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Abstract

We set up a generic framework for proving completeness results for variants of the modal mu-
calculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new
completeness results: for the graded mu-calculus (which is equivalent to monadic second-order
logic on the class of unranked tree models), and for the monotone modal mu-calculus.

Besides these main applications, our result covers the Kozen-Walukiewicz completeness theo-
rem for the standard modal mu-calculus, as well as the linear-time mu-calculus and modal fixpoint
logics on ranked trees. Completeness of the linear-time mu-calculus is known, but the proof we
obtain here is different and places the result under a common roof with Walukiewicz’ result.

Our approach combines insights from the theory of automata operating on potentially infinite
objects, with methods from the categorical framework of coalgebra as a general theory of state-
based evolving systems. At the interface of these theories lies the notion of a coalgebraic modal
one-step language. One of our main contributions here is the introduction of the novel concept of a
disjunctive basis for a modal one-step language. Generalizing earlier work, our main general result
states that in case a coalgebraic modal logic admits such a disjunctive basis, then soundness and
completeness at the one-step level transfers to the level of the full coalgebraic modal mu-calculus.

Mathematics Subject Classification (MSC2010): 03B45; 03B70; 68Q60; 91A43.
Keywords: modal fixpoint logic, completeness, coalgebra, automata, graded modal mu-calculus, mono-
tone modal mu-calculus.

1 Introduction

1.1 Modal p-calculi

Over the past fifty years, the formalism of modal logic has developed into what is undoubtedly the
most widely applied branch of logic. Phenomena from a wide spectrum of application areas, ranging
from metaphysics in philosophy to game theory in economics, and from arithmetic in mathematics
to the semantics of natural language in linguistics, have been modelled in some version or variant of

*The research of this author has been made possible by Vrije Competitie grant 612.001.115 of the Netherlands
Organisation for Scientific Research (NWO).



modal logic. This success is largely due to the fine balance that modal formalisms strike between ex-
pressiveness and computational feasibility, but also to the well-behaved (and well-understood) unifying
meta-logical theory of modal logic [3].

Many applications of modal logic require that the basic modal language is extended to express
some kind of recursion. This can be taken care of in the form of fixpoint connectives (such as the
common knowledge operator in epistemic logic, or the until operator in linear time temporal logic),
or via explicit (least- and greatest) fixpoint operators. In the latter case we will speak of a u-calculus
extending the more basic modal logic, the prime example being the ‘standard’ modal p-calculus as
introduced by Kozen [18]. Other examples include the linear time p-calculus [2], the p-calculus on
ranked trees, the graded modal p-calculus [19], and the monotone p-calculus [7].

Our earlier remark on the balance between expressiveness and computational feasibility still applies
to such propositional modal u-calculi. In the setting of specification and verification of various kinds
of processes, adding this powerful yet tractable form of recursion to the language of basic modal logic
enables us to express and reason about the behaviour of state-based evolving systems in a manner
that goes far beyond the more local properties that can be expressed in the basic formalism, while
on the other hand, this additional expressive behaviour comes at a very low computational cost: the
EXPTIME complexity of the satisfiability problem for the full modal p-calculus [6] is no worse than
that of virtually any extension of basic modal logic.

Given this importance of modal fixpoint logics (which include logics like LTL of CTL that are
obtained from more basic modal logics by adding fixpoint connectives rather than explicit fixpoint
operators), there is a clear need to study and further develop their general theory.

1.2 Completeness

The question that we address here concerns the axiomatization problem for modal p-calculi. That is,
our goal is to find, for each member of the above-mentioned ‘family of u-calculi’, a (finite) set of axioms
and derivation rules that generate the class of valid formulas in the associated class of models. For the
time being we take this ‘associated class’ to consist of all models for the language, that is, we do not
impose additional conditions on the models such as, in the case of standard Kripke models, reflexivity
or transitivity. Even without such additional constraints the axiomatization problem for modal fixpoint
logics is notoriously difficult!, and there seems to be very little in the way of general results (as an
exception we mention results on so-called flat fixpoint logics [28, 32]). In fact, while many results are
known about axiomatizations for concrete logics based on fixpoint connectives, until recently, only two
completeness results for u-calculi were known: the Kozen-Walukiewicz completeness theorem for the
standard p-calculus [33], and Kaivola’s completeness result for the linear time p-calculus [17].

Note that in both cases, the axiomatization is as simple and natural as the u-calculus itself: add, to
a sound and complete axiomatization of the basic (i.e., fixpoint-free) language, a single axiom schema
and a rule schema. Together these capture the least fixpoint operator in the sense that the pre-fixpoint
axiom schema

elup-o/p] = pp-p (1)
simply states that pz.¢ is a pre-fixpoint of ¢, while the Kozen-Park induction rule:

ol /p] —
pup-o — P

(2)

expresses that px.p is indeed its least pre-fixpoint.
This naturally raises the question whether other p-calculi can be axiomatized in an equally simple
way, and our paper will provide a positive answer. Our goal, in fact, is to set up a general framework for

We refer to the introduction of our earlier work [9] for a more detailed analysis.



proving completeness for variants of the standard modal p-calculus. This framework will be founded
on two pillars, viz., the theories of coalgebra and automata operating on (possibly infinite) objects,
respectively.

1.3 Coalgebras, modal logic & automata

A suitable abstraction level for studying various p-calculi in a unified framework is provided by the
theory of (universal) coalgebra ([26, 14]), which has found a place in theoretical computer science as
a natural mathematical environment for modelling various sorts of state-based evolving systems, such
as, indeed, streams, labelled transition systems, Markov chains, etc. The attraction of the coalgebraic
approach lies in its combination of mathematical simplicity with wide applicability: many features
of (computational) processes, such as nondeterminism, input/output or probability, can be elegantly
and naturally encoded in the coalgebraic type T (which formally is an endofunctor on some suitable
category). This makes the theory of universal coalgebra well-equipped for a uniform study of various
notions that are salient in the study of (possibly infinite) behavior, such as invariance or behavioral
equivalence.

Almost since its emergence in logic and computer science, coalgebra has been firmly linked to modal
logic: Aczel [1] already noted that Kripke models are natural examples of co-algebras, and Moss [22]
initiated the application of modal-type languages for reasoning about coalgebras of arbitrary type.
The idea is that the role of equations in algebra is played by modal formulas in coalgebra — and
in case infinite behavior is to be specified, modal fizpoint formulas are called for. Note that the link
works in both directions: the theory of coalgebraic modal logic can be applied to design suitable modal
languages for the specification and verification of coalgebraic behaviour, but it can also be instrumental
in the study of modal logic, by providing modal formalisms with a coalgebraic semantics. Currently,
the most common approach to coalgebraic modal logic, going back to the work of Pattinson [25] and
others, is based on a categorical analysis of the semantics of modalities in terms of so-called predicate
liftings for the type functor T (see section 2.2 for the details). That is, in line with the uniform
and parametric approach of universal coalgebra, a generic coalgebraic modal logic may be given as
a pair consisting of a functor T (providing the semantics of T-coalgebras), together with a set A of
predicate liftings for T (providing the modalities and their interpretation). As we will see in section 2,
all of the mentioned p-calculi are instances of the coalgebraic p-calculus introduced by Cirstea, Kupke
& Pattinson [4], that is, they are extensions of such coalgebraic modal logics with explicit fixpoint
operators.

All our proofs involve automata in an essential way. This should not come as a surprise, as the
use of automata (more specifically: finite state devices operating on potentially infinite objects such
as infinite words, trees, and Kripke models) is well established in the study of fixpoint logics [12].
Pertinent to our work here is the realization that much of the theory of modal (fixpoint) logic and
automata is essentially coalgebraic in nature. The coalgebra automata that we will employ here were
developed by Fontaine, Leal & the third author [10] as the automata-theoretic counterpart of the
coalgebraic p-calculi that we just discussed.

The key observation underlying the links between coalgebra, modal logic and automata is that many
of the properties of modal fixpoint logic are already manifest at the one-step level, that is, at the level of
formulas of modal depth one and one-step unfoldings of coalgebra states. For instance, this observation
was the guiding principle in the authors’ work on Janin-Walukiewicz style expressive completeness
results for coalgebraic p-calculi [7]. Here our approach will follow the same track: a pivotal role in our
proofs will be played by the notion of a one-step logic associated with a pair (T, A), stemming from the
work on coalgebraic logic by Cirstea, Pattinson, Schroder and others [5, 25, 30, 31]. Generalizing earlier
results on specific coalgebraic fixpoint logics (viz., the ones based on Moss’ coalgebraic modality [8]),
our main aim will to be show that, under some conditions, the completeness of a coalgebraic p-calculus
is already determined by the completeness of the associated one-step logic.



1.4 Contribution

The contribution of this paper is threefold. First of all, our coalgebraic analysis of one-step logic for
nondeterministic automata has led us to isolate the concept of a disjunctive one-step formula (Def-
inition 3.15), and the related notion of a disjunctive basis for a set of modalities (Definition 3.20).
Disjunctivity is the property of one-step formulas that ensures nondeterministic behaviour of the cor-
responding automata; essentially, a one-step formula is disjunctive if it only admits special, ‘harmless’
conjunctions. A set of modalities (predicate liftings) admits a disjunctive basis if there are sufficiently
many disjunctive formulas; intuitively, what this achieves is that we may eliminate conjunctions, by
proving a simulation theorem stating that every alternating A-automaton can be transformed into an
equivalent nondeterministic one. In the main result of this paper we will see an important application
of disjunctivity, but we believe there to be many more.

Our second contribution comprises a general completeness theorem for modal p-calculi. Formulated
in coalgebraic terminology, it states that, in case a coalgebraic modal logic admits a disjunctive basis,
then soundness and completeness at the one-step level transfers to the level of the full coalgebraic
modal mu-calculus. Note that we may speak of such a transfer since every one-step axiomatization H
naturally induces an axiom system pH for the corresponding p-calculus (Definition 4.6).

Theorem 1.1 Let T be a set functor, let A be a monotone modal signature for T, and let H be a
one-step axiomatization for A and T. If H is one-step sound and complete and A admits a disjunctive
basis, then uH is a sound and complete axiom system for the uML -formulas that are valid in the class
of all T-coalgebras.

For a proof of this theorem: much of the technical ground-work was carried out in [9], where we
provided a fully automata-theoretic proof of the Kozen-Walukiewicz completeness theorem for the
standard modal p-calculus, and in [8], the authors extended this approach to coalgebraic p-calculi
based on Moss-style modalities. While Theorem 1.1 significantly generalizes the latter result, its proof
is fairly similar to that of the earlier results. Because of this, and for reasons of space limitations, we
confine ourselves to a high-level proof sketch in section 9.

As a direct corollary to Theorem 1.1, we obtain the following completeness result that directly
transfers soundness and completeness from a coalgebraic modal logic to its fixpoint extension.

Corollary 1.2 Let T be a set functor, let A be a monotone modal signature for T which admits a
disjunctive basis. If L is a sound and complete axiomatization for the (fizpoint-free) ML -formulas that
are valid in the class of all T-coalgebras, then so is uL for the set of uMLx -validities.

Third, as corollaries of Theorem 1.1 we obtain concrete completeness results, for various modal
p-calculi. Some of these are well known, such as the Kozen-Walukiewicz result for the standard modal
p-calculus, or Kaivola’s completeness theorem for the linear-time p-calculus. Others are, as far as we
are aware, new; as explicit examples we mention our results on graded and monotone modal logic.

In the case of graded modal logic, our completeness result is a fairly direct consequence of the
general theorem, since graded modal logic corresponds to a coalgebraic modal logic for the bag functor
B (Example 2.6(d)), and we will show that this similarity type admits a disjunctive basis.

Theorem 1.3 Let B be the axioms for graded modal logic given in Definition 4.4. Then the induced
axiomatization uB is sound and complete for the valid formulas of the graded modal p-calculus.

Axiomatizing the validities of the monotone modal p-calculus is more challenging, since the mono-
tone neighborhood functor M interpreting this system (cf. Example 2.6(c)) does not admit a disjunctive
basis itself. Fortunately, we may take a detour via its so-called supported companion M, which does
allow a disjunctive basis. Analyzing the relation between the two functors and their associated u-
calculi, in the final section we will prove the following completeness result. Following our definitions,



1M is the axiomatization for monotone modal logic given by the monotonicity and duality axioms for
<& and O (cf. Definition 4.2).

Theorem 1.4 The axiomatization pM is sound and complete for the valid formulas of the monotone
modal p-calculus.

2 A coalgebraic approach to pu-calculi

In this section we introduce a coalgebraic framework for modal p-calculi. The presentation here can be
seen as a summary of previous work done in coalgebraic fixpoint logic and automata theory (see [4, 10]
and references therein).

We assume familiarity with basic notions from category theory, not going beyond categories, func-
tors, natural transformations, and simple operations on these. (Some more information is provided
in the appendix.) We let Set denote the category with sets as objects and functions as arrows. An
endofunctor on Set will simply be called a set functor?. Three functors that feature prominently in
this paper are the identity functor Id, and the co- and contravariant power set functor, P and P, re-
spectively. Both act on objects by mapping a set S to its power set P.S = |55 a function f : S — S
is mapped by P to the direct image function Pf : PS" — PS given by (Pf)X’ ={fs'eS|seX}

and by P to the inverse image function Pf : PS — PS’ given by (Pf)X :={s' € §'| fs' € X}.

2.1 Coalgebra

In the introduction we described coalgebra as a mathematical framework for modelling various kinds
of state-based evolving systems. Formally, this is captured by letting the transition type of such a
system be determined by an endofunctor on some suitable category. For our purposes, we can restrict
attention to the category Set.

Definition 2.1 Let T : Set — Set be a set functor. A T-coalgebra, or coalgebra of type T, is a pair
S = (S,0) where S is a set of objects called states or points and o : S — TS is the transition or
coalgebra map of S. We will call o(s) the (one-step) unfolding of the state s. A pointed T-coalgebra
is a pair (S, s) consisting of a T-coalgebra and a state s € S.

We call a function f : S" — S a coalgebra homomorphism

f

S ———S

4,k

TS ——TS
from (S’,0") to (S, 0) if the above diagram commutes: <

Many mathematical structures featuring in computer science and in modal logic can be naturally
presented as coalgebras. The following list is by no means exhaustive.

Example 2.2 Throughout this example we let X denote a fixed set of proposition letters.

(a) Streams (infinite words) over an alphabet or color set C' are coalgebras for the functor ld¢ :=
Id x C, which maps a set S to the product S x C. A stream (a,)ncw can then be modelled as the
coalgebra (w, o) where o maps a state n € w to the pair consisting of its successor succ(n) and its

2Without loss of generality and for technical convenience, we will assume in this paper that every set functor preserves
inclusions, see [10].



color a,. As a special case, a (natural-numbers based) linear time model over a set X of proposition
letters can be identified with a PX-stream, and hence, with a coalgebra for the functor Idpy.

(b) Kripke frames are coalgebras for the power set functor P. That is, a Kripke frame (S, R) can
be represented as the P-coalgebra (S,o0r), where o : s — R[s] maps a state s to its successor set.
It is not hard to verify that the notion of a bounded morphism between two Kripke frames coincides
with that of a coalgebra morphism for P-coalgebras.

(c) With L denoting a set of atomic actions, we may see a transition system (.5, (R¢)secr, where
each atomic action / is interpreted as a binary relation R, C S x S, as a coalgebra for the functor P~.

(d) For k € w with k > 1, the k-ary tree is the structure (k*, (succ;)i<, where k* is the set of all
finite sequences of natural numbers smaller than &k, and succ; is the i-th successor function mapping
a zequence s € k* to the sequence s -i. We may present this structure as a coalgebra for the functor
Id”.

(e) Define the neighborhood functor N : Set — Set as the composition of the contravariant power
set with itself, N := PoP. Coalgebras for this functor correspond to the so-called neighborhood frames
in modal logic, but they do not play an important role here.

However, restrictions of this functor also yield various interesting classes of structures. In particular,
we will consider the monotone neighborhood functor M given by MS := {U € NS | U is upward
closed with respect to C } and Mf := Nf. M-coalgebras are well known in modal logic as monotone
neighborhood frames.

(f) Of significant interest here is the finitary multiset of bag functor B. This functor takes an object
S to the collection BS of weight functions o : S — w with finite support (that is, for which the set
{s € S| o(s) > 0} is finite). Its action on arrows is as follows: given a map f: S — S’ and a weight
function o € BS, we define the weight function (Bf)o : S’ — w by setting ((Bf)o)(s") := > {o(s) |
f(s) = o'},

Coalgebras for this functor are weighted transition systems, where each transition from one state
to another carries a weight given by a natural number. Note that a finitely branching Kripke frame
(S, R) can be seen as a B-coalgebra (S, pr), if we define, for any state s, a weight function pr(s) on S
given by pr(s)(t) = 1if Rst and pr(s)(t) = 0 otherwise. <

We can generalize the distinction, of Kripke models as opposed to Kripke frames, to coalgebras of
arbitrary type.

Definition 2.3 Let T be a set functor and let X be a set of proposition letters. We define the set
functor Ty := PX x T. A T-model over X is a pair (S, V') consisting of a T-coalgebra S = (5,0) and a
X-valuation V on S, that is, a function V : X — PS. The marking associated with V' is the transpose
map V° : S — PX given by

V'(s):={pex|seV(p)}

Hence the pair (S, V) induces a Tx-coalgebra (S, (V?,0)). <

2.2 Modalities as predicate liftings

The most common approach to coalgebraic modal logic these days proceeds from a formal analysis of
what a “modality” is, in a very generally setting. The idea is to view a modal operator as a proposition
(dependent on a number of variables), about a single unfolding step of a state in a coalgebra.

Example 2.4 Using the notation of Example 2.2, we may formulate the semantics of the standard
modal operators <& and O in a Kripke model S = (S, R, V') as follows:

S,sl-0p iff or(s)N[¢]S # @
S,slk0Op iff or(s) C [o]f,



where [p]° := {s € S| S,s IF ¢}. Thus the coalgebraic perspective on standard modal logic is that
the modalities & and O express statements about the unfolding or(s) of s. We can make this more
explicit by defining the following maps A®, A" : PS — PPS:

A U= {TePS|TNU + 2}
AO: U~ {TePS|TCU}.

Now we may formulate the semantics of < via the map A\:
S, s IF Op iff or(s) € A°([¢]), (3)
and similarly for O and A°. 4

Generalizing this to coalgebras of arbitrary type, the idea underlying coalgebraic modal logic is
that (the semantics of) modalities are given by so-called predicate liftings.

Definition 2.5 Given a set functor T and n € w, an n-place predicate lifting X for T is an assignment?
, to each set S, of a map
As : (PS)™ — PTS,

subject to the constraint that for any map f : S’ — S and any n-tuple Z = (Z1, ..., Z,) € (PS)" we
have, for all 0 € TS: B -
o€ Xs(f7H2)) iff Tf(0) € As(Z) (4)

where f~1[Z] abbreviates (f~1[Z1],..., f ' [Z.])- <

To obtain a suitable modal language for describing coalgebraic behaviour, with each predicate
lifting A we associate a modality O, with the same arity as A. The semantics of @y in a T-model
S = (S,0,V) is given by the following generalization of (3):

S, s - O\(®) if o(s) € As([p1]°,- - ., [eal®)- (5)

The reason to impose condition (4) on predicate liftings is to ensure that, generalizing bisimulation
invariance of modal logic, every modality O will be invariant under coalgebra morphisms.

Example 2.6 Besides the standard diamond and box operators of Kripke models, the operators of
many well-known variants of modal logic are in fact instances of modalities that are induced by
predicate liftings.

(a) The next-time operator O of linear temporal logic can be obtained as the modality associated
with the identity map, seen as a unary predicate lifting AC U U for the identity functor Id.

(b) Let O; be the modality that, interpreted over tree models of branching degree k, has the
following meaning: S, s IF O;p iff S, suce;(s) I+ ¢. This modality is induced by the unary predicate

lifting )\gi : PS — P(S*) given by
2O U {(s0,...,s6-1) € S¥ | s, € UL

(¢) With respect to the monotone neighborhood functor M, we define two unary predicate liftings,

€ and €7:
es: U {aeMS|Uea}

s U {aeMS|S\U¢a}.

3In categorical terms, an n-ary predicate lifting is simply a natural transformation \ : pr = |5T, see Remark 2.7.



It is now easy to verify that the induced operators O, and Qs coincide with the standard monotone

modalities O and <:
S,slFOp iff U C [p]°, for some U € o(s)

S,slFCp iff UN[p]® # @, forall U € o(s).
(d) Finally, we consider the bag functor B. Given a natural number k, we define the predicate
liftings k£ and k by putting
ks: U {oeBS|Y, cpo(u) >k}
ks : U»—){UEBS|ZU€UU(u)<k},

Interpreted over standard Kripke models (seen as B-coalgebras as specified in Example 2.2(f)), the
modalities associated with these liftings are the counting modalities of graded modal logic:

S,slFQrp iff s has >k successors ¢t with S, ¢ IF ¢
S,5IF Oz iff s has <k successors ¢ with S, I ¢.

