL ALE , so

at this stage we call A only a FOL base of a solution to the original problem 〈K, Φ〉.
The following definition gives the formal account of this notion.

Definition 3 (FOL-base of solution) Let 〈K, Φ〉 be an ABox abduction problem. A

set of literals AFOL is a FOL-base of a solution to 〈K, Φ〉 iff either of the following

conditions holds:

1. (tableau): There exists a regular connection tableau T such that:

(a) the root of T contains all and only the clauses τ(K) ∪ τ(¬Φ),

(b) T was initiated by expansion of some clause Cl init ∈ R(τ(¬Φ)),

(c) AFOL = {¬L(t) | L(t) ∈ Cl}, where Cl is the set of the leaves of all the open

branches of T .

2. (resolution): There exists a sequence of resolution inference steps, with the re-

sulting set of resolvents R, where:

(a) the initial set of clauses comprised all and only τ(K) ∪ τ(¬Φ),

(b) R(τ(¬Φ)) was the set-of-support for that sequence,

(c) AFOL = {¬L(t) | L(t) ∈ Cl}, where Cl is a resolvent in R.

As will be shown in Section 4 both conditions in fact coincide, hence both reasoning

methods can be used interchangeably in the framework for ABox abduction.

3.4 Abductive proof constraints

In the context of FOL abduction one would typically apply reverse Skolemization [32]

to the FOL-base retrieved from the proof in order to obtain an adequately quantified

FOL formula solving the problem. Under this technique all free variables in a FOL-

base get bound by existential quantifiers, whereas all Skolem terms are replaced by

universally quantified variables. Thus the resulting formula can be immediately unified

with the literals in the FOL-base and consequently force completion of the abductive

proof.

Modal logics require a more sophisticated approach. The possibility of binding

variables is limited to the use of modal operators, which allow to express statements

concerning only the objects in the domain accessible from other objects through par-

ticular relations. For a sound reconstruction of an abductive solution from a modal

proof one has to take into account the entire chain of relations and modalities that led
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to a particular term occurring in the proof [33]. This characteristic applies also to DLs

and is handled in the framework for ABox abduction by means of abductive graphs,

which encode the relational structure underlying the proof of each FOL-base.

An abductive graph is a tuple G = (V,E), whose vertices are terms (variables,

individual names, Skolem terms) and edges are labeled with role names. With every

abductive proof and its FOL-base we associate a single graph, which describes the

relationships between all the terms occurring in the proof. The modal meaning of

the terms is implied by their syntax: variables represent individuals bound by some

universal restriction, Skolem terms, by existential restrictions, while individual names

stand for individuals that were not originally bound in the used clauses. The graph

is initiated at the start of the proof, by including all role assertions occurring in the

ABox of the problem, and later it evolves along the construction of the proof. On

each inference step it is extended with new edges and vertices present in the modal

core (Section 3.2) of the connected clause, under the substitution applied to the proof

at that step. We formalize the notion of abductive graph by the following inductive

definition.

Definition 4 (Abductive graph) Let 〈K, Φ〉 be an ABox abduction problem and

AFOL a FOL-base obtained in an abductive proof for 〈K, Φ〉.

1. If AFOL is derived from a clause Cl , such that Cl is the initial clause expanded on

the tableau or one of the clauses in the initial set-of-support, then G = (V,E) is the

abductive graph associated with the proof of AFOL iff V = {a, b | r(a, b) ∈ E}
and E = {r(a, b) | r(a, b) ∈ A} ∪ µ(Cl), where A is the ABox in K.

2. If AFOL is obtained by connecting a clause Cl to an abductive proof involving

application of an MGU σ, and G′ = (V ′, E′) is the abductive graph associated with

that proof, then G = (V,E) is the abductive graph associated with the proof of

AFOL iff V = {a, b | r(a, b) ∈ E} and E = σE′ ∪ σµ(Cl).

The abductive graphs, along with the associated FOL-bases, enable a sound recon-

struction of ABox assertions from abductive proofs. Roughly, we will apply a reverse

relational Skolemization, thus reversing the effects of Skolemization in a similar way

as in the FOL case, but instead of quantified FOL formulas we derive ALE assertions

involving nested quantification restrictions over the role chains encoded in the graph.

The expressive power of ALE delimits the scope of graphs that can be submitted to

such a procedure. The notion of ALE-admissible graph reflects these limitations.

Definition 5 (ALE-admissible graph) Graph G = (V,E) associated with the FOL-

base AFOL is ALE–admissible iff the following requirements are satisfied:

1. for every Skolem term t1 ∈ V there is a unique t2 ∈ V and r, such that r(t2, t1) ∈ E,

2. for every Skolem term t ∈ V , t can be only succeeded by a tree-shaped subgraph

in G, which does not contain individual names from NI .

The rationale behind the restrictions is rather obvious. DL formulas, like their

modal counterparts, have the tree model property. Since after reverse relational Skolem-

ization, Skolem terms can only stand at a position quantified by a universal restriction,

all their successors have to be ordered in a way that can be captured by a complex

concept assertion. Such an ordering has to give rise to a tree-shaped model. Moreover,

every such model requires a single root, hence the single predecessor requirement. Fi-

nally there are no expressive means in ALE for ensuring that particular individuals
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belong to these models, hence no names from NI can occur in such subgraphs. On

the contrary to Skolem terms, relationships between named individuals and variables,

which can be always replaced by new individual names in the process of reverse Skolem-

ization, can take structures of arbitrary shapes, expressible via ABox assertions of the

form r(t1, t2). Figure 4 presents an example of an ALE–admissible graph that could

be associated with some abductive proof.
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Fig. 4 An ALE–admissible graph associated with an abductive proof: every Skolem vertex
has exactly one predecessor and can be only succeeded by a tree-shaped subgraph containing
no individual names.

Apart from discarding clauses associated with non-admissible graphs, we will also

place restrictions on the FOL-bases, which are similarly inexpressible in ALE .

Definition 6 (ALE-admissible base) Let AFOL be a FOL-base obtained in an ab-

ductive proof for an ABox abduction problem. AFOL is ALE-admissible iff it contains

none of the following literals:

1. Pi(x) or ¬Pi(x) for any Pi ∈ P,

2. r(t1, fi(t2)) for any fi ∈ F and any r.

The first condition acknowledges impossibility of including non-DL predicates into

DL assertions. The second one discards clauses that contain r(t1, fi(t2)), a construct in-

expressible in the DL ALE after reverse Skolemization. In fact the FOL-bases obtained

through the procedure will only contain elements of the form:

1. A(t) or ¬A(t), where A ∈ NC and t is an individual name, Skolem term, or a

variable;

2. r(t1, t2), where r ∈ NR and t2 is an individual name or a variable;

3. ¬r(t1, t2), where r ∈ NR and t2 is a Skolem term.

