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Abstract

Games with a permission structure are a type of cooperative games with transferable

utility in which cooperation is restricted. In these games it is assumed that players

can have veto power over other players. Two approaches are distinguished. In the

conjunctive approach, a player needs permission from all his direct superiors to be able

to cooperate. In the disjunctive approach, a players needs permission from only one of

his direct superiors.

In this thesis we study the stability properties of these permission networks. In order

to do so, we first create a new model that allows for superior-successor links to be created

and severed and in which links have a cost to them. For the conjunctive approach we

find that only trees and forests can be stable, as an agent can only receive less value

when the amount of his direct superiors increases. In the disjunctive approach, having

more direct superiors can increase the value allocated to a player. Whether trees can be

stable or not depends in this case on the size of the link cost.
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1 Introduction

Game theory studies multi-agent decisions, both in situations where agents act individu-

ally (strategic game theory) and situations in which cooperation is possible (cooperative

game theory). Agents are assumed to be rational, in the sense that they want to max-

imize their utility. A cooperative game now consists of a set of agents N and a value

function v which determines how much value can collectively be created by each coali-

tion. This gives rise to two key questions:

-Which coalitions will form?

-How do we distribute the value generated by the coalitions among the agents?

These two questions can however not be treated in complete isolation from each

other. The way in which utility is distributed will influence which set of coalitions is

stable (if any) and the coalitions that have formed will determine how much utility there

is to be distributed. We usually fix one of the two in order to study the other.

In this thesis we consider a cooperative game with transferable utility (a TU-game). In

this setting it is assumed that utility can be transferred from one individual to another.

This is only possible in situations where players have a common currency that is valued

the same by every player. In the classical setting of a TU-game, players only differ with

respect to the contributions they can make to certain coalitions. Players are assumed

to be able to cooperate with any other player and every subset of the set N is thus

a feasible coalition. In the literature, several models of games have been developed in

which the cooperation is restricted in some way.

In many papers, network structures are used to illustrate the cooperation restric-

tions. Various assumptions can be made in this context. The links in the network

can be directed or undirected. Networks with undirected links are for example used to

model communication structures [15,19,20], but can also be used for trade situations be-

tween fully informed corporations. [11] Directed links usually relate to relations between

unequal agents. Such situations include unidirectional communication of information,

domination such as in sports competitions and authority relations. [11,22] In both cases a
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distinction can be made between approaches for which only the connectedness of a group

of agents matters [19] and approaches in which the exact architecture of the network

matter. [15, 20,22]

A last difference that can be found is whether links are assumed to have a cost or

not. This is mostly related to whether the paper discusses an allocation rule or whether

it discusses the stability of a network. In the last case extra assumptions are necessary

with respect to when a link will be formed or severed. In case of directed links it is then

often assumed that one agent is the initiator of the link and the other agent can accept

or reject. [11, 22]

An important subclass of authority networks are permission structures. These are

a type of directed network that explicitly model situations in which agents have veto

power over other agents. This means that in games with a permission structure there

are players that need permission from other players, their direct superiors, to be able to

cooperate. The permission structure thus determines the possible coalitions. Different

assumptions can be made in the context of permission structures. In the conjunctive

approach, as developed in Gilles, Owen & Van den Brink (1992) [13], it is assumed that

a player needs permission from all his direct superiors to be able to cooperate. In the

disjunctive approach on the other hand, as discussed in Gilles & Owen (1999) [12], it is

assumed that a player needs permission from at least one of his direct superiors in order

to cooperate. The disjunctive and conjunctive approach are further discussed in Van

den Brink (1997, 2003, 1999) [2–4], Van den Brink & Gilles (1996) [7], Van den Brink et

al. (2015) [8] and Gilles (2010) [11]

The motivation behind analyzing permission structures is that many economic or-

ganizations adopt a hierarchical authority structure. Constraints imposed by an or-

ganizational structure can influence payoffs considerably as they influence the possible

coalitions. To illustrate this we consider a simple example. Consider a production situa-

tion with 3 players, N = {i, j, h} and suppose i is the only productive player and creates

an output of 1. This can be described in terms of a TU-game as follows: v(E) = 1 if

i ∈ E and v(E) = 0 otherwise for all E ⊆ N . If we now assume both j and h are superi-

ors of i we get a different situation. Under the conjunctive approach this game can now

be described as follows: vc(E) = 1 if E = N and vc(E) = 0 otherwise. The game vc is
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referred to as the conjunctive restriction of the game v. Under the disjunctive approach

the game will look somewhat different as in this situation i does not need both j and h

in order to be able to be productive, but only one of the two. The disjunctive restriction

is now as follows: vd(E) = 1 if {i, j} ⊆ E or {i, h} ⊆ E and vd(E) = 0 otherwise.

A game with a permission structure consists of a set of players, a value function

describing the potential outcomes of the possible coalitions and a permission structure

which has the form of a mapping from the set of players N to the powerset of N . This

mapping assigns to every player in N a set which determines this player’s successors. A

modified game is then defined in which the worth of coalitions is restricted according to

the permission structure. The relevant coalitions in the modified game are only those

that are autonomous. This is the case in the disjunctive approach if for every agent in

the coalition it holds that at least one of his direct superiors (if he has any) is also part

of the coalition. In the conjunctive approach a coalition is autonomous if for every agent

in the coalition all of his direct superiors are part of the coalition as well. A coalition

that is not autonomous will have the value of its largest autonomous subset.

A solution or allocation rule for these games is a function that assigns to every

game with a permission structure a distribution of payoffs over the individual players.

Allocation rules for TU-games can be applied to the modified games to give rise to a

solution for games with a permission structure. For example, the Banzhaf value applied

to games with a permission structure has been studied in Van den Brink (2003, 2010).

[4, 5] In this thesis we use the Shapley value, which has already been studied in several

papers for both the disjunctive and the conjunctive approach and has been referred to

as the disjunctive permission value and the conjunctive permission value.

The Shapley value, as introduced in Shapley (1953) [21], considers all the possible or-

ders in which agents can join a coalition and assigns to every player his average marginal

contribution over all these possible orders. The aim of the Shapley value is to deter-

mine how important each player is to the value generated by the grand coalition and

distribute the total value accordingly. The Shapley value thus focusses on the fairness

of the distribution and not on whether this distribution creates stability or not. Apart

from as an allocation function, Shapley viewed his value also as a measure of the power

of each player within a game. [25]
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The disjunctive and conjunctive permission values have been axiomatized in different

ways and it has been found that these two values can be characterized by almost the

same set of axioms [2–4, 7]; they only differ with respect to the fairness axiom. The

fairness axiom for the disjunctive permission value states that deleting a link between a

player (who has more than 1 direct superior) and his direct superior changes the value

of these two players by the same amount. For the conjunctive permission value however,

this axiom states that deleting such a link will change the payoff of this player and the

other direct superiors by the same amount.

The research thus far on permission structures has focused on allocation rules and

their axiomatization. However, another interesting topic of investigation is to consider

the stability properties of the links that make up a permission structure under the

assumption of one specific allocation rule. This is the topic of this thesis. As mentioned

before, we will consider the Shapley permission value.

In order to study stability properties, we introduce games with a flexible permission

structure. These are games in which there is a permission basis which determines the

direction of possible links that may or may not be formed. We restrict ourselves to

permission bases that are cycle-free. A permission basis can be such that certain players

cannot form a link with each other in either direction. A game now consists of a triple

(N, v, g) where g is one of the possible graphs based on the permission basis.

We assume that links have a certain cost and that all links cost the same for both

players involved. The payoff of a player is now the value assigned to him by the Shapley

permission value minus the costs of the links he has. We assume that a link will be

formed whenever for both players involved the benefits of this link are at least as much

as the cost of forming a link. We assume that a link will be broken if at least one of the

players involved receives a higher payoff without this link than with.

We find that these assumptions lead to very different stability results for the con-

junctive and the disjunctive approach. For the conjunctive approach we find that adding

a direct link with a player that is already an indirect superior will not change the set

of feasible coalitions and is therefore never beneficial. We also find that for transparent

graphs, any link that is broken does change the set of feasible coalitions. Lastly, we show

that a player with more than one direct superior will never be worse off by breaking the
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link with one of those direct superiors. We end by concluding that only trees and forests

can be stable in the conjunctive approach.

For the disjunctive approach, unlike the conjunctive approach, we find that a player is

never worse off by having more direct superiors. Furthermore, we examine the conditions

under which a link adds value to the players involved and find this to be the case,

depending on v, as long as there is at least one coalition that becomes feasible after

forming the link. We conclude that non-transparent graphs are not necessarily unstable

under the disjunctive approach. If the cost of a link is small enough, a tree may thus

not be stable in the disjunctive approach, unlike the conjunctive approach. Lastly, we

take a closer look at the effect a new link has on the disjunctive permission value of the

players involved in the context of the existing graph, in order to get a better idea of

which links are more or less likely to form.

The rest of this thesis is organized as follows. In chapter 2 we give an introduction to

games with a permission structure and we introduce the conjunctive and the disjunctive

approach. We will also briefly discuss some notions from network structures. In chapter

3 we introduce games with a flexible permission structure as an extension to games

with a permission structure. In chapter 4 we discuss the stability of flexible permission

structures both under the conjunctive approach and under the disjunctive approach.

Chapter 5 then presents some examples to illustrate the results of chapter 4. Finally,

chapter 6 will give concluding remarks as well as some recommendations for future work.
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2 Preliminaries

2.1 Games with permission structures

A situation in which a finite set of players N can generate a certain amount of payoff

depending on which coalitions they form is called a cooperative game with transferable

utilities (a TU-game). Such a game consists of a pair (N, v), where v is a characteristic

function v : 2N → R and v(∅) = 0. In this thesis, as in most papers, we take the set

of players to be fixed and the set of all TU-games on N is then denoted with GN . An

allocation rule is a function that assigns to every TU-game a payoff distribution over the

players in N .

In a TU-game, the players only differ in terms of how much they contribute to the

payoff a coalition can obtain. Players are assumed to be able to cooperate with any

other player. In games with permission structure, however, it is assumed that players

are part of a structure which limits the coalitions that can be formed. In this type of

games the players are part of a structure in which some players will need permission

from certain other players to be allowed to cooperate.

For a finite set of players N ∈ N such a structure, called a permission structure, is

represented by a mapping S : N → 2N . j ∈ S(i) denotes that j is a successor of i in the

permission structure S and that i is a direct superior of j. The set of all direct superiors

of j is given by S−1(j) := {i ∈ N |j ∈ S(i)}. Furthermore, Ŝ : N → 2N is a mapping

that gives the transitive closure of S. We say that j ∈ Ŝ(i) is true if and only if there is

a finite sequence of players j1, ..., jk in N such that j1 = i, jk = j and jh+1 ∈ S(jh) for

all 1 ≤ h ≤ k − 1. The players in Ŝ(i) are called the subordinates of i and the players

in Ŝ−1(i) := {j ∈ N |i ∈ Ŝ(j)} are called the superiors of i in S. The collection of all

permission structures on N is denoted by SN .

We say that a permission structure S is acyclic if it holds for every player i ∈ N

that i 6∈ Ŝ(i). A permission structure S is quasi-strongly connected if there exists an

i ∈ N such that Ŝ(i) = N\{i}. The set βS := {i ∈ N |S−1(i) = ∅} denotes those

players that do not have any (direct) superiors. We call those players boss players. A

permission structure S is hierarchical if it is both acyclic and quasi-strongly connected.