In the sequel we use the standard notation for these modalities, i.e., OF and OF for Oy and O,
respectively. <

Remark 2.7 In categorical terms, an n-ary predicate lifting is a natural transformation A : Pr = PT:
(4) simply means that the following diagram commutes:

S (PS)" 25~ PTS
Tf (ﬁf)”i lISTf
s (PSP
for every function f: 5" — S. <

2.3 Moss’ modalities

As mentioned in the introduction, an important role in this paper is played by so-called disjunctive
formulas, and a key example of such formulas is provided by the so-called cover modality from standard
modal logic. It is a slightly non-standard connective that takes a finite set of formulas as its argument.

Definition 2.8 Given a finite set ®, we let V& abbreviate the formula
Vo= \odnro\/e,
where O® denotes the set {Op | p € @} <

As a primitive operator, this modality was independently introduced by Janin & Walukiewicz [16]
in automata theory (with a different notation), and by Moss [22] in coalgebraic logic, where in fact it
provided the starting point of the use of modal logic for coalgebras. Here we provide the basic syntactic
and semantic definitions for these generalized, coalgebraic modalities; for a more detailed discussion
we refer to Kupke, Kurz & Venema [20]. The key concept needed to work with the V modalities is
that of a relation lifting. (For notation related to binary relations we refer to the appendix.)

Definition 2.9 Let T be a set functor. Given a binary relation R between two sets X; and Xo, we
define the T-lifting of R as the relation TR C TX; x TX, given as:

TR :={((Tr{)p, (Tr5")p) | p € TR}

Here 7; : R — S; for ¢ = 1,2 are the projection functions. <



Fact 2.10 The relation lifting T associated with a set functor T has the following properties:

(1) T extends T: Tf = Tf for all functions f : X1 — Xo;

(2) T preserves the diagonal: Tldx = ldrx for any set X;

(3) T is monotone: R C Q implies TR C TQ for all relations R,Q C X1 x Xo;

(4) T commutes with taking converse: TR® = (TR)° for all relations R C X1 x Xa;

(5) T distributes over relation composition: T(R ; Q) = TR ; TQ, for all relations R C X; x X3
and @ C Xy x X3, provided the functor T preserves weak pullbacks.

We can now introduce the coalgebraic cover modality Vr, for an arbitrary set functor T.

Definition 2.11 Let T be some set functor. For any finite set £y of formulas, and any element
I' e TLy, we let V1T denote a new formula.
For the semantics of this formula in a T-model S = (S, 0, V'), we define

S, s IF V1T iff (o(s),T) € T(IF),

where we inductively assume that the satisfaction relation IF C S x Ly has been defined. <

2.4 Coalgebraic p-calculi

Associating a modality O, with each predicate lifting A, we obtain a modal language ML, geared
towards T-coalgebras, for any set A of predicate liftings for T. In fact, the relation between predicate
liftings and modalities is so tight that in parlance we will often be sloppy and blur the distinctions
between the two notions. Here we are interested in coalgebraic p-calculi, that is, extensions of such
coalgebraic modal logics with fixpoint operators.

Definition 2.12 Given a set A of predicate liftings, the formulas of the modal fixpoint language pMLA
are given by the following grammar:

eu=pl L= lpoVer|Oxpr,....on) | pr.e'

where p and x are propositional variables, A € A has arity n, and the application of the fixpoint
operator pz is under the proviso that all occurrences of x in ¢’ are positive (i.e., under an even
number of negations). <

We will employ various syntactic notions such as subformulas, free and bound variables, substi-
tutions etc. All of these admit standard definitions and notations, and due to space limitations we
refrain from giving details.

Definition 2.13 Given a set A of predicate liftings and a set X of proposition letters, we let uMLx(X)
denote the set of uMLy-formulas ¢ of which all free variables belong to X. <

Turning to the semantics of these languages, in order to guarantee well-definedness we restrict
attention to predicate liftings that are monotone.

Definition 2.14 A predicate lifting A : P® = PT is monotone if for every set S, the map Ag :
(PS)™ — PTS is order-preserving in each coordinate (with respect to the subset order). The induced
predicate lifting A2 : P* = PT, given by

)‘g(thXn) =TS \ )‘S(S\le'-'7S\X1)a

is called the (Boolean) dual of A. <



All predicate liftings discussed in Example 2.6 are monotone, and come in dual pairs (note that
the operators O and O; are self-dual).

Definition 2.15 A monotone modal signature, or briefly: a signature for a set functor T is a set A of
monotone predicate liftings for T, that is closed under taking boolean duals. In this setting we refer
to the triple (T, A, uMLy) as the (coalgebraic) p-calculus associated with A and T. <

We will often work with fixpoint formulas in negation normal form.

Definition 2.16 Let A be a monotone modal signature for a set functor T. A uMLj-formula is in
negation normal form if it can be generated by the following grammar:

eu=p|lp|L|TlwoVer|eoAer]| Oxler,...,on) | pe' | ve.y'

where p and x are propositional variables, A € A has arity n, and the application of the fixpoint
operators pz and vz is under the proviso that all occurrences of x in ¢’ are positive (i.e., not in the
scope of a negation). <

Formulas of such coalgebraic p-calculi are interpreted in coalgebraic models, as follows.

Definition 2.17 Let S = (S,0,V) be a T-model over a set X of proposition letters. By induction
on the complexity of formulas, we define a meaning function [-]° : uMLs(X) — PS, together with an
associated satisfaction relation I C S x pMLA (X) given by S, s IF ¢ iff s € [¢]°. Most clauses of this
definition are standard; the one for the modality Q) is given by (5). For the least fixpoint operator we
apply the standard description of least fixpoints of monotone maps from the Knaster-Tarski theorem
and take

[pr.¢]® = ({U € PS | [p] *FVEUD C U},

where the valuation V{z — U] is given by V]z — U](x) = U while V[z — U](p) = V(p) for p #z. <

Example 2.18 The table below shows how the standard modal p-calculus and some of its variants
can be presented in this format. We also take this table as canonically defining a fixed signature Xt
for the functors listed.

T Y 1-modalities Name

Id {O} linear time p-calculus

1d* | {O0;|0<i<k} | tree p-calculus

P {<¢,0} standard (mono-)modal p-calc.

PL | {©p,0,|¢€ L} | standard (poly-)modal p-calc.

B {Ok,OF | k € w} | graded p-calculus

M | {o,0} monotone (mono-)modal p-calculus
ML | {©p, 0, ¢ € L} | monotone (poly-)modal p-calculus

In the case of the graded p-calculus, it is not hard to prove that a uMLy,-formula (where ¥g is the
signature of the counting modalities) is satisfiable in a Kripke model iff it is satisfiable in a finitely
branching Kripke model iff it is satisfiable in a B-coalgebra model. This justifies us referring to the
coalgebraic p-calculus for B and Y as the graded modal p-calculus. <

Remark 2.19 Some of these p-calculi have a very tight connection with monadic second-order logic
on trees: the p-calculi based on modalities O;, 0 < ¢ < k are expressively equivalent to monadic
second-order logic on ranked trees of branching degree k [6]. The graded mu-calculus is expressively
equivalent to monadic second-order logic on unranked trees with arbitrary branching, see [15]. <
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3 One-step logic

3.1 One-step syntax and semantics

As mentioned in the introduction, a pivotal role in our approach is filled by the so-called one-step
versions of our coalgebraic logics.

Definition 3.1 Given a set of predicate liftings A, and two disjoint sets A,X of variables, we define
the set Bool(A) of boolean formulas over A and the set 1ML (X, A) of one-step A-formulas over A and
parameters X, by the following grammars:

Bool(A)>mu=a|L|T|aVa|nAr| 7

IMLAX, A)au=p|L|T|OT|aValahal| -«

where a € A, p € X and A € A. The A-positive fragment of 1ML (X, A), denoted 1ML} (X, A), consists
of those formulas in 1ML, (X, A) in which no a € A appears in the scope of a negation. We will denote
the negation-free fragment of Bool(A) as Latt(A) and refer to its elements as lattice formulas over A.

In case X = @ we will write 1MLy (A) and 1ML} (A) rather than 1MLa (@, A) and 1ML} (2, A),
respectively. <

A significant part of our work revolves around connections between one-step languages that are
based on distinct (but related) sets of variables. Most of these connections are given by substitutions.

Definition 3.2 Given two sets A and A’ of variables, any substitution p : A — Bool(B) naturally
induces a translation [p] mapping 1ML, (X, A)-formulas to 1ML (X, B)-formulas. For this translation we
shall use postfix notation, afp] € 1ML, (B) denoting the result of applying the substitution p : A —
Bool(B) to the formula o € 1ML, (A). In case p : A — Latt(B) maps variables to lattice formulas, we
can and will assume that a[p] € 1ML (X, B) whenever a € 1ML} (X, A).
We fix notation for the following concrete substitutions:

- xa: PA — Latt(A) will denote the map B — A B;

-0ap:Ax B — Latt(AU B) will denote the map (a,b) — a A b;

-givena € A, 7, : A — A x A CLatt(A x A) is the tagging substitution given by b — (a,b). <

One-step formulas are naturally interpreted in one-step models, which consist of a one-step frame
together with a marking.

Definition 3.3 A one-step Tx-frame is a pair (S,0) with o € TxS. A one-step Tx-model over a set
A of variables is a triple (5,0, m) such that (S,0) is a one-step Tx-frame and m : S — PA is an
A-marking on S. <

Definition 3.4 Given a marking m : S — PA, we define the 0-step interpretation [r]° C S of
7 € Bool(A) by the obvious induction: [a]%, := {v € S |a € m(v)}, [T]?, := S, [L]% = @, and the
standard clauses for A,V and —. Similarly, the 1-step interpretation [a]}, of o € 1ML, (X, A) is defined
as a subset of TxS, with [p]L, := {(Y,0) | p € Y},

[Ox(1, -yl = {(Y,0) [ 0 € As([milm, - - [mali)

and standard clauses for 1, A,V and —. Given a one-step modal (S, o, m), we write S, o, m IF! « for
o€ [a]l,. <

Notions like one-step satisfiability, validity and equivalence are defined in the usual way.
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Definition 3.5 Let a and o be one-step formulas. The formula « is one-step satisfiable if there is
a one-step model (5,0, m) such that S, o, m IF! «, and one-step valid if S,o,m I « for all one-step
models (S,0,m). We say that o' is a one-step consequence of a (written a F! o) if S,0,m IF! «
implies S,0,m IF1 o/, for all one-step models (S,0,m), and that o and o’ are one-step equivalent,
notation: a =' o/, if a E' o/ and o/ E! a. <

The framework of one-step logic facilitates a concise definition of the following notion.

Definition 3.6 A monotone modal signature A for T is expressively complete if, for every monotone
n-place predicate lifting A ¢ A and variables ay,...,a, there is a formula a € 1MLY ({a1,...,a,})
which is equivalent to ©,a. <

We also need morphisms between one-step frames and models.

Definition 3.7 A one-step frame morphism between two one-step frames (S’,0’) and (S, o) is a map
f:8" — S such that (Txf)o’ = 0. In case such a map satisfies m’ = mo f,

S’ I . S
N
PA
for some markings m and m’ on S and S’, respectively, we say that f is a one-step model morphism

from (S’,0’,m’) to (S,0,m). <

The following proposition, stating that the truth of one-step formulas is invariant under one-step
morphisms, is fundamental. We will occasionally refer to this proposition as naturality, since this
invariance essentially boils down to the naturality of the predicate liftings in A.

Proposition 3.8 Let f: (S’,0',m') = (S,0,m) be a morphism of one-step models over A. Then for
every formula o € 1MLy (A) we have

S o' m Faiff S,o,m IF o
Formulating it differently, for any one-step frame (S’,0"), any marking m : S — PA, and any map
f:8 — S, we have
S'.o' mo fIF a iff S, (Txf)o',mIF! a.

As a specific instance of this invariance result we obtain the following corollary which we mention
explicitly for future reference.

Corollary 3.9 Let (S,0,m) be a one-step A-model, and let T C S be a subset of S such that o € TxT.
Then for every formula o € 1MLy (A) we have

S,o,m I o iff T,o,m|7IF a.

Proof. Immediate from Proposition 3.8 by the observation that the inclusion map ¢ : T — S is a
one-step model morphism. QED

The following proposition states that the meaning of a one-step formula only depends on the
variables occurring in it.
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Proposition 3.10 Let (S,0,m) be a one-step model over A, and let o € 1MLA(A) be a one-step
formula which belongs to the set 1ML (B), for some subset B C A. Then we have

S, o,m - o iff S,o,mP IF! a,
where mB is the B-marking given by m?B(s) := m(s) N B.
For positive one-step formulas we have the following monotonicity property.

Proposition 3.11 Let (S,0) be a one-step frame, and let m,m’ : S — PA be two markings such that
m(s) Cm/(s), for all s € S. Then we have

S,o,m IFt o implies S, 0, m’ IF* «,

for any formula a € ML (A).

Finally, we need a coalgebraic notion of bisimulation which is inspired by an idea of Gorin &
Schroder [11].

Definition 3.12 Let (S, 0) and (S’,0’) be one-step frames, and A a signature. If Z C S x S’ satisfies:
e forallUy,...,U, CSand A € A: 0 € Ag(Uy,...,U,) implies o’ € A\g/ (Z[U1],..., Z[U,]),
o forall Uj,..., U, C S and A\ € A: 0/ € A\g/(U{,...,U}) implies o € A\g(Z7[U]],...,Z7[U})),

then we call Z a one-step A-bisimulation between these one-step frames, denoted as Z : (S,0) €}
(8’,0"). In case DomZ = S and RanZ = §’, we call Z full, and write Z : (S,0) €} , (8',0"). <
Proposition 3.13 Let £}, denote either < or <) ¢, and let (S, 0, (S',0") and (S”,0") be one-
step frames. Then

(1) ds : (S,0) &}, (S,0);

(2) i Z: (S,0) 4. (5',0") then 7°: (8,0") £21., (5,0);
(3)if Y : (S,0) &4, (8',0") and Z : (S',0") <), (S",0") then' Y ; Z : (S,0) <}, (8", 0");
(4) If f : (S,0) — (5,0') is a one-step frame morphism, then f : (S,0) €% (9',0), with

f:(S,0) <:>11\7f (S',0") holding iff f is surjective.

The following observation, generalizing the Propositions 3.8 and 3.11, states that at the level of
models, the truth of positive one-step formulas is transferred under one-step bisimulations, provided
these interact properly with the markings.

Proposition 3.14 Let Z : (S,0) €% (5',0’) and let m and m' be A-markings on S and S’ such that
m(s) Cm'(s).
whenever (s,s') € Z. Then for all a € 1MLY (X, A):

S,o,m It o implies S’ o’ ,m' IF! a.

13



3.2 Disjunctive formulas

Definition 3.15 A one-step formula a € 1MLX (X, A) is called disjunctive if for every one-step model
(S,0,m) such that S, o, m IF! « there is a one-step frame morphism f : (S’,0’) — (S, 0) and a marking
m’ : §" — PA such that:

(1) 8", 0',m' IFt «

(2) m/(s") C m(f(s')), for all s' € S’;

(3) [m/(s")| <1, for all s" € S". <

Intuitively, these conditions express that if a disjunctive formula is satisfiable, then it it satisfiable
in a closely linked model where no point satisfies more than one variable in A simultaneously (and
hence, no proper conjunction over A). Note that the map f mentioned in the above definition is not
necessarily a one-step model morphism, since in clause (2) of the definition we do not require equality,
and because of clause (3) the inclusion in clause (2) will generally be strict.

Remark 3.16 (1) Using Propositions 3.13 and 3.14, it is not difficult to show that for every one-step
frame morphism f : (S',0’) — (S, o) such that m'(s") C m(fs’) for all &' € §’, then S’,0’,m’ IF! «
implies S, 0, m I- a, for all one-step formulas a € 1ML} (X, A).

From this it follows that we could have defined disjunctivity of a formula « equivalently by requiring,
for an arbitrary one-step model (S, o, m), that S,o,m IF' « if and only if there is a one-step frame
morphism f satisfying the conditions of Definition 3.15.

(2) Consider two formulas o € 1ML (A) and 7 € Bool(X). Provide 7 is consistent, it is easy to see
that « is disjunctive iff 7 A « is so. <

Example 3.17 (a) The formula Oa of linear time logic is easily seen to be disjunctive, as are the tree
formulas O;a.
(b) The canonical example of a disjunctive basis is given by the cover modality V of standard
modal logic:
Vi{ai,...,an} = Cay A ...Cay AD(ag V... Vay).

(¢) The above two examples can be generalized to arbitrary functors that preserve weak pullbacks.
In fact, one may show that Moss’ modality V- (cf. section 2.3) provides disjunctive formulas, for every
weak-pullback preserving functor T. To see this, suppose that S,o,m [F' Vv, for some v € TA.
Define S’ := S x A, let f: S5 x A — S be the left projection map, and let m : S — PA be given by

m'(s,a) == { {a} ifaem(s)

o) otherwise.

Let Z denote the relation Z := {(s,a) € Sx A | a € m(s)}, and similary define Z’ := {(s',a) € S’' x A |
a € m'(s')}. Tt is easy to see that Z = f° ; Z', and so by Fact 2.10(5) we find TZ = (Tf)° ; TZ'
(here we use the fact that T preserves weak pullbacks). But from S,o,m IFt V1v it follows that
(0,7) € TZ = (Tf)° ; TZ', and so there must be an object o/ € TS’ such that ¢ = (Tf)o’ and
(0',7) € TZ', which means that S’, o/, m’ IF* V1, as required. Finally, it is obvious from its definition
that m’ satisfies the conditions (2) and (3) of Definition 3.15.

(d) An interesting example is provided by the bag functor. We say that a one-step model for the
finite multi-set functor is Kripkean if all states have multiplicity 1 or 0. Note that a Kripkean one-step
model (S,0,m) can also be seen as a structure (in the sense of standard first-order model theory)
for a first-order signature consisting of a monadic predicate for each a € A: Simply consider the pair
(Base(o), Vi), where Base(o) := {s € S| o(s) > 0} and V,,, : A — P(Base(0)) is the interpretation
given by putting V;,,(a) := {s € Base(o) | a € m(s)}. We consider special basic formulas of monadic
first-order logic of the form:

~(a, B) := 3z(diff(Z) A /\ a;(z;) A Vy(diff (Z,y) \/ by
i€l beB
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It is not hard to see that if the formula (@, B) holds in a Kripkean one-step B-model (S, o, m),
then it will continue to hold if we shrink m to a marking m’ C m such that |m(a)| < 1, for all a € A:

S,a,m I y(@, B) implies S, o, m’ IF' y(@, B) for some m’ C m with Ran(m’) C P<; A. (6)

We can turn the formula (@, B) into a modality V(a;B) that can be interpreted in all one-step
B-models, using the observation that every one-step B-frame (S, o) has a unique Kripkean cover (S, o)
defined by putting

S=|J{sxa(s)|s €S}

and o (s,7) := 1 for all s € S and i € o(s) (here, we have viewed each finite ordinal in the standard
manner as the set of all the smaller ordinals, so in particular 0 is defined to be the empty set). Then
we can define, for an arbitrary one-step B-model (5, o)

S,o,mF V(@;B) if 5,5, m o wg IF' y(a, B), (7)

where 7g is the projection map 7g : § — S. It is then an immediate consequence of (6) that V(a;B)
is a disjunctive formula.

The next two, rather technical results, will be needed further on, when we work with games
associated with coalgebra automata.

Proposition 3.18 Let o € 1MLY(A) be disjunctive, let (S,o,m) be a one-step model over A such
that S,o,m IF' «, and let T C S be such that o € TxT. Then there is a frame homomorphism
f:(8",0") = (S,0) and some marking m' satisfying, next to the clauses (1) — (3) in Definition 3.15,
the condition that Ran(f) =T.

Proof. Let «, (S,0,m) and T be as in the formulation of the proposition. Since ¢ € TxT, the inclusion
map ¢ : T < S is a one-step model morphism:

v:(T,o,m[r) — (S,0,m).