3.5 Solution retrieval

We can now describe the procedure of retrieving a set of ALE ABox assertions from

a FOL-base and the associated abductive graph. The idea is to first address all tree-

shaped subgraphs of the abductive graph that are rooted at Skolem terms. Proceeding

bottom-up, we fold the relevant assertions from the FOL-base into nested concept

descriptions. Next, we consider the remaining parts of the graph and the assertions
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applicable to them, and render them into DL axioms accordingly. To avoid syntactic

ambiguity we will be referring only to the solutions in a certain normalized form. To this

end we define a satisfiability preserving transformation π, presented in Table 10, which

removes redundancy from ALE concept descriptions. For any concept description C in

ALE , we write π(C) to refer to a concept equivalent to C, whose all subconcepts are

closed under π. Further, if A is a set of ABox assertions in ALE , we will call A non-

redundant if and only if for all concept assertions C(a) ∈ A it holds that C = π(C),

and there is not more than one concept assertion in A per individual name.

π(∀r.>) = >
π(C u >) = C

π(C u ¬C) = ⊥
π(∃r.⊥) = ⊥
π(C u ⊥) = ⊥
π(C u C) = C

π(∀r.C u ∀r.D) = ∀r.(C uD)
π(∃r.C u ∃r.(C uD)) = ∃r.(C uD)

π(∃r.C u ∀r.⊥) = ⊥
π(∃r.> u ∃r.C) = ∃r.C

Table 10 Redundancy elimination from concept descriptions in ALE.

The following definition introduces the notion of a `ABox-solution to an ABox

abduction problem.

Definition 7 (`ABox-solution) Let 〈K, Φ〉 be an ABox abduction problem, AFOL
an ALE-admissible FOL-base obtained in an abductive proof for 〈K, Φ〉, and G = (V,E)

an ALE-admissible abductive graph associated with AFOL. A non-redundant set of

assertions A is a `ABox-solution to 〈K,Φ〉 iff it is semantically equivalent to a set of

assertions A′ (i.e. A � A′ and A′ � A) generated according to the following procedure:

1. A′ := AFOL
2. For every term t ∈ V with no successors in G, if it is a Skolem term or has a Skolem

predecessor, get r(t′, t) from E and begin:

(a) If t is a variable then add ∃r.
d
{C | C(t) ∈ A′}(t′) to A′ and remove every

C(t). In case there are no C(t) ∈ A′ add ∃r.>(t′). Remove r(t′, t) from A′.
(b) If t is a Skolem term then add ∀r.

d
{C | C(t) ∈ A′}(t′) to A′ and remove

every C(t). In case there are no C(t) ∈ A′ but there is ¬r(t′, t) ∈ A′ then add

∀r.⊥(t′). Remove ¬r(t′, t) from A′.
(c) Remove t from V and r(t′, t) from E.

3. For every (remaining) term t ∈ V with no successors in G, begin:

(a) If t is an individual name then for every C(t) ∈ A′ choose one option:

– leave it unmodified

OR

– if there is r(t′, t) ∈ E add (∀r.C)(t′) to A′ and remove C(t). If t′ is a

variable then instantiate it with a new individual name.

(b) If t is a variable then choose one option:

– instantiate t with a new individual name and consider it according to the

previous rule

OR
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– if t has a unique immediate predecessor in G and r(t′, t) ∈ E then add

∃r.
d
{C | C(t) ∈ A′}(t′) to A′ and remove every C(t). In case there are no

C(t) ∈ A′ add (∃r.>)(t′). Remove r(t′, t) from A′.
(c) Remove t from V and every r(t′, t) from E.

Provided the requirements for admissibility of the FOL-base and its graph are

satisfied, the procedure returns a proper set of ALE ABox assertions A′. Let us shortly

comment on the consecutive steps of the retrieval procedure. Initially (1) A′ contains

only concept and role literals. Note, that the former might be used only in simple

concept assertions or as the qualifying concepts in quantification restrictions, whereas

the latter, either in role assertions or implicitly in existential restrictions (positive role

literals) or in the universal restrictions of the form ∀r.⊥ (negative role literals). First

(2) we consider the tree-shaped subgraphs rooted at Skolem terms in G. We start with

their leaves and move node by node up the trees. Assertions over variables are converted

into existential restrictions on their respective predecessors (2a), while assertions over

Skolem terms are translated into universal restrictions (2b). Once all Skolem terms are

removed from the graph we consider the remaining individual names and variables,

similarly, starting from the leaves of the graph and proceeding upwards (3). For every

individual name t and every assertion C(t) one can choose between a solution, which

uses C(t) directly or another one, in which C(t) is replaced with (∀r.C)(t′), provided

t′ is an r-predecessor of t in G (3a). For every variable term t one has an option of

treating it as a new “abduced” individual (3b’), or by considering it, like before (2a),

as an individual entailed by an existential restriction placed on the predecessor of t,

provided there exists a unique one (3b”).

3.6 Example

To illustrate how ABox abduction problems can be solved in the framework discussed

in this section we will now present a small example of using the approach in handling

the happy John problem 〈K, {Happy(John)}〉. Recall the content of the problem’s

knowledge base given in the introductory section and its transformation outlined in

Section 3.2. For parsimony, we will compute parts of solutions using different calculi,

though obviously both of them generate the same answers.

Figure 5 presents a regular connection tableau tree for the translated problem.

Every subtree of the tableau with the root containing the clauses of the knowledge

base and the negated query is a partial refutation proof for the query. The leaves of

these subtrees surrounded by boxes form FOL-bases for proper ABox solutions, listed

further in Table 11.

The resolution proofs for the query are included in Figure 6. Again, the resolvents

printed in boxes give rise to FOL-bases of `ABox-solutions to the problem.

Finally, Table 11 gives a detailed account of all the `ABox-solutions to the problem

found within the presented scope of computation. Every solution is derived from its

respective FOL-base and the associated abductive graph. Observe the evolution of the

graphs in the course of construction of the proofs. For instance, in the steps from 2.

to 3. (tableau) and from 1. to 4. (resolution) the graphs are extended with two new

vertices and an edge, after connecting a clause with non-empty modal core. In the step

from 5. to 6. the substitution applied to the resolvent is used also over the associated

graph.
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. . .

{¬Optimist(x1),Happy(x1)} : τ(K)

{P2(x2),Optimist(x2)} : τ(K)

{¬P2(x3),¬Comedy(f1(x3))} : τ(K)

1. ¬Happy(John)

hhhhhhhhh
: τ(¬Φ)

Happy(John)

×
2. ¬Optimist(John)

ggggggg

Optimist(John)

×
P2(John)

gggggggggggg

¬P2(John)

×
3. ¬Comedy(f1(John))

Fig. 5 Happy John problem: tableaux proofs.