A permission structure S is weakly connected if for every bipartition of N into N1 and
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N2 it holds that there is a player i ∈ N1 and a player j ∈ N2 such that i ∈ S(j) or

j ∈ S(i). Every quasi-strongly connected permission structure is also weakly connected.

The opposite, however, does not hold. We denote the set of hierarchical permission

structures with SNH . As shown by Van den Brink and Gilles (1994) [6], for hierarchical

permission structures it holds that there exists a unique boss player, |βS | = 1. We denote

the set of wealy connected, acyclic permission structures with SNW . A triple (N, v, S)

with N ⊂ N, v ∈ GN and S ∈ SN is called a game with a permission structure.

Several assumptions can be made about the way in which the permission structures

affects the possibilities for cooperation. In the conjunctive approach, as developed by

Gilles, Owen and Van den Brink (1992) [13], it is assumed that every player needs per-

mission from all his direct superiors to cooperate with other players. The result of this

restriction is that a coalition E can only form if for every player i ∈ E, all the (direct)

superiors are also in E. In particular, E must contain all boss players j in S that have

one or more subordinates in E. Thus a coalition E is feasible if and only if Ŝ−1(E) ⊂ E,

where Ŝ−1(E) :=
⋃
i∈E Ŝ

−1(i). These sets are called conjunctive autonomous coalitions.

The set of all conjunctive autonomous coalitions for a permission structure S ∈ SN is

given by:

Φc
S := {E ⊂ N |∀i ∈ E, Ŝ−1(i) ⊂ E}.

We call F the authorizing set of E if F is the smallest autonomous superset of E:

αc(E) :=
⋂
{F ∈ Φc

S |E ⊂ F}

We call F the conjunctive souvereign part of E in S if F is the largest autonomous

subset of E:

σc(E) :=
⋃
{F ∈ Φc

S |F ⊂ E}.

The souvereign part of E consists of all players in E whose superiors are all part of

E as well. Using this concept we can now transform a game v into a game that takes
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into account the restricted possibilities of cooperation enforced by the permission struc-

ture S. The resulting game is called a conjuctive restriction of v:

RcS(v)(E) := v(σc(E)) for all E ⊆N.

An allocation rule for games with a permission structure is a function that assigns to

every game with a permission structure (N, v, S) a payoff distribution while taking into

account the restricted cooperation possibilities. We will look at the following allocation

rule:

φc(v, S) := Sh(RcS(v)) for all v ∈ GN and S ∈ SN .

Sh : SN → R denotes the Shapley value given, for all i ∈ N , by:

Shi(v) = Σ
E3i

∆v(E)
|E| ,

where |E| denotes the size of coalition E and the dividends ∆v(E) are given by:

∆v(E) := Σ
F⊆E

(−1)|E|−|F |v(F ).

The conjunctive permission value of a game (N, v, S) is now defined as follows:

φc(v, S) := Σ
E3i

∆Rc
S
(v)(E)

|E| = Σ
F3i

F=α(F )

Σ
F=α(E)

E⊆N

∆v(E)
|F | .

Alternatively, in the disjunctive approach, as discussed in Gilles and Owen (1999)

[12], a player needs permission from only one of his superiors to be allowed to cooperate

with other players. Consequently, a coalition E can be formed only if for every i in E

there is a path in the graph from a boss player to i. The coalitions that are feasible are

called disjunctive autonomous coalitions. The set of all disjunctive autonomous coali-

tions for a permission structure S ∈ SN is given by:
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Φd
S := {E ⊆ N |∀i ∈ E\βS , S−1 ∩ E 6= ∅}.

We call F an authorizing set of E if F is a smallest autonomous superset of E. The set

of authorizing sets of E in the disjunctive approach is given by:

A(E) := {F ∈ Φd
S |E ⊂ F ∧ ¬∃G ∈ Φd

S s.t. E ⊆ G ⊂ F}.

Note the difference with the conjunctive approach. In the conjunctive approach ev-

ery set E ⊆ N has exactly one authorizing set, because a player needs permission from

all his superiors. In the disjunctive approach however, a coalition can have multiple

authorizing sets, because it is enough for a player i ∈ N to get permission from only one

of his superiors. We use F ∼ αd(E) to denote that F an authorizing set is for E in the

disjunctive approach, or in other words that F is in A(E). We define A∗(E) as the set

of all finite unions of authorizing sets for coalition E. Thus, F ∈ A∗ if and only if there

are Fi ∈ A(E), 1 ≤ i ≤ I such that F =
⋃I
i=1 Fi.

We call F the disjunctive souvereign part of E in S if F is the largest autonomous subset

of E:

σd(E) :=
⋃
{F ∈ Φd

S |F ⊂ E}.

The souvereign part of E consists of all players i in E for which there exists a path

from a boss player and all players in that path (including the boss player) are in E .

Using this concept we can now transform a game v to take into account the restricted

possibilities of cooperation enforced by the permission sructure S according to the dis-

junctive approach. The resulting game is called a disjuctive restriction of v:

RdS(v)(E) := v(σd(E)) for all E ⊆N.

The disjunctive permission value is defined in the same way as the conjunctive per-

mission value, as the Shapley value of the restricted game v:
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φd(v, S) := Sh(RdS(v)) for all v ∈ GN and S ∈ SN .

The disjunctive permission value of a game (N, v, S) is thus defined as:

φd(v, S) := Σ
E3i

∆Rd
S
(v)

(E)

|E| .

The following example illustrates the difference between the conjunctive and the dis-

junctive approach(see Figure 1):

Let N = {i, j, k, l} and v ∈ GN be given by v(E) = 1 for all E 3 l and v(E) = 0

otherwise. Let S ∈ SN be given by

S(i) = {j, k}, S(k) = S(j) = {l}, S(l) = ∅

The conjunctive and disjunctive restrictions of v on S are now given by:

RcS(v)(E) =

1, if E = N

0, otherwise

and

RdS(v)(E) =

1, if E ⊇ {i, j, l} or E ⊇ {i, k, l}

0, otherwise

i

k j

l

Figure 1
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The conjunctive and disjunctive permission values are now respectively {1
4 ,

1
4 ,

1
4 ,

1
4} and

{ 5
12 ,

1
12 ,

1
12 ,

5
12}.

Axiomatizations for the disjunctive and conjunctive permission value for hierarchical

permission structures have been given by Van den Brink (1997, 2003, 2015) [2–4] and

Van den Brink & Gilles (1996) [7]. It is shown that both can be characterized by 6

axioms of which 5 are the same. [4] The first two axioms are generalizations of additivity

and efficiency of solutions for TU-games.

Axiom 2.1 (Efficiency) For every N ⊂ N, v ∈ GN and S ∈ SNH it holds that

Σi∈Nφ(N, v, S) = v(N).

Axiom 2.2 (Additivity) For every N ⊂ N, v, w ∈ GN and S ∈ SNH it holds that

φ(N, v + w, S) = φ(N, v, S) + φ(N,w, S),

where (v + w) ∈ GN is defined by (v + w)(E) = v(E) + w(E) for all E ⊂ N .

We call a player i ∈ N a null player if for every coalition E ⊂ N v(E) = v(E\{i}).

The null player axiom of the Shapley value states that the payoff for a null player is

equal to zero. However, in a game with permission structure it might be that, although

i is a null player, there are subordinates of i that are not null players. In the case where

a non-null player need permission from player i it seems reasonable to give player i a

non-null payoff. However, if all subordinates of null player i are also null player we would

think it reasonable that i gets a payoff equal to zero. We say that such a player i ∈ N

is an inessential player in the game with permission structure (N, v, S).

Axiom 2.3 (Inessential player property) For every N ⊂ N, v ∈ GN and S ∈ SNH it

holds that if i ∈ N is an inessential pleyer in (N,v,S) then φi(N, v, S) = 0.

Axioms 2.4 and 2.5 are stated for monotone characteristic functions. A characteristic

function v is monotone if v(E) ≤ v(F ) for all E ⊂ F ⊂ N . We denote the class of all

games with monotone v by GNM . We call a player i necessary in a game (N, v) if v(E) = 0
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for all E ⊂ N\{i}. Thus, a necessary player can always guarantee that other players

earn nothing by refusing to cooperate. It seems reasonable that a necessary player gets

as least as much as any other player in a monotone game.

Axiom 2.4 (Necessary player property) For every N ⊂ N, v ∈ GNM and S ∈ SNH , if

i ∈ N is a necessary player in (N, v) then φi(N, v, S) ≥ φj(N, v, S) for all j ∈ N .

We say that a player i dominates player j completely when all paths from the boss

player to j include player i. The set of all players that are completely dominated by

player i is denoted by:

S(i) = {j ∈ Ŝ(i)|E ∈ Φd
S and j ∈ E implies i ∈ E}.

Note that in the conjunctive approach S(i) = Ŝ(i). The next axiom states that if player

i completely dominates player j then player i gets at least as much payoff as j.

Axiom 2.5 (Weak structural monotonicity ) For every N ⊂ N, v ∈ GNM , S ∈ SNH
and i ∈ N it holds that if j ∈ S(i) then φi(N, v, S) ≥ φj(N, v, S).

The five axioms defined thus far are satisfied by both the disjunctive and the con-

junctive permission value. These two values differ in the last axiom; fairness. For the

disjunctive permission value, fairness states that deleting a link between two players i

and j ∈ S(i) changes the payoff of these two players by the same amount. Moreover,

also the payoff of all players h that completely dominate i change with the same amount.

With S−ij(i) we denote S(i)\{j} and S−ij(h)= S(h) for all h ∈ N\{i}.

Axiom 2.6 (Disjunctive fairness) For every N ⊂ N, v ∈ GN , S ∈ SNH and i ∈ N , if

j ∈ S(i) and |S−1(j)| ≥ 2 then

φh(N, v, S)− φh(N, v, S−ij) = φj(N, v, S)− φj(N, v, S−ij) for all h ∈ {i} ∪ S−1
(i).

Where S
−1

(i) = {h ∈ Ŝ−1(i)|i ∈ S(h)}.
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The axiom of disjunctive fairness is not satisfied by the conjunctive permission value,

but it does satisfy an alternative fairness axiom. The conjunctive fairness axiom states

that deleting a link between a player i and j ∈ S(i), where |S−1(j)| ≥ 2, changes the

payoff of j and any h ∈ S−1(j)\{i} by the same amount. Moreover, the payoffs of all

players that completely dominate one of these direct superiors h also change with the

same amount.

Axiom 2.7 (Conjunctive fairness) For every N ⊂ N, v ∈ GN and S ∈ SNH , if

j ∈ N and i, h ∈ S−1(j) then

φg(N, v, S)− φg(N, v, S−ij) = φj(N, v, S)− φj(N, v, S−ij) for all g ∈ {h} ∪ S−1
(h).

The conjunctive and disjunctive permission value can now be characterized by the above

axioms.

Theorem 2.8 (Van den Brink (2003)) An allocation rule φ is equal to the dis-

junctive permission value if and only if φ satisfies efficiency, additivity, the inessential

player property, the necessary player property, weak structural monotonicity and dis-

junctive fairness.