Then by naturality it follows that T, o, m [rIF! «, so by disjunctivity of a we obtain a one-step
model (S’,0’,m’) and a one-step frame morphism g : (S’,0') — (T, 0) satisfying the clauses (1) —
(3) in Definition 3.15. It is then easy to verify that the map f := ¢ o g is a frame homomorphism
f:(8,0") = (S,0) that meets the requirements (1) — (3) of Definition 3.15, and satisfies Ran(f) C T

In case the inclusion Ran(f) C T is proper, we extend S’ to a set S” := 5’ W (T \ RanF) by adding
dummy elements to S’, we define an A-marking m” on S” by putting m” (u) := m/(u) if u € S”
and m”(u) := @ otherwise, and we define a map f’ : S” — S by putting f'(u) := f(u) if u € 5,
and f/(u) := u otherwise. It is then a routine exercise to check that the one-step model (S”, o', m"),
together with the map f’, satisfies all the mentioned requirements. QED

Proposition 3.19 Leta € 1MLX(Q) be disjunctive, where G C PA is a collection of subsets of A. Then
for every one-step model (S, o, m) over A such that S,o,m IF' a[xa] there is a frame homomorphism
f:(8,0") = (S,0) and an A-marking m’ : 8" — PA such that:

(1) S',0’,m' IF alxal;

(2) m'(s") Cm(f(s)), for all ' € S';

(3) m/(s') € G, forall s € S'.
In case T C S is such that o € TxT, we may additionally assume that

(4) Ranf =T.
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Proof. Fix ag € 1MLT(G), and assume that S, o, m IF! ag[x.a] for some one-step A-model (S, o, m).
Our first step is to turn (5,0, m) into a G-model by defining the G-marking mg by

mg(s) :={Be€G|BCm(s)}
Cram 1 For all @ € 1ML} (G) we have

S,o,m -t alx] iff S,0,mg IF' a. (8)
Proor oF CrLAIM First we prove by induction on the complexity of formulas that

[=D = [7]g (9)

for all 7 € Latt(G). For the base case of (9) we take an arbitrary 7 = B € G, and we reason as follows.
Unravelling the definitions on the left hand side of (9) we find that

B, = [/\Blo, = [ [6]%, = {s € S | b€ m(s) for all b€ B} = {s € S| B Cm(s)}.
beB

For the right hand side we find

[B]5.g =mg(B) ={s € S| B Cm(s)},

mg

and so (9) is immediate. The inductive steps are trivial and left for the reader.
The claim itself is also proved by a straightforward formula induction. The base case of this
induction, where « is a formula of the form Oy, is proved as follows:

S,oom I Oy iff o e A([7[x]]%,)  (definition IF")
iff e A([]%,) 9)
iff S o,mg I Oym  (definition IF)

We omit the routine induction steps of the proof (8). <
From our assumption that S, o, m I-! ag[xa] it follows directly by Claim 1 that
S, o,mg IF! ag. (10)

By the disjunctivity of ap we then obtain a cover f : (S’,0’) = (5,0) and a G-marking mg such
that (S',0’,mg) IF' ag and, for all s € S, mg(s') C mg o f(s') and |mg(s')| < 1. Furthermore,
observe that in case T' C S is such that o € T¢T, by Proposition 3.18 we may take f to be such that
Ran(f) = T, taking care of clause (4) in the proposition.

Now define an A-marking m’ on S’ by putting

oy .. | B ifmg(s') ={B}
m(s).—{ %) ifmé(s’):@.

Cram 2 For all @ € 1ML} (G) we have
S’ o', mg IF" a only if S, o', m/ IF' afx]. (11)

PROOF OF CLAIM As in the previous claim, we first look at zero-step formulas. By induction on the
complexity of formulas we will prove that

71, < [rlx]1S (12)
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for all 7 € Latt(G). For the base case of (12) we calculate, for an arbitrary 7 = B € G:

[[B]]?n,g = {s'eS|Bemg(s)} (definition []%)
— (s e8| {B) = mi(s)} (jmiy(s")| < 1)
C {§e8|B=m'(s)} (definition m’)
C {fes|BCm(s)} (obvious)
= [B[x]%, (as in proof Claim 1)

This proves the base case of (12). As usual, we omit the trivial inductive steps.
Turning to the claim itself, we observe that in the base case of the inductive proof, where « is a
formula of the form ©y7, we may reason as follows:

S o' mg IFt O iff o’ € A([=[x]1°, ) (definition I-1)
only if o' € )\([[ 19) ((12), monotonicity of A)
iff S’ o' m! - Oy (definition I-1)
Since the inductive steps of the proof are routine, this establishes the Claim. <

As an immediate consequence of Claim 2 and (10) we obtain that S’,o’,m’ IF' ag[x], which
establishes the first part of Proposition 3.19. The second part follows by the definitions of the respective
markings mg, mg and m': let B := m/(s"), then mg(s') = {B}, so B € mg(fs') which then implies
that B C m(s). The third and last part of the proposition is immediate by the definition of m’ and
the fact that mg is a G-marking. QED

3.3 Disjunctive bases

Definition 3.20 Let D be an assignment of a set of positive one-step formulas D(4) C 1ML (A) for
all finite sets A. Then D is called a disjunctive basis for A if each formula in D(A) is disjunctive, and
the following conditions hold:

(1) D(A) is closed under finite disjunctions (in particular, it contains T = \/ @).

(2) D is distributive over A: for every one-step formula O 7 there is a formula § € D(P(A)) such
that Q)7 =1 §[x 4]

(3) D admits a distributive law: for any two formulas o € D(A) and # € D(B), there is a formula
v € D(A x B) such that a A B =! v[04 5] <

Intuitively, what a disjunctive basis achieves is to allow us to eliminate conjunctions in a certain
sense.

Proposition 3.21 Let D be an assignment of a set of disjunctive one-step formulas D(A) C 1ML} (A)
for all finite sets A, satisfying clauses (1) and (3) from Definition 3.20. Then D is a disjunctive basis
for A iff for any formula o € ML (A), there is a formula § € D(PA) such that o =* 6[x a].

In passing we note the following.
Proposition 3.22 Any binary distributive law & for D induces a distributive law 5 P.,D — DP,, such
that R

A\ A =16a(8)[xa]

for any finite set A of formulas in D(A).

There is a wealth of functors that admit a disjunctive basis. We start with a general result.
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Proposition 3.23 Let A be an expressively complete signature for a weak-pullback preserving functor
T. Then A admits a disjunctive basis.

Proof. Let Dy(A) be the set of all (finite and infinite) disjunctions of formulas of the form V3, with
B € TA. Such disjunctions can be regarded as n-ary predicate liftings, where |A| = n, so we can apply
expressive completeness and treat them as one-step formulas in 1MLX (A). We saw in Example 3.17 that
all formulas of the form V3 are disjunctive, and since disjunctivity is closed under taking disjunctions,
all formulas in Dy (A) are disjunctive. It remains to show that Dy (A) is a basis for A.

By Proposition 3.22 it remains to prove that any formula o € 1MLX(A) is equivalent to a (possibly
infinite) disjunction of formulas of the form VI'[x 4], with T" € TPA. Note that any such formula can be
written as VI [xa] = V(Txa)T (where we remind the reader that the substitution y 4 : P — Latt(A)
is the function mapping a set B C A to its conjunction A\ B). This means that it suffices to prove, for
an arbitrary formula o € 1ML} (A):

a="\/{V(Txa)T | PAT,idIF a}, (13)

where (PA,T,id) denotes the canonical one-step A-model on the set PA.

For a proof of the left-to-right direction of (3.8), assume that S, o, m I a. Using Proposition 3.8,
it is easy to derive from this that PA, (Tm)o,id IF! «, so that ' := (Tm)o € TPA provides a candidate
disjunct on the right hand side of (3.8). It remains to show that S, o, m IF* V(Tx4)(Tm)o, but this
is immediate by definition of the semantics of V.

For the opposite direction of (13), let I' € TPA be such that PA,T,id IF! a. In order to show
that V(Txa)T E! a, let (S, 0,m) be a one-step model such that S, o, m |- V(Tx4)T. Without loss of
generality we may assume that (S,0,m) = (PA, A,id) for some A € TPA.

By the semantics of V it then follows from PA, A, id IF V(Tx )T that (A, (Txa)T') € T(FY). But
since (B, xa(C)) € IF° implies that C' C B, by Fact 2.10 we obtain that (', A) € T(C).

Cramv 3 Let (S,0,m) and (S’,0',m’) be two one-step models, and let Z C S x S’ be a relation such
that (0,0’) € TZ, and m(s) C m/(s'), for all (s,s’) € Z. Then for all a € 1ML (A):

S, o, m -t o implies S’, o', m’ IF a.

Finally, it is easy to see that the claim is applicable to the one-step models (PA,T',id) and (PA, A,id),
and the relation C. Hence it follows from PA,T,id IF! « that PA, A,id IF! «. QED

Corollary 3.24 The signatures we have associated in Example 2.18 with the identity functor Id, the
tree functor Idk, and the functors P and P™, all admit disjunctive bases.

In particular, whenever the functor T preserves weak pullbacks and restricts to finite sets, (the
finitary version of ) Moss’ language for T is expressively complete. This means that our main result in
[8] fits into the present framework as a special case.

Neither of the conditions in Proposition 3.23 are necessary for a coalgebraic modal signature to
admit a disjunctive basis, as the following examples show.

Example 3.25 (a) It is not hard to see that the signature X of the counting modalities for the bag
functor B (which does preserve weak pullbacks) is not expressively complete. For a simple example
showing this, just consider the (monotone) predicate lifting maj given by:

majy(Z) ={{ €BX [ > &) > > &)}
veEZ veX\Z

It was shown by Pacuit & Salame [24] that the corresponding formula Qmaj¢ (which in a finitely
branching Kripke model states that at least half the successors satisfy ¢) cannot be expressed in the
language of graded modal logic. Nevertheless, g does admit a disjunctive basis, as we will prove in
Theorem 10.3.
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(b) There are also functors that do not preserve weak pullbacks, but do have a disjunctive basis. As
an example of this, consider the subfunctor P2/3 of P3 given by:

P2/3S = {(Zo,Zl,Zg) ‘ ZO n Zl 7& o or Zl n Z2 # @}

The signature Yps (regarded as a set of liftings for Py/3 rather than PL) still admits a disjunctive
basis. In fact, it is not hard to show that the same nabla formulas that provide a disjunctive basis for
Yps, still provide a disjunctive basis when interpreted on the restricted class of one-step models for
the functor Py /3.

However, this functor does not preserve weak pullbacks. To see this, we consider a co-span in
the category of elements of Py/3, given by three sets X,Y,Z and X = (X0, X1, X3) € Pa/s X, Y =
(Yo,Yl,Yé) S PQ/SY and Z = (Zo, Z, ZQ) S P2/3Z given by

- X ={z,2'} and Xp = X; = {z}, Xo = {a'};

-Y ={y,y}and Y1 =Yz = {y}, Yo = {¥'};

—Z:{Z}, 20221:Z2:{Z}.

Welet f: X — Z and g : Y — Z simply be the unique maps into Z, which is a terminal object
in Set (i.e. a singleton). We have (Py/3f)(X) = (P2/39)(Y) = Z. The situation is depicted in the
diagram below, with (Z, Z) on the top, (X, X) on the bottom left and (Y,Y) on the bottom right,
with the dashed lines showing the maps f and g.

Now, let R, mx,my be the pullback in Set of the maps f and g. By the usual characterization
of weak pullbacks in Set, if Py/3 were to preserve weak pullbacks we should now be able to find
R e Py/sR with (P2/37rx)(§) = X and (P2/37ry)(§) =Y. But then we must have Ry N Ry = @, for
otherwise s € Ry N Ry would imply mx (s) € mx[Ri] N 7x[Re] = X1 N Xy since Py/3mx(R) = X, and
this is impossible since X; N Xo = @. Similarly, we use P2/37Ty(R) =Y to show that Ry N Ry = @.
But then we cannot have R € Py3R, hence we have shown indeed that P,,3 does not preserve weak
pullback squares. <

4 Derivation systems
In this section we introduce our one-step derivation systems, and we discuss their relation with the
derivation systems for coalgebraic p-calculi. The idea of one-step logics and one-step completeness,

however, has been studied extensively in the literature on coalgebraic modal logic by various authors,
including Cirstea, Pattinson, and Schréder, see [25, 29, 30, 4] for some selected references.
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4.1 One-step soundness and completeness
In this subsection we will see that there is really logic to be done at the level of one-step formulas.

Definition 4.1 A one-step formula « is one-step valid, notation F! a, if [a]l, = TxX for all sets X
and markings m : X — PA, and we say that 3 is a one-step consequence of o (written o F! ) if
[a]l, € [B]! for all X,m. <

With these one-step semantic notions in place, we consider derivation systems for one-step logics.

Definition 4.2 Given a signature A for T, a one-step ariomatization H is just a set of formulas
H C 1ML, (Var), where Var is a fixed countable set of propositional variables.
The one-step derivation system H! associated with H consists of the following axioms and rules.

(H) All formulas in H are axioms of H'.

(€T
(Cg

)

(MP) From a — 8 and «, derive 3, where o, § € 1ML (Var).
) All substitution instances o € 1MLy (Var) of propositional tautologies are axioms.
)

For all 7,p € Bool(Var), if each m; <+ p; is a substitution instance of a propositional tautology
then Q)7 + ©,\p is an axiom.

(US) Given any substitution 7 : Var — Bool(Var) and « € 1ML, (Var), derive a[r] from «.
(Du) The formula Qyo(ag, ..., an-1) < °VOx(—ag,...,a,—1) is an axiom, for all A € A and @ € Var;

(Mon) For all A € A and @, b € Var, the formula Qy(ag,...,an_1) = Ox(ag Vbo,...,an_1Vb,_1) is an
axiom.

We write Fi; « and say that « is one-step H-derivable if « is provable in the Hilbert-style system
consisting of the axioms and rules of H'. We write a 35 3 for Hy a — 3. We also write a =} 3 for
atiy B and By . <

We now introduce one of the central ingredients of our framework:

Definition 4.3 A one-step axiomatization H is said to be one-step sound if ! o whenever Hy «, for
« € 1MLy (A). The system H is said to be one-step complete if iy o whenever F! «, for o € 1ML, (A).
<

Definition 4.4 The table below presents one-step axiomatizations for a number of coalgebraic signa-
tures, associated with the functors in the table as presented in Example 2.18.

H T Axioms
I Id a. 7Oa < O—a
b. OT
1F Id* | a. —0;a <> O;—a
b. O; T
K | P |a O(AbD) < (OaAOb)
b. OT
KT | PL [ a. [l](a Ab) < ([{la A[I]D)
b. [I]T
B B |a Onflg— Ot
b. Ol(a — b) — (O"a — O™b)
c. OM(a Ab) A OF g A OF21h — ORitkzl(g v b))
d. o'T
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Here, OFT1in abbreviates OFr A =O* 17, and OPlnr abbreviates =007, <
Proposition 4.5 All of the axiomatizations given in Definition 4.4 are one-step sound and complete.

With one exception, we omit the proof of one-step completeness for these systems; the proofs for
I and I* are very easy, and the other cases are more or less just re-stating results from [30].

Proof. We focus on the most difficult case, the system B for graded modal logic.
First, given a subset B of some fixed finite set A, we define the full type of B to be the propositional

formula
B = /\ a N /\ -a,
a€B a€A\B

and we define a simple conjunction over A to be a formula of the shape:
(¥) OMT AL AOFRT, A ok T A A Ok:n!T,/n

where each 7; and each 7/ is a full type.

CrAaM 1 Any consistent simple conjunction is one-step satisfiable.

PrROOF OF CLAIM Given a consistent simple conjunction + of the shape (x), it follows by definition
of the operator OF! and the axiom B(a) that 7/ # 7; whenever k; # kJ, for 1 <i < j <m, and that
TizT]'- impliesk;iSk;,forlgignandlgjgm.

We now consider the one-step A-model (PA,T',,id) on the power set PA of A, where the marking
is the canonical marking given by the identity map on PA, and Iy, € BPA is the weight function given
by I',(B) = k} if 75 is the full type 7} for 1 < j < n; otherwise set I', (7) to be the largest & such that
Okrp is a conjunct of v (where we may think of ¢G%p = T as a conjunct of every formula + of shape
(*)). It is then straightforward to check that the conjunction (%) is true in (PA,T'5,id), as required. «

CrAM 2 Every one-step formula in 1MLy, (A) is provably equivalent in B to a disjunction of simple
conjunctions.

PrOOF OF CLAIM First, a simple disjunctive normal form argument, together with the observation
that every formula in Bool(A) is equivalent to a disjunction of full types and applying the axioms
B(b&d), we can write any one-step formula as a disjunction of conjunctions of the shape:

ORI/ @y A AOR\) B A DRI AL A DR,

where each ®; is a set of full types. It now suffices to show that each conjunct O \/®; and each
mld \ <I>;- can be replaced by equivalent disjunctions of the right shape, and then distribute conjunctions
over disjunctions to put the formula back in disjunctive normal form. This is proved using the following
two claims:

(I) Let 71,7 be mutually inconsistent formulas in Bool(A). Then the formula OF(m; V o) is
provably equivalent to the disjunction:

\/{Okl’frl AN <>k27'('2 | k‘l + k‘Q = k}

(IT) Let 7 be any formula in Bool(A). Then O*r is provably equivalent to the disjunction of all
formulas of the form:
ORI A LA ORI,

such that k1 + ... + k, < k and {7, ..., 7, } is the set of all full types that are inconsistent with .
In each of the proofs of these two claims the central role is played by the axiom B(c). We omit the
details. <

Finally, the completeness result directly follows from these two claims. QED
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4.2 Linked derivation systems

With a one-step axiomatization H we may not only associate a one-step derivation system H', H also
induces an axiom system for the p-calculus based on the signature of H.

Definition 4.6 Let H be any one-step axiomatization. We define the Hilbert system pH as follows: as
axioms we take all axioms in H, the axioms (Du) and (Mon), all substitution instances of propositional
tautologies, and the pre-fizpoint schema (1) given in the introduction. As rules, we take modus ponens,
the uniform substitution rule (derive ¢[7] from ¢, where 7 : Var — uML, ), the congruence rule:

ey
@A@H@)\w

and, finally, the Kozen-Park induction rule (2) discussed in the introduction.
We write Fyg ¢ to say that ¢ is provable in the system pH, ¢ by ¢ for Fg ¢ — 9 and ¢ =g ¢ for
Fia o <. <

The following proposition will provide a crucial link between the associated derivation systems at
the one-step level and at the p-calculus level, in our completeness proof.

Proposition 4.7 (Consistency reduction) Suppose that D is a disjunctive basis for A. Further-
more, suppose H is a one-step sound and complete axiomatization, and let o : A — pMLp be a map
assigning some formula in puMLy to every wvariable in A. If « is a formula in 1MLX(A) such that
¥y —alo], then there exists a one-step model X, &, m It o (where € € TxX ) such that for each u € X,
we have ¥ = \ o[m(u)].

Proof. To keep notation simple we take all predicate liftings to be unary. Using expressive complete-
ness of the disjunctive fragment D(A) and applying distributivity for D as supplied by Proposition 3.21,
we can rewrite the formula « as a disjunction & of formulas of the form 0[y4] for § € D(PA).

Pick a disjunct [xa] of £ such that d[xa][o] is consistent in pH, which must exist since otherwise
the whole disjunction {[o] is inconsistent and hence a[o] is inconsistent contrary to assumption. It
can be checked that:

sTxallo] =w ol [xallo] (14)

where the map 7 : PA — uML, is defined by:

B if B] is pH-consistent
7(B) = 1 /\J[. ] is uH-consisten
1 otherwise.

To see this, we first prove by induction on the complexity of a lattice formula 7 over PA that:
lxallo] =n 7r][xallo] (15)
Using this we can prove by induction on one-step formulas a over A that:
alxallo] =n a[r][xallo]

We only consider the case where « is of the form Oz, and since 7 is a lattice formula over PA we can
reason as follows:

(Oam)xalle] = Ox(r[xallo])
=a Ox(r[r]lxallo])
= (Oam)[rlxallo]-
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For the second step here we have used the congruence rule. This finishes the proof of (15). We now
see that d[7][xa][o] is consistent in pH (since d[x 4][o] was consistent), and it follows immediately that
¥ =6[r][x a] by contraposition.

Using the substitution property for H (contrapositively) we find that ¥i; —6[r]. From one-step
completeness we get ! —6[7], so we find a set X and a marking m : X — PPA such that [§]}, # 2.
Hence we find ¢ € TxX such that X, &, m |-t §[7].

We now change the marking m to a new marking n as follows: for u € X we set

n(u):={BCA|Bem(u) & 7(B) # L}

Then for each B C A we clearly have [7(B)]% = [B]Y,, and we get for all positive one-step formulas
B over PA that:
X, &,mlI-t Blr] iff X, €, nIF! 6.

Hence, in particular, we get:
X, & nlFt 6.

By disjunctivity of § we can now pick a cover f: (X', &) — (X,€) and a marking n’ : X’ — PPA
with n/(v) C n(f(v)) for each v € X', where each n’(v) for v € X’ is either empty or a singleton, and
such that X', ¢, n/ IF! 6. Define a new marking n' : X’ — PA by setting:

ot () = {B if n'(u) = {B}

o ifn(u) =0
Then one can check that for each B C A we have:
[BIY C [xa(B)]o:

So by a monotonicity argument we get for all formulas 8 € 1MLT (PA,X) that X’,&,n’ IF! 8 implies
X' ¢ nt IFY Blxa]. In particular, we get X', & nf IF! §[xa]. It follows that X’ ¢ nf IF' & hence
X' ¢ ntIF! o, and it can be checked that A o[nf(u)] is consistent for each u € X. QED

5 Coalgebra automata

5.1 A-automata

As mentioned in the introduction, our approach is essentially automata-theoretic in nature. In this
section we introduce the specific kind of coalgebra automata that we will use in this report — these
originate with Fontaine, Leal & Venema [10].

Throughout this section we fix a set X of proposition letters.

Definition 5.1 A X-automaton structure for A, or briefly, a A-automaton structure, is a triple (A, ©,Q)
where A is a finite set of states, ) : A — w is the priority map of the automaton, while the transition
map

©: A — 1MLL (X, A)

maps states to one-step formulas. We turn such a structure into a modal X-automaton for A, or
briefly, a A-automaton by expanding the structure with a starting state a; € A. In case we discuss
automata for an arbitrary or unknown signature A, we will use the term coalgebra automata rather
than A-automata.