τ(K) set–of–support

τ(¬Φ)

{¬Nihilist(x1),¬owns(x1, x2),
P1(x1, x2),Happy(x1)}

ZZZZZZZZZZZZZZZ
1. {¬Happy(John)}

{¬P1(x1, x2),¬Dog(x2)}
ZZZZZZZZZZZZ {¬Nihilist(John),¬owns(John, x2), P1(John, x2)}

{Nihilist(John)}

ZZZZZZZZZZZZZZZZZ 4. {¬Nihilist(John),¬owns(John, x2),¬Dog(x2)}

{Dog(Snoopy)}

ZZZZZZZZZZZZZZZZZZZZ 5. {¬owns(John, x2),¬Dog(x2)}

. . . 6. {¬owns(John, Snoopy)}

Fig. 6 Happy John problem: resolution proofs.

Clearly, all the generated sets of ABox assertions are plain solutions to the problem

〈K, {Happy(John)}〉, although some of them might not be minimal, e.g. 4., relevant,

e.g. 1., or consistent. In order to verify satisfaction of those criteria an additional

post-processing is required. In Sections 4.2 and 4.3 we will devise a simple verification

strategy, based on the use of a standard DL reasoner, as well as discuss some compu-

tational limitations to the problem of verifying minimality. Before that, in Section 4.1,

we will show that the procedure of finding `ABox-solutions is correct.
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FOL-base Abductive graph Solution
1. {Happy(John)} {Happy(John)}

2. {Optimist(John)} {Optimist(John)}

3. {Comedy(f1(John))} •
John

watches // •
f1(John)

{∀watches.Comedy(John)}

4.
{Nihilist(John),

owns(John, x2),Dog(x2)} •
John

owns // •
x2

{Nihilist(John),
∃owns.Dog(John)}

5. {owns(John, x2),Dog(x2)} •
John

owns // •
x2

{∃owns.Dog(John)}

6. {owns(John, Snoopy)} •
John

owns // •
Snoopy

{owns(John, Snoopy)}

Table 11 Happy John problem: solutions.

4 Correctness and selection criteria

In this section we elaborate on basic formal properties of the introduced procedure.

First, we prove its soundness and completeness with respect to the semantics of plain

solutions to ABox abduction problems, as specified in Definition 2. Following this, we

address the task of applying additional selection criteria to the generated sets of plain

solutions, and further, the problem of correctness and termination of reasoning under

the criteria. We consider two cases: a general one (Section 4.2), involving no syntactic

constraints on the knowledge bases, and the case of acyclic terminologies (Section 4.3),

for which stronger results can be obtained.

4.1 Soundness and completeness

Below, we formally argue for adequacy of the procedure for solving ABox abduction

problems. In Theorem 3 we claim that every solution that is found by the procedure

is indeed a plain solution to the input problem. Conversely, Theorem 4 ensures that if

A is a consistent and minimal solution to a given problem, then A will be found via

`ABox in a finite number of steps.

We start by recapping the results of soundness and completeness of the two calculi

discussed in the paper.

Theorem 1 (Regular connection tableaux: completeness [21, Thm. 4.14],

[22, Thm. 3]) If a finite ground clause set S is unsatisfiable then there is a regular

connection tableau proof for S, in which a relevant clause4 Cl ∈ S is the first to which

a beta rule is applied.

Proposition 1 (Regular connection tableaux: soundness) If there exists a reg-

ular connection tableau proof for a set of ground clauses S then S is unsatisfiable.

4 A clause is relevant in S iff it belongs to a minimally unsatisfiable subset of S. See
Definition 8 below.
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Proof The proposition follows immediately from soundness of the standard semantic

tableaux calculus [21, Thm 3.12] and by observing that every regular connection tableau

proof is in fact a standard tableau proof. �

Theorem 2 (Resolution with set-of-support: completeness [31, Thm. 3.2.2.])

If S is an unsatisfiable set of ground clauses and T ⊆ S such that S \ T is satisfiable

then there exists a resolution refutation of S with set-of-support T .

Proposition 2 (Resolution with set-of-support: soundness) If there exists a

resolution refutation of a set of ground clauses S with set-of-support T ⊆ S then S is

unsatisfiable.

Proof The proposition follows immediately from soundness of the standard resolution

method [31] and by observing that every resolution with set-of-support proof is in fact

a resolution proof. �

To simplify the layout of the following arguments we will entirely adopt the FOL

perspective on the procedure and the involved DL formulas. In order to do so, we must

acknowledge that due to the specific character of the employed calculi (Section 3.3), the

τ -transformation (Section 3.2), and the admissibility conditions (Section 3.4), reasoning

in the framework can be seen as standard translation-based theorem proving for ALC
and ALE , where the input is reduced to Skolem Normal Form, i.e. Conjunctive Normal

Form of Skolemized formulas. Notice, that for any DL axiom ϕ, the set of clauses τ(ϕ)

closed under connection steps through the non-DL predicates, i.e. the set of all clauses

that can be possibly constructed by pasting back each non-root clause to its original

position marked by a non-DL predicate, is in fact equivalent to the set SNF (st(ϕ)),

where st(ϕ) denotes the standard translation of ϕ. In the remainder of this section,

unless specified otherwise, we will hence assume that all considered DL formulas are

simply sets of Skolemized FOL clauses constructed exactly in such a way. In particular,

for any ABox abduction problem 〈K, Φ〉 and a solution A, we will assume the following

abbreviations hold:

K := SNF (st(K))

¬Φ := SNF (¬
∧
st(Φ))

A := SNF (st(A))

Given the above conventions observe the following.

Proposition 3 Let A be a set of ABox assertions in the DL ALE with the signature

(NI , NC , NR). Then:

1. Every clause Cl ∈ A must be of the form Cl =
⋃

0≤i≤n{¬ri(ti, ti′)}∪{L(t)}, where

ri ∈ NR, for all 1 ≤ i ≤ n, and L ∈ {A,¬A, r,⊥,>} for some A ∈ NC or r ∈ NR.

2. For every clause Cl∃r =
⋃

0≤i≤n{¬ri(ti, ti′)} ∪ {r(tn′ , tn′′)} ∈ A, where tn′′ is

a Skolem term, there exists at least one clause Cl∃.C ∈ A, such that Cl∃r \
{r(tn′ , tn′′)} ⊆ Cl∃.C and L(tn′′ , t) ∈ Cl∃.C .

Proof 1) The claim follows immediately from the analysis of the syntax of ABox asser-

tions in ALE . Notice that under the standard translation of such axioms the disjunction

connective occurs only between negated role atom and the (translated) qualifying con-

cept of every universal restriction. After distributing conjunction over disjunction and

splitting the conjuncts we obtain a set of clauses of the form presented. 2) Whenever
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tn′′ is a Skolem term then the literal r(tn′ , tn′′) in Cl∃r must originate from an ex-

istential restriction. But then there has to also exist at least one more clause Cl∃.C

containing the term tn′′ , which had to occur in the qualifying concept used in the same

restriction. By the style of the standard translation and the SNF transformation, one

can see that this clause has to contain Cl∃r \ {r(tn′ , tn′′)} as its proper subset. �

The proof of soundness is relatively simple. We demonstrate that if a `ABox-solution

A to 〈K, Φ〉 is added to the abductive proof from which it had been retrieved, the proof

has a continuation that succeeds, thus guaranteeing that K ∪A � Φ.