Theorem 2.9 (Van den Brink (2003)) An allocation rule φ is equal to the con-

junctive permission value if and only if φ satisfies efficiency, additivity, the inessential

player property, the necessary player property, weak structural monotonicity and con-

junctive fairness.

We note that all the axioms are stated for hierarchical permission structures. How-

ever, only one direction of the proof requires this restriction. For both the disjunctive

and the conjunctive permission value, the proof that this value satisfies all axioms stated

does not make use of the assumption that the permission structure is hierarchical, but

only of the assumption that it is acyclic.
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2.2 Games with network structures

Network structures, like permission structures, also restrict the coalitions that can be

formed. This restriction is represented by a graph, where the nodes are the players and

the links represent pairwise relations. The complete graph on a set of players N ∈ N

is the set of all subsets of N with size 2 and is denoted by gN . The set of all possible

graphs of N consists of all those graphs g for which it holds that g ⊆ gN . A graph is

thus defined by the links it has. With ij we denote a link between players i and j. If

ij ∈ g then i and j are directly connected in graph g, while if ij 6∈ g then this is not

the case. With g+ij we denote the graph that results from adding the link ij to graph

g. Thus g+ij = g ∪ {ij}. With g−ij we denote the graph that results from deleting the

link ij from the graph g (i.e. g−ij = g\{ij}).

We use N(g) = {i|∃j s.t. ij ∈ g} to denote the set of players in N that are connected

to another player by a link. A path between i and j in g exists if and only if there is a

set of distinct players h1, h2...hk ∈ N such that {ih1, h1h2, ..., hkj} ⊆ g. A graph D ⊆ g

is a component of g if D is a maximal connected subset of g. In other words, D is a

component of g if for all i, j ∈ N(D), i 6= j, there exists a path in D connecting i and

j and for all i ∈ N(D), j ∈ N(g) it holds that if ij ∈ g then ij ∈ D. We use C(g) to

denote the set of all the components in g. Note that a single player is not considered

a component. A component always has at least one link. We say that a characteristic

function v is component additive if v(g) = Σ
D∈C(g)

v(D)

In network structures, the graphs are not fixed. Several assumptions can be made

about the formation and severance of links. In this thesis we follow Jackson & Wolinsky

(1995) [15] in assuming that the formation of a link requires the consent of both players,

while the severance can be done unilaterally. A graph g is said to be pairwise stable with

respect to a characteristic function v and some payoff function φ if:

- for all ij ∈ g, φi(g, v) ≥ φi(g−ij , v) and φj(g, v) ≥ φj(g−ij , v)

and

- for all ij 6∈ g, if φi(g, v) < φi(g+ij , v) then φj(g, v) > φj(g+ij , v)

The first condition says that there is no player that would get a higher payoff after
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breaking a link. The second condition states that for each link that can be formed one

of the two players involved will have a better payoff without this link than with. This

condition contains the assumption that a player will always accept the formation of a

link, initiated by another player, if it does not affect his payoff negatively. Furthermore,

note that this form of stability assumes that the formation and severance of links happen

one at a time. This is a relatively weak notion of stability. Other notions of stability,

for example one that allows for group decisions, are of course possible, but will not be

considered for now.

Furthermore, we also follow Jackson & Wolinsky (1995) [15] in assuming that a link

has a certain cost, which can be interpreted as the cost of maintaining a connection with

a different player. We take the cost of each link to be the same. Thus cij = cgk for any

i, j, g, k ∈ N . We will therefore simply use c. The total cost that a player i has to pay

is simply the sum of the costs of all the links this player has:

ci(g) := Σ
j∈N
ij∈g

c.

With c(g) := Σ
i∈g
ci(g) we denote the sum over all the players of their cost in graph

g. The total value of the graph is now defined as follows:

v∗(g) = v(g)− c(g)

A graph g is considered efficient if for all g′ ⊂ gN it holds that v∗(g) ≥ v∗(g′). Ef-

ficiency defined in this way indicates maximal total value.

In studying the properties of cooperative games, unanimity games often prove useful, as

each cooperative game can be written in terms of its unanimity basis. The unanimity

basis of a game (N, v) is the set of unanimity games {uE |E ⊆ N,E 6= ∅} that are defined

as follows:

uE(F ) =

1, if E ⊂ F

0, otherwise
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As shown by Harsanyi (1959) [10], the game (N, v) can now be expressed by:

v = Σ
E⊂N
E 6=∅

∆v(E) · uE

Where ∆v is the dividend as defined above.

18



3 Games with a flexible permission structure

In this chapter we set out a framework for games with a flexible permission structure. In

our setting we assume there is a fixed permission basis. The permission basis determines

which links can potentially form and thereby defines for each player who his possible

superiors and successors are. The permission basis represents the order between players

that exists prior to the formation of links, for example an order of proximity to a gas

source. Furthermore, the permission basis indicates the boss players and will assure that

no cycles form. A permission basis for a player set N ∈ N is a mapping O : N → 2N

which is transitive and assymetric. Thus for any two i, j ∈ N

j ∈ O(i) implies i 6∈ O(j)

With j ∈ O(i) we denote that i is a potential (direct) superior of j and that j is a

potential subordinate of i. The set of all potential superiors of j is given by O−1(j).

Note that a permission basis, by definition, is always acyclic. We say that a permission

basis is complete if for all i, j ∈ N, i 6= j it holds that either i ∈ O(j) or j ∈ O(i). We call

a player i for which it holds that O−1(i) = ∅ a boss player. The set of all boss players in

a permission basis O is denoted with βO. The collection of all permission bases on a set

of players N is denoted with ON . We say that a permission basis is hierarchical when,

aside from being acyclic, it is also quasi-strongly connected. The set of all hierarchical

permission bases is denoted with ONH .

i

j
k l

Fig 2a

k
j

i

l

Fig 2b

Figure 2
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Figure 2 shows two directed graphs, where the arrows denote the mapping O. The

arrow from i to j for example, denotes j ∈ O(i). The graph in Figure 2a is not a

permission basis as it is not transitive. Figure 2b, on the contrary, is an example of

a permission basis. However, it is not a complete permission basis as l 6∈ O(k) and

k 6∈ O(l).

Throughout this thesis we will study graphs as a representation for the flexible per-

mission structures. The possible graphs, given a permission basis O, are those graphs g

for which it holds that:

for all ij ∈ g, i ∈ O(j) or j ∈ O(i)

Note that we use undirected links and that the interpretation of these links, who is

who’s successor, is given by the permission basis. Although ij and ji are thus the same

link, we will for clarity use ij when j ∈ O(i). The maximal graph is now equal to the

permission basis O and is denoted by GO. The possible graphs given a permission basis

O consists thus of all those graphs g for which it holds that g ⊆ GO. These graphs will

always be acyclic, since they are restricted by a permission basis O.

With j ∈ Sg,O(i) we denote that j is a successor of i in the graph g ⊆ GO. This

is the case if and only if ij ∈ g and j ∈ O(i). i is called a direct superior of j. The

set of all direct superiors of j is given by S−1
g,O(j) := {i ∈ N |j ∈ Sg,O(i)}. Furthermore,

Ŝg,O : N → 2N is a mapping that gives a transitive closure of Sg,O. We say that

j ∈ Ŝg,O(i) holds if and only if there is a finite sequence of players j1, ..., jk in N such

that j1 = i, jk = j and jh+1 ∈ Sg,O(jh) for all 1 ≤ h ≤ k − 1. Thus, j ∈ Ŝg,O(i) if

and only if there is a path from i to j in g. We call j a subordinate of i. The players

in Ŝ−1
g,O(i) := {j ∈ N |i ∈ Ŝg,O(j)} are called a superiors of i in g. Note the difference

between O and Sg,O. O describes a potential successor relation and it determines which

connections can form, but does not tell us which links did form in the graph g . We use

Sg,O on the contrary to denote which relations have actually formed in the graph under

consideration. We say that a graph is transparent if for all i, j ∈ N such that i ∈ Sg,O(j)

it holds that i 6∈ Ŝg−ji,O(j).

The graph g, based on a permission basis O, now describes an authority structure
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on the players, but it does not yet specify the effect of this authority structure on the

possible outcomes of cooperative behavior as described by a game v. As outlined above,

we will look at two different approaches; the conjunctive approach and the disjunctive

approach. We recall that in the conjunctive approach a coalition E is formable if and

only if for every player i ∈ E it holds that all the direct superiors of i are also in E. In a

flexible permission structure g with permission basis O, a coalition is thus formable only

if Ŝ−1
g,O(E) ⊂ E. As in flexible permission structures there is no guarantee that there

is a path between a player i ∈ N and any of the boss players in the permission basis,

we introduce as an extra requirement that a coalition is only feasible if for all i ∈ E,

Ŝ−1
g,O(i) ∩ βO 6= ∅. The set of all conjunctive autonomous coalitions for a graph g ⊆ GO

is now given by:

Φc
g := {E ⊆ N |∀i ∈ E\βO, Ŝ−1

g,O(i) ∩ βO 6= ∅ and Ŝ−1
g,O(i) ⊂ E}.

We call F the authorizing set of E if F is the smallest autonomous superset of E:

αcg(E) :=
⋂
{F ∈ Φc

g|E ⊂ F}

We call F the conjunctive souvereign part of E in g ⊆ GO if F is the largest autonomous

subset of E:

σcg(E) :=
⋃
{F ∈ Φc

g|F ⊂ E}.

We can now transform a game v to take into account the restricted possibilities of

cooperation enforced by the graph g ⊆ GO. The resulting game is called a conjuctive

restriction of v:

Rcg(v)(E) := v(σc(E)) for all E ⊆N.

The allocation rule we will look at for games with a flexible permission structure (N, v, g),

is the Shapley value:
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φc(v, g) := Sh(Rcg(v)) for all v ∈ GN , O ∈ ON and g ⊆ GO.

The conjunctive permission value, is now defined in the same way as for non-flexible

permission structures:

Shi(Rcg(v)) = Σ
E3i

∆Rc
g(v)

(E)

|E| = Σ
F3i

F=α(F )

Σ
F=α(E)

E⊆N

∆v(E)
|F | .

Finally, to get the payoff of a player i in a conjunctive game (N, v, g) we also take

into consideration the costs of all the links i has in the graph g. The final payoff x is

now defined as follows:

xci (v, g) := φci (v, g)− ci(g).

In the disjunctive approach, a player needs permission from only one of his superiors.

A coalition E can thus be formed only if for every i in E S−1
g,O(i) ∩ E 6= ∅. As in the

conjunctive approach we add the requirement that for every player i ∈ E there is a

path in the graph g from a boss player to i. The coalitions that are formable are called

disjunctive autonomous coalitions. The set of all disjunctive autonomous coalitions for

a graph g ⊆ GO is given by:

Φd
g := {E ⊆ N |∀i ∈ E\βO, Ŝ−1

g,O(i) ∩ βO 6= ∅ and S−1
g,O ∩ E 6= ∅}.

We call F an authorizing set of E if F is a smallest autonomous superset of E. The set

of authorizing sets of E in the disjunctive approach is given by:

Ag(E) := {F ∈ Φd
g|E ⊂ F ∧ ¬∃G ∈ Φd

g s.t. E ⊆ G ⊂ F}.