The underlying structure of an automaton A = (A4,0,Q,ar) is the triple (4,0,Q). With b € A,
let A(b) denote the variant of A that takes b as its starting state, i.e., A(b) = (4,0, Q, ). <
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The semantics of coalgebra automata is given in terms of a two-player infinite parity game [12].

Definition 5.2 Let A = (4,0,Q,a;) be a A-automaton, and let S = (5,0,V) be a T-model, both
over the set X of proposition letters. The acceptance game A(A,S) for A with respect to S is defined
as in the following table:

Position | Player | Admissible moves
(a,s) 3 {m:S —PA|(S,0(s),m) - O(a)}
m V. [ {0G,t)bem(t)}

The winning conditions are as usual for parity games. That is, the loser of a finite match is the player
who got stuck. An infinite match (aq, s1)mq(asz, s2)mo(as, s3)ms ... induces a stream ajasas ... over
the alphabet A, and we declare the winner of this match to be 3 if the highest priority state that
appears infinitely often in the word ajasas ... has an even priority, and V is the winner otherwise.
We say that A accepts the pointed T-model (S,s), notation: S,s I A, if (ar,s) is a winning
position for 3 in the acceptance game A(A,S). The language L(A) recognized by A is the class of
pointed T-models accepted by A. <

To gain some intuitions, note that the acceptance game A(A,S) moves in rounds from one basic
position of the form (a,s) to another. Each round starts with 3 picking an A-marking m on S that
turns the one-step unfolding of s into a one-step model (S, (s), m) that is supposed to satisfy the
one-step formula ©(a). Looking at this marking m as a binary relation of witnesses, V then finishes
by picking a new basic position from this set.

Definition 5.3 Let A and A’ be two modal automata. We say that A (semantically) implies A’,
notation: A E A’ if L(A) C L(A’), and that A and A’ are equivalent, notation: A = A’ if they
recognize the same language, i.e., if L(A) = L(A’). The two automata are one-step equivalent, notation:
A=A IFA=A4, Q= a; =d}, and O(a) =! O(a) for all a € A. A A-automaton A is equivalent
to a formula ¢ € uML, if any pointed T-model (S, s) is accepted by A iff S, s I .. <

It is obvious that one-step equivalence implies equivalence.
In the remainder of this subsection we introduce various concepts and notations pertaining to
A-automata and automaton structures.

Definition 5.4 The (directed) graph of an automaton structure A = (A4,0,Q) is the pair (G,~4),
where a ~» b if b occurs in the formula ©(a), and we let > denote the transitive closure of ~»a. If
a >, b we say that b is active in a. We write a >y b if a <14 b and b <, a.

A cluster of A is a cell of the equivalence relation generated by >y (i.e., the smallest equivalence
relation on A containing <is). A cluster C' is degenerate if it is of the form C = {a} with a p4 a; by
extension we will also call the state a degenerate.

The unique cluster to which a state a € A belongs is denoted as C,. <

Definition 5.5 Fix a A-automaton structure A = (A,0,Q). The size |A| of A is defined as the
cardinality of its carrier A, while its inder is given as the number ind(A) := [{a € A | a >, a}| of
non-degenerate states.

We write a Ty bif Q(a) < Q(b), and a Ty bif Q(a) < Q(b). When clear from context we sometimes
write C and C instead, dropping the explicit reference to A.

Given a state a of A, we write n, = p if Q(a) is odd, and n, = v if Q(a) is even, and we call a an
ng-state. The sets of u- and v-states are denoted with A* and A, respectively.

We say that A is positive in a proposition letter p € X if each occurrence of p in each formula ©(a)
is positive, that is, not in the scope of a negation.

A state a € A is called a true state of A if O(a) = T. <
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5.2 From formulas to automata

Generalizing the automata-theoretic perspective on the modal p-calculus as in [34], A-automata are
the counterpart of the coalgebraic p-calculus associated with A, in the sense that there are effective
constructions transforming uMLA-formulas into equivalent A-automata, and vice versa [10]. In this
section and the next, we have a closer look at these transformations. For some more detail and
motivation of these definitions we refer the reader to [9)].

First we consider some operations on automata that correspond to the connectives of our language.
For the definition of the complementation operation on automata, we need the following auxiliary
definition.

Definition 5.6 The (boolean) dual a? of a one-step formula o € 1ML (X, A) is the formula we obtain
from « by simultaneously replacing all ocurrences of p € X with —p, A with Vv, Oy with ©ys, and vice
versa. <

Definition 5.7 Let A = (A,04,Q4,ar) and B = (B,0p,Qp5,br) be two A-automata over X.

(1) With ©® € {A,V}, we let A ® B denote the automaton (C,O¢,Qc,ic), where i¢ is some
arbitrarily chosen object, C := AW B W {ipon}, Oc and Q¢ agree with, respectively, ©4 and Q4 on
A and with, respectively ©p and Qg on B, whereas for the initial state ixop we define

O4(ar) ©®Op(br)
k41,

Oc(ires)
Qc(ises)

where k is the maximum priority of A, B.
(2) We let A denote the automaton (A, 09,4, ar), where ©% maps a state a to the boolean
dual of ©(a) (see Definition 5.6), and Q-, is given by

Qoala) =14 Qa(a).

(3) For A € A (assumed to be unary, for simplicity) we define O A = (C,0¢,0¢,ic) as the
automaton given by C' := AW {ic}, ©c and Q¢ agree with, respectively, ©4 and Q4 on A, whereas
for the initial state ic we define

@C(ic) = @)\a[

Qc(ic) = k41,
where k is the maximum priority of A. We leave it to the reader to carry out the straightforward
generalization of this construction to arbitrary, n-ary predicate liftings. <

Next we define a substitution operation on automata.

Definition 5.8 Let A = (A,04,Q4,a;7) and B = (B,0p,Qp,b;) be two A-automata over the sets
Xw{p} and X, respectively, and assume that A is positive in p. We define A[B/p] = (C,O0¢,Q¢c,ic) as
the A-automaton over X defined by C' := AW B, whereas O¢ is given by

[ ©4(c)®p(br)] ifce A
Oc(e) '—{ onb)  ifcen.

Finally, we set Q¢(b) := Qp(b) for b € B and Q(a) := n + Q(a) for a € A, where n is the least even
number greater than any priority in B. <

In order to define least and greatest fixpoint operators on automata we need the following propo-
sition.
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Automaton | O(a;) | ©(z) Qla; | Qx) |1
A* 01k | x Qa(a) | 0 z
nx. A 0 (x] | 677 [K] Qaa) | m+1]|z
ve. A 0¢1k] | 05 [kl V07 [K] | Qala) | m+2|

Table 1: The automata A”, pux.A and vz.A

Proposition 5.9 For every A-automaton A positive in x, and any state a € A, there are formulas 0§
and 0% in which x does not appear, such that

O(a) =k (x ANOF) V01,

Definition 5.10 Let A = (A,04,Q4,as) be a A-automaton over the set X {z}, and assume that A
is positive in . By Proposition 5.9 for each a € A we may fix formulas 62,0 € 1ML (X, A) such that
O(a) = (x AN OF) Vv 07. We now define automata A®, px.A and vz.A; all three structures are based
on the same carrier, viz., the set (A x {0,1}) W {z}, while we specify their transition map ©, priority
map 2 and initial state ¢ in Table 1. In this table, x denotes the substitution

K:a— (xAao)Va,

while m is the smallest even number that is greater than the maximum priority of A. <

Definition 5.11 By induction on the complexity of a modal p-formula ¢ € pML, we define a A-
automaton A.

First of all, we need to consider atomic formulas: given any propositional variable p, we take some
arbitrary object a distinct from p to be the one and only state of A,, and define ©,(a) = p, and
Q,(a) = 0.

With this in place, we can complete the translation as follows:

A, = A,
vaqp = A¢ V Aw
A@MD = @)\A@
Aupo = pux.hy,,

i.e., by applying the operations we have defined above to handle the various connectives of the coal-
gebraic p-calculus. <

5.3 From automata to formulas

In the opposite direction we will need an actual map transforming an initialized modal automaton
into an equivalent p-calculus formula. For our definition of such a map, which is a variation of the one
found in [12], we need some preparations. For a proper inductive formulation of this definition it is
convenient to extend the class of automata, allowing states of the automaton to appear in the scope
of a modality in a one-step formula.

Definition 5.12 A generalized automaton structure over X is a triple A = (A4,0,) such that A is

a finite set of states, Q : A — w is a priority map, and © : A — 1ML} (X, A UX) maps states of A to
generalized one-step formulas. <
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Whenever possible, we will apply concepts that have been defined for automata structures to
these generalized structures without explicit notification. For the operational semantics of generalized
modal automata we may extend the notion of a one-step model in the obvious way. Readers who are
interested in the details may consult [9].

Definition 5.13 A (generalized) automaton structure A = (A4,0,Q) is called linear if the relation
Ca is a linear order (i.e., the priority map € is injective), and satisfies Q(a) > Q(b) in case b is active
in a but not vice versa. A linearization of A is a linear automaton A’ = (4,0,Q) such that (1) for
all a € A, '(a) has the same parity as Q(a), and (2) for all a,b € A that belong to the same cluster
we have ¥ (a) < ' (b) iff Q(a) < Q(b). <

Our focus on linear automaton structures is justified by Proposition 5.14; for the definitions of the
satisfiability and consequence games involved in this definition, see Section 6.

Proposition 5.14 Every automaton structure A has a linearization Al such that, for all a € A,

(1) Ala) Fg Al{a) and Al{a) Fg Ala);

(2) each player I1 € {3,V} has a winning strategy in S(A(a)) (resp. Stnin(A{a))) iff she/he has a
winning strategy in S(AYa)) (resp. Swnin(Al{a))).

Definition 5.15 We introduce a map
try : A — pML(X)

for any linear generalized X-automaton structure A = (A4, ©,Q). These maps are defined by induction
on the size of A.
In case |[A| =1, we set
try(a) :=n,a.0(a),

where a is the unique state of A.

In case |A| > 1, by linearity there is a unique state m reaching the maximal priority of A, that
is, with Q(m) = max(Ran(Q?)). Let A~ = (A7,07,Q7) be the X U {m}-automaton structure given
by A” := A\ {m}, while ©~ and Q~ are defined as the restrictions of, respectively, ® and Q to A~.
Since |[A~| < |A|, inductively* we may assume a map try- : A — pMLA (X U {m}).

Now we first define

tra(m) := ny,m.©O(m)[try-(a)/a|a € A7],

and then set
tra(a) :=try-(a)[tra(m)/m)
for the states a # m. <
We now turn to the translation map for arbitrary automaton structures. We already saw that

every automaton structure has at least one linearization. Furthermore, by the following result the
translation maps of different linearizations of the same structure are provably equivalent.

Proposition 5.16 Let A’ = (A,0,Q) and A" = (A,0,Q") be two linearizations of the automaton
structure A = (A,0,Q). Then

try (a) =K trar (a)

for all a € A.

40bserve that since m is a proposition letter and not a variable in A~ the latter structure need not be a A-automaton,
even if A is. It is for this reason that we introduced the notion of a generalized A-automaton.
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Proposition 5.16 ensures that modulo provable equivalence the following definition of tr(A) for an
arbitrary automaton A does not depend on the particular choice of a linearization for the underlying
automaton structure of A.

Definition 5.17 With each automaton structure A = (A, ©,Q) we associate an arbitrary but fixed
linearization Al of A (with the understanding that A = A in case A itself is linear). We then define
try := try. Finally, given an arbitrary A-automaton A = (A4,0,Q,az), we let

tr(A) :=try(ar)
define the translation of the automaton A itself. <

Proposition 5.18 The following claims hold, for all A-automata A, B:
(1) tr(A O B) =k tr(A) © tr(B) for ® € {A,V};
(2) tr(—A) =k —tr(A);
(3) tr(V\A) =k Oxtr(A) for all A € A;
(4) if A is positive in p then tr(np.A) =k np.tr(A) forn € {p,v};
(5) if A is positive in p then tr(A[B/p]) =k tr(A)[tr(B)/p];
(6) tr(ux.A) =k pr.tr(A®).

The following theorem establishes the central property of the translations from formulas to au-
tomata and back that links these constructions with the proof theory of coalgebraic p-calculi in the
appropriate way:

Theorem 5.19 For every formula ¢, we have ¢ =g tr(A,).

Remark 5.20 This theorem allows us pass freely between uMLa-formulas and A-automata without
losing information about consistency or provability, and to apply proof-theoretic concepts to automata.
For example we say that the automaton A is consistent if pH ¥ —tr(A), we may write A - B to
abbreviate pH F tr(A) — tr(A) etc. <

6 Games for coalgebra automata

Our completeness result is based on a number of automata-theoretic concepts, specifically, two games
played with automata that we call the satisfiability game and the consequence game. The satisfiability
game related to an automaton A is played between players 3 (“Eloise”) and V (“Abélard”), and the
aim of Eloise is to construct a model accepted by A step by step. The consequence game related
to two automata, A and B, is also played between two players, now prosaically called ‘player I’ and
‘player II’; here the aim of the second player is to systematically show that the first automaton implies
the second one, in some strong, structural sense. Both games proceed in rounds, moving from one
basic position to another, and these moves all involve one-step models over the collection A* of binary
relations over the carrier set of the automaton A (and of the collection B¥) of binary relations over the
carrier set of the second automaton, in case of the consequence game). Furthermore, for both kinds
of games, infinite matches naturally induce streams of binary relations, and the winning conditions
of both games are expressed in terms of the collection of traces through such streams. For a more
detailed introduction of these games, in the setting of the standard modal p-calculus, we refer to
Enqvist, Seifan & Venema [9)].
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6.1 Traces and canonical one-step models

We first introduce some terminology and notation for the auxiliary notions of traces and canonical
one-step models.

Definition 6.1 Fix a set A. We let A* denote the set of binary relations over A, that is, A% :=
P(A x A).

Given a finite word ¥ = RiRoR3...R), over the set A% a trace through ¥ is a finite A-word
a = apaias . ..ay such that a;R; 1a;,1 for all i < k. A trace through a Af-stream ¥ = RiRoR3... is
an A-stream o = agaias ..., such that a;R;11a;41 for all ¢ < w). In both cases we denote the set of
traces through ¥ as Try.

Given a stream ¥ = R1RyR3... over A" we denote by Y|k the word R; ... Ry, and for a trace
T = apaias ... on % we denote by 7|; the restricted trace ag . ..ar on X|;. We use similar notation for
restrictions of words over A* of length > k. <

Definition 6.2 Fix a finite set A and a priority map Q : A — w. We let NBT denote the set of
Af_streams that contain no bad trace, that is, no trace 7 = aga; ... such that max(Q[Inf(7)]), the
highest priority occurring infinitely often on 7, is odd.

In case (2 is the priority map of a coalgebra automaton A, we will usually write NBT instead of
NBTq. <

It is not difficult to show that NBT is an w-regular subset of (A#)«, for any parity automaton A.

Proposition 6.3 Given a finite set A and a priority map Q : A — w, there is a parity stream
automaton recognizing the set NBTq, seen as a stream language over At

Now we consider the one-step models based on the set A? of binary relations over A.

Definition 6.4 Given aset A, the natural a-marking on the set A is defined as the map n2 : A — PA
given by
n? : R — Rla).

In case A is known from context, we will usually write n, rather than nf, and define, for a one-step
formula o € 1ML (X, A), [a]} := {T" € TxA* | A% T, n, IFL a}. <

Remark 6.5 The notation [a]! may seem to be somewhat ambiguous, since it does not refer to the
ambient variable set A. However, by Proposition 3.10 and Corollary 3.9 it follows that, for any pair
of sets A, B such that o € 1ML (X, A) N 1ML} (X, B) we have

(T e TxA¥ | A5 T n2 FL o} = {T € TxB* | B ,T,nZ I} a}.
As another instance of Corollary 3.9, for any subset R C A* and for any object I' € TxR we have
AF D ng IF a iff R, T, nglr IF! a,

where n, [ is the natural a-marking on A¥ restricted to R. If no confusion is likely, we will often
denote the marking n,[z simply by ng,. <

Remark 6.6 We may think of any object ' € TxA* as a family {(A*,T,n,) | a € A} of one-step
models on the same one-step frame (A%, T'). It may occasionally be useful, however, to consider this
‘family of one-step models’ as one single model. To do so, we involve, for each a € A, the substitution
Ta + A — A x A that tags each variable b € A with its ‘origin’ a, that is, 7, : b — (a,b). One may
verify, on the basis of a straightforward formula induction, that

AY T ong IFY o iff A5 T, id 4 IFY afry)
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for each one-step formula o € 1MLj\r (X, A). In particular, it follows that

I'e ()[0(a)]} iff A% T,idas - /\ ofral,

a€EB a€B
for any family {©(a) | a € B} of formulas. <

The following, rather technical lemma, will be needed to ensure that we can make simplifying
assumptions on the strategies that players use in the games that we are about to introduce.

Proposition 6.7 Let © : A — 1MLX(X,A) be some map, and fix some R € A and some Q C AF,
I' € TxQ such that
re () [6)].
a€RanR

(1) There are @' C A* and I € Ty Q' such that T' € (,cranpl©(@)]t, C : (Q,T) “hs (Q7),
and for each @Q € Q': Dom@ C RanR.

(2) There are Q' C A* and I" € TxQ' such that T' € ,cranpl©(@)]s, C : (Q,T7) i (QT),
and for each Q € Q': b < a whenever (a,b) € Q.

(8) Let there be, for some subset B C A, a collection {G, C PA | b € B} such that for every
C € PA there is a C' € Gy such that C' C C. Furthermore, assume that, for each b € B:

O(b) € {a[x] | @ € D(Gy)}-

Then there are Q' C A* and I" € TxQ' such that I" € ,crang[©(@)]L, C: (Q, 1) < (QT), and
for each Q € Q': Q[b] € Gy, for allb € B.

Proof. For part (1), consider the map F : A* — A* given by
F(Q):=Qn(RanR x A).

We leave it for the reader to verify that the pair (Ran(F), (TxF)T') meets the requirements. Part (2)
is proved similarly, using the map Q — Q N >.

For part (3), we will prove the statement for the special case where B is a singleton B = {b}, while
we show that Q' additionally satisfies

{Qla] Qe @} {Qla] | Q € Q} (16)

for all @ # b. The general case can then be obtained from the special one by a straightforward iteration,
taking care of B’s elements one by one. The role of (16) is to ensure that new iterations do not spoil
the progress booked in earlier rounds.

So let b € A be such that ©(b) is of the form ap[x] for some a;, € D(Gp). By assumption on I’
and Corollary 3.9 we have Q,T",ny IF! ap[x]. Applying Proposition 3.19 we obtain a one-step model
(S,0,m) and a map F : S — Q such that (TxF)o =T, Ran(F) = Q, S,0,m IF' ay[x] and, for all
s € S we have m(s) C ny(Fs) = Fy[b] and m(s) € Gy.

Now define the map G : S — A* by setting

[ m(s) ifa=b
Gsla] = { Fila] ifa#b.

We claim that the object I” € Ty Af, given as

I := (TxG)o,
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together with the set @' := RanG, has all the desired properties.

To start with, it is easy to see that F' : (S,0) — (Q,T') and G : (S,0) — (Q',I") are surjective
one-step homomorphisms, so that it follows from Proposition 3.13 and the fact that G(s) C F(s) for
all s € S that C: (Q,I") £} ; (Q,T).

Our next step is to prove that IV € N [©(a)]t, or equivalently, that

a€RanR
AP T n, IF ©(a) for all @ € RanR. (17)

To see this, make a case distinction. If @ = b, it follows from the definitions that (n,oG)(s) = np(Gs) =
Gs[b] = m(s), so that G is a one-step model homomorphism

G:(S,0,m)— (AT, ny).

From this (17) is immediate by S, o, m IF! ap[x].
In case a # b we have to do a bit more work. Define the A-marking m, : S — PA by putting
ma(s) := Fs[a]. Tt is easy to check that this turns F' into a one-step model homomorphism

F:(S,0,ma) — (A% T, n,)
and G into a one-step model homomorphism

G : (S,0,ma) = (A" T n,).
But then by naturality we immediately obtain that

AL T n, IF a iff S,0,m, IF a
iff AT ng IF' o

for all one-step formulas o € 1ML} (A), so in particular for o = ©(a). Thus (17) follows by the
assumption that A%, T',n, IF! ©(a).
Having established (17) we continue with proving that

Q'b] € Gy (18)

for each Q' € Q'. This is in fact easy, since each such @’ is by definition of the form G, for some
s € S. Hence Q'[b] = m(s) € Gy by the assumptions on the one-step model (S, o, m).

This leaves (16) to take care of. Let a € A be distinct from b, and take an arbitrary Q' € Q’, say,
Q' = G, for s € S. Then by definition of G : S — A* we have G[a] = Fya], and since Ran(F) C Q
we are done. QED

6.2 The satisfiability game

Definition 6.8 Let A = (A,0,Q,as) be a modal automaton. Then the satisfiability game S(A) is
the graph game of which the moves are given by Table 2. Positions of the form R € A* are called
basic.