Theorem 3 (`ABox: soundness) If A is a `ABox-solution to the ABox abduction

problem 〈K, Φ〉 then A is a plain solution to 〈K, Φ〉.

Proof Let 〈K, Φ〉 be an Abox abduction problem and A a `ABox-solution to it. To

demonstrate that A is a plain solution to 〈K, Φ〉 we have to show that K ∪ A � Φ

(Definition 2). We rest on the soundness of regular connection tableaux and resolution

with set-of-support (Proposition 1 and 2) and show there is a refutation proof for

K ∪ A ∪ ¬Φ constructed with either of the calculi. Recall the form of clauses in A

from Proposition 3. Also, note that FOL-base AFOL of A must have contained all

concept and positive role literals occurring in those clauses (except for >), plus the

negative role literals preceding ⊥, modulo reverse Skolemization of the terms involved

(Definition 3 and 7). Focus on the abductive proof from which A was retrieved, add

A to the set of premises and continue the proof. Consider one of the concept literals

C(s) ∈ AFOL (analogical argument will hold also for positive and negative role literals).

Clearly there must be a clause in A, which contains the corresponding literal. Let

Cl = {¬r1(t1, t1′), . . . ,¬rn(tn, tn′), C(t)} be that clause (where we allow the set of

negative role literals to be empty). Connect Cl to the corresponding leaf on the tableau

or to the respective resolvent via C(t). Unification is naturally possible due to the style

of reverse Skolemization involved in the reconstruction of A from AFOL. In particular,

one of the following must be the case:

1. s is a variable: Then t must be a Skolem term or an individual name.

2. s is an individual name: Then t must be a variable or an individual name such that

s = t.

3. s is a Skolem term: Then t must be a variable.

After including Cl in the proof, the connecting literal on the tableau or in the resol-

vent is replaced by the sequence of literals {¬r1(t1, t1′),¬r2(t2, t2′), . . . ,¬rn(tn, tn′)}.
Notice, that every occurrence of such a literal was originally motivated by the presence

of a corresponding edge in the abductive graph associated with the FOL-base of A

(Definition 4). Note also that for every 1 ≤ i ≤ n, term ti′ is a variable. Consider the

last literal ¬rn(tn, tn′). Clearly there must be an edge rn(sn, sn′) in the graph such

that sn′ is an individual name or a Skolem term, or otherwise tn′ would not have been

reversely Skolemized into a variable. Consider the following cases:

1. sn and sn′ are individual names: Then one of the following has to hold:

– There is a role assertion rn(sn, sn′) in the ABox, included in the graph by

default. Then rn(sn, sn′) can be used as a connection to ¬rn(sn, sn′).

– There is a role assertion rn(sn, sn′) in AFOL, and consequently in A. Then

rn(sn, sn′) can be used as a connection to ¬rn(sn, sn′).
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2. sn′ is a Skolem term: Then there must be a clause Cl ′ used in the same proof,

whose modal core contains rn(sn, sn′). Consider this clause. Notice that by the

definition of the τ -transformation (Table 6) either Cl ′ contains r(sn, sn′) (since sn′

is a Skolem term it has to originate from some existential restriction), or there is

another clause that contains rn(sn, sn′), whose remaining literals belong to Cl ′. In

either case it is possible to use such clause in the proof, connecting it to ¬rn(tn, tn′).

Again unification is possible due to soundness of reverse Skolemization. From that

point on construction of the proof should mimic the inference steps that were used

in the context of Cl ′ in the same proof. Eventually, all literals from the connected

clause must obtain the same connections as the ones from Cl ′ and so this fragment

of the proof, started with ¬rn(tn, tn′), succeeds.

Repeat the argument for all remaining negative role literals and for all clauses in

A. Clearly the refutation proof has to succeed, resulting in a closed tableau tree or an

empty resolvent, which shows that indeed K ∪A � Φ. �

The completeness result, presented in Theorem 4, holds under an additional re-

striction, which reveals a certain limitation of the procedure. Namely, any consistent

and minimal solution A to a problem 〈K, Φ〉 is guaranteed to be found, only if ev-

ery subconcept C occurring in the assertions from A, such that C 6= ⊥, is satisfi-

able with respect to K, i.e. for which there exists a model of the knowledge base

I = (∆I , ·I) such that CI 6= ∅. Consider for instance the problem 〈K, Φ〉, where

K = {C v Bu¬B,∀r.(Du¬D) v A} and Φ = {A(a)}. The procedure will return solu-

tion ∀r.⊥(a), but will fail to output ∀r.C(a), even though it clearly solves the problem,

as K |= C v ⊥. Nevertheless, the connectedness requirement makes it impossible to use

the clauses from C v B u ¬B for solving the problem, as they could not be connected

to the proof starting from ¬A(a). As the use of unsatisfiable concepts other than ⊥
is practically always unintended in applications of Description Logics, we believe that

this limitation does not diminish the pragmatic value of the procedure.

The proof of the result is more involved than that of soundness and requires ad-

ditional formal machinery, which we now introduce. First, we assume that solutions

to ABox abduction problems, which are under consideration in this section, are al-

ways non-redundant in the sense defined in Section 3.5. For any non-redundant set

of assertions A under SNF transformation, we define an operation A\> = {Cl ∈ A |
>(t),¬⊥(t) 6∈ Cl}, i.e. an operation of removing from A all clauses containing the

literal >(t) or ¬⊥(t) for any term t. Now we note a simple observation.

Proposition 4 Let A be a consistent solution to an ABox abduction problem 〈K, Φ〉.
Any solution B to 〈K, Φ〉 such that B\> ⊂ A\> is minimal with respect to A.

Proof Observe that once all clauses containing symbol > are removed from A, then any

proper subset A′ ⊂ A\> is deductively weaker than A\>, i.e. A′ 6|= A\>. Any solution

B, such that B\> ⊂ A\>, must be therefore deductively weaker from A and therefore,

by Definition 2, minimal with respect to A. �

Let us recall the notion of minimal unsatisfiability and present three lemmas, build-

ing upon it, which will play a pivotal role in the following part.

Definition 8 (Minimal unsatisfiability) A set of clauses is minimally unsatisfi-

able (MU) if it is unsatisfiable and each of its proper subsets is satisfiable. A clause

is relevant in a set of clauses S if it belongs to a MU subset of S.
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Lemma 1 Let S be a MU set of ground clauses, A ⊆ S a set of unit clauses, and Cl

any clause in S \A. The following claims hold:

1. There exists a regular connection tableau tree initiated with beta expansion of Cl,

whose root is S \ A, such that {¬L | {L} ∈ A} is the set of the leaves of its open

branches.