We use F∼ αdg(E) to denote that F an authorizing set for E is in the disjunctive ap-

proach. We define A∗(E) as the set of all finite unions of authorizing sets for coalition

E. Thus, F ∈ A∗ if and only if there are Fi ∈ A(E), 1 ≤ i ≤ I such that F =
⋃I
i=1 Fi.
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We call F the disjunctive souvereign part of E in g ⊆ GO if F is the largest autonomous

subset of E:

σdg(E) :=
⋃
{F ∈ Φd

g|F ⊂ E}.

The souvereign part of E consists of all those players i in E such that there exists

a path from a boss player to i and all players in this path are in E. We can now trans-

form a game v to get the disjuctive restriction enforced by the graph g ⊆ GO:

Rdg(v)(E) := v(σd(E)) for all E ⊆N.

The disjunctive permission value is again defined as the Shapley value of the restricted

game v:

φd(v, g) := Sh(Rdg(v)) for all v ∈ GN , O ∈ ON and g ⊆ GO.

The disjunctive permission value of a game (N, v, g) is thus:

Shi(Rdg(v)) = Σ
E3i

∆Rd
g(v)

(E)

|E| .

Finally, to get the payoff of a player i in a disjunctive game (N, v, g) we also take

into consideration the costs of all the links i has in the graph g. The final payoff x is

now defined as follows:

xdi (v, g) := φdi (v, g)− ci(g).

In accordance with the approach of Jackson & Wolinsky (1995) [15], as discussed in

the previous chapter, we assume that a link can be formed whenever it does not decrease

the payoff of either of the players involved. We assume that a link is unstable when one

of the two players will receive a higher payoff after the link has been broken.
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4 Results on link formation

4.1 The conjunctive approach

We start by analyzing the effects of flexible links on the conjunctive approach. In the

conjunctive approach a player i needs permission from all his superiors. One consequence

of this assumption is that a coalition E is only feasible if for any player i ∈ E it holds

that all his superiors are also in E, whether these are direct superiors or not. We would

thus expect that adding a link between i and j when i ∈ Ŝg,O(j) is already a subordinate

of j will not change the set of feasible coalitions. Moreover, as adding this link does add

an extra cost, graphs in which such links exist would not be stable.

Theorem 4.1 For any v ∈ GN , g ⊂ GO and O ∈ ON , and for any i, j ∈ N such

that i ∈ Ŝg,O(j), and i 6∈ Sg,O(j) it holds that φci (v, g) = φci (v, g+ji).

Proof:

Let i ∈ Ŝg,O(j), but i 6∈ Sg,O(j). Let g be an acyclic graph and g′ = g+ji. We will prove

Theorem 4.1 by proving something stronger, namely that φc(v, g) = φc(v, g′).

We start by showing that the set of conjunctively autonomous coalitions is the same

in g and g′ ,Φc
g = Φc

g′ . First note, that since g ⊂ g′ it follows that Φc
g ⊇ Φc

g′ . This means

that for any coalition F ⊆ N , F 6= σg(F ) implies that F 6= σg′(F ) (and F = σg′(F )

implies F = σg(F )).

Next we want to show that for all F = σg(F ) it holds that F = σ′g(F ). We know

that F = σg(F ) if and only if Ŝ−1(F ) ⊂ F and thus that for all F ∈ Φc
g such that i ∈ F

it must hold that j ∈ F . Since the only difference between g and g′ the link ji is, it now

follows for all F = σg(F ) that F = σ′g(F ). Since we now have that F 6= σg(F ) implies

F 6= σg′(F ) and F = σg(F ) implies F = σ′g(F ), we can conclude that Φc
g = Φc

g′ .

As Φc
g = Φc

g′ , we know that for any coalition E ⊆ N , σcg(E) = σcg′(E). Therefore,

Rcg(v)(E) = Rcg′(v)(E) and thus φc(v, g) = φc(v, g′).

�

As we proved the stronger claim that φc(v, g) = φc(v, g′), we know that the formation of

24



this link does not change the conjunctive permission value for any player in N . Since i

and j have more direct links in g′ than in g we have that ci(g) < ci(g
′) and cj(g) < cj(g

′).

It then follows that both xci (v, g
′) < xci (v, g) and xcj(v, g

′) < xcj(v, g) and thus the link ji

will not be formed.

The proof above does not only show that no link will form between two players

i, j ∈ N such that i ∈ Ŝg,O(j), but also that a graph in which i ∈ Sg,O(j) and the

link ji is not the only path from j to i, is unstable. In other words, it follows from

Theorem 4.1 that non-transparent graphs are not stable in the conjunctive approach, as

for any non-transparent graph g there is a transparent graph g′ such that Φc
g = Φc

g′ and

c(g) > c(g′). Another thing that the proof of Theorem 4.1 shows is that for any graph

g the set of the conjunctive autonomous coalitions in g is the same as for the transitive

closure of g. This conclusion follows directly from our observation that Φc
g = Φc

g+ji
for

any i ∈ Ŝg,O(j)\Sg,O(j).

In any graph g in which there is no component without boss player and for any i such

that S−1
g,O(i) = j, breaking the link ji would change the set of autonomous coalitions,

as removing such a link would make all autonomous coalitions that contain i nonau-

tonomous. Theorem 4.2 states that for any transparent graph removing a link between

an agent i and a superior of i also changes the set of conjunctive autonomous coalitions

when i has more than one superior. It then follows that for any such graph there exists

a v ∈ GN such that Rcg(v) 6= Rcg−ji
(v) for i ∈ Sg,O(j).

Theorem 4.2

Let g ⊆ GO with O ∈ ON be a transparent graph such that i, j, h ∈ N and i ∈

Sg,O(j) ∩ Sg,O(h). It then holds that Φc
g 6= Φc

g−ji
.

Proof:

As g is transparent we know that i 6∈ Ŝg,O(j)\Sg,O(j) and thus i 6∈ Ŝg−ji,O(j). Now take

a coalition E = αcg−ji
({i}). Clearly E ∈ Φc

g−ji
. As i 6∈ Ŝg−ji,O(j) we know that j cannot

be in E. This means that S−1
g,O(i) 6⊂ E and that E is not autonomous in g. Thus, we

can conclude that for a transparent graph g and any i ∈ Sg,O(j) ∩ Sg,O(h) it holds that

Φc
g 6= Φc

g−ji
.
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We now know which links do and do not change the set of conjunctive autonomous

coalitions, but to know which links are stable we need to know more. As links can be

broken unilaterally, it follows that any link ji that has a negative effect on the conjunctive

permission value of either j or i will be broken. Since in the conjunctive approach a player

i needs permission from all his superiors we can expect all those superiors to be able to

demand a part of i’s value contribution. Thus, for v ∈ GNM a monotone characteristic

function, we would expect a player in the conjunctive approach to be better off, or in

other words to receive a higher payoff, when he has less superiors.

It is shown by Van den Brink (1999) [3] that for any monotone v and hierarchi-

cal permission structure S with i, j, h ∈ N , j 6= h and i ∈ S(j) ∩ S(h) it holds that

φci (v, S) ≤ φci (v, S−ji). We will show that this result holds in a more general case.

Theorem 4.3 states that in any acyclic graph g, based on a permission basis O with

i, j, h ∈ N, j 6= h and i ∈ Sg,O(j) ∩ Sg,O(h) it holds that φci (v, g) ≤ φci (v, g−ji) The

following proof follows the same reasoning as the proof by Van den Brink (1999) [3].

Theorem 4.3

For any v ∈ GNM , g ⊆ GO and O ∈ ON with i, j, h ∈ N, j 6= h and i ∈ Sg,O(j) ∩ Sg,O(h)

it holds that φci (v, g) ≤ φci (v, g−ji).

Proof:

Note that for all E ⊆ N , σcg(E) ⊆ σcg−ji
(E) and E 6⊇ {i, h} and for E 3 j we have that

σcg(E) = σcg−ji
(E). It then follows for monotone v that:

φci (v, g)− φci (v, g−ji) ≤ 0 iff:

Σ
E3i

(v(σcg(E))− v(σcg(E\{i}))− (v(σcg−ji
(E)) + v(σcg−ji

(E\{i})))

= Σ
E3i

(v(σcg(E))− v(σcg−ji
(E))) ≤ 0
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Where the last inequality follows from the monotonicity of v.

�

Note that it is not necessarily the case that an acyclic graph g ⊆ GO consist of

exactly one component. However, even if g consists of more than one component, it still

holds that σcg(E) ⊆ σcg−ji
(E). Furthermore, if v is a component additive characteristic

function, the different components of graph g can be considered seperately and adding

or removing a link within a component C ⊆ g will then not affect any players outside

component C. From Theorem 4.3 it thus follows that for v ∈ GNM , g ⊆ GO and O ∈ ONW
a graph in which some player i has more than one direct superior is not stable. The

conjunctive approach thus leads to a situation where the only stable graphs are forests

or trees.

It clearly holds that any player that is part of a component C ⊆ g that does not con-

tain any boss player, is a null player. As all players in such a component are null players

it follows for all these players i, by the inessential player property of the conjunctive

permission value, that φci (v, g) = 0. The payoff for any i ∈ C will thus be −ci(g). Recall

that ci(g) is the sum of the costs of all the links that player i has in graph g. Any player i

in such a component would obtain a higher payoff (xci (v, g
′) = 0) if he would break all his

links. It thus follows that a graph g which has any inessential players is unstable. When

O ∈ ONH is hierarchical there will be at most one component that contains players that

are not inessential players, as there is only one boss player. For hierarchical permission

bases it thus follows that a stable graph will have at most one component.

Furthermore, when v is superadditive, any player i such that v({i}) > 2 · c will have

at least some possible links that will be beneficial for him. In particular, forming a direct

link with a boss player will increase both i’s payoff and the boss player’s payoff with at

least v({i})− c. Thus, in a stable graph, any such player i will be (indirectly) connected

to a boss player.

When the cost of forming a link is relatively high, stable graphs will be only those

with a flat hierarchy. This is the case since a player loses part of his value to his superiors.

The more superiors he has, the less value he is left with. In general it is thus better

for a player to be directly connected to a boss player, as this will maximize his payoff.
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However, as we will show in the next chapter, a flat hierarchy does not necessarilly yield

the best payoff for the boss player.

4.2 The disjunctive approach

In the disjunctive approach, a player needs permission from only one of his direct supe-

riors. This implies that a player with more direct superiors has more leverage towards

his superiors and could thus claim a higher payoff. For monotone v and a hierarchi-

cal permission structure S it has indeed been shown by Van den Brink (1999) [3] that

in the disjunctive approach for i, j, h ∈ N , j 6= h and i ∈ S(j) ∩ S(h) it holds that

φdi (v, g) ≥ φdi (v, g−ji) and φdj (v, g) ≥ φdj (v, g−ji). We will show that this result holds in

a more general case. Theorem 4.4 states that in the disjunctive approach in any acyclic

graph g ⊆ GO, based on a permission basis O ∈ ON it is still true for i, j, h ∈ N with

j 6= h and i ∈ S(j) ∩ S(h) that φdi (v, g) ≥ φdi (v, g−ji). By disjunctive fairness it then

follows that φdj (v, g) ≥ φdj (v, g−ji) holds as well. The proof follows the same structure as

the proof by Van den Brink (1999) [3].

Theorem 4.4

For any v ∈ GNM , g ⊆ GO and O ∈ ON with i, j, h ∈ N, j 6= h and i ∈ Sg,O(j) ∩ Sg,O(h)

it holds that φdi (v, g) ≥ φdi (v, g−ji).