Position | Player | Admissible moves
R c AF 3 {(R,T) e PAF X T4 A¥|T € TxRN ﬂaeRanR[[G(a)]]}l}
(R,T) v {R € A*| RC R’ for some R' € R}

Table 2: Admissible moves in the satisfiability game S(A)
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The winner of an infinite match of the satisfiability game is given by the induced stream ¥ =
RoR; ... € (A)* of basic positions. This winner is 3 if ¥ belongs to the set NBTq, that is, if ¥
contains no bad traces, and it is V otherwise. A winning strategy of V in S(A) may be called a
refutation of A. <

The satisfiability game is sound and complete in the following sense.

Proposition 6.9 (Adequacy) Let A = (A,0,Q,ar) be a modal autormaton A. Then 3 has a winning
strategy in S(A) iff the language recognized by A is non-empty.

Proposition 6.10 Let A = (A,0,9Q,a;) be a A-automaton, and let N C A be a set of relations.
Assume that for every basic position R € A* of the satisfiability game, and every legitimate move
(R,T) of 3 there is a legitimate move (R',T") such that R’ C N and R' PC R. Then for any winning
position in S(A) 3 has a winning strategy that restricts her moves to pairs (R,T') with R C N.

Proof. Assume that 3 has a winning strategy f in the game S(A) initialized at position Ry. We need
to provide her with a winning A/-strategy, that is, a strategy f that always selects moves (R,I") with
RCN.
We will define this strategy f by induction on the length of partial S(A)-matches. Simultaneously,
for any such match
E = Ro(Ro, Fo)Rl(Rl, Fl) e Rk

which is f-guided, we will define a parallel match
¥ =Ro(R;, T§)R1(RT,TT) ... Ry

which is guided by F’s winning strategy f. If we can maintain such a shadow match infinitely long, it
is routine to prove that f is winning for 3.

For the case where k = 0 there is nothing to prove, so assume inductively that there are partial
matches ¥ and ¥* as above. Observe that since the last positions of ¥ and ¥* are identical, the set
of s legitimate moves in ¥ and X* are the same. Let (R,T') be the move prescribed by 3’s winning
strategy f in the partial match ¥*, then by assumption there is a legitimate move (R/,T") such that
R’ C N and R’ PC R. Then we let

F(2) = (R, 1)
be I’s move in ¥. This defines the strategy f.

To finish the inductive step, consider an arbitrary continuation of the match 3- (R’,T), say, where
V plays some relation Q. By definition, Q is a subset of some Q' € R/, while by R’ PC R we may find
some Q" € R such that Q' C Q”. But then it follows from Q C Q" that Q is also a legitimate move
for ¥ in ¥* - (R,T"). In other words, the two k + 1-length matches ¥ - (R',I) - @Q and ¥* - (R,T") - Q
satisfy the required conditions. QED

Remark 6.11 As a consequence of Proposition 6.10, we can always make some minimality assump-
tions on I’s strategy in the satisfiability game. In particular, suppose that 3, at some position R € Af
in a match of S(A), picks a move (R,I") € PA* x TxA!. Then by Proposition 6.7 we can assume
without loss of generality that, for all Q € Q:

(1) Dom(Q®) C Ran(R);

(2) b occurs in O(a), for all (a,b) € Q.

(3) |Q[a]] < 1, whenever ©(a) is a disjunctive formula. <

Remark 6.12 We remark in passing that the moves made by 3 can always be assumed without loss
of generality to be of the form (R, T') where R is the unique smallest subset of A* with I' € TxR; this
set is called the base of T', and denoted as Base(I'). (That this set exists follows from standard results
in coalgebra, together with the assumption that T (and hence Tyx) preserves inclusion maps.) Based
on this, an alternative but equivalent formulation of the satisfiability game is given in Tabel 3. <
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Position | Player | Admissible moves

R e Aﬁ 3 maERanR[[G(a)]]cll
I e TxA v Base(T")

Table 3: Admissible moves in the satisfiability game S(A)

Position P | Moves
(R, 1) I | {((R,T),R) |T € TxRN(Nyeranrl©(@)]a}
(R.T),R) I | {((R,1), (R",T)) | T" € TxR' N yeranr [O(0)]}}

(R,D),(R\,I") | 1L | {Z| Z: (R,T) €}, (R, I")}
7 C At x A* I |z

Table 4: Admissible moves in the consequence game C(A, A')

6.3 Consequence game

The consequence game C(A,A’) is played between two players I (female) and IT (male), and the aim
of the second player is to provide “step-by-step” a construction that systematically turns any winning
strategy for 3 in S(A) into a winning strategy in S(A’). A strategy for player II thus provides a tight
structural connection between the two automata. More in detail, the basic positions of the game are
pairs (R, R') € A*, and at such a position Player I picks an admissible move (R,T) for 3 in S(A) at the
position R. After this Player II must respond with an admissible move (R’,I") for 3 in S(A’) at the
position R/, but also, crucially, with a full one-step bisimulation Z C R x R’ linking I" and I". This
round of the match finishes with player I picking an element (Q, Q") of Z as the next basic position.
We can now provide the formal definition of the consequence game C(A, A'):

Definition 6.13 Let A = (A4,0,Q,a;) and A’ = (A4,0',Q,a}) be A-automata. The rules of the
consequence game C(A,A’) are given by Table 4. Positions of the form (R, R') € A% x A’ ¥ are called
basic. For the winning conditions of this game, consider an infinite match 3 of C(A, A’), and let

(Ro, Rg) (R, Ry)(Ra, R) . ..

be the induced stream of basic positions in 3. Then player 1 is the winner of ¥ if RgR; ... € NBTq
but R{R) ... &€ NBT; that is, if there is a bad trace on the A’-side but not on the A-side.

If the position ({(ar,ar)},{(a},a})}) is a winning position for player IT in C(A, A’), we say that A’
is a game consequence of A, notation: A Fg A’ . <

We have the following soundness result for this game.
Proposition 6.14 For any two modal automata A and A’ it holds that
AFg A implies AE A (19)

For future reference we give the following proposition, stating that the consequence relation F¢ is
reflexive and transitive.

Proposition 6.15 Let A, A’ and A” be modal automata.

(1) AFg A;
(2) if AFg A" and A’ Eg A" then A Eg A”.

33



Proof. Clearly, the proof of the first item is trivial. Concerning the transitivity of Fg, it is a routine
exercise to verify that player II can compose any two winning strategies in the games C(A,A’) and
C(A’, A"), respectively, to obtain a winning strategy in the game C(A, A”). QED

Remark 6.16 Note that by Proposition 3.13 we always have F : (R,T) €} ; (F[R], TxF(T)), for any
map F having R as its domain. A strategy for player II in the consequence game C(A,B) is said to be
functional if his response to any match ending in a position ((R,I), R') is of the form (F[R], TxF(T"))
followed by (the graph of) F' for some map F : R — B*. <

Similar to the satisfiability game, we will often want to make certain assumptions on the strategy
of player I in the consequence game. These assumptions will be justified by the following analog of
Proposition 6.10.

Proposition 6.17 Let A = (A,04,Q4,a;) and B = (B,0p,Qp,b;) be A-automata, and let N C A*
be a set of relations. Assume that for every basic position (Q, R) € A* x B of the consequence game,
and every legitimate move (Q',T") of player I, she has a legitimate move (Q,T) such that @ C N and
c: (9, t)}\,f (Q,1).

Then for any winning position in C(A,B), player I has a winning strategy that restricts her moves
to pairs (Q,T) with Q C N.

Proof. We write Qo := {(ar,ar)}, Ro := {(br,br)}, and abbreviate C := C(A,B)Q(Qo, Ro). Let f be
a winning strategy for player I in C. In the same game we will provide I with a winning strategy f,
that restricts her moves to pairs (Q,I')) with @ C A. This strategy f will be defined by induction
on the length of a partial f-guided match, while by a simultaneous induction we will (1) associate
with each f-guided match ¥ = (Q,, Rn)n<k an f-guided shadow match %’ = (Q/,, Rn)n<k such that
Q. C Q) forall n <k.

Clearly this holds at the start of every C-match if we take Qf := Qp. For the inductive step
of the definition, fix a partial f-guided match ¥ = (Q,, Rn)n<k, and let X' = (Q',, Ry)n<k be the
inductively given shadow match. In order to provide player I with a move in X, first consider the move
(Q',T") € PA* x TxA! provided by f in the shadow match ¥’. By assumption there is a legitimate
move (Q,T) at position (Q}, Ry) such that @ C M and C: (Q,T) <:>/1\’f (Q,T"). Since Qr C Q) (and
hence, RanQy C Ran@Q)},), it is easy to see that this move (Q,TI") is also legitimate at the last position
(Qr, Ry) of ¥. Hence we may take this pair (Q,I") to be the move suggested by the strategy f.

Continuing the inductive definition, suppose that player II’s answers to I's move (Q,T") are, suc-
cessively, (R, A) € PB* x TxB* and Z C A* x Bf. Now consider the relation Z’ C A* x B¥ defined by
Z' .= D; Z. We claim that

(R,A) and Z’ are legitimate moves for IT at position ((Q',T"), R) (20)

and
for all (Q', R) € Z' there is a (Q, R) € Z such that Q C Q'. (21)

For a proof of (20), observe that the legitimacy of (R, A) is obvious. For the legitimacy of Z’ we have to
prove that 2’ : (Q',T") <:>}\’f (R, A); but by Proposition 3.13 this follows from D : (Q',T") <:>/1\’f (9,1
and Z: (Q,T) <:>}\7f (R,A). The claim (21) is immediate from the definitions.

Based on the statements (20) and (21), we can finish our inductive definition: Suppose that in the
match ¥ - ((Q', 1), Rg) - ((Q',T"),(R,A)) - Z’, player I’s winning strategy f tells her to pick a pair
(Q', R) € Z; then in the match ¥ - ((Q,T), Ry.) - ((Q,T), (R, A)) - Z we let the strategy f pick a pair
(Q, R) € Z as given by (21). Clearly this is a legitimate move for player I. Finally, where ¥ - (Q, R) is
the continuation of ¥ in terms of basic positions, the associated continuation of the shadow match is
¥ (@', R), and so it is obvious that player I has been able to maintain the constraint (f).
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It should be clear that the thus defined strategy f always picks legitimate moves of the right type.
It remains to check that it is a winning strategy in C.

It is straightforward to verify that player I will never get stuck in an f-guided match, so we confine
our attention to infinite matches. Let ¥ = (Q,, R, )n<. be an infinite f-guided match, then clearly
there is an infinite f-guided shadow match ¥’ = (Q/,, R, )n<w such that @, C Q/, for all n < w. By
our assumption that f is a winning strategy in C, the match X’ is a win for player I. That is, all traces
through (Q),)n<w are good, while there is a bad trace through (R,)n<.. Obviously then, all traces
through (@Q,)n<w are good, and so the existence of a bad trace through (R,,),<., means that ¥ as well

is a win for player I. QED

7 Taming traces

7.1 Disjunctive and semi-disjunctive automata

We now introduce two classes of special A-automata, for which the satisfiability game simplifies sig-
nificantly. Essentially, these automata are designed to prevent that the number of traces that we need
to consider in a match of the satisfiability game multiplies uncontrollably, making the combinatorics
involved in keeping track of these traces un-manageable.

Definition 7.1 A A-automaton A = (A, 0,Q, a;) with free variables X is said to be disjunctive (rela-
tive to a disjunctive basis D) if for all a € A, the formula ©(a) € 1ML, (X, A) is of the form 7 A § with
7 € Bool(X) and § € D(A). <

Note that if A = (A,0,Q,a;) is disjunctive, every one-step formula ©(a) is disjunctive indeed
(cf. Remark 3.16).

The weaker concept of a semi-disjunctive automaton, which is similar to Walukiewicz’ weakly
aconjunctive formulas, is more subtle. They are designed to control the branching of traces in the
satisfiability game, within each given cluster of the automaton.

Definition 7.2 Given an automaton A, a subset B C A is called a-safe if, for all b # b’ in B, at least
one of b,V either belongs to a different cluster than a, or has an even priority, which is higher than all
odd properties that are reached in the cluster of a. We let Sf, C P(A) denote the set of a-safe subsets
of A.

The automaton A is said to be semi-disjunctive if, for all a € A, ©(a) is of the form 7 A d[x 4] with
7 € Bool(X) and ¢ € D(Sf,). <

Semi-disjunctive automata are tightly related to what we call the thin satisfiability game, in which
the moves of V are restricted to control the branching of traces.

Definition 7.3 Let A = (A,0,9Q,a;) be a A-automaton. Given a state a € A, we call a relation
R € A? thin with respect to A and a, or A-thin with respect to a, if:

(1) for all b € A with aRb, we have b < q;

(2) Rl[a] C A is Cy-safe.
Given a relation B C A, we call R B-thin if it is b-thin for all b € B. We denote the collection of
A-thin relations in Af by Af . <

Definition 7.4 The thin satisfiability game Sipin(A) is defined just as S(A), except that admissible
moves R of V are subject to the additional thinness constraint: R € Al i <

Proposition 7.5 Let A be semi-disjunctive. Then for each player 11 € {3,V}, a position is winning
for I in S(A) iff it is winning for I in Sgpim (A).
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We note the following closure properties for disjunctive and semi-disjunctive automata. Here we
say that an automaton is (semi-)disjunctive modulo provable equivalence if it is provably equivalent to
a (semi-)disjunctive automaton.

Proposition 7.6 Let A and B be two modal automata.

(1) If A is disjunctive, then it is also semi-disjunctive.

(2) If A and B are disjunctive, then so is AV B,

(3) If A and B are semi-disjunctive, then so is AV B.

(4) If A and B are semi-disjunctive, then so is A AB, modulo provable equivalence.

(5) If A and B are semi-disjunctive, then so is A[B/xz], modulo provable equivalence.

(6) If A is disjunctive and positive in x, then A* and vax.A are semi-disjunctive, modulo provable
equivalence.

7.2 A key lemma

The following lemma is central in that it links together our two main automata-theoretic tools, the
satisfiability game and the consequence game:

Proposition 7.7 Let A and D be respectively a semi-disjunctive and an arbitrary A-automaton, and
assume that A Eg D. Then the automaton A A =D has a thin refutation.

Before we prove this proposition, we formulate an auxiliary lemma. Recall that the transition map
of the automaton —D is defined by taking boolean duals of the formulas assigned by the transition
map of D, and the priority map is defined by simply raising all priorities by 1. We shall need the
following fact on boolean duals, which is a straightforward consequence of the definitions.

Proposition 7.8 Let (S,0) be a one-step Tx-frame, let o be a one-step formula in 1ML (X, A) and let
m,m’ : S — P(A) be two markings such that S,o,m IF* a and S,o,m’ IF* a®. Then for some a € A

and some s € S we have a € m(s) Nm/(s).

Proof of Proposition 7.7. To fix notation, let A = (A,04,Q,a;), D = (D, Op, Qp,d;) and let B
denote the automaton A A —D. We write B = (B, Op, O, br) and recall that B= AW D W {b;}.

Assume that player IT has a winning strategy y in the consequence game C(A, D) starting at position
({(ar,ar)},{(dr,d;)}). Our aim is to provide a thin refutation for the automaton B, that is, a winning
strategy for player V in the thin satisfiability game for the automaton A A —ID. It will be convenient to
make some simplifying assumptions on 3’s strategy in this game. The proof of this claim follows from
Proposition 6.7 and Proposition 6.10.

Cramm 1 Without loss of generality we may assume that in any match of Syin(A A —D), 3 only
picks moves (Q,I") such that each R € Q is A-thin and, after two rounds of the match, satisfies
R =RespRURespR.

We will now define a strategy o for V in S(B), inductively making sure that the following two
conditions are maintained, for any o-guided partial match ¥ = Ry ... Ry:
() Ry, is thin, and for n > 1 satisfies [Ran(R,) N D| = 1;
(1) There is a x-guided shadow C(A,D)-match of the form (S, S;)(S1,57)---(Sn,S),), where
(a) So ={(ar,ar)} and Sj = {(dr,dr)};
(b) S = {(al,a) cEAXA | (b],a) S Rl} and {(d[,d) eDxD | (b[,d) S R1} - Si,
(c) for each i > 1 we have R; N (A x A) = S; and R; N (D x D) is a singleton {(d,d’)} with
d € Ran(R;—1) N D and (d,d’) € S..
For n = 0 by definition we have Ry = {br,br}, So = {(ar,ar)} and Sj = {(d;,ds)}, so that the
conditions (t) and (f) hold. We leave it for the reader to verify that the case where n = 1 can be
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seen as a notational variant of the general case, and focus on showing how V can extend the match
Ry...R, to Ry...R,R, 1 and maintain the above two conditions in the case that n > 1.

Suppose that the inductive hypothesis has been maintained for the partial match % consisting
of the positions RoR; ... R, where n > 1, with shadow match (Sy, S()(51,5%) ... (Sn,S},), and let
(Q,T) € PB* x TxB* be an arbitrary move chosen by 3 at ¥. By Claim 1 we may assume that each
member of Q is thin relative to A. By legitimacy of (Q,T') as a move for 3 we have

BYT,nf IF ©p(b) for all b € RanR,, (22)

where we recall that nf : B¥ — PB denotes the natural B-marking on B*, given by n? : R — R[b).
Then by Corollary 3.9 and Proposition 3.10 we obtain that

Q.I,ng IH ©p(d)°, (23)
where d is the unique element of Ran(R,,) N D, and
B T,n2 - ©4(a) for all a € ANRanR,,. (24)

Recall that Res,y : B¥ — Af is the map sending a relation R to its restriction RN (A x A). By
Proposition 3.8 we may infer from (24) that

AP (TxRes )T, n IFL ©4(a), for all a € ANRanR,, (25)

while it follows from Proposition A.10 that (TxResa)I' € Tx(Resa[Q]). But then by Proposition 3.10
we have that
Resa[Q], (TxResa)T, n2 IF! © 4(a), for all a € AN RanR,, (26)

and hence the pair ((TxRes4 )T, Res4[Q]) is admissible as a move for player I in the consequence game at
position (S,,,S"). Thus Player IT’s winning strategy x in C(A, D) provides a pair (Q',I") € PD! x Ty D¥
such that IV € TyQ' and

Q' 1", nf IF ©p(d), (27)

followed by a relation Z C Resx[Q] x Q' such that Res4[Q], T’ <:>}\,f o1,
We shall prove the following claim:

CrLAM 2 There are S € Q, S’ € @', and ¢ € D with (RessS,5’) € Z and (d,c) € S’ NRespS.

PRrROOF OF CLAIM It follows from Proposition 3.13 that the composition Z’ of (the graph of) the map
Ress and Z is a full one-step A-bisimulation Z’ : Q,T <:>}\7f Q' T’. Hence, if we define a marking
m: Q — P(D) by setting

m(S) == J{S'[d] | (ResaS, S") € 2},

then we may apply Proposition 3.14 to (27) and obtain
Q,T,mI- ©p(d). (28)

But then by Proposition 7.8, it follows from (23) and (28) that there is some ¢ € D and some S € Q
such that ¢ € nP(S) Nm(S). Unravelling the definitions of n} and m we find that, respectively,
(d,c) € RespS and (d,c) € S’ for some S’ with (ResaS,S") € Z, as required. <

With this claim in place, we define the next move for V prescribed by the strategy o to be the
relation R, 1 := ResySU{(d, )}, where S € Q and ¢ € D are as described in the claim, so that (d, c) €
F(RessS) NRespS. Note that this is a legitimate move in response to (Q,T) since R,+1 C S € Q.
The shadow match is then extended by the pair (5,11, 5], ;) := (ResaS, F(Res4S)) so that condition

n
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(1c) of the induction hypothesis holds as an immediate consequence of the claim. For condition (), it
is obvious that |Ran(R,4+1) N D| = 1; thinness of the relation R,,41 follows from the assumption that
S € Q was thin relative to A.

To show that the thus defined strategy o is winning for V, first observe that he never gets stuck, so
that we may focus on infinite matches. It suffices to prove that every infinite o-guided match contains
a bad trace, so consider an arbitrary such match ¥ = (R;);>0.

Clearly we may assume that all initial parts of ¥, corresponding to the partial matches (R;)o<i<n,
satisfy the conditions () and (f). From this it follows that ¥ itself has an infinite x-guided shadow
match (S;, S})i>o satisfying the condition (fa-c). In addition, it follows from (t) that ¥ will contain
a unique trace in D, which by (1) will also be a trace on the right side of the shadow match in the
consequence game. That is, the match RoR1 R, ... contains a unique trace of the form b;didads . ..
with each d; in D, and this is a trace through the stream S)S57.5% ... as well. If this trace is bad, then
we are done. If not, then given the priorities assigned to states in =D it must be bad as a trace in
D since parities are swapped in —ID. Hence there must be a bad trace byajasas ... on the left side
505152 ... of the shadow match in the consequence game, since this shadow match was guided by
the winning strategy x of Player II. But then this trace bjajasas ... is also a bad trace in the match
RoR1 R ... of the satisfiability game. Summarizing, we see that either the unique trace through D in
> is bad or there is some bad trace through A in 3. In either case, X is a loss for 3 as required. QED

8 A strong simulation theorem for A-automata

The goal of this section is to prove a strengthened simulation theorem for coalgebra automata: we will
provide a construction sim(-) transforming an arbitrary A-automaton A into a disjunctive automaton
sim(A) that is not only semantically equivalent to A, but in fact game-equivalent to A in the strong
sense as stated in Theorem 8.2 below.