2. There exists a sequence of resolution inference steps from S \A with set-of-support

{Cl} resulting in the clause {¬L | {L} ∈ A}.

Proof 1. Since Cl is relevant in S, it follows from Theorem 1 that there exists a closed

tableau initiated with Cl , whose root contains S. Notice that if you remove any unit

clause from A the proof cannot succeed, or else S would not be MU. Hence every

clause from A contains a literal complementary to the leaf on (at least) one of the closed

branches. Now if A is removed from the root we get a tableau, for which {¬L | {L} ∈ A}
is the set of the leaves of its open branches.

2. Since S\{Cl} is satisfiable, it follows from Theorem 2 that there has to be a resolution

refutation of S with set-of-support {Cl}. Assume now that A is not present in S. We

prove the claim of the lemma by induction on the cardinality of A.

Consider |A| = 0. Then {¬L | {L} ∈ A} is an empty clause. Clearly, derivation of such

a clause in the specified setting is guaranteed by Theorem 2.

Assume that for some k and any A, such that |A| = k, the clause Cl⋃¬A = {¬L | {L} ∈
A} is derivable. Consider |A| = k+1 and let A = B∪{{L′}}, such that |B| = k. Assume

{L′} is added to the set of premises. By inductive assumption it follows that the clause

Cl⋃¬B = {¬L | {L} ∈ B} is now derivable. We argue that there exists a derivation of

Cl⋃¬B in which the last inference step is resolution of {L′} against {¬L′} ∪ Cl⋃¬B .

First, note that {L′} is necessary for deriving Cl⋃¬B or otherwise S would not have

been MU at the first place. Therefore there has to be a clause Cl ′∪{¬L′} against which

{L′} has to be resolved, such that either Cl ′ = Cl⋃¬B , which would prove the point,

or Cl ′ is further resolved against other clauses. But in the latter case it is possible to

defer resolution of {L′} until Cl ′ is first resolved. Switch the sequence of resolution

steps in such a derivation and repeat the argument. Since derivation of Cl⋃¬B has

to be finite, it follows that at some point one has to arrive at a sequence in which

{¬L′} ∪Cl⋃¬B appears as the last clause to be resolved. But then there also exists a

derivation of Cl⋃¬A, which is equivalent to {¬L′} ∪ Cl⋃¬B . �

Lemma 2 ([31, Lemma 2.3.2]) Let S be a MU set of clauses, let Cl ′ be a subset of

clause Cl ∈ S, and let S′ = (S \ {Cl}) ∪ {Cl ′}; i.e. replace Cl in S with Cl ′. Then

every MU subset of S′ contains Cl ′.

Lemma 3 (MU set under a solution) Let A be a consistent and minimal solution

to an ABox abduction problem 〈K, Φ〉, such that except for ⊥ all subconcepts occurring

in the assertions from A are satisfiable with respect to K. There exists a finite MU set

S = K ∪ A\> ∪ Q, where K ⊆ K and Q 6= ∅ ⊆ ¬Φ, a ground substitution σ and a

MU set of ground clauses σS, call it a MU set under A, which contains at least one

instance of every clause from S.

Proof By Definition 2 it holds that K∪A � Φ, hence the set Θ = K∪A∪¬Φ is unsat-

isfiable. By Herbrand’s theorem Θ is unsatisfiable iff there exists a finite set of ground

instances of Θ which is unsatisfiable. Thus there must exist a ground substitution σ

whose application to the instances of the clauses ofΘ results in such a set. Naturally this
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set must have a MU subset σS. First we show that σA\> ⊆ σS. Recall from Proposi-

tion 3 two types of clauses that can occur in σA\>: Cl1 =
⋃

0≤i≤n{¬ri(ti, ti′)}∪{C(t)}
and Cl2 =

⋃
0≤i≤n{¬ri(ti, ti′)}∪{r(tn′ , tn′′)}. Suppose for some clause Cl1 ∈ σA\> it

holds that Cl1 6∈ S. This would mean that one can construct a solution B which differs

from A only in that C(t) is replaced with >(t) in Cl1. But then, by Proposition 4, it

would follow that B is minimal with respect to A, which contradicts the assumed min-

imality of A. Suppose the same holds for some clause of type Cl2. One of the following

has to be the case: a) if tn′′ is not a Skolem term or there is no clause Cl∃.C2 ∈ σS,

where Cl∃.C2 is defined as in Proposition 3, then a solution minimal with respect to A

can be constructed, which contradicts the assumption; b) (else) if tn′′ is a Skolem term

and there is a clause Cl∃.C2 ∈ S, then A contains unsatisfiable subconcepts different

from ⊥, which is also not true by assumption. Observe that the literal r(tn′ , tn′′) does

not occur in σS, and hence, neither does ¬r(tn′ , tn′′). Moreover, there cannot be any

other term t′ nor role r′ ∈ NR such that r′(t′, tn′′) is in σS, as every Skolem term is

introduced by a unique existential restriction. Since tn′′ has no predecessors in σS, it

follows that neither tn′′ nor any of its successors in σS can occur in σQ. Replace Cl∃.C2

in σS with ClC2 = Cl∃.C2 \ Cl2 (clauses corresponding to the qualifying concept C),

and focus on the resulting MU set (Lemma 2). Repeat for every Cl∃.C2 ∈ σS. Eventu-

ally no clauses from σQ can be present in the resulting MU set. Since all clauses ClC2
that remain in the set are rooted at tn′′ , it is possible to render them back into ALE ,

as a concept description C, which is clearly unsatisfiable with respect to K. Hence

σS = σK ∪ σA\> ∪ σQ, where σK ⊆ σK and σQ ⊆ σ¬Φ. Moreover, σK ∪ σA is

satisfiable (by consistency of A), hence σQ 6= ∅. Therefore S = K ∪A\> ∪Q. �

Finally, we demonstrate the proof of the main result. We first argue that for any

solution one can find the corresponding FOL-base and its abductive graph and then

we show that the solution retrieval method presented in Definition 7 effectively recon-

structs the solution given such input.

Theorem 4 (`ABox: completeness) If A is a consistent and minimal solution to

the ABox abduction problem 〈K, Φ〉, such that except for ⊥ all subconcepts occurring in

the assertions from A are satisfiable with respect to K, then A is a `ABox-solution to

〈K, Φ〉.

Proof Let A be a consistent and minimal solution to the ABox abduction problem

〈K, Φ〉. Consider a ground substitution σ and a MU set σS under A (Lemma 3), where

σA\> ⊆ σS is a set of clauses containing at least one ground instance of every clause

from A\> and σQ ⊆ σS is a set of ground instances of ¬Φ. Obviously, there has to

exist a refutation proof for σS, constructed with either of the calculi, initiated by some

clause from σQ. Given that, we show that there exists an abduction proof for 〈K, Φ〉,
which is associated with the FOL-base AFOL and the graph G, such that σG is the

graph associated with the refutation proof of σS, and [σA\>] = σAFOL, where [σA\>]

is the set of unit clauses obtained by pruning clauses from σA\>.