Proof:

Note that for all E ⊆ N , σdg(E) ⊇ σdg−ji
(E) and for E 6⊇ {i, j} we have that σdg(E) =

σdg−ji
(E). It then follows for monotone v that:

φdi (v, g)− φdi (v, g−ji) ≥ 0 iff:

Σ
E3i

(v(σdg(E))− v(σdg(E\{i}))− (v(σdg−ji
(E)) + v(σdg−ji

(E\{i})))

= Σ
E3i

(v(σdg(E))− v(σdg−ji
(E))) ≥ 0

Where the last inequality follows from the monotonicity of v.
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In order for the link between i and j to be stable, however, it must hold for both

players that φdi (v, g)− φdi (v, g−ji) ≥ c and φdj (v, g)− φdj (v, g−ji) ≥ c. The benefit of the

link must thus at least be strictly greater than 0. This can only be the case if the dis-

junctive restriction of v is different after the link was made; Rdg(v) 6= Rdg+ji
(v). Theorem

4.5 gives the necessary condition for Rdg(v) 6= Rdg+ji
(v) to be true.

Theorem 4.5

Let g ⊂ GO and O ∈ ON be such that i 6∈ Sg,O(j) and i ∈ O(j).

Then there exists a v ∈ GN such that Rdg(v) 6= Rdg+ji
(v) if and only if there is at least

one E ∈ Ag(j) such that E ∩ S−1
g,O(i) = ∅.

Proof:

Let E be a coalition such that E ∈ Ag(j) and E ∩ S−1
g,O(i) = ∅ and let F be E ∪ {i}.

Note that Ag(j) = Ag+ji(j). As E ∩ S−1
g,O(i) = ∅ it follows that σdg(F ) = E. However,

as E ∈ Ag(j) and thus E ∈ Ag+ji(j), F is an autonomous coalition in graph g+ji;

σdg+ji
(F ) = F . Thus, for any v ∈ GN which assigns a different value to E than to F it

holds that Rdg(v) 6= Rdg+ji
(v).

Now suppose there is no coalition E ∈ Ag(j) such that E ∩ S−1
g,O(i) = ∅. Note that

for all E 6⊇ {i, j} it holds that σdg(E) = σdg−ji
(E). Take a random E ∈ Ag(j). As before

F is an autonomous coalition in g+ji. However, as E is autonomous in g and E contains

a direct superior of i, F is autonomous in g as well. As we chose E randomly we can

conclude that for any E ∈ Ag(j), σdg(E ∪{i}) = σdg+ji
(E ∪{i}) = E ∪{i}. It now follows

that Φd
g = Φd

g+ji
and thus that for all v ∈ GN , Rdg(v) = Rdg+ji

(v).

�

Theorem 4.5 shows that in the disjunctive approach a link between i and j will only

be formed if adding this link will make some coalitions feasible that were not feasible

without the link ji. We point out that this is always true for a direct link with a boss

player. Moreover, once a player is directly connected to a boss player, the links he has
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with other superiors become superfluous and will be broken. However, in order for a link

between i and j to be formed, it is not enough for that link to increase the set of feasible

coalitions. It must also be the case that the disjunctive permission value of both players

involved increases by forming this link. In the case of a monotone v, this will already be

the case if the restriction of v assigns a higher value to at least one coalitions after the

link ji has been formed. However, even when the disjunctivce permission value of both

players increase, it may not increase enough to compensate for the cost of the link.

Theorems 4.4 and 4.5 tell us when a link between i and j can have a positive effect

on the disjunctive permission value of both players, but they do not tell us anything

about the size of this effect. Theorem 4.6 is a restatement of Theorem 4.4, but with

stronger assumptions. Although the proof we give for theoren 4.6 is not applicable to as

broad a situation as the proof of Theorem 4.4 is, it has as a merit that it gives a much

more specific idea of the size of the effect of forming a link (the proof given earlier only

tells us that the effect is not negative).

In the next proof we will distinguish two cases. The first covers the situations where

i ∈ Ŝg,O(j). In this case, j is already a superior of i before the link ji is formed, but

forming the link will make j a direct superior of i as well. The second case covers the

situation where i 6∈ Ŝg,O(j). With g′ we denote g+ ji. We will use Ag({i}) to denote the

authorizing sets of i in g and Ag′({i}) to denote the authorizing sets of i in g′. When

these two sets have the same size, this means that there is exactly one shortest path p

from i to j in g, such that p ⊂ pi for any other path pi that may exist between i and j

in g.

As Gilles & Owen (1999) [12] remark, in some cases it can be shown that the dividend

of a coalition is always 1, 0 or −1, but in other cases there is no proof for this conjec-

ture yet. For that reason, we will restrain ourselfs to graphs where for every coalition

F ∈ Ag({i}) there exists a player k ∈ F such that k 6∈ G for all G ∈ Ag({i})\F , as it has

been shown that in acyclic permission structures and for v = ui, the unanimity game of

i, the dividend of coalitions with this property is either 1 or −1.

Theorem 4.6

Let v be superadditive, g ⊂ GO and O ∈ ON be an acyclic graph and let |Ag({i})| −
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|Ag′({i})| = 0 when i ∈ Ŝg,O(j). Let g be such that for every coalition F ∈ Ag({i}) there

exists a player k ∈ F such that k 6∈ G for all G ∈ Ag({i})\F . Furthermore, let it be the

case that for any player k 6= i, k 6= j that is part of the path between j and i in g it holds

that ∀E ∈ Ag({i}), k ∈ E if and only if j ∈ E.

Then v({i}) > 0 implies φdi (v, g
′) > φdi (v, g).

Proof:

First, note that if g is such that for every coalition F ∈ Ag({i}) there exists a player

k ∈ F such that k 6∈ G for all G ∈ Ag({i})\F , then this also holds for g′. Suppose

that this is not the case. Consider a coalition E ∈ Ag({i}) ∩ Ag′({i}), with a player

k that is not in any coalition G ∈ Ag({i})\E. These are exactly those coalitions that

do not contain j. Since for any H ∈ Ag′({i})\Ag({i}) it holds that H ⊂ G for some

G ∈ Ag({i}) it follows that k is also not in any coalition G′ ∈ Ag′({i})\E.

Now suppose there is a coalition E ∈ Ag′({i})\Ag({i}) such that there is no k ∈ E

such that k 6∈ H for all H ∈ Ag′({i})\E. However, as we assume that |Ag({i})| −

|Ag′({i})| = 0, it holds that there is exactly one path from j to i in g. It follows that for

any H ∈ Ag′({i})\Ag({i}) there is exactly one G ∈ Ag({i})\Ag′({i}) such that H ⊂ G.

Therefore if it holds for some E ∈ Ag′({i})\Ag({i}) that there is no k ∈ E such that

k 6∈ H for all H ∈ Ag′({i})\E, then it must also hold for the coalition F ∈ Ag({i}) such

that E ⊂ F that there is no k ∈ F such that k 6∈ G for all G ∈ Ag({i})\F . We can thus

conclude it is also true in g′ that for every coalition F ∈ Ag({i}) there exists a player

k ∈ F such that k 6∈ G for all G ∈ Ag({i})\F .

Now consider the unanimity game ui. We define wi := Rdg(ui) as the disjunctive

restricted value of the unanimity game ui on graph g based on an acyclic permission

basis O. Let E ⊆ N be a coalition. The following holds for the dividend of E: [12]

•E 6∈ Ag(E)⇒ ∆wi(E) = 0.

•E ∈ Ag({i})⇒ ∆wi(E) = 1.

•E 6∈ A∗({i})⇒ ∆wi(E) = 0.

Furthermore, let ηi(E) := |{E′ ∈ Ag({i})|E′ ⊂ E}| be the amount of coalitions in
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Ag({i}) that are a subset of E. As we have that for every coalition F ∈ Ag({i}) there

exists a player k ∈ F such that k 6∈ G for all G ∈ Ag({i})\F , we know that for all

E ∈ A∗({i}) [12]:

∆wi(E) = (−1)ηi(E)−1.

Therefore, to prove Theorem 4.6 we need only look at coalitions E such that E ∈

Ag({i}), E ∈ Ag′({i}), E ∈ A∗g({i}) or E ∈ A∗g′({i}). Now consider a coalition E

such that i ∈ E and j 6∈ E. We know that ∆wi(E) = wi(E) − Σ
S⊂E

∆wi(S). Since

j 6∈ E, E will be autonomous in g′ if and only if E is autonomous in g. It thus follows

that wi(E) = w′i(E). For all S ⊂ E the same holds and we can thus conclude that

∆wi(E) = ∆′wi
(E) for all E 63 j.

We can now conclude that to prove Theorem 4.6 we only need to consider those

E ⊆ N for which it holds that j ∈ E and E ∈ Ag({i}), E ∈ Ag′({i}), E ∈ A∗g({i})

or E ∈ A∗g′({i}). There are two different cases we need to distinguish; i ∈ Ŝg,O(j) or

i 6∈ Ŝg,O(j). In the first case there already exists a path from j to i in g. In the second

case, such a path does not exist in g (but clearly it does exist in g’). Let’s first consider

the case where i ∈ Ŝg,O(j).

Lemma 4.7

There is no coalition E 3 i, j such that E ∈ Ag({i}) and E ∈ Ag′({i}).

Proof:

Let E be such that i, j ∈ E and E ∈ Ag′({i}). By definition of A it must hold that

there is only one path between j and i. As i 6∈ Sg,O(j), E is then not an autonomous

coalition in g and therefore E 6∈ Ag({i}).

Let E be such that i, j ∈ E and E ∈ Ag({i}). As i 6∈ Sg,O(j), for any path from

j to i there must be some agent k different form j and i, such that k is part of this

path. Since i ∈ Sg′,O(j) there does exist a path in g′ without any such k. This path is

clearly shorter than any of the paths between j and i in g. Thus, for any E be such that

i, j ∈ E and E ∈ Ag({i}) there exists a coalition F in g′ such that F is a strict subset
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of E. Thus E will not be a smallest superset of i in g′ and therefore 6∈ Ag′({i}).

�

By definition of A∗g and our specifications of graph g it now follows easily from Lemma

4.7 that there is also no E 3 i, j such that E ∈ A∗g({i}) and E ∈ A∗g′({i}).

We define r := |Ag({i}) ∩ Ag′({i})| as the amount of coalitions in Ag({i}) that do

not contain j. Note that this amount is the same in g as in g′. We define L as the size

of a coalition containing j in Ag({i}) and L ′ as the size of such a coalition in Ag′({i}).