The construction of sim(A) takes place in two steps, a ‘pre-simulation’ step that produces a dis-
junctive automaton Af with a non-standard acceptance condition, and a second ‘synchronization’ step
that turns this acceptance condition into a parity condition. Both steps of the construction involve a
‘change of base’ in the sense that we obtain the transition map of the new automaton via a substitution
relating its carrier to the carrier of the old automaton.

The construction of the pre-simulation of an automaton A is very closely related to the satisfiability
game for A-automata; in particular, states of the pre-simulation of A are the same as the basic positions
of S(A), namely binary relations in A% and the initial state R; is {(ar,as)}. For the definition of the
transition map ©F of the pre-simulation automaton, we remind the reader of Remark 6.6, where we
showed how to think of the admissibility criterion of 3’s moves in the satisfiability game in terms of
the satisfaction of a single formula:

e () [®@],iff AT idy - A afra].

a€RanR a€RanR

The acceptance condition NBT, C (AF)“ consists of the streams over A that do not contain any bad
traces. Finally, the simulation sim(A) is produced by forming a certain kind of product of the pre-
simulation of A with a deterministic stream automaton that recognizes the stream language NBTy;
we refer to [9] for the details.

Definition 8.1 Assume that D is expressively complete for A, and let A = (A,0,Q,as) be a A-
automaton. Define ©* : A — 1ML} (X, A x A) by putting, for each a € A,

©7(a) := O(a)[ral,
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where 7, : A — Latt(A x A) is the tagging substitution given in Remark 6.6 by
Ta 1 b (a,b).

Now consider a binary relation R € A¥; as an easy consequence of Proposition 3.21 we may pick
formulas 7 € Bool(X) and dr € D(P(A x A)) = D(A*) such that

TR ANOR[XAaxA] =1 /\ 0*(a).
a€RanR

Then, using these formulas for the definition of the following map ©f : A* — D(X, A?):
@ﬁ(R) = 7R AR,

we obtain the pre-simulation of A as the automaton pre(A) = (A% ©% NBT,, R;), where R :=
{(ar,ar)}.

Since the acceptance condition NBT} is an w-regular language with alphabet A* as we noted in
Section 6, we may pick some deterministic parity automaton Z = (Z,§,, zr) that recognizes NBT 4.
Finally we define sim(A) to be the structure (D, 0", Q" d) where:

-D:=Atx Z,

- d[ = (R[,Z]),

- O"(R, 2) i= O (R)[(Q.6(R, 2)/Q | Q € A¥] and

-Q"(R,z) = Q(2).

We also define a “forgetful” map G, : D — A by mapping (R, z) to R. <

Theorem 8.2 The map sim(-) assigns to each modal automaton A a disjunctive modal automaton
sim(A) such that

(1) A Eg sim(A) and sim(A) Eg A;

(2) B[sim(A)/p] Ec B[A/p], for any modal X-automaton B which is positive in p € X.

Proof. To show that A Fg sim(A) is easy: fix the stream automaton Z that recognizes NBT,.
Then every finite word Ry ... R} over A% determines an associated state of Z by simply running Z
on the word Ry ... Ry; so for Ry the associated state is zy, for RgR; the associated state is ((Rp, 27)
etc. Since every k-length partial match ¥ of the consequence game C(A,sim(A)) determines a word
Ry ... Ry, over A in the obvious way, we can associate a state zs; of Z with each such partial match.
If Player I continues the match ¥ consisting of basic positions (Rg, Ry) ... (Rk, R},) by choosing the
move (R,T) € PA* x TxA* then we let Player II respond with the function F': R — (A% x Z)¥ that
is defined by mapping R € R to the singleton {((Ry, zx), (R, (R, zx))}. It can be checked that this
defines a functional winning strategy for Player II, and we leave the details to the reader.

The direction sim(A) Eg A of clause (1), which can be seen as a simple special case of clause (2),
will follow from the Propositions 8.5 and 8.6, as will clause (2) itself. QED

The difficult part of Theorem 8.2 is to prove clause (2), and this will be the focus of the rest of this
section. It will be convenient to state more abstractly what the crucial properties are of the automaton
sim(A) that we have associated with an arbitrary automaton A. First we need an auxiliary definition,
for which we recall the notion of a true state from Definition 5.5.

Definition 8.3 Given a disjunctive automaton D = (D, ©,Q,dy), and a fixed true state d+ of D, we

let
%) ifd=dr

sing(d) = { (dy ifd+dr.
define the D-marking sing+ : D — PD. <
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Definition 8.4 Let A = (A4,04,Q4,a;) and D = (D,0p,Qp,d;) be an arbitrary and a disjunctive
A-automaton, respectively. We say that D is a disjunctive companion of A if D has a true state d,
and there is a map G : D — A" satisfying the following conditions:

(DC1) G(dy) = {(ar,ar)} and G(dT) = @.

(DC2) Let ¢ € TxD be such that D, d,singy IF" Op(d). Then (TxG)J € N, eran(ca)[Oa(a@)]s-

(DC3) If G(d;)ic. € (A*)* contains a bad A-trace, then (d;);c. is itself a bad D-trace. <

Proposition 8.5 The simulation map sim(-) assigns a disjunctive companion to any modal automa-
ton.

Proof. It is fairly straightforward to check that the projection map G : D — A* specified in Definition
8.1, which simply forgets the states of the stream automaton used in the product construction, has all
the properties required to witness that sim(A) is a disjunctive companion of A. QED

Proposition 8.6 Let A and B be arbitrary modal automata, let D be a disjunctive companion of A,
and assume that B is positive in p. Then

B[D/p] Fc BIA/p].

Before we set out to prove this proposition we prove an auxiliary result, which we need to make a
simplifying assumption on the moves player I makes in the consequence game associated with B[D/p]
and B[A/p].

Proposition 8.7 Let ©pp denote the transition map of the automaton B[D/p|, where B is an arbitrary

A-automaton (positive in p), and D is a disjunctive A-automaton. Fiz some R € A*, Q C (BU D)u,
some C C RanR and I' € TxQ such that

re () [6()].

ac€RanR

Then there are Q' C A* and I" € TxQ' such that I" € (), crang[©(a)]L, C: (Q,T7) o (QT), and
for each Q € Q" and ¢ € C, we have |Q[c]N D] < 1.

Proof. As in the proof of Proposition 6.7(3), we will prove the statement for the special case where
C is a singleton, C' = {c}, while we show that Q' additionally satisfies

{Qla] Q€ Q< {Qld] |Q € Q} (29)

for all a # c. The general case can then be obtained from the special one by a straightforward iteration,
taking care of C’s elements one by one. The role of (29) is to ensure that new iterations do not spoil
the progress booked in earlier rounds.

In order to prove the proposition in this simplified case, we make a case distinction as to whether
¢ € Borce€ D. The case where ¢ € D is in fact a special case of Proposition 6.7(3), and easier
than the case where ¢ € B, and so we focus on the latter one. Assuming that ¢ € B, observe that
O©pp(c) = Op(c)[Op(dr)/p]. We now make a further case distinction.

If T ¢ [©p(d;)]2, then consider the map F : Q — (B U D) given by

F(Q):={(a,a’) €Q|a#cora € B},

and set Q' := RanF and I := (TxF)I". Clearly F is a surjective one-step frame homomorphism, F :
(Q,T) — (Q',I), satisfying F(Q) C Q, for all @ € Q. From this it is immediate by Proposition 3.13
that C: (Q',T") £} ; (Q,T). We now show that

Q' 1", n, F ©pp(a), for all @ € RanR. (30)
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This is trivial in case a # ¢, and so we focus on the case where a = ¢. In this case (30) follows by
the following observation, which can be proved by a straightforward induction on the complexity of
a € MLL (X, B):

Q,T,n. IF' a[@p(dr)/p] implies Q', T’ n. IF' a[®p(dr)/p).

If T € [©p(ds)]L, then by disjunctivity of D, the proposition follows by a variation of the proof of
Proposition 6.7(3). QED

Proof of Proposition 8.6. Starting with notation, let A = (A,04,Q4,a;), B = (B,05,05,br)
and D = (D,0p,Qp,ds), and let G : D — A* be the map witnessing that I is a disjunctive companion
of A.

Our goal is to provide player II with a winning strategy x in the consequence game C between
B[D/p] and B[A/p]. It will be convenient to make some simplifying assumptions on player I’s moves
in the game.

CramM 1 Without loss of generality we may assume that at any position (R, R'), player I always plays
a move (Q,T") such that

(Assl) Dom(Q) € Ran(R) for all Q € Q;

(Ass2) QN (D x B) =@, for all Q € Q;

(Ass3) |Qe]NnD| <1forallce BUD and all Q € Q.

ProOF oF CLAIM Immediate by the Propositions 6.17, 6.7, and 8.7. <

Consider an arbitrary partial match
Y = (Ro,Ry), ..., (Rk, R},),

with Ry = Ry = {(br,br)}. Tt follows by Claim 1 that we may assume each element ¢ € RanRy, to lie
on some trace through Ry, ..., Ry, and that every trace through Ry, ..., Ry is either a B-trace, or else
it consists of an initial, non-empty B-trace, followed by a non-empty D-trace. By the second and third
assumption of the claim, traces are D-functional, in the sense that if d € D N RanR,, for some n < k,
then d has at most one R,,;1-successor, that we will denote as d™, if it exists. As a consequence, every
trace 7 on Ry, ..., R, ending at d has at most one continuation through R, {1,..., Rg.

A key role in our proof is played by a »-induced total order on Ranp R} that we will introduce
now. Intuitively, we say, for d,d’ € Ranp Ry, that d is 3-older than d’ if d lies on a trace T that entered
D at an earlier stage than any trace arriving at d’.

For a formal definition of this ordering, we need to assume some arbitrary but fixed total order on
D, given by an injective map mb : D — w; we call mb(d) the birth minute of d. The reason is that
there may be “ties”, i.e situations where the longest D-trace leading to two different states in D are
of the same length. Following the analogy: we can have cases where two states have the same “birth
date”, and we then refer to the birth minute to decide which is the oldest.

Given a state d € Ranp Ry, by Claim 1(1) there is a trace 7 through Ry, ..., Ry such that 7(k) = d.
By Claim 1(2), all such traces start in B and at some moment j move to the D-part of the automaton.
We let tbx(d) be the smallest pair of natural numbers (j,1) in the lexicographic order on w x w such
that there is some e € RanpR; with mb(e) = and such that the unique trace on R; ... Rj beginning
with e ends with d (this trace is unique because of trace functionality in D). The pair tby(d) = (j,1)
is called the time of birth of d relative to the match X; we simply write tb(d) if ¥ is clear from context.

Note that tby is always an injective map. To see this, suppose that thy(d) = tbx(d") = (4,1). Then
there are e, ¢’ € RanpR; such that the unique trace on Rj, ..., Ry beginning with e ends with d, and
the unique trace beginning with ¢’ ends with d’, and such that mb(e) = mb(e’) = I. By injectivity of
mb, we get e = €/, and so we get d = d’ by uniqueness of traces in the D-part of Ry, ..., Rg.
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Finally, we define a strict total ordering on Ranp Ry, relative to ¥ by saying that d is 3-older than
d' if tb(d) is smaller than tb(d’) (in the lexicographic order). We leave it for the reader to verify that,
for d € RanR,, with n < k, it holds that tb(d*) < tb(d).

We now turn to the definition of player II’s winning strategy x. By a simultaneous induction on
the length of a partial y-match
Y = (Ro,Ry),-..,(Rn, R,),

with Ry = R, = {(br,br)}, we will define maps
F,: (BUD)" - (BUA)*

and
gn : RangR,, — RanpR,,.

We let the F-maps determine player II’s strategy in the following sense. Suppose that in the mentioned
partial match X, player I legitimately picks an element (R,T"). Then player II's response will be the
map F, 1%, that is, the map Fj, 11, restricted to the set R C (B U D)ﬁ7 together with the one-step
frame (Fp+1[R], Tx(Fry1lr )T).
Inductively we will ensure that the following conditions are maintained:
(*) FnRy = Ry,
(10) R,, = ResgR,, U (R, N (B x A)) URess R},
(t1) ResgR), = Resp Ry,
(t2) Ry, N (B x A) € Ugepi(b,a) | (b,d) € R,N (B x D) & (ar,a) € G(d)}
(13) ResaR], CU{G(d) | d € RanpR,},
(1) a € RanG(gna), for all a € Rany R,.

For some explanation and motivation of these conditions, observe that (*) indicates that ¥ itself is
indeed x-guided. For condition (), first observe that while by Claim 1, all B[D/p]-traces consist of an
initial B-part followed by an D-tail, condition (0) states that similarly, all B[A/p|-traces consist of an
initial B-part followed by an A-tail. Condition (1) then states that the B-part on the left and right side
of a C(B[D/p], B[A/p]-match is the same, and condition (13) states that every pair (a,b) € ResqRanR),
is ‘covered’ or ‘implied’ by some d € RanpR,,. Finally, (1) states that, for every a € RanR,,, the map
gn picks a specific element d € Ranp R,, such that a € Ran(Gd). As we will see in Claim 4 below, it
will be this condition, together with the condition on the reflection of traces in Definition 8.4 and the
actual definition of the maps g,, that is pivotal in proving that player II wins all infinite matches.

Setting up the induction, observe that Ry = R{, = {(bs,br)}. Defining Fy as the map R — RespR
and go as the empty map, we can easily check that (*), (f) and (1) hold.

In the inductive case we will define the maps F, 11 and g,+1 for a partial match ¥ as above. For
the definition of Fj, 11 : (BU D)ri — (BU A)ﬁ, first observe that that by (f0) we are only interested
in relations R € (B U D)* that are of the form R = Resg RU (RN (B x D)) URespR. We will define
F, 1 by treating these three parts of R separately, using, respectively, the identity map on B* and
two auxiliary maps that we define now.

For the D-part of R, we define an auxiliary map H, 1 : D x D — A%

Hyp1(d,d') == G(d') N (g, (d) x A),

that is, Hy+1(d,d’) consists of those pairs (a,a’) € G(d') for which g,(a) = d. For the B x D-part of
R, we need a second auxiliary map L : B x D — P(B x A), given by

L(b,d) == {(b,a) € B x A| (a7, a) € G(d)}.
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Now we define F,1 : (BUD)* — (BU A)* as follows:

F,+1(R) := RespR
U J{L(b.d) | (b,d) € RN (B x D)}
U J{Hns1(d,d") | (d,d") € RespR}.

That is, we define F,1(R) as the union of three disjoint parts: a B x B-part, a B x A-part and an
A x A-part.

For the definition of g, 11, let (R, 41, R;, ;) be an arbitrary next basic position following the partial
match X. Note that we may assume that R, i satisfies the assumptions formulated in Claim 1, and
that we have R; ., = Fj,11(R,41) by the fact that player II's strategy is given by the map Fy, 1.
Given a € Rany Ry, , ,, distinguish cases:

Case 1 If a has no R}, ;-predecessor in A, then by definition of F,, ;1 and L, the set of states d € D
for which there is a b € B with (b,d) € R,+1 and (ar,a) € G(d) is non-empty. We define g, 410
to be the oldest element of this set, that is, in this case, the element with the earliest birth
minute.

Case 2 If a does have an R;, | -predecessor in A, that is, the set {b € A| (b,a) € R}, } is non-empty,
then we can define g,41a to be the oldest element (with respect to the match ¥ - (Rn41, R;, 1))
of the set {(gnb)* | (b,a) € R}, ;} € D. Note that this set is indeed non-empty, by definition of

Foir.

To gain some intuitions concerning this definition, observe that in the first case, we cannot define
gn+10 inductively on the basis of the map g,, applied to an R;, | -predecessor of a: we have to start
from scratch. This case only applies, however, in a situation where a does have an R;, , -successor
b € B such that in R,1, this same b has a R, i-successor d € D such that (as,a) € Gd. In this case
we simply define g,t1a := d, and if there are more such pairs (b, d), then for g,1+1a we may pick any
of these d’s, for instance the one with the earliest birth minute.

We now turn to the second clause of the definition of g,,11 — here lies, in fact, the heart of the proof
of Proposition 8.6. Consider a situation where ag and a;, both in A, are the two R,,41-predecessors of
a € A. Both g,ap and gpa1 are states in D, and therefore their R,,41-successors in D, if existing, are
unique, and will be denoted by (g,ap)* and (g,a1)™, respectively. We want to define g, 1a as either
(gnao)™t or (gnai)™, but then we are facing a choice between these two states of D in case they are
distinct. Tt is here that our match-dependent ordering of states in D comes in: we will define g, 410 as
the oldest element of the two, relative to the (extended) match ¥ - (Ry,11, Ry, ;). Suppose (without
loss of generality) it holds that (g,ag)™ is older than (gnai)™, so that we put g,i1a := (gnag)™. In
this case we say that the trace through g,aq is continued, while there is also a trace jump witnessed by
the fact that (a1,a) € R}, but (gna1,gny10) & Ry (see Figure 1, where the dashed lines represent
the g-maps, and the partial trace of white points on the right is not mapped to a partial trace on the
left, due to a trace jump).

CLAIM 2 By playing according to the strategy y, player II indeed maintains the conditions (*), (})
and ().

PROOF OF CLAIM® Let ¥ be a partial y-match satisfying the conditions (*), () and (1), and let
(Rp41, Ry, 1) € Gr(F,41) be any possible next position. It suffices to show that (R,41, R, ) also
satisfies (*), (1) and (1).

5The proof of this Claim is verbatim the same as that of Claim 2 in the proof of Proposition 7.4 in [9].
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Ry, Ry,
R /
n+1 n+1
/
Rn+2 n+2

Figure 1: A trace merge results in a trace jump.

The conditions (*), (10), (11) and (12) are direct consequences of the definition of Fj, 11, while (13)
is immediate by the fact that

(b,a) € Frs1Rup1 <= (b,a) € G((g.b)"). (31)

for all b,a € A. To prove (31), consider the following chain of equivalences, which hold for all b, a € A:

(bya) € Fi1Ryy1 <= (b,a) € H,11(d,d"), some (d,d") € RespR,, (Def. F,,11)
< (b,a) € G(d"), some (d,d") € RespR,, with d =g,b  (Def. H,1)
<= (b,a) € G((g.b)"). (obvious)

Finally, for condition (i), let a € RangR],; be arbitrary. If a has an R]_  -predecessor in A,
then we are in case 2 of the definition of g, y1a, where g,.1a is of the form (g,b)™ for some b with
(b,a) € ResaRl, . But then (b,a) € G((g9,b)™) by (31), so that indeed we find a € RanG(gn41a). If,
on the other hand, a has no R, ;1-predecessor in A, then we are in case 1 of the definition of g,,+1a. In
this case, gn+1a is an element of a set, each of whose elements d satisfies a € RanG(d); so we certainly
have a € RanG(gp+10a). <

CLAIM 3 The moves for player II prescribed by the strategy x are legitimate.

PRrROOF OF CLAIM Let ©pp and ©p4 denote the transition maps of the automata B[D/p] and B[A/p],
respectively. Consider a partial match 3 ending with the position (R,, R.,) and a subsequent move
(R,T) € P((BU D)) x Tx(B U D)* by player I such that

(BUD)*,T,nBP IF ©pp(e), (32)

for all e € RanR,,. By Proposition 3.13, in order to prove the claim it suffices to show that, for an
arbitrary element ¢ € RanR], = Ran(F,,+1R,,), we have

(BU A)?, (TxFry1)T, nB94 IH ©54(c). (33)
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But since ¢ € BU A by definition of B[A/p], one of the following two cases applies:

Case 1: ¢ € A. Then by () we find ¢ € Ran(G(d)), where d := g,c belongs to RanpR,,. As an
immediate consequence of (32) and the fact that ©gp(d) = Op(d), we find

(BUD)*,T,nF"P I ©p(d), (34)
from which it follows by naturality that
R, T, nFP Iz - ©p(d). (35)
Let the map succg : R — D be given by

(e ifQd={e},
succq(Q) == { dr if Q[d] = @.

Observe that this provides a well-defined (total) map by (Ass3) in Claim 1, and an easy calculation
reveals that the diagram below commutes:

R succy D
n?“Dk AT
PD

so that we may conclude that succy is a one-step model morphism:

succy : (R,T,nP Pz ) — (succy[R], (Tysuccy)T, sing).