1. Finding AFOL: Take a non-unit clause Cl =
⋃

0≤i≤n{¬ri(ti, ti′)}∪{L(t)} ∈ σA\>

and consider two cases: 1) L(t) = ⊥(tn′): Since we assume A is non-redundant

there has to exist ¬r(tn, tn′) ∈ Cl (Table 10). Replace Cl in σS with the unit

clause Cl ′ = {¬ri(tn, tn′)}; 2) L(t) 6= ⊥(tn′): Replace Cl in σS with the unit

clause Cl ′ = {L(t)}. From Lemma 2 it follows that Cl ′ has to belong to every

MU subset of the resulting set of clauses. Repeat the procedure for every non-unit

clause in σA\>. We now show that:
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(*) after the operation there exists a MU subset [σS], which contains all unit clauses

[σA\>] (both originally unit and those obtained by pruning), and at least one

clause Cl init ∈ σQ.

The argument rests on induction over pruning steps. First, note that only the lit-

erals of the form ⊥(t) and ¬r(t1, t2) are being left out. The former case is straight-

forward: if Cl ∪ {⊥(t)} is replaced with Cl in a MU set, then the set still remains

MU. For the latter case consider a clause Cl , where ¬r(t1, t2) ∈ Cl is the leftmost

occurrence of a negative role literal that is to be pruned:

(a) if t2 is an individual name then the only clause that can possibly fall out

from the original MU set after the pruning is a role assertion r(t1, t2) from

the knowledge base. Note, that r(t1, t2) cannot be an assertion in A, as then

it would be possible to construct a solution minimal with respect to A, which

contradicts the assumption. Also there are no assertions of the form r(t1, t2)

in σQ. Repeat the step for all clauses in σA\> and all leftmost occurrences of

such literals. Observe that at some point all the remaining negative role literals

will not contain any more individual names.

(b) if t2 is a Skolem term then the only clause that can possibly fall out from the

original MU set after the pruning is some clause Cl∃r1 such that r(t1, t2) ∈ Cl∃r1 .

Consider the possible origin of that clause:

– Cl∃r1 ∈ σK: then the claim holds.

– Cl∃r1 ∈ σQ: then one of the two must be true:

– there has to be a clause Cl∃.C1 ∈ σQ, which remains in the MU set.

– there is no Cl∃.C1 ∈ σQ, because Cl∃.C1 = (Cl∃r1 \{r(t1, t2)})∪{>(t2)}.
But in such case the clause Cl∃r1 will not be removed in the first place, or

else it would mean that A contains unsatisfiable subconcepts different

from ⊥. Since t2 would not have a predecessor in the resulting MU set

and it would not occur in σ¬Φ, it follows that the clause Cl\{¬r(t1, t2)}
would have to correspond to a concept unsatisfiable with respect to

K. If that concept was ⊥, then in fact Cl would not be pruned from

{¬r(t1, t2)}, else the concept would have to be different from ⊥ which

contradicts the assumption.

– Cl∃r1 ∈ σA\>: this is not possible, or else a solution minimal with respect to

A could be constructed. Let Cl ′ and Cl ′1
∃r

denote the clauses Cl and Cl∃r1 ,

respectively, before the pruning. Replace Cl ′ with (Cl ′1
∃r \ {r(t1, t2)}) ∪

(Cl \ {¬r(t1, t2)}) in A and observe that the resulting set of assertions also

solves the problem, but it is deductively weaker from the original one.

By the inductive hypothesis we arrive at the initial claim (*). By Lemma 1 it follows

that given the set [σS] it is possible to find {L | L ∈ [σA\>]} using any of the two

calculi, provided the proof is initiated by Cl init (this condition is clearly satisfied

in our setting, as we expect that gradually every clause from ¬Φ will be used as an

initial clause for abductive proofs). Note, that in the actual abductive proof not all

terms in the literals from [σA\>] will be ground. Hence one obtains a FOL-base

AFOL unifiable with [σA\>].

2. Finding G: Among the proofs for AFOL there has to exist at least one which is

associated with a graph G, which is unifiable with σG by a substitution that sub-

sumes the one unifying AFOL with [σA\>]. Consider a proof for AFOL, such that

it would succeed provided that A was added to the set of formulas available in the

proof. Given the assumed properties of A, it follows that every literal occurring
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in each clause from A\> has to obtain a connection in the proof, where the con-

necting literal has to originate from a clause not in A\>. Thus, in particular, for

every positive role literal occurring in A there must exist a complementary one,

unifiable with it, already in the proof; for every negative one, there has to exist

a complementary one, unifiable with it, which is either already in the proof, or it

occurs in some clause Cl∃r, such that Cl∃.C is already in the proof. In either case

the modal cores of the clauses included already in the proof form the graph G,

which after completion of the proof becomes grounded with the same substitution

that unifies AFOL with [σA\>].

Finally, we can argue that given this input, the solution retrieval method outputs

A′, such that it is semantically equivalent to the non-redundant `ABox-solution A.

Take a unit clause {L(t)} ∈ A and consider two cases:

1. L(t) = C(t): Note that t is an individual name. There must exist a corresponding

literal C(t′) ∈ AFOL, such that t′ = t or t′ is a variable. We retrieve C(t).

2. L(t) = r(t1, t2): Note that t1 and t2 are individual names. There must exist a

corresponding literal r(t′1, t
′
2) ∈ AFOL, such that t′1 = t1 or t′1 is a variable and

t′2 = t2 or t′2 is a variable. We retrieve r(t1, t2).

Take a non-unit clause Cl =
⋃

0≤i≤n{¬ri(ti, ti′)} ∪ {L(t)} ∈ A and consider the

following cases:

1. L(t) = ⊥(tn′): Note that tn′ must be a variable. There must exist a correspond-

ing literal ¬rn(t1, t2) ∈ AFOL and rn(t1, t2) ∈ G, such that t2 is a Skolem

term, and there is no C(t2) ∈ AFOL. We retrieve ∀r.⊥(t1), which translates to

{¬rn(t1, tn′),⊥(tn′)}, and add it to AFOL.

2. L(t) = C(tn′) and tn′ is a variable: There must exist a corresponding literal C(t2) ∈
AFOL and rn(t1, t2) ∈ G, such that t2 is a Skolem term or an individual name.

We retrieve ∀r.
d
{C | C(t2) ∈ AFOL}(t1), which for each C translates to a clause

{¬rn(t1, tn′), C(tn′)}, and add it to AFOL.