Let E,F ∈ Ag′({i})\Ag({i}) be two coalitions containing j in Ag′({i}). We define

L := |E\F | as the amount of players in E that are not in F . For simplicity we assume

that L is the same irrespective of which two coalitions we pick, but we will argue later

that this does not matter for the validity of our proof. We make the same assumption

for all coalitions containing j in Ag({i}). Furthermore, note that the assumption that

|Ag({i})| − |Ag′({i})| = 0 entails that in g there is exactly one path p from j to i such

that p ⊂ E for some E ∈ Ag({i}). From this it also follows that for any two coalitions

E,F ∈ Ag({i})\Ag′({i}) we can find two coalitions E′, F ′ ∈ Ag′({i})\Ag({i}) such that

E\F = E′\F ′. We define k := L −L ′ as the difference in size between a coalition in

Ag({i}) containing j and a coalition in Ag′({i}) containing j. Note that k = |p| − 2,

as there is exactly one shortest path p from j to i. We define n := |Ag′({i})\Ag({i})|

as the amount of coalitions containing j in Ag′({i}). We note that in the first case

this is the same as the amount of coalitions containing j in Ag({i}) (by the assumption

that |Ag({i})| − |Ag′({i})| = 0). We define R as the number of agents in a coalition in

Ag({i}) ∩Ag′({i}) that are not in a coalition Ag′({i})\Ag({i}). Since we know that for

all E ∈ Ag({i}) and k ∈ p\{i, j} (we recall that p is the shortest path between j and i

in g) k ∈ E if and only if j ∈ E,we know that the set of these R for Ag({i})\Ag′({i})

is the same as for the coalitions in Ag′({i})\Ag({i}).We assume this number to be the

same for any coalition in Ag({i})∩Ag′({i}), but we will show that this assumption does

not affect the validity of our proof.

Let n be 1. Now φdi (v, g
′) − φdi (v, g) = Sh′i(wi) − Shi(wi). As argued above we

can limit ourself to those coalitions E ∈ Ag({i}), E ∈ Ag′({i}), E ∈ A∗g({i}) and E ∈

A∗g′({i}) such that j ∈ E. From this it follows that Shi(wi)−Sh′i(wi) =
∑r

x=0

(
r
x

)
(−1)x 1

Rx+L ′−
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∑r
x=0

(
r
x

)
(−1)x 1

Rx+L , where x = ηi(E) − 1 is equal to the amount of coalitions F ∈

Ag({i}) ∩ Ag′({i}) such that F ⊂ E. Note that (−1)x is equal to the dividend of a

coalition and Rx+ L is equal to the size of a coalition. We now get that:

r∑
x=0

(
r

x

)
(−1)x

1

Rx+ L ′ −
r∑

x=0

(
r

x

)
(−1)x

1

Rx+ L
=

r∑
x=0

(
r

x

)
(−1)x

(
1

Rx+ L − k
− 1

Rx+ L

)
=

∫ 1

0

r∑
x=0

(
r

x

)
(−1)x

(
zRx+L−k−1 − zRx+L−1

)
dz =

∫ 1

0

r∑
x=0

(
r

x

)
(−1)x(zR)x

(
zL−k−1 − zL−1

)
dz =∫ 1

0
(1− zR)r

(
zL−k−1 − zL−1

)
dz =∫ 1

0
(1− zR)r(1− zk)zL−k−1 dz > 0.

Where the fourth equality holds by the fact that (y + z)r =
∑r

x=0

(
r
x

)
yr−xzx

Now suppose R is not the same for every coalition in Ag({i}) ∩Ag′({i}) that is not

in Ag({i})\Ag′({i}). Let Ra be smallest of these R and Rz be the biggest. As the

value of Sh′i(wi) − Shi(wi) increases with R, the true value of Sh′i(wi) − Shi(wi) in

the case of differing R must be somewhere in between the value we obtain when using

Ra everywhere and the value we obtain when using Rz everywhere. We can therefore

conclude that Sh′i(wi)− Shi(wi) > 0 will still hold.

Next, we cancel the assumption that n = 1. Sh′i(wi)− Shi(wi) is now equal to :
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n∑
y=1

(
n

y

) r∑
x=0

(
r

x

)
(−1)x+y+1

(
1

Rx+ L − k + L(y − 1)
− 1

Rx+ L + L(y − 1)

)
=

∫ 1

0

n∑
y=1

(
n

y

) r∑
x=0

(
r

x

)
(−1)x+y+1

(
zRx+L−k+L(y−1)−1 − zRx+L +L(y−1)−1

)
dz =

∫ 1

0

n∑
y=1

(
n

y

) r∑
x=0

(
r

x

)
(−1)x(zR)x(−1)y+1

(
zL +L(y−1)−k−1 − zL +L(y−1)−1

)
dz =

∫ 1

0

n∑
y=1

(
n

y

)
(−1)y+1(1− zR)r

(
zL−k+Ly−L−1 − zL +Ly−L−1

)
dz =

∫ 1

0

n∑
y=0

(
n

y

)
(−1)y(−1)(1− zR)r(zL)y

(
zL−k−L−1 − zL−L−1

)
−(

n

0

)
(−1)1(1− zR)r(zL)0

(
zL−k−L−1 − zL−L−1

)
dz =∫ 1

0
(−1)(1− zL)n(1− zR)r

(
zL−k−L−1 − zL−L−1

)
+

(1− zR)r
(
zL−k−L−1 − zL−L−1

)
dz =∫ 1

0
(−1)(1− zL)n(1− zR)r(1− zk)zL−k−L−1 + (1− zR)r(1− zk)zL−k−L−1 dz > 0.

The inequality at the end holds because
∫ 1

0 (1−zL)n dz will always have a value between

0 and 1.

We assumed that L is always the same, but of course this need not be the case.

However, since we know that there is only one path between j and i in g, we know that for

any coalition in Ag({i})\Ag′({i}) with length Ln there is a coalition in Ag′({i})\Ag({i})

with size Ln−k. Therefore, if we take the set of the differences L between the coalitions

in Ag({i})\Ag′({i}) this is the same set as for the coalitions in Ag′({i})\Ag({i}). Let

La be smallest of these L and Lz be the biggest. The true value of Sh′i(wi)−Shi(wi) in

the case of differing L must be somewhere in between the value we obtain when using

La everywhere and the value we obtain when using Lz everywhere. We can therefore

conclude that Sh′i(wi)− Shi(wi) > 0 will still hold.

Now let us continue with the second case, where i 6∈ Ŝg,O(j). In this case Ag({i}) ⊂
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Ag′({i}). As a result of this r = |Ag({i})|, L = 0 and k becomes irrelevant. Thus we

get that Sh′i(wi)− Shi(wi) is equal to:

n∑
y=1

(
n

y

) r∑
x=0

(
r

x

)
(−1)x+y+1 1

Rx+ L ′ + L(y − 1)
=

∫ 1

0

n∑
y=1

(
n

y

) r∑
x=0

(
r

x

)
(−1)x+y+1zRx+L ′+L(y−1)−1 dz =

∫ 1

0

n∑
y=1

(
n

y

) r∑
x=0

(
r

x

)
(−1)x(zR)x(−1)y+1zL ′+L(y−1)−1 dz =

∫ 1

0

n∑
y=1

(
n

y

)
(−1)y+1(1− zR)rzL ′+Ly−L−1 dz =

∫ 1

0

n∑
y=0

(
n

y

)
(−1)y(−1)(1− zR)r(zL)yzL ′−L−1 −(
n

0

)
(−1)1(1− zR)r(zL)0zL ′−L−1 dz =∫ 1

0
(−1)(1− zL)n(1− zR)rzL ′−L−1 +

(1− zR)rzL ′−L−1 dz > 0.

With respect to both L and R we can reason in the same way as above. We can

thus conclude that Sh′i(wi)−Shi(wi) > 0 in both cases discussed. As v is superadditive

it holds that ∆v(E) ≥ 0 for any coalition E ⊆ N . As the disjunctive permission value

satisfies the additivity axiom the game (N, v) can thus be written as the sum of the

unanimity games of all the coalitions E ⊆ N multiplied by positive integers. Therefore,

we can conclude that Theorem 4.6 is true.

�

It is easy to see that this proof works more generally whenever there is a coalition

C ⊆ Ŝg,O(i)∪{i} such that v(C) > 0. In that case, to look at the influence of the link ji

we would consider all coalitions E such that j ∈ E and E ∈ Ag({C}), E ∈ Ag′({C}), E ∈

A∗g({C}) or E ∈ A∗g′({C}). The rest of the proof then works exactly the same.

Based on the proof just given we can now investigate when a link is more or less
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Figure 3

beneficial to make for players i and j. We will investigate this by looking at the effect

of adding one superior of i to the graph g and considering whether this would make the

effect of link ji on the disjunctive permission value for i and j bigger or smaller. We

distinguish 7 cases of which one is not relevant for the situation were i 6∈ Ŝg,O(j). Figure

3 shows a graph g in which i ∈ Ŝg,O(j) and 8 different ways in which g can be extended

to give i an extra superior. We will treat 2 of these cases as one, as they have the same

effect. Unless stated otherwise, our discussion of the effect of the extra superior will hold

for both the case where i ∈ Ŝg,O(j) and the case in which i 6∈ Ŝg,O(j)

Graph g1 shows a possible way of adding a superior of i to g that increases both L

and L ′ with 1. As z < 1, we get that with an increasing L (or L ′ if i 6∈ Ŝg,O(j)),

zL−L(−k)−1 decreases. The result of this is that the benefit of the link ji with respect

to the disjunctive permission value for j and i decreases when i has more superiors of

this type.

The added superior in graph g2 increases L ,L ′ and L. If there is only one path from

the boss player β to i in g, then this change will increase both L and L with 1 and the

value of zL−L(−k)−1 will stay the same. However, the increase of L will make (1− zL)n
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increase, which in turn will make the total benefit of the link ji decrease. In case there

is more than one path from β to i in g things get more complicated. As L will always

be smaller than L the effect of the added player will be greater on the average value

of L than on the average value of L . This means that L − L(−k)− 1 decreases which

causes zL−L(−k)−1 to increase. As mentioned before, the increasing L has an decreasing

effect on the total sum since it increases (1− zL)n. It is thus unclear what the effect is

of the addition of this type of superior on the benefit of the link ji when there is more

than one path from β to i.

The graph g3 shows a situation where L and k both increase with 1. Note that by

assumption, there is always only one path between i and j in the case where i ∈ Ŝg,O(j).

In the case where i 6∈ Ŝg,O(j) this situation does not exist. As L and k increase with the

same amount zL−L−k−1 stays the same. However, (1−zk) increases as k increases. The

result of this is that the benefit of the link ji with respect to the disjunctive permission

value for j and i increases. This is very intuitive, as the ’shortcut’ created by the link

ji surpasses more players in g3 than in g.

Graph g4 shows a situation in which L increases with 1 and all other variables stay

the same. Note, however, that if n > 2, L will still increase but with a smaller number

than 1. Although L does not change in this case, we get the same situation as in

g2. The increase of L has a positive effect on the total sum by increasing the value of

zL−L(−k)−1. However, as it also increases the value of (1− zL)n it has a negative effect

on the sum at the same time.

In graph g5 the added superior changes n. When L = 1, as is the case in g, adding

this superior will only change n. However, if L is bigger than 1 in g the added superior

will decrease L, of which, as noted before, the effect on the value of Sh′i(wi) − Shi(wi)

is unclear. If we look at the effect of increasing n on its own, we see that it decreases

the value of (1− zL)n, which increases the total value.

Both g6 and g7 show a way in which r can be increased by 1. The way depicted in

g6 could have an effect on no other variable in case R = 1 (or r = 0 ) in g. The option

of g7 will always decrease R. As R decreases, 1− zR will decrease as well. The increase

of n means that (1− zR)n decreases even more. The benefit of the link ji with respect

to the disjunctive permission value for j and i will thus decrease in this situation.
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Graph g8 lastly, shows the addition of a superior that will only effect R. In this

case R is increased by 1, but this will be less in case r > 1. When R increases 1 − zR

increases as well and subsequenly the total benefit of the link ji increases.