From this, (35), the fact that ©p(d) is a one-step formula in D, and Corollary 3.9 we conclude that
D, (Tysuccy)T,singt I ©p(d). (36)

Now we may use the assumption that (D, d) is a disjunctive companion of (A, a), obtaining from clause
(DC2) that
A*(TxG)(Txsucea)T, né IFE ©4(c). (37)

By functoriality of Tx and the fact that © 4(c) = ©pa(c), this is equivalent to
A% (Ty(G o succy))T,nét IF ©pale), (38)
and so by Corollary 3.9 and Proposition 3.10 we obtain
(BU A)*, (Tx(G o succy))T, nBY IF ©5.4(c). (39)

From here on for conciseness we will write n, for nZY4. We now claim that, comparing the two
A-markings n. o (G o succy) and n. o F, we have

(neo (G osuccq))(Q) € (neo Foy1)(Q) (40)

for all Q € R. To see this, assume that a € (n.o(Gosuccq))(Q), that is, (c,a) € G(succqa(Q)). Observe
that since G(d+) = @ by (DC1), by definition of the map succy it must be the case that succy(Q) =e
for some unique e = dg € D such that Q[d] = {da} Then (¢, a) belongs to H,,11(d, dg) by definition
of Hpt1, and to F,,+1Q by definition of F,, 1. But from (¢,a) € F,11(Q) we immediately obtain
a € (neo Fri1)(Q). This proves (40).
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We use this observation in the following line of reasoning, where the key observation is that in fact
both maps G o succy and Fj, 41 are one-step model morphisms.

(BU A", (Tx(G osuccg))T, ne IF ©p4(c) < (BU AT, n. o (Gosucey) IF Op4(c) (Prop. 3.8)
& R, T, (n.o (Gosuccy))IrIF Opalc) (Corollary 3.9)

= R,T, (nco Fpp1)lr - ©palc) ((40), Prop. 3.11)

& (BUAY T neoFpiq IF ©palc) (Corollary 3.9)

(BUA) (TxFpy1)T,ne IFE ©pa(c). (Prop. 3.8)

This proves (33), as required.

Case 2 ¢ € B. Note that in this case we have ©pa(c) = Op(c)[©a(as)/p] and Opp(c) =
©p5(c)[®p(dr)/p]. Thus by assumption we know that (BU D)*,T,nBYP IF! ©5(c)[©p(d;)/p], while
we need to establish that (B U A) (TxFni1)T,nBY4 IF ©5(c)[©a(ar)/p]. To achieve this it clearly
suffices to show that

(BUD)u,F,nCBUD IH a[®p(dr)/p] implies (BUA) (TxFrny1)T, nBUA |- al®4(ar)/p (41)

for all @ € 1ML (X, B). We will prove (41) by induction on the one-step formula «, taken as a lattice
term over the set {p} U IMLL (X \ {p}, B)). This perspective allows us to distinguish the following two
cases in the induction base.

Base Case a: a = p. Here we find a[@p(d;)/p] = Op(dr) and a[®4(ar)/p] = Oa(ar). In other
words, in order to prove (41) we assume that

(BUD)*,T,nPYP IF ©p(d), (42)
and we need to show that
(BU A, (TxFpp)T, nBY4 -1 © 4 (ay). (43)

Our line of reasoning here will be close to that in Case 1, and for this reason we are a bit more sketchy.
By (Ass3) we may define a map succ. : R — D by setting succ.(@) to be the unique @Q-successor of ¢
if Q[c] is nonempty, and the true state d+ otherwise. As in Case 1 this map is a one-step morphism
of models:

succ. : (R,T,nBYP ) — (D, (Txsucc, )T, sing). (44)
We also claim that our definition of the map F}, 11 has been tailored towards the following inclusion:
(ngr* o (G osucc,))(Q) € (ngV 0 Frtr) (Q) (45)

for all Q € R. For a proof of (45), assume that a € (nY4 o (G osucc.))(Q) for some Q € Base(T'). In
other words, we have (ar, a) € G(succ.(Q)), and so by deﬁmtion of succ, there is a unique d # d+ € D
such that (¢,d) € Q. But then we obtain (ay,a) € L(b,d) by definition of the map L, and since
(¢,d) € QN (B x D) this gives (¢,a) € F,4+1Q by definition of F, ;. But from (¢,a) € F,11Q we
directly see that a € nZY4(F,11Q), as required. This proves (45).

We can now show how to prove (43) from (42):

(BUD)*,T,nPYP IF' ©p(d;) < R, T,nBPig IF ©p(d;) (Corollary 3.9)
& D, (Txsucc, )T, singr I ©p(dy) (Prop. 3.8, (44))
= A% (TxG)((Tysucc.)T),n2 IH ©4(ar) (DC1,DC2)
& A* (Tx(G o succ,))T, nfl I ©4(ar) (functoriality)
& (BUAY (Tx(Go succ))T, nZY4 IF © 4(ag) (as in Case 1)
& (BU A, (TxFoy1)T,nBY4 IH © 4(ay). (as in Case 1, by (45))
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Base Case b: o € 1ML} (X \ {p}, B), that is, a is a p-free one-step formula over B. In this case
the proof of (41) is straightforward: clearly the substitutions in (41) have no effect, so what we have
to prove is that

(BUD)*,T,nPYP IF' « implies (BU A)*, (TxF,1)T,nP ! . (46)

But intuitively this is clear, since « only uses variables from B, and ‘when restricted to B’, the two
models in (46) are the same.
Formally, our proof of (46) proceeds as follows:

(BUD)! T,nPYP IF' o < (BUD)*,T,nP oResg IF' a (Proposition 3.10)
& B* (TyxResp)T,nP IF! a (Prop. 3.8)
& B (Tx(Resp o Fp1))T,nP IF a (1)
& B* (TxResp)((TxFpy1)T), nB IF! o (functoriality)
& (BU A)Y, (TxFy1)T,nB o Resp IF' « (Prop. 3.8)
< (BU A)ﬁ7 (TxFpy1)T,nBY4 H o (Proposition 3.10)

Inductive case: The inductive cases in the proof of (41), where « is of the form g Vay or agAay,
are trivial.
This finishes the proof of Claim 3. <

CLAIM 4 Suppose ¥ is an infinite x-guided match with basic positions
(Ro, Ro)(Ry, Ry)(Ra, Ry) . ..

such that the stream R{R{R) ... contains a bad trace. Then there is a bad trace on RyRiRy... as
well.

PrOOF OF CLAIM® Fix a y-guided match ¥ = (R;, R});>0 and a bad trace 7 on (R});>0, as above.
We will show that there is a bad trace on the stream (R;);>0 as well.

There are two possibilities for 7. In case 7 stays entirely in B, then by ({1), 7 is also a trace on
RoR1R; ..., and so we are done. Hence we may focus on the second case, where from some finite stage
onwards, 7 stays entirely in A. So suppose 7 is an infinite trace of the form

T = b()bl e bnan+1an+2an+3 ey
where the b; are all in B, and the a; are all in A. Our key claim is the following:
there exists an index k > n such that g;+1a;41 = (gja;)* for all j > k. (47)

In order to prove (47), recall that a trace jump occurs at the index j > n if we have g;11a;11 # (gja;)"
We want to show that there can only be finitely many j at which a trace jump occurs. If no trace
jump occurs at j, then we have

tb(g;a;) > tb((gja;)™) = tb(gj41a;11).

Hence, it suffices to prove that if a trace jump occurs at j then tb(g;41a;11) is strictly smaller than
tb(g;a;) in the lexicographic order. It then follows that the stream

tb(grar), tb(grt1ak+1), tb(grroart2), ...

6The proof of this Claim is verbatim the same as that of Claim 4 in the proof of Proposition 7.4 in [9].
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is a stream of pairs of natural numbers that never increases, and strictly decreases at each j at which
a trace jump occurs. By well-foundedness of the lexicographic order on w x w this can therefore only
happen finitely many times, as required.

So we are left with the task of proving that tb is strictly decreasing at each index j for which a
trace jump occurs. To see that this is indeed so, suppose that gj11aj41 # (gja;)". Recall that we
defined g;11a;41 to be the oldest element of the set

{(gi)" | (c,aj41) € Ry}

But since (aj,a;41) € R}H, it follows that g;41a;4+1 must be older than (g;a;)*, with respect to the
age relation induced by the match (Ro, Rp), ..., (Rjy1, R} ), and so tb(g;jy1a;11) must be strictly
smaller than tb((g;a;)™) < tb(gja;), as required. This completes the proof of (47).

Let us finally see how (47) entails Claim 4. Suppose there exists an index k& as in (47), and consider
grar € Ranp Ry,. Pick an arbitrary initial trace by . ..bpdp41 ... d; of Ry ... Ry leading up to grar = di
(as mentioned already after Claim 1, the existence of such a trace follows from our assumptions on
player I’s strategy). Then the stream

bo, ... k-1, GrOky Ght10k+1, Gkt 20k42; - - -

is a trace of RgR1 Ry ... by the property of the index k described in (47). Furthermore, it follows that
QjGk+10k+2 - - - 1S a trace of the stream

G(grar), G(gr+1ax41), G(gry2ari2), - - -

To see why, consider the pair (a;,a;+1) where j > k. Then (a;,a;41) € R}, = Fx(Rj41), so there is
some (d,d") € Rj11 with (aj,a;41) € Hj11(d,d"). Hence d = g;a; and (aj,a,41) € G(d').

But d’ = d* by functionality of traces on D (which follows from the third assumption in Claim 1),
and so we find ' = d* = (gja;)* = gj11aj41. From this we get (a;,a;41) € G(gj+1aj4+1) as required.
Note too that agagyiak4e ... has the same tail as 7, and hence it is a bad trace too. It now follows
from the trace reflection clause of Definition 8.4 that gra, gk+10k+1, Gk+20k+2, - - - is itself a bad trace,
and so we have found a bad trace on RyR1R> ... as required. |

Finally, the proof of the Proposition is immediate by the last two claims: it follows from Claim 3
that player II never gets stuck, so that we need not worry about finite matches. But Claim 4 states
that IT wins all infinite matches of C(B[D/p|, B[A/p]) as well. QED

9 A generic completeness theorem for coalgebraic p-calculi

We now set out to prove our generic completeness result, Theorem 1.1. Throughout this section we will
fix a set functor T, a monotone signature A for T, and a one-step sound and complete axiomatization
H.

After our preparatory work in the previous sections, we have almost all pieces in place; the one
result that is missing is the analogue, in our setting, of Kozen’s completeness result for the aconjunctive
fragment of the (standard) modal p-calculus [18].

Proposition 9.1 (Kozen’s Lemma) If the A-automaton A is consistent, then 3 has a winning strat-
egy in Sihin(A) starting at {(ar,ar)}.

Proof. The proof of this Proposition is almost verbatim a copy of the proof of the analogous result
in [9] — the only difference is that here we need the Consistency Reduction Lemma, Proposition 4.7.
QED
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As an immediate consequence, we find that for semi-disjunctive automata, consistency implies
satisfiability. So, since disjunctive automata are semi-disjunctive, we have left to prove the following
theorem, which is the main technical result of this section. Here, and in the remainder of this section,
we will freely apply proof-theoretic terminology and notation to A-automata, see Remark 5.20.

Theorem 9.2 For every formula ¢, there exists a semantically equivalent disjunctive automaton D

such that ¢ Fg D.
As an auxiliary result, we first prove the following proposition.
Proposition 9.3 Let A be any semi-disjunctive modal automaton. Then A Fg sim(A).

Proof. It is clear from Theorem 8.2 that there is a winning strategy for Player II in the consequence
game C(A,sim(A)). Since A is semi-disjunctive it follows by Lemma 7.7 that V has a winning strategy
in the thin satisfiability game for A A —sim(A). But then by Kozen’s Lemma (Proposition 9.1), the
automaton A A —sim(A) is inconsistent. From this and the clauses 1 and 2 of Proposition 5.18, it is
immediate that A Fg sim(A). QED

Proof of Theorem 9.2. Since any fixpoint formula is provably equivalent to a formula in negation
normal form, without loss of generality we may prove the theorem for formulas in this shape, and
proceed by an induction on the complexity of such formulas. That is, the base cases of the induction
are the literals, and we need to consider induction steps for conjunctions, disjunctions, both modal
operators and both fixpoint operators.

The base case for literals follows immediately since it is easy to see that the modal automaton
A, corresponding to a literal ¢ is already disjunctive. Disjunctions are easy since the operation V
on automata preserves the property of being disjunctive. For conjunctions: given formulas ¢, ¢’ we
have semantically equivalent disjunctive automata D, D’ such that ¢ Fg D and ¢’ Fg D'. By the first
clause of Proposition 5.18 we get ¢ A ¢’ Fg DAD'. But by Proposition 7.6(4) the automaton DAD’ is
semi-disjunctive modulo provable equivalence, and we can apply Proposition 9.3 to obtain the desired
conclusion. The cases for the modalities are easy since these operations on automata preserve the
property of being disjunctive.

For the greatest fixpoint operator, consider the formula ¢ = vz.a(z), and assume inductively that
there is a disjunctive automaton A for « such that @« = A and o g A. It follows by Proposition
5.18(4) that ¢ = va.a Fg va.A, and since vz A is semidisjunctive modulo provable equivalence by
Proposition 7.6(6), by Proposition 9.3 we are done.

Finally, we cover the crucial case for ¢ = pz.a(x). By the induction hypothesis there is a se-
mantically equivalent disjunctive automaton A for « such that a Fg A. Let D := sim(ux.A). This
automaton is clearly semantically equivalent to . We want to show that

px A b D, (48)

from which the result follows since ¢ = pzx.ao by pz.A by Proposition 5.18(4) and the induction
hypothesis.
In order to prove (48) we will work with the automaton A” (see Definition 5.10). First observe
that
A®[D/x] Fg A% [px.A/x],

by Theorem 8.2, and that
A?[ux.A/x] Fg px A,

as a straightforward argument shows (see Proposition 5.19 in [9]). But since

ux. A Egsim(uz.A) =D
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by Theorem 8.2 again, we find by transitivity of the game consequence relation (Proposition 6.15) that
A®D/z] Eg D.

By Proposition 7.6(5) the automaton A®[D/z] is semi-disjunctive modulo provable equivalence, and
so by Proposition 7.7 the automaton A*[D/xz] A =D has a thin refutation, whence by Kozen’s Lemma
(Proposition 9.1) and Proposition 5.18 this automaton is inconsistent. In other words, we have

A*[D/x] b D.
Then by Proposition 5.18(5) we obtain that
tr(A®[tr(D)/z]) b tr(D),
so that one application of the fixpoint rule yields
pr.tr(A*) Fg D.
By Proposition 5.18(6) this suffices to prove (48). QED
Finally we see how Theorem 1.1 implies completeness.

Proof of Theorem 1.1. Given a consistent formula ¢, by Theorem 9.2 there exists a semantically
equivalent disjunctive automaton D such that ¢ by D. Clearly then, D is consistent too, whence by
Proposition 9.1, 3 has a winning strategy in the thin satisfiability game for D. But D is disjunctive
and hence semi-disjunctive, and so by Proposition 7.5 3 also has a winning strategy in S(D). It then
follows by the adequacy of the satisfiability game (Proposition 6.9) that D is satisfiable, and so ¢,
being semantically equivalent to D), is satisfiable as well. QED

10 Applications
As an immediate consequence of Theorem 1.1, we get a number of completeness results:
Theorem 10.1 The proof system pH is sound and complete for validity over T-models, where:
1. T=Id and H=1,
2. T=1d" and H = 1¥,
3. T=PL and H=K",
4. T=B and H=B.

The third item on this list is Walukiewicz’ completeness theorem for the modal p-calculus. The first
item is a completeness result for the linear-time p-calculus, and thus places Kaivola’s theorem [17]
under a common roof with Walukiewicz’ result. The second item, T = Id*, extends this to a com-
pleteness result for p-calculi on trees of a fixed branching degree. The fourth item is Theorem 1.3,
our completeness result for the graded p-calculus, by an extension of known axioms for graded modal
logic with the fixpoint axiom and Kozen-Park induction rule. As far as we know, this result is new.
One issue that we haven’t addressed yet is the existence of a disjunctive basis for the bags functor.
This will be the topic of the next section.
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10.1 Disjunctive basis for the graded p-calculus

Recall that ¥g denotes the signature of the counting modalities for the bag functor B. We will first
show that this functor has a disjunctive basis.

Definition 10.2 Let Dg(A) be the collection of formulas V(a;B) as defined in Example 3.17(d), with
a and B denoting a sequence, respectively, a set of variables in A. <

Theorem 10.3 The collection Dg provides a disjunctive basis for the signature ¥g.

In order to prove this result, our main task will be to prove a claim of Janin [15] stating that every
formula V(a;B) can be expressed in Yg.

Proposition 10.4 Every formula V(a;B) € Dg is one-step equivalent to a formula in 1MLy, (A).

Our main tool in proving this proposition will be Hall’s Marriage Theorem, which can be formulated
as the following graph-theoretical result.

Definition 10.5 A matching of a bi-partite graph G = (V;, Va2, F) is a subset M of E such that no
two edges in M share any common vertex. A matching M is said to cover V; if every vertex in V;
belongs to some edge in M (i.e. DomM = Vj, if we consider M as a binary relation from V; to V3). <

Fact 10.6 (Hall’s Marriage Theorem) Let G be a finite bi-partite graph, G = (V1,V2, E). Then
G has a matching that covers Vi iff, for allU C Vi, |U| < |E[U]|, where E[U] is the set of vertices in
V4, that are adjacent to some element of U.

Proof of Proposition 10.4. We will show this for the simple case where B is a singleton {b}. The
general case is an immediate consequence of this (consider the substitution B — \/ B).
Where @ = (a1,...,a,), define I := {1,...,n}. For each subset J C I, let x; be the formula

xg = <Ol \/ a; A D”Jrl*l‘]l(\/ a; V'b),
= ieJ

and let v be the conjunction:
vi= A1 TSI}

What the formula x s says about a Kripkean (finite) one-step model is that at least |J| elements satisfy
the disjunction of the set {a; | ¢ € J}, while all but at most n — |J| elements satisfy the disjunction of
the set {a; | i € J} U {b}. Abbreviating V(a;b) := V(a;{b}), we claim that

v = V(ab), (49)

and to prove this it suffices to consider Kripkean one-step models.

It is straightforward to verify that the formula ~ is a semantic one-step consequence of V(a;b). For
the converse, consider a Kripkean one-step model (S, o, m) in which 7 is true. Let K be an index set of
size |S| — n, and disjoint from I. Clearly then, |I U K| = |I| + |K| = |S|. Furthermore, let aj, := b, for
all k € K. In order to apply Hall’s theorem, we define the following bipartite graph G := (V4, Vs, E):

Vi = ITUK
Vo = 8
E = {(,s)€e(IUK)xS|a; €m(s)}.

CrAamM 1 The graph G has a matching that covers V.
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PrOOF OF CLAIM We check the Hall marriage condition for an arbitrary subset H C V4. In order to
prove that the size of F[H] is greater than that of H itself, we consider the formula xgn;. We make
a case distinction.

Case 1: H C I. Then xgyn; = xg implies &1 Vicy @i- This means that at least [H| elements of
S satisfy at least one variable in the set {a; | ¢ € H}. By the definition of the graph G, this is just
another way of saying that |H| < |E[H]|, as required.

Case 2: HNK # @. Let J := H NI, then the formula x gy~ = x; implies the formula

Dn,+1—|J|(\/ aj V. b)

jeJ

Now, if s € S satisfies either b or some a; for j € J, then by the construction of G we have s € E[H].
We now see that |S \ E[H]| < n — |J|. Hence we get:

[E[H]| = |S| = (n = [J]) = S| = n+[J].
But note that H = J U (H N K), so that we find
[H| < I+ [HNO K[| < [J] + [K| = [J] + (|S] = n),
From these two inequalities it is immediate that |H| < |E[H]|, as required. <

So let M be a matching that covers V;. Since the size of the set V; is the same as that of V5, any
matching M of G that covers V7 is (the graph of) a bijection between these two sets. Furthermore, if
M has an edge from i € I to s € S, then a; € m(s), and if M has an edge from j € K to s € S, then
by definition of G we have b € m(s). It follows that M restricts to a bijection between I and a subset
{s1,...;sn} of S such that a; € m(s;) for each i € I, and that b € m(t) for each ¢ ¢ {uy,...,u,}. Hence
V(@;b) is true in (S, m), as required. QED

Proof of Theorem 10.3. It only remains to verify that the one-step language Dg is distributive
over 1MLy, and admits a distributive law. The proof is entirely routine, so we omit the details. QED

10.2 Completeness for the monotone p-calculus

For our next application, we will prove Theorem 1.4, stating the completeness for the monotone u-
calculus of the axiomatization below. In this section we let ¥ = {<&,0} denote the signature of
monotone modal logic.

Definition 10.7 Let M be the axiomatization for ¥ consisting of the empty set of axioms. <

Recall from Definition 4.2 that every one-step axiomatization contains the monotonicity and dual
axioms, for all its operators. Consequently, the proof system uM induced by M basically consists of
the axioms (Du) and (Mon) for the two modalities of the signature 3. Just as for 4B, the completeness
of uM appears to be a new result. In this case, however, we cannot apply Theorem 1.1 directly, since
in fact one can show that the monotone neighborhood functor M does not admit a disjunctive basis
(although we have omitted the proof of this fact here). It turns out, however, that our general result
does apply to an auxiliary companion functor of M.