3. L(t) = C(t), C 6= > and t is a Skolem term: There must exist a corresponding

literal C(t2) ∈ AFOL, rn(t1, t2) ∈ AFOL and rn(t1, t2) ∈ G, such that t2 is a

variable. We retrieve ∃r.
d
{C | C(t2) ∈ AFOL}(t1), which for each C translates to

clauses {rn(t1, t)}, {C(t)}, and add it to AFOL.

4. L(t) = >(t): Note that t is a Skolem term: There must exist rn(t1, t2) ∈ AFOL
and rn(t1, t2) ∈ G, such that t2 is a variable and no C(t2) ∈ AFOL. We retrieve

∃r.>(t1), which translates to clauses {rn(t1, t)}, {>(t)}, and add it to AFOL.

5. L(t) = r(t1, t2): Note that t2 is a Skolem term, hence there must be another clause

Cl ∪ {C(t2)} in A and one of the two cases above must hold.

On each retrieval step consecutive literals from the clauses obtain appropriate in-

terpretation. By applying the inductive hypothesis we conclude that A′, equivalent to

the solution A, will be appropriately reconstructed by the retrieval procedure. �

4.2 Selection Criteria. Correctness in the general case

Every computed `ABox-solution can be verified against the additional selection crite-

ria imposed on the solution space of an abduction problem, among others relevance,

consistency and minimality, all presented in Definition 2. For this purpose it is possible
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to use the services of standard reasoning tools for DLs. In the following we propose one

such approach based on checking consistency of the ABox with respect to the TBox.

For a proper representation of the queries it is necessary to shift to a more expressive

DL ALCO, which additionally to ALC allows nominals, i.e. concept constructors of the

form {a}, where a ∈ NI is a specified individual name. The expressiveness of ALCO
enables rendering ALE ABox assertions into equisatisfiable TBox axioms, where every

concept assertion C(a) is translated into {a} v C, while every role assertion r(a, b)

into {a} v ∃r.{b}. By employing this technique one can easily map the complement of

a set of ABox axioms Φ into the corresponding TBox expression:

¬Φ := > v
⊔

C(a)∈Φ

(¬{a} t ¬C) t
⊔

r(a,b)∈Φ

(¬{a} t ∀r.¬{b}) (1)

Table 12 outlines the decision procedures for satisfaction of the particular criteria

by a solution A to an ABox abduction problem 〈K, Φ〉, where K = (T ,A).

relevance ABox := A
TBox := ¬Φ

IF ABox consistent with respect to TBox
THEN OUTPUT A is relevant
ELSE OUTPUT A is not relevant

consistency ABox := A ∪A
TBox := T

IF ABox consistent with respect to TBox
THEN OUTPUT A is consistent
ELSE OUTPUT A is not consistent

minimality FOR every solution B:
FOR every renaming ρ : N?

I (B) 7→ N?
I (A):

ABox := A
TBox := ¬ρB

IF ABox inconsistent with respect to TBox
THEN FOR every renaming % : N?

I (A) 7→ N?
I (B):

ABox := B
TBox := ¬%A

IF ABox inconsistent with respect to TBox
THEN GO TO (∗)
REPEAT
OUTPUT A is not minimal

(B is minimal with respect to A)
TERMINATE

REPEAT
(∗) REPEAT

OUTPUT A is minimal

Table 12 Decision procedures for selection criteria via standard reasoning services in ALCO.

Observe that whereas relevance and consistency can be unconditionally decided for

any solution, minimality checking remains in the worst case a semi-decidable procedure,

guaranteed to output the answer in finite time only if the answer is negative. The
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consequence follows from the fact that in order to verify minimality, the solution has

to be compared with every other solution to the same problem, of which there can

be infinitely many. Consider for instance an extension of the happy John problem, in

which we include an additional TBox axiom ∀hasFriend.Happy v Happy, stating that

an individual is happy if all his friends are happy. In such a scenario all the following

assertions are minimal and consistent solutions to the problem:

(∀hasFriend.Happy)(John)

(∀hasFriend.(∀hasFriend.Happy))(John)

(∀hasFriend.(∀hasFriend.(∀hasFriend.Happy)))(John)

. . .

Clearly, the sequence of solutions above, generated due to repeated use of the

additional TBox axiom in the abductive procedure, is infinite. In such cases if a solution

A is not minimal, it can be at most guaranteed that a solution minimal with respect

to it will be found at some point (Theorem 4), and thus will allow for removing A from

the set of minimal solutions to the problem. Since the procedure does not terminate,

however, the positive answer regarding minimality of A cannot be in principle obtained.

One way of dealing with this inconvenience is to suitably relax the requirement for

minimality. A relatively weaker notion, whose verification is decidable even for infinite

solution spaces, is that of local minimality. This criterion shares with the original one

exactly the same conceptual foundation of preference for prime implicants of a formula,

and presents a high pragmatic value from the user perspective in typical application

scenarios. It is weaker in the sense of only approximating the proper minimality in a

gradual, controllable manner over the progress of computation. Roughly, we delimit

the allowed distance of the entailed and abduced individuals from the known ones in

abductive proofs, by some arbitrarily fixed bound.

Definition 9 (Local minimality) A solution A to abductive problem 〈K, Φ〉 is lo-

cally minimal if there exists a natural number n for which A is an n-locally minimal

solution. A is n-locally minimal iff

1. there exists a MU set σS under A (see Lemma 3) such that for every term tk
occurring in σS there exists a sequence r1(t0, t1), . . . , r(tk−2, tk−1), rk(tk−1, tk) of

positive role occurrences in σS, such that k ≤ n and t0 ∈ NI .

2. there is no other solution B to 〈K, Φ〉 for which the above condition is satisfied and

B is minimal with respect to A.

More indirectly, the definition implies that in order to find an n-locally minimal

solution it is enough to consider possible models of K ∪ ¬Φ only to depth bounded

by n. What further follows, is that the set of locally minimal solutions coincides with

the set of minimal solutions in the limit of computation (for n → ∞). Given above

formulation we can easily show that the following claim holds.

Proposition 5 (n-local minimality completeness) For any n ∈ N, if A is a plain,

n-locally minimal and consistent solution to ABox abduction problem 〈K, Φ〉 then A is

an `ABox-solution to 〈K, Φ〉. Furthermore, n-local minimality of A can be decided in a

finite number of steps.

Proof First note, that since we require that there exists a MU set under A then by

Theorem 4 A can be found as one of the `ABox-solutions to 〈K, Φ〉. In order to decide
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n-local minimality of A we constrain the search for solutions by blocking connection

steps that involve clauses introducing new terms, whose distance from the individual

names in the abductive graph of the proof is greater than n. Notice, that the abductive

graph of a proof for A corresponds to the set of positive role occurrences in the MU

set under A, modulo substitution of ground terms for the variables in the graph. Given

a finite number of clauses and finite number of individual names, clearly there can be

only a finite number of connection-driven proofs for a given abduction problem, whose

abductive graph satisfies the constraint. Hence, if there exist an n-locally minimal

solution to the problem it has to be found among one of these proofs and all non-

minimal solutions can be eliminated via pairwise entailment checks. �

4.3 Correctness for acyclic terminologies

Alternatively to introducing a weaker notion of minimality, one can try to ensure

termination by identifying a restricted form of TBoxes, which cannot result in the

construction of infinite abductive proofs. The standard distinction, used in similar

contexts, between cyclic and acyclic terminologies [4] allows for eliminating TBoxes

involving certain forms of definitional loops. Since these categories, however, do not

apply to general TBoxes, which are considered in this paper, we propose a new notion

of acyclicity scoped particularly for reasoning in connection-driven proof systems, such

as discussed here.