If we now compare the stable graphs of the conjunctive approach with those of the

disjunctive approach we can see a clear difference. In the conjunctive approach only

trees and forests are stable. In the disjunctive approach, however, even non-transparent

graphs can be stable. To see this, consider the following example (see Figure 4):

Let N = {h, i, j, k, l} and v ∈ GN be given by v(E) = 1 for all E 3 i, v(E) = 2 for

all E ⊃ {i, j} and v(E) = 0 otherwise. Let O ∈ ON be given by

O(l) = {h, i, j, k}, O(k) = {i, j}, O(h) = {i, j}, O(j) = {i}, O(i) = ∅

The disjunctive restriction of v given the graph in Figure 4 is now given by:

Rdg(v)(E) =


1, if E ⊇ {i, h, l} and E 63 j

2, if E ⊇ {i, j, k, l} or E ⊇ {i, j, h, l}

0, otherwise

l

k
h

j

i

Figure 4

The graph g in Figure 4 is clearly not transparent, due to the link between i and h
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and the fact that i ∈ Ŝg−hi,O(h) via j. However, if we compare the disjunctive permission

value for i in g (23
60) with those in g−ji(

20
60) and g−hi(

18
60), we see that as long as the cost

of a link is small enough (c < 1
20) i will not want to break any link. By disjunctive

fairness we know that this means that both j and h do not want to break their link with

i either.

Due to this difference an inefficient graph is more likely to form in the disjunctive

approach than in the conjunctive approach. For any graph g which is not a tree, there

exists a graph g′ which is a tree such that the total value of these graphs is the same

(v∗(g) = v∗(g′)), but c(g) > c(g′). Hence, a graph that is not a tree can never be an

efficient graph. In the conjunctive approach, a tree graph will never change into a graph

that is not a tree, although as we’ve shown, in the disjunctive approach it could.

Although a tree graph can be efficient, this is not necessarilly the case. For example,

a graph containing null players that are not boss players will not be efficient, as the same

total value can be generated by a graph without such players. The next chapter will

study some example situations for both the conjunctive and the disjunctive approach,

of which several contain such null players.
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5 Applications

In this section we discuss some applications for both conjuctive and disjunctive flexible

permission structures. First we will use the conjuctive approach to study an organi-

zation structure where the only ’productive’ players are the ones in the lowest level of

the permission basis. We show that the organization structure will end up as a tree.

Subsequently we will argue that the existence of an unproductive middleman can in-

crease the payoff of the boss player. Next we use the disjunctive approach to look at a

buyer-seller situation and we will show that in most cases, it is beneficial for both buyers

and sellers to have more than one connection. We will also use the disjunctive approach

to look at a buyer-seller situation in which there is a middleman who pays for the cost

of transportation.

5.1 Organizations with unproductive superiors

Consider a hierarchical production organization in which the productive players are all

in the lowest level. In other words for all i such that v({i}) > 0 it holds that O(i) = ∅.

We will use the conjunctive approach to show that this organization will transition into

a tree structure.

Consider the player set N = {g, h, i, j, k, l,m} and let the permission basis O ∈ ON

be defined by:

O(g) = N\{g}, O(i) = {j, k, l,m}, O(j) = {l,m}, O(k) = O(l) = {m}, O(h) = O(m) = ∅

Let v ∈ GN be defined as follows:

v(E) =


1, if E 3 h or E 3 m

2, if E ⊇ {h,m}

0, otherwise

Graph g1 in Figure 5 shows the maximal transparent graph based on permission basis

O. We can start with the maximal transparent graph, since by Theorem 4.1 we know

that non-transparent graphs are never stable under the conjunctive permission value.
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By Theorem 4.3 we know that m will receive a higher payoff when removing either the

link with l or the link with k. Both links are thus unstable in g1. Suppose m breaks the

link with l. In the resulting graph g2, the link km is stable, as without it the conjunctive

permission value for both k and m will become 0. However, both j and l have become

inessential players by the breaking of link lm. As mentioned in chapter 4.1, inessential

players are better off when breaking all the links and the links that j and l are involved

in are therefor not stable. We thus end up in graph g3. It is easy to see that no player

wants to break any link in g3 and by Theorem 4.1 we also know that no player wants to

form any link. Graph g3 is thus stable.

Note that if m would have chosen to break the link with k, this would have had a

less beneficial result for him. In g3 the payoff for m is 1
4 − c. If m would have broken

with k her payoff would have been 1
5−c. Furthermore, note that the graph we start with

matters for the end result. Had we started with a completely disconnected graph, we

would have ended up with the graph {gh, gm}. The graph {gh, gm} is the only efficient

graph based on permission basis O and also gives the highest payoff for g, h and m. Our

example thus shows that stable graphs are not necessarilly efficient graphs.

The next example shows that unproductive middlemen aren’t always useless. In

some cases they can increase the payoff of the boss players, and in that way incentivize

unefficient graphs. By taking over the supervision(link cost) of several productive work-
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ers from the boss players, these middlemen can save the boss player some costs, thereby

increasing the boss’s payoff.

Let N = {f, h, i, j, k}, let O ∈ ON be defined as follows:

O(f) = N\{f}, O(k) = {h, i, j}, O(h) = O(i) = O(j) = ∅

Let v ∈ GN be additive where v({h}) = v({i}) = v({j}) = 1 and v({f}) = v({k}) = 0.

Now compare graph g1 and g2 in Figure 6. The costs for f in g1 are three times as

high as those in g2. In return, f loses part of the payoff he can claim from h, i and j

to player k. In g1 the payoff for player f is 11
2 − 3c while h, i and j receive 1

2 − c. In

g2 player f receives 1 − c and h, i and j receive 1
3 − c. It thus follows that whenever

1
4 < c < 1

3 , player f will be better off in a structure with an unproductive middleman.

In the case of unproductive superiors and an additive v a structure with a middleman

is only beneficial for the boss player when there are at least 3 productive workers under

the supervision of a middleman. To see this, note that in the case of 2 productive workers

the cost of a link must be at least 1
3 of the average value of the two workers in order for

the boss player to benefit from the existence of a middleman. However, if the link cost

is this big, then at least one of the workers will have a negative payoff in the graph with

the middleman, making this graph unstable. On the other hand, if the middleman is

productive, a graph with middleman can already be beneficial for the boss player when
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there is only one productive worker in the lowest level. This is shown in the next example.

Let v ∈ GN be additive and let v,N = {i, j, k} and O ∈ ON be given by:

v({j}) = v({k}) = 1 and v({i}) = 0

and O(i) = {j, k}, O(j) = {k}, O(k) = ∅

Now consider the two graphs in Figure 7. The conjunctive restrictions of v in graphs g1

and g2 respectively are as follows:

Rcg1(v)(E) =


1, if E = {i, j} or E = {i, k}

2, if E = {i, j, k}

0, otherwise

and

Rcg2(v)(E) =


1, if E = {i, j}

2, if E = {i, j, k}

0, otherwise

The conjunctive permission values for g1 and g2 are respectively φc(v, g1) = (1, 1
2 ,

1
2) and
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φc(v, g2) = (5
6 ,

5
6 ,

2
6). We can see that in this case player 1 receives a higher payoff in g2

than in g1 whenever 1
6 < c < 1

3 . If we would allow players to deny the formation of a

link even when this link increases their payoff, we would expect player i to deny a link

initiated by player k, as he can expect player k to then form a link with player j.

These examples show that flat hierarchies are most beneficial for the players at the

lowest level of the permission basis, but not necessarilly for the other players. In the

last example both graphs are efficient, but in some cases (Figure 6) the boss player will

receive a higher payoff in an inefficient graph than in any efficient alternative.

5.2 Additive buyer-seller games

In this subsection we consider buyer-seller relationships as flexible permission structures.

A buyer-seller supply chain represents a situation in which a manufacturer (the seller)

sells a product to a retailer (the buyer) who in turn will sell it to consumers. Case studies

have shown that an abundance of industries is organized as network structures [16]. In

these cases it is the buyer who produces value (by selling to a consumer), but only

in cooperation with a seller. A permission structure in which the sellers are the boss

players and the buyers the subordinates of these sellers, thus seems like a natural way

of modelling this type of relationship.

Buyer-seller realtionships have been extensively modeled in the literature in various

ways; under the assumption of constant demand, of varying demands, without consider-

ing logistic costs and as network structures [9,16,17,24]. In our case we assume constant

demand of the product, with as only cost the initial communication cost for forming a

link.

We consider a game with 3 sellers and 5 buyers, where v is additive and every buyer

has the potential to produce a value of 1. The permission basis O ∈ ON is a graph in

which there is a link from every seller to every buyer, but no links between sellers or

between buyers. The potential of a buyer is only realised if the buyer has a connection

to at least one of the sellers. Suppose now that the cost of a link is 1
8 . The disjunctive

permission value of any buyer when connected to 1, 2 or all the sellers is respectively 1
2 ,

2
3 and 3

4 . With c equal to 1
8 , we get a payoff of 3

8 when a buyer is connected to 1 seller,

5
12 when connected to 2 and 3

8 when connected to all sellers (see Figure 8 for an example
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of a stable graph for this case). In a stable graph, every buyer will thus have a link with

exactly two sellers.

We can see that if the link cost is not too high (in this case if it is less than 1
6), it is

beneficial for a buyer to have a link with more than one seller. This is in accordance with

the predictions made in Malone et al. (1987) [18] and the results of model 1 in Bakos

& Brynjolfsson (1993) [1]. A buyer that has access to more than one seller has more

bargaining power. This stronger competition among the sellers will decrease the price a

seller can ask, which improves the situation for the buyer [17,23]. However, we also see

that there is a maximum to the amount of sellers that a buyer wants to be connected

to. Every next seller which a buyer connects to provides him with a smaller benefit. At

some point, this benefit will not be bigger than the cost of forming a link anymore.

If we now look at the perspective of a seller, we see that for him more connections

is simply better. The benefit of a link for a selller does not depend on how many links

he himself already has, it depends on how many links the buyer he wants to connect

with already has. That is, a buyer that has no connection to any seller yet, is worth

1
2 −

1
8(but may become worth less when this buyer forms more links), while a buyer that

already has one connection is worth 1
6 −

1
8 . Thus, while in a stable graph all the buyers

are connected to the same amount of sellers, the sellers might have different amounts of

buyers. It is even possible for a seller to have no links at all!

The intuition behind this is that a seller will always want to sell more and therefor

more buyers to sell to is always better. However, a buyer will only want to buy a certain

amount and so for him the benefit of more sellers is only in the greater bargaining power

it gives him.

The next example shows a situation in which it is better for buyers to connect to a
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middleman than to directly connect with the seller. Consider a situation in which the

manufacturer is located quite far from his potential buyers. In this case, the cost of

forming a link with the seller would be expected to be relatively high, as the product

needs to be shipped over a significant distance. If instead, we introduce a middleman

who takes up the shipping cost for many buyers at once, both the seller and the buyers

can be better off.

Consider a situation with one seller s, one middlemanm and 6 buyers; N = {s,m, b1, ..., b6}.

Let v ∈ GN be additive where v({bi}) = 1 for 1 ≤ i ≤ 6 and v({s}) = v({m}) = 0. The

permission basis O ∈ ON is defined as expected:

O(s) = N\{s}, O(m) = {b1, ..., b6} and O(bi) = ∅ for 1 ≤ i ≤ 6.