Definition 10.8 We define the supported companion functor M of M as the subfunctor of P x M,
given, on objects, by MS := {(Sp,v) € PS x MS | Sy supports v}. Here we say that a subset Sy C S
supports an object v € MS whenever T' € v ifft T NSy € v, for all T € PS. <
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Note that an M-model can be taken as a structure S = (S, R,0,V), where R C S x S and
U(S) := (S,0,V) is a neighborhood model, such that R[s] supports o(s), for all s € S. We will call
the structure U(S) the underlying neighborhood model of S, and (S, R, V') its supporting Kripke model.

The point of introducing this auxiliary functor is explained by the following result:

Proposition 10.9 The functor M preserves weak pullbacks.

Proof. We first establish the following claim, where L is the relation lifting defined by (v,v') € LR
for RC X xY and vy € MX, v € MY, iff:

VZen3aZ €y :Z' CR[Z)&VZ' €~'3Z €~ :Z C R°[Z]
In the proof we will make use of some basic laws for this relation lifting, see [21] for more details.

CLAIM 2 Let R C X XY be any binary relation that is full on both X and Y, and let vx € MX and
vy € MY be such that (yx,7y) € LR. Then there exists a yg € MR such that Mmx(vg) = vx and
M7y (Yr) = vy, where mx : R — X and 7y : R — Y are the two projection maps.

PROOF OF CLAIM We set Z € ~p iff either there exists Z’ € vx such that 75'[Z'] C Z or there
exists Z' € ~y such that w_l[Z’] C Z. We prove that Mrx (vr) = 7x, and 1eave out the completely
analogous argument for vy .

We need to show that Z € ~vx iff w;(l[Z] € vgr. The direction from left to right is clear, so suppose
7% [Z] € Yr. We make a case division:

(Case 1:) 75'[Z'] C 7x'[Z] for some Z' € yx. Since R was full on X the projection 7x is sur-
jective onto X, which means that in fact Z' C Z (since if y € Z’\ Z then there is some y’' € R with
mx(y') =y, hence v € 7' [Z']\ 7% [Z].) Since Z' € yx we now get Z € yx too by monotonicity.

(Case 2:) 7y [Z'] C ny![Z] for some Z' € ~y. Since (yx,7y) € LR, there is some Z” € yx such
that for all 2” € Z" there exists a 2z’ € Z’ such that 2" Rz’. So let 2" € Z". Pick some 2’ € Z' with
2"Rz'. That is, (2”,2') € R. Furthermore, my (2",2') € Z', so (2",2') € 7y [Z']. But we assumed
that 7' [Z'] C 7'[Z] so we get (2”,2') € ' [Z], which means that 7x (2", 2') = 2" € Z. We have
shown that Z” C Z, and since Z” € vx we get Z € yx by monotonicity as required. <

Now, let f: X — W and g : Y — W be a span in Set, let (Sx,vx) € MX and (Sy,vy) € MY
be such that Mf(Sx,vx) = Mg(Sy,ny). Let the relation R C X x Y together with projection maps
7x, Ty be the pullback of f, g as standardly constructed in Set, i.e. we take R = {(z,y) € X x Y |
f(z) = g(y)}. Consider the inclusion maps tx : Sx — X and ¢y : Sy — Y. Then we have

M(f oux)(vxlsx ) = M(g o wy)(nyls, )

Hence we get:

(vxlsx »mylsy ) € M(foux);M(gowy)t

C L(foux)iL(gowy)!
= L(x; f)i Lg% )
C L(x; fighd)

= LR

where we have used the identity:
i figtid = R
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which follows from the assumption that R was the pullback of W, f, g and the definition of R’. Here,
we have denoted by ~|s for v € MX and S C X the unique 7/ € MS with Mg x(v") = , which is
concretely given by v|s ={ZNS | Z € ~}.

Let R = RN (Sx x Sy). Then R’ is full on both Sx and Sy since p[Sx] = ¢[Sy] and R is the
pullback of f and g. So by the Claim, we find some yr: € MR’ such that M(7wx g )(vr/) = vx and
M(my Tr )(yr') = vy- Now, let tg : R' — R be the inclusion map and set yg = Mug/(yr/). We have
(R',vr) € MR. We also get:

Mrx(vr) = Mrx o Mig/(vr)
= M(mxowr)(yr)
= M(ux o (mx[r))(Vr)
= Mux oM(nx g ))(Vr')
= Mux(vx]sy)
= X

where we have used the obvious identity Tx otg = tx o (mx |/ ). Furthermore we have Prx(R') = Sx
since R’ was full on Sx. So we get Mrx(R',yr) = (Sx,7vx). Similarly, we get Mmy (R',vg) =
(Sy,7y), and it follows by the characterization of weak pullback squares in Set given by Fact A.8
that M weakly preserves the pullback R, 7x,my. QED

Definition 10.10 The signature X is an expansion of the language ¥ with two modalities <, 0 that
are interpreted as the standard diamond and box operators in the supporting Kripke models of a
M-model. <

Definition 10.11 Let M be the axiomatization for ¥ consisting of the following axioms:
a) O(a A b) ¢ (Ca A DOb)
b) OT
¢) (Oa AOb) — O(a A D) <

We have previously proved that X is expressively complete for M in [7]. Since M restricts to finite
sets, and one-step completeness of M is straightforward, completeness of M is a direct consequence
of Theorem 1.1, Proposition 10.9 and Proposition 3.23.

Theorem 10.12 The system pM is sound and complete for validity over M-models.

It turns out that completeness for M follows from this via a relatively easy argument. First, note
that every pointed M-model (S, s) satisfies precisely the same pMLy-formulas as the underlying pointed
M-model (U(S),s). Furthermore, since it is easy to see that every M-model is of the form U(S) for
some M-model S, it follows that a formula ¢ of uMLy is valid over M-models if and only if it is valid
over M-models. So by Theorem 10.12, to axiomatize the valid formulas of uMLy; over M-models, it
suffices to show that the logic uM is a conservative extension of uM.

The proof of this result will make use of algebras for p-calculi, which are called p-algebras and
have been thoroughly studied by Santocanale, see, e.g., [27]. Since our argument takes places in a fully
Boolean context, we simplify our notation somewhat by working with the box modalities only.

Definition 10.13 An algebra A = (A,0,1, A, —,0) is a monotone modal algebra if its Boolean reduct
(A,0,1,A,—) is a Boolean algebra, and O is a monotone (i.e., order preserving) operation on A. An
algebra A = (A,0,1,A,—,0,0) is a supported monotone modal algebra if its Y-reduct (4,0,1,A,—,0)
is a monotone modal algebra, and A satisfies the (equational versions of the) M-axioms a) - ¢) of
Definition 10.11. <
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Definition 10.14 A monotone modal algebra A is said to be a monotone modal pi-algebra if every
map v : X — A uniquely extends to a map v* : uMLy, — A which is a homomorphism with respect to
all connectives, and which respects the least fixpoint operator in the following sense. Let ¢p : A — A
denote the map defined by ¢} (a) = vla/p]* () where vla/p] is like v except it maps p to a. Then the
map ¢, has a smallest pre-fixpoint m, and v*(up.p) = m.

The notion of a supported monotone modal algebra is defined in a completely analogous way. <

We shall need the following simple little observation about fixpoints in lattices, the proof of which
is a straightforward exercise:

Proposition 10.15 Let L be any lattice, and let f : L x L — L be a monotone map. Suppose that,
for all b € L, the least fixpoint I, of the map Ax.f(x,b) exists. Suppose furthermore that the meet
m = A{lp | f(b,b) < b} exists. Then m is the least fizpoint of the map Az.f(z, z).

Using a standard Lindenbaum-Tarski algebra construction, one can prove the following algebraic
completeness results.

Proposition 10.16 Let ¢ be any formula of uMLy. Then uM F ¢ if, and only if, v*(¢) = 1 for every
monotone modal p-algebra A and every valuation v : X — A.

Proposition 10.17 Let ¢ be any formula of uMLy,. Then uM F ¢ if, and only if, v*(¢) = 1 for every
supported monotone modal p-algebra A and every valuation v : X — A.

With these completeness results in place, the conservative extension theorem we want to prove
boils down to the following statement:

Proposition 10.18 FEvery monotone modal p-algebra is a reduct of some supported monotone modal
w-algebra.

Before we turn to the proof of this proposition, we show how it entails that uM is a conservative
extension of puM: it is clear that every formula of uMLy provable in uM is provable in pM also.
Conversely, suppose that ¢ € uMLy is not provable in M. Then by Proposition 10.16, there is a
monotone modal p-algebra A and a valuation v : X — A such that v*(¢) # 1. By Proposition 10.18
there is a supported monotone modal u-algebra A’ over the same carrier, whose reduct is equal to
A. So the map v extends uniquely to the map v witnessing that A’ is a supported monotone modal
p-algebra, and clearly vf () = v*(p) # 1. So by Proposition 10.17, uM ¥ ¢ as required.

We now turn to the proof of Proposition 10.18:

Proof of Proposition 10.18. Let A = (A4,0,1,A,—,0) be a monotone modal u-algebra. We want
to define an operation O : A — A that makes A" = (A4,0,1,A,—,0,0) a supported monotone modal
p-algebra. The construction is straightforward: for each a € A, set Oa = 1 if a = 1, and da = 0
otherwise. It is a purely mechanical task to check that this is in fact a supported monotone modal
algebra. The argument showing that A’ is, in addition, a supported monotone modal p-algebra is
based on finding, for each yMLy; (X)-formula ¢ with a positive variable p, and every map v: X — A4, a
formula t(p,v) of uMLx(X) such that v*(up.t(p,v)) is a least fixpoint of the map ¢,. More precisely,
the proof is based on the following claim, which is proved by induction on the complexity of formulas
in uMLy:

CLAIM 1 There exists an assignment ¢(—, —) mapping every formula ¢ of yMLy, and every valuation
v:X — A, to a formula ¢(p,v) in uMLy, such that:

e if p is positive (negative) in ¢ then it is positive (negative) in t(p, v) as well,
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e if p is positive in ¢ and a < b then w*(t(p,v]a/p])) < w*(t(p,v[b/p])) for every valuation w,
e if p is negative in ¢ and a < b then w*(t(¢, v[b/p])) < w*(t(p,v[a/p])) for every valuation w,
o t(Op,v) =T if v*(t(p,v)) = 1, t(Oy,v) = L otherwise,

o Ll Ah,v) =t(p,v) AL(WY,v),
e {(0yp,v) = Ot(p,v) for | € L, and t(=p,v) = —t(p,v),

e for every formula ¢ the set {t(p,v) | v:X — A} is finite, and if p is positive in ¢ then:
t(upp,v) = \{up-t(e,v[a/p]) | v* (g, vla/p))) < a}

With this claim in place, we can define the map v’ : uMLy — A by setting:

vl () = v*(t(,v))

Note that this map commutes with the operator O: vf(Oyp) = 1 iff t(p,v) = T, iff vf(p) = 1.
Finally, we find that the value vf(up.) is indeed a least pre-fixpoint of the map ¢, as an instance of
Proposition 10.15: just put f(a,b) := v[a/p]*(t(,v[b/p])) and note that f(a,a) = v[a/p]T(¢). QED

10.3 Transferring completeness from coalgebraic modal logics

As a final application, we prove Corollary 1.2 which allows one to transfer any previously established
completeness result for a coalgebraic modal logic to a completeness result for its fixpoint extension.
Formally, given a monotone modal signature A for a functor T, the formulas of the coalgebraic modal
logic ML, are defined by the following grammar:

pu=p|L]|-p|ooVer]On(er,...on)

Semantics of these formulas in a T-model are as before, and we say that a formula ¢ € ML, is valid if
it is true in every pointed T-model. We denote this by F ¢ as before.

We take a Hilbert-style aziom system L for ML, to be a set of formulas in ML, , and we say that a
formula ¢ is derivable in the system, 1, ¢, if it is provable from axioms in L, substitution instances of
propositional tautologies, (Mon) and (Du) using the rules of modus ponens, uniform substitution and
the congruence rule. We define the derivation system puL for the extended language puMLy by simply
adding the fixpoint axiom and Kozen-Park induction rule, i.e. we say that ¢ is derivable in uL, 1. ¢,
if it is derivable using axioms in L and the fixpoint axiom using the rules of L and the Kozen-Park
induction rule.

Definition 10.19 The system L (uL) is said to be sound and complete if, for any formula ¢ € ML
(p € pMLy ), we have F ¢ iff Fr, ¢ (FuL ¢). <

We can now prove our transfer result:

Proof of Corollary 1.2. Soundness clearly transfers from L to pL. To prove completeness, we
define a one-step axiom system H by setting, for a one-step formula o € 1MLy (Var), « € H if Fy, a.
To prove that the system pH is sound, we need the following claim, the proof of which we leave to the
reader:

Faiff F!a, (50)

for any a € 1MLp(Var). The proof of (50) basically consists of noting that every pointed T-model
(S, s) induces a one-step model by simpy applying the map o : S — TS to s, and conversely every
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one-step model (5,0, m) can be viewed as a pointed T-model by simply adding a new point « and
mapping this to o (and mapping elements of S to arbitrary elements of T.S).

It clearly follows from (50) that the one-step derivation system H! is one-step complete, so by
Theorem 1.1 the system pH is complete.

It now suffices to prove that every formula ¢ that is provable in pH is also provable in pL. But
this is in fact an easy consequence of the definition of H: given any axiom of pH of the form a|7]
where o € H and 7 : Var — pML,, we have k1, o by definition of H and so .1, «, hence -, al7] by
an application of the uniform substitution rule. All other axioms of yH are axioms of uL too, and all
rules in pH are in pL. Hence the system pL indeed proves all theorems of yH, and so is complete.

QED
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A Basic definitions

A.1 Basic mathematical concepts and notation

Definition A.1 Let A be some set. We denote its size as |A[, and its power set as PA. <

Since binary relations play an important role in our work, we will frequently use the following
notation.

Definition A.2 The collection of binary relations over a set A is denoted as Af. Given a relation
R C Ax A, we let DomR and RanR denote its domain and range, respectively; for a subset B’ C A’,
we define Rang/ R := RanRN B’. Furthermore, we denote the converse relation of R as R° := {(a’,a) €
A" x A| (a,a') € R}, and we set Rla] := {a’ € A’ | Raa'}. The composition of two relations R and S
is denoted as R ; S, and the diagonal relation on a set S is denoted as ldg. Given a relation R C Ax A
and a subset B C A, we let ResgR := RN (B x B) denote the restriction of R to B. <

Definition A.3 Given a relation R C A x A’, we define the following relations between PA and PA’:

?R = {(B,B') e PAxPA'| for all b € B there is a b’ € B’ with Rbb'}
PR = {(B,B)ecPAxPA | forallll ¢ B thereisabe B with Rbb'}
PR = PRNPR
The relation PR is called the Egli-Milner lifting of R. <

Definition A.4 We write f : A — B to denote that f is a map from A to B, and we will frequently
identify f with its graph Grf := {(a, fa) | a € A}. The composition of two functions f : A — B and
g: B — Cisdenoted asgo f: A— C. <

Definition A.5 Given a set A, we let A* and A“ denote, respectively, the set of words (finite se-
quences) and streams (infinite sequences) over A. We will write both ww’ and w - w’ to denote the
concatenation of the words w and w’, and similar for the concatenation of a word and a stream. The
last symbol of a word w is denoted as last(w).

Two A-streams o and 7 are eventually equal, denoted as 0 =, T, if there is a k € w such that
o(j) =7(y) for all j > k. <

A.2 Set functors

As mentioned in section 2, we let Set denote the category with sets as objects and functions as arrows.
An endofunctor on Set will simply be called a set functor. In this section we briefly define and review
some pertinent categorical notions regarding set functors.
Convention A.6 Throughout this paper we shall assume that T is a set functor that preserves
injections. For convenience we will in fact assume that T preserves inclusions; that is, with Lg :A— B
denoting the inclusion map from a subset A of B to B, we have

TX CTY and T(13¥) = 135
for all pairs X,Y of sets such that X C Y.

For completeness we recall some definitions related to the notion of a (weak) pullback.
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Definition A.7 Recall that a set P together with functions p; : P — X; and p; : P — X5 is a
pullback of two functions f1 : X1 — X and fo : Xo — X if f; op; = f2 o ps and for all sets P’ and
all functions p} : P’ — Xy, py : P’ — X5 such that f} o p| = fy o ply there exists a unique function
e: P’ — P such that p;oe =p) for i =1, 2:

Y
P&XQ

Pl
pll ifz

X1*>X

f1

If the function e is not necessarily unique we call (P, p1,p2) a weak pullback. Furthermore we call a
relation R C X; x Xo a (weak) pullback of f; and f> if R together with the projection maps 7 and
78t is a (weak) pullback of f; and f. <

In the category of sets, (weak) pullbacks have a straightforward characterization.
Fact A.8 [13]. Given two functions f1 : X1 — X3 and fy : Xo — X3, let

pb(f1, f2) == {(z1,22) | fi(z1) = fa(22)}.

Furthermore, given a set P with functions p; : P — X1 and ps : P — X, let

e:y— (pi1(y),p2(y)).

define a function e : P — pb(f1, f2). Then
(1) (P,p1,p2) is a pullback of f1 and fa iff fr o p1 = fa 0o p2 and e is an isomorphism.
(2) (P,p1,p2) is a weak pullback of fi1 and fo iff f1 op1 = faops and e is surjective.

Definition A.9 A functor T preserves weak pullbacks if it transforms every weak pullback (P, p1, p2)
for fi and f, into a weak pullback (TP, Tpy, Tpe) for Tf; and T fo. <

An equivalent characterization is to require T to weakly preserve pullbacks, that is, to turn pullbacks
into weak pullbacks. In Fact 2.10 we give another, and probably more motivating, characterization of
this property.

Proposition A.10 Let f : S — S’ be some map, and let X C S be a subset of S. Then for any
& € TX we have (TE € T(f[X]).

Proof. Since X C S and f[X] C 5" we have that T C TS and T(f[X]) C TS’. Now consider the
following diagram:

TX % 7(11x))

Ts 2 o1y

Chasing ¢ in this diagram yields the statement of the proposition. QED
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Definition A.11 Given a finite set S we let
BaseS:aHﬂ{XgShfeTX}
define a map Baseg : TS — PS. <

Fact A.12 Let f : S — S’ be some map between finite sets S, S, and let o € TS.

(1) Baseg (o) is the smallest set X such that o € TX.

(2) Bases: ((Tf)o) C (Pf)(Basey()).

(8) Bases: ((Tf)o) = (Pf)(Basey(c)) if T is weak pullback preserving; hence in this case Base is a
natural transformation, Base : T, — P,

Baseg

S TS PS
fl Tfl ipf
S’ TS —=PS’

Baseg/

A.3 Graph games

Definition A.13 A board game is a tuple G = (G3,Gvy, E,W) where G3 and Gy are disjoint sets,
and, with G := G5 U Gy denoting the board of the game, the binary relation E C G? encodes the
moves that are admissible to the respective players, and W C G* denotes the winning condition of the
game. In a parity game, the winning condition is determined by a parity map 2 : G — w with finite
range, in the sense that the set Wq is given as the set of G-streams p € G such that the maximum
value occurring infinitely often in the stream (Qp;);c, is even.

Elements of G5 and Gy are called positions for the players 3 and V, respectively; given a position
p for player II € {3,V}, the set E[p] denotes the set of moves that are legitimate or admissible to II at
p. In case E[p| = @ we say that player IT gets stuck at p.

An initialized board game is a pair consisting of a board game G and a initial position p, usually
denoted as GQp. <

Definition A.14 A match of a graph game G = (G3, Gy, E, W) is nothing but a (finite or infinite)
path through the graph (G, E). Such a match p is called partial if it is finite and Ellastp] # @, and full
otherwise. We let PMy; denote the collection of partial matches p ending in a position last(p) € G,
and define PM@p as the set of partial matches in PMy; starting at position p.

The winner of a full match p is determined as follows. If p is finite, then by definition one of the
two players got stuck at the position last(p), and so this player looses p, while the opponent wins. If
p is infinite, we declare its winner to be 3 if p € W, and V otherwise. <

Definition A.15 A strategy for a player II € {3,V} is a map x : PM — G. A strategy is positional if
it only depends on the last position of a partial match, i.e., if x(p) = x(p') whenever last(p) = last(p’);
such a strategy can and will be presented as a map x : G — G.

A match p = (p;)i<k 18 guided by a Il-strategy x if x(pop1 -..Pn—1) = pn for all n < k such that
Po---Pn—1 € PMp (that is, pp,—1 € Gm). A Il-strategy x is legitimate in GQ@p if the moves that it
prescribes to y-guided partial matches in PM@p are always admissible to II, and winning for II in
G@yp if in addition all x-guided full matches starting at p are won by II.

A position p is a winning position for player II € {3,V} if II has a winning strategy in the game
GQp; the set of these positions is denoted as Wing;. The game G = (G3, Gy, E,W) is determined if
every position is winning for either 3 or V. <
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When defining a strategy x for one of the players in a board game, we can and in practice will
confine ourselves to defining x for partial matches that are themselves guided by x.

The following fact, independently due to Emerson & Jutla [6] and Mostowski [23], will be quite
useful to us.

Fact A.16 (Positional Determinacy) Let G = (G3,Gy, E, W) be a graph game. If W is given by
a parity condition, then G is determined, and both players have positional winning strategies.
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