A clause Cl is directly connectible to Cl ′ if there exists a connection between Cl and

Cl ′. We define the relation connectible as the transitive closure of directly connectible

and say that a terminology T under τ -transformation is connection acyclic if for every

non-DL predicate P ∈ P occurring in T and every two clauses Cl ,Cl ′ ∈ T such that

P (x) ∈ Cl and ¬P (x) ∈ Cl ′, the clauses are connectible only through P . Otherwise we

call T connection cyclic.

If the requirement of connection acyclicity of the TBox is satisfied it is possible to

guarantee termination of reasoning for any ABox abduction problem.

Proposition 6 (Termination for acyclic TBoxes) Let 〈K, Φ〉 be an ABox abduc-

tion problem, with K = (T ,A), where T is a connection acyclic terminology. The

procedure of solving 〈K, Φ〉 via `ABox terminates in a finite number of steps.

Proof Recall that occurrences of non-DL predicates in the clauses under τ -

transformation mark the original positions of the quantification restrictions in the DL

axioms. The connection acyclicity condition prohibits generation of infinite chains of

terms (Skolem terms and variables) by cyclic reuse of clauses. Given a finite number of

clauses and named individuals it is impossible to infinitely expand tableau branches or

create infinite sequences of resolution inference steps. Thus the reasoning terminates

in finite time. �

As a consequence, for ABox abduction problems based on connection acyclic ter-

minologies it is possible to decide the strong notion of minimality for every computed

solution.

Also, as pointed out in [30], given the acyclicity condition is satisfied it is possible

to engage more sophisticated goal-oriented reasoning methods for checking consistency

of abductive solutions. Such techniques, based on the same connection-driven calculi as

the abductive reasoning itself, do not require a computationally expensive consistency
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checking of the whole knowledge base for deciding consistency of a single solution with

respect to that base. Instead they are meant precisely for verifying whether a newly

generated solution does not trigger inconsistency in the otherwise consistent knowledge

base.

5 Conclusions

ABox abduction is a particularly interesting form of abductive reasoning over DL

ontologies. It is constitutive for problems of identifying minimal sets of ABox axioms

that, if added to the knowledge base, trigger entailment of a requested set of assertions.

Possible application scenarios for this inference service are numerous and the need for

a practical tool support in dealing with abductive tasks, especially in the context of

OWL applications, has increasingly been reported [13,6]. Nevertheless, the amount of

work addressing the problem that has been so far undertaken is very limited.

In this paper we have introduced a formal computational framework for ABox

abduction in the DL ALC. The employed reasoning mechanism rests on regular con-

nection tableaux and resolution with set-of-support, refinements of two well-known and

commonly applied automated theorem proving techniques. Essentially, an ABox ab-

duction problem is reduced to the task of constructing a refutation proof, with either

of the two methods, for the complement of the abductive query, given the background

knowledge base. Any set of assertions that can force completion of such a proof is

a solution to the original problem. Along with the algorithms, we have developed a

special satisfiability- and structure-preserving clausal transformation for DL axioms,

and a method for retrieving well-formed ALE ABox assertions from abductive proofs.

Finally, we have discussed the possibility of using standard DL reasoning services for

applying selection criteria on the generated sets of solutions, and considered the spe-

cial case of infinite solution spaces. The whole procedure has been proven sound and

complete for solving ABox abduction problems in ALC.
The framework has a universal and flexible character, encouraging customization

towards specific use cases. The transformation procedure allows general and cyclic

TBoxes and easily covers all expressive means available in ALC. Consequently, abduc-

tive reasoning is not dependent on a particular syntactic structure of the input. Also,

we have not committed ourselves to any specific solving heuristics or arbitrary prefer-

ence criteria over potential solutions, except for the most fundamental constraints such

as consistency, relevance and minimality. Due to the connection-driven proof strategy,

inherent to both of the calculi employed, the framework exhibits a goal-oriented be-

havior on the search level, enabling a more efficient and focused form of computation.

Moreover, it is guaranteed to provide interesting results even for problems with an

infinite number of solutions. Another strong feature is the structural modularity of the

approach, which allows for considering different phases of solving a problem indepen-

dently from the others, and handling them be means of the most suitable tools. For

instance, it can be reasonable to use separate algorithms for finding solutions and for

their post-processing, depending on the average performance of particular computation

techniques on the respective tasks.

In order to foster the progress towards designing practical abductive DL reasoners,

the work on the framework should be advanced at least on three levels. First, it is nec-

essary to systematically extend the approach to other DLs, especially to ones being of a

special application interest, such as highly expressive DLs underlying OWL languages,
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i.e. SHOIN , SROIQ [25] and their specific fragments underpinning different profiles

of OWL. A shift towards more expressive languages should require extra transformation

rules, covering additional constructors in DL axioms, and will have to involve revisions

at least in the definitions of an admissible abductive graph, admissible FOL-base, and

the procedure of extracting ABox assertions from an abductive proof. In all these cases

increased expressivity permits more structural possibilities that should be accounted

for in the procedure. Second, it is desirable to tighten the links between the proposed

procedures and existing DL reasoning tools, in order to enable a convenient integration

of ABox abduction in larger reasoning and knowledge representation infrastructures,

as well as to save on the effort of reinventing well-developed optimization techniques for

reasoning with DLs. A promising way of aligning the proposed approach with main-

stream reasoning methods in DL, which we want to investigate in the future, is by

incorporating the connectedness requirement into standard tableau-based reasoners.

A successful integration is obviously not a straightforward prospect, as the presented

procedure requires an extensive support for FOL features, predominantly Skolemiza-

tion, that are not present in the standard DL reasoners. However, it is likely that even

without them connectedness could be to some extent approximated in such calculi, for

instance by expanding in the tableau only those axioms in NNF that contain concept

names complementary to the ones present anywhere on the considered branch. Such a

strategy would lead to a noticeable loss in the goal-directedness of the procedure, but

in return it would not introduce a need for a fundamental reconstruction of the reason-

ing paradigm. Finally, the framework should be accompanied by a menu of optional

extensions and plugins, such as additional selection strategies, the possibility of mark-

ing abducibles, or the integration of efficient search heuristics, for which appropriate

formal foundations will have to be developed.
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