Figure 9 shows the graph with middleman. Now let the cost for a link with the

seller be 1
2 and the cost for a link between buyer and middleman 1

6 . If a buyer would

connect directly to the seller instead of via the middleman, both buyer and seller would

get exactly zero, as the benefit of this link for either player (1
2) is equal to the cost of

forming the link. In the situation as depicted in Figure 9, however, the buyers have a

payoff of 1
3−

1
6 = 1

6 , the seller of 6 · 13−
1
2 = 11

2 and the middleman gets 6 · 13−
1
2−6 · 16 = 1

2 .

The situation in Figure 9 is stable, as forming a direct link with the seller when a buyer

is already connected to the middleman will be even less beneficial than forming a link

with the seller only. Forming this link would thus decrease the payoff of both the buyer

and the seller.
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We can see from the previous two examples that in the disjunctive approach having

multiple links can significantly increase a players payoff. Graphs with middleman such as

in Figure 6 and 7 will generally not be stable as unlike the conjunctive approach, forming

a direct with the boss player will in most cases increase the disjunctive permission value

of a player. However, as shown in our last example, if not all links are equally expensive

it can be the case that the stable graphs of a game under the disjunctive approach

coincide with those under the conjunctive approach.
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6 Conclusion and future work

6.1 Conclusion

In this thesis we have developed a framework for games with a flexible permission struc-

ture. We have based ourselves on games with permission structures as defined by Gilles,

Owen & Van den Brink (1992) [13] and Gilles & Owen (1999) [12] in which players need

permission from one or more of their direct superiors in order to cooperate. The frame-

work we have built allows for links to be formed and severed in case this has a positive

effect on the payoff of the players between which the link exists. We followed Jackson &

Wolinsky (1995) [15] in assuming a link will be formed if it does not decrease the payoff

of either of the players. A link will be severed if this strictly increases the payoff of one

of the two players involved. We also assumed that links have a certain cost c and that

this cost is the same for every link and for any player.

In chapter 4 we then discussed the stability of the graphs as defined by the framework

set out in chapter 3. We have shown that in the conjunctive approach, where a player

needs permission from all his direct superiors, only trees and forests are stable. We have

further noted that as the cost of the links increases it becomes less likely for a graph

with many layers of hierarchy to be stable. This is due to the fact that a player with

more superiors loses a bigger percentage of his contribution to his superiors.

For the disjunctive approach it is less easy to determine which links are stable. In

the disjunctive approach, a player benefits from having more direct superiors. Because

of this, whether a link will be stable or not is a matter of whether the benefits outweigh

the cost of a link. We then took a closer look on how a link changes the disjunctive

permission value of a player in the proof of theorem 2.6. With the help of this, we

considered some example graphs to examine in which situations the formation of a link

will increase the disjunctive permission value more or less.

In chapter 5 we have discussed applications both for games with a conjunctive and

a disjunctive flexible permission structure. We have considered organization structures

with unproductive superiors in several examples for the conjunctive approach and buyer-

seller situations as an illustration for the disjunctive approach. These examples have

also shown that in games with a flexible permission structure several graphs can be
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stable. These alternatives do not only differ in structure, but also yield a different payoff

distribution.

We have not yet shown that a game with a flexible permission structure will always

converge to a stable graph. This question remains for future research.

6.2 Future work

6.2.1 Alternative allocation rules

In this thesis we used the Shapley value to study the stability of links in games with a

flexible permission structure. An alternative allocation rule to consider is the Banzhaf

value, which has also been axiomatized for permission structures. [4, 5] It has been

shown that the Banzhaf permission values and Shapley permission values share a lot of

properties. Both satisfy additivity, the inessential player property, the necessary player

property, weak structural monotonicity and one-player efficiency. The last axiom is an

efficiency axiom that only holds for one-player games. Aside from these axioms, both

the disjunctive Banzhaf and Shapley permission value satisfy disjunctive fairness and

the conjunctive Banzhaf and Shapley permission value satisfy conjunctive fairness.

An important difference between the two values is that the Banzhaf permission values

do not satisfy efficiency. Although this may sound like a major drawback, the Banzhaf

permission values do have some desirable properties that the Shapley permission values

lack. Van den Brink (2003, 2010) [4, 5] has shown that the Banzhaf permission values

differ from the Shapley permission values on three split axioms. The first of these three,

power split neutrality, states that for i, j, h ∈ N and j ∈ S(i) ∩ S(h) where i 6= h, when

the link between j and i is broken, the sum of the payoffs of i and h, the two direct

superiors, stays the same. Not only does this axiom not hold for the Shapley permission

values, these values do not even satisfy the weaker opposite change property, which states

that the payoff of the two direct superiors changes in opposite direction. The Shapley

permission values do, however, satisfy the opposite change property when v is monotone.

The other two split axioms consider situations where a player is split into two instead

of a split of power. Vertical split neutrality states that if we introduce a new player h who

is a null player and who enters the permission structure as the unique direct superior of
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some player j while getting all j’s direct superiors in the original game as direct superior,

then the sum of the payoff of h and j in this new game is equal to the payoff of j in the

old game. We can see this change as splitting up player j into two players in the vertical

direction.

Horizontal split neutrality is similar to vertical split neutrality, but for situations in

which we split j into two on the horizontal level. Horizontal split neutrality states that

if a player j has no successors and we let a player h enter the game who has the same

direct superiors as j and also no successors and j and h veto each other in the new game,

then the sum of the payoffs of h and j in the new game is the same as the payoff of j in

the original game.

The Shapley permission values satisfy their own split neutrality axioms, which differ

from the ones for the Banzhaf permission values in the sense that they require the total

sum of the payoffs of all players to remain the same. The Banzhaf permission values thus

differ from the Shapley permission values with respect to how they react to changes in

the game in certain situations where there is a split of power or of players. As the Shapley

permission values satisfy a global alternative of the split neutrality axioms instead of the

pairwise versions satisfied by the Banzhaf permission values, it can be beneficial for a

player to pretend to be more than one. Under the Banzhaf permission values this will

not increase a players payoff and thus there will be no incentive for a player to cheat

in this way. For future research it would thus be interesting to consider which graphs

will be stable in the conjunctive and disjunctive approach under the Banzhaf permission

values.

Jackson (2005) [14] argues that the Myerson value, which is an extension of the

Shapley value for communication and network structures, has a serious deficit in the

sense that it takes the graph as fixed when the payoff distribution is calculated. This is

equally true for the conjunctive and disjunctive permission value. According to Jackson,

it is important to take into account which alternative networks could have formed as this

can influence the incentives to form certain networks. Aside from that, it can be argued

that it is only fair to take into account whether a player fulfills a role in the graph that

could have been fulfilled by other players as well, or whether he’s the unique player who

can take this specific position.
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The first criticism Jackson has is on the insensitivity of the Myerson value to alter-

native networks. Both the conjunctive and the disjunctive permission value have this

same property. To see this for the conjunctive permission value, we look again at the

graph in Figure 1. Note that under the conjunctive permission value this graph would

turn into either {ik, kl} or {ij, jl}. The payoff in both cases would be 1
3 for the three

players with a link and 0 for the fourth player. The conjunctive permission value thus

does not take into account that player k and j can be replaced by each other, while i

and l are irreplaceable.

To see the same for the disjunctive permission value, look again at the buyer-seller

situation as depicted in Figure 8, but now suppose all the buyers are connected to s1 and

s2. Note that this situation, in which seller s3 has no links, would also be stable. Under

the disjunctive permission value the payoff of s1 and s2 does not depend on the existence

of s3. However, the existence of this third seller does matter for the fact whether there

are alternative graphs that could have formed or not. This shows the insensitivity of the

disjunctive permission value to alternative networks.

One of the axioms underlying the Myerson value that Jackson considers problematic

is the axiom of equal bargaining power. Equal bargaining power states that players

benefit equally from the link they form between them. Although the conjunctive per-

mission value does not satisfy this property, as is shown in Van den Brink (1999) [3], the

disjunctive permission value does satisfy equal bargaining power, which follows directly

from disjunctive fairness.

The problem with equal bargaining power can be seen from the following example:

Let N = {g, i, j} and v ∈ GN be given by v(E) = 1 for all E ⊇ i or E ⊇ j and v(E) = 0

otherwise. Let O ∈ ON be given by

O(g) = {i, j}, O(i) = O(j) = ∅

If we now consider the two graphs depicted in Figure 10 we can see that v(g1) = v(g2).

As g2 has more links than g1 the total value of this graph is therefore less. However, if

we look at the disjunctive permission value for the players in both graphs we see that

in graph g1 player g and i receive 1
2 and player j receives 0, while in g2 players i and
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j receive 1
6 while g gets 2

3 . Due to equal bargaining power, player g and i receive the

same in g1. This does not only provide player g with an incentive to form a link with

j and thereby creating an inefficient graph, it is also questionable whether the equal

bargaining power axiom is fair when the roles of the players are not comparable.

Jackson argues that in cases of full symmetry of players the most natural distribution

is one in which all players receive the same payoff. However, in situations where one

can assume that productive players actually put in some effort to produce this value,

it seems unreasonable to allocate the null players in such a graph the same as the

productive players. Nevertheless, it would be interesting for future work to look into

allocation functions that take into account that a graph is not fixed and that alternative

networks may form or could have formed.

6.2.2 Alternative assumptions for link formation

In this thesis we assumed that a link can be formed if it does not decrease the payoff of

either players involved. We assumed a link will be severed if this increases the payoff of

either of the players, irrespective of how it changes the payoff of the other. Of course,

other assumptions could also be made and could result in different stability properties

for both the conjunctive and the disjunctive approach.

With respect to the making of a link, an alternative would be to assume that only

one of the two, either the successor or the direct superior, can initiate the link. The

other player can then only accept or deny this link. The result of this change would

be that only links will form that strictly increase the payoff of the initiator and do not

decrease the payoff of the acceptor. A link that would increase the acceptor’s payoff and

would not change that of the initiator would not form in this situation, while it could
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form under the assumptions made in this thesis.

One benefit of this inequality in link formation is that we can also consider strategic

moves from players with respect to link formation. In our current approach, any link

that is not harming either of the players could form. If only one of the two players can

initiate, than one link becomes more likely to form than another. Consider the example

in Figure 7. If only the superiors can initiate a link, a smart player i would initiate a

link with j, but not with k, as it is better for i if j forms a link with k. We would thus

expect g2 to form. On the other hand, if only the successor is allowed to initiate a link,

we would expect g1 to form as this is the more beneficial situation for player k.

With respect to the severance of links it would also be interesting to look at the

effects of assuming that both players need to agree in order for a link to be broken. In

that case links that are beneficial to one player, but costly for the other will be stable.

Aside from this, we could also look at the consequences of assuming that only one of the

two players can break the link. On the Dutch labor market, for example, it’s not very

easy to fire someone, yet it is almost always possible to resign. Assuming that a link can

only be broken by a successor would better match such a situation.

Lastly, it would be interesting to look at alternative assumptions with respect to

the link costs. In this thesis we assumed both players share the cost of a link equally.

However, in some situations it would be more natural to assume an unequal share or

even that only one of the two players pays the cost. Especially in combination with

alternative assumptions with respect to link formation and severance, an equal sharing

of the link cost might be unnatural.
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