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Abstract

In this article we prove the Jankov Theorem for extensions ofIPC ([6]) and the
Jankov Theorem forKC ([7]) in a uniform frame-theoretic way in the setting ofn-
universal models forIPC. In frame-theoretic terms, the first Jankov Theorem states
that for each finite rooted frame there is a formulaψ with the property that any
counter-model forψ needs this frame in the sense that each descriptive frame that
falsifiesψ will have this frame as the p-morphic image of a generated subframe.
The second one states thatKC is the strongest logic that proves no negationless
formulas beyondIPC. On the way we give a simple proof of the fact discussed and
proved in [1] that the upper part of then-Henkin modelH(n) is isomorphic to the
n-universal modelU(n) of IPC. All these results earlier occurred in a somewhat
different form in [8].

1 Introduction

In this article we prove the Jankov Theorem for extensions ofintuitionistic logic IPC
([6]) and the Jankov Theorem for Jankov’s logicKC ([7]) in a uniform frame-theoretic
way in the setting ofn-universal models forIPC. In frame-theoretic terms, the first
Jankov Theorem states that for each finite rooted frame thereis a formulaψ with the
property that any counter-model forψ needs this frame in the sense that each descrip-
tive frame that falsifiesψ will have this frame as the p-morphic image of a generated
subframe. The second one states thatKC is the strongest logic that proves no nega-
tionless formulas beyondIPC.

The first Jankov theorem is proved in Section 3, the second onein Section 4. Sec-
tion 2 introducesn-universal models andn-Henkin models and develops their relation-
ship sufficiently for the proofs in Sections 3 and 4. In section 5 we conclude our very
straightforward proof that the upper part of then-Henkin modelH(n) is isomorphic
to then-universal modelU(n) of IPC. This theorem was discussed extensively and
proved in [1] in a more algebraic manner.

We will use the standard Kripke frames (F = 〈W,R〉), descriptive frames (F =
〈W,R,P〉) and models (M = 〈W,R,V 〉) for intuitionistic propositional logicIPC,
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including the notationM,w � ϕ. We extend the notationV (p) to formulas:V (ϕ) =
{w ∈W |w ⊢ ϕ}. Our models will usually ben-models, i.e. models with the valuation
V restricted to the atomsp1, . . . ,pn and thereby ton-formulas, formulas formed from
p1, . . . ,pn. If X is a set of elements in the frameF we will write FX for the subframe
of F generated byX , shortening this toFw if X is a single elementw; similarly for
models. We call the upward closed subsets ofW (with respect to the relationR) upsets.
The set of all upsets ofW is denoted byUp(W ).

We have the usual notions of p-morphism for Kripke frames, descriptive frames
and models.

Definition 1.1.

1. LetF = 〈W,R〉 andG = 〈W ′,R′〉 be two Kripke frames. A mapf fromW to
V is called a(Kripke frame) p-morphismof F to G if it satisfies the following
conditions:

• For anyw,u ∈W , wRu impliesf(w)R′f(u);

• f(w)R′v′ implies∃v ∈W (wRv∧f(v) = v′).

2. Let F = 〈W,R,P〉 andG = 〈W ′,R′,P ′〉 be two descriptive frames. We call
a Kripke frame p-morphismf of 〈W,R〉 to 〈W ′,R′〉 a (descriptive frame) p-
morphism ofF ontoG, if it also satisfies the following condition:

• ∀X ∈ P ′, f−1(X) ∈ P .

3. A Kripke frame p-morphismf of F to G is called ap-morphismof a model
M = 〈F,V 〉 to a modelN = 〈G,V ′〉 if

• w ∈ V (p) ⇐⇒ f(w) ∈ V ′(p) for everyp ∈ PROP.

The canonicaln-model resulting from the usual completeness proof will be called
then-Henkin model. It consists ofn-theories with the disjunction property. Our first
business will be the development of then-universal models and their relationship to
then-Henkin model.

2 n-universal models andn-Henkin models of IPC

In this section we recall the definition of ann-universal model. Throughout this sec-
tion, we will talk about the valuation of pointw in a n-modelM by using the term
color. In general, ann-color is a 0-1-sequencec1 · · ·cn of lengthn. If the length is
understandable from the context, we will usecolor instead ofn-color. The set of all
n-colors is denoted byCn.

We define an ordering on the colors as follows:

c1 · · ·cn ≤ c′1 · · ·c
′
n iff ci ≤ c′i for each 1≤ i≤ n.

We writec1 · · ·cn < c′1 · · ·c
′
n if c1 · · ·cn ≤ c′1 · · ·c

′
n butc1 · · ·cn 6= c′1 · · ·c

′
n.
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A coloringon a nonempty setW is a functioncol :W → Cn. Colorings on frames
〈W,R〉 will have to satisfyuRv⇒ col(u) ≤ col(v). Then colorings and valuations on
frames are in one-one correspondence. Given aM = 〈W,R,V 〉, we can describe the
valuation of a point by the coloringcolV : W → Cn, defined bycolV (w) = c1 · · ·cn,
where for each 1≤ i≤ n,

ci =

{

1, w ∈ V (pi);
0, w 6∈ V (pi).

We callcolV (w) the color ofw underV .
In any frameF = 〈W,R〉, we say that a subsetX ⊆W totally coversa pointw ∈W ,

denoted byw ≺X , if X is the set of all immediate successors ofw. We will just write
w≺ v in the case thatw≺ {v}. A subsetX ⊆W is called ananti-chainif |X |> 1 and
for everyw,v ∈X , w 6= v implies that¬wRv and¬vRw.

We can now inductively define then-universal modelU(n) by its cumulative layers
U(n)k for k ∈ ω.

Definition 2.1.

• The first layerU(n)1 consists of 2n nodes with the 2n differentn-colors under
the discrete ordering.

• Under each elementw in U(n)k −U(n)k−1, for each colors < col(w), we put
a new nodev in U(n)k+1 such thatv ≺ w with col(v) = s, and we take the
reflexive transitive closure of the ordering.

• Under any finite anti-chainX with at least one element inU(n)k −U(n)k−1 and
any colors with s≤ col(w) for all w ∈X , we put a new elementv in U(n)k+1

such thatcol(v) = s andv ≺X and we take the reflexive transitive closure of the
ordering.

The whole modelU(n) is the union of its layers. It is easy to see from the con-
struction that everyU(n)k is finite. As a consequence, the generated submodelU(n)w

is finite for any nodew in U(n).
The 1-universal model is also calledRieger-Nishimura ladder, which is depicted in

Figure 1.
Let Upper(M) denote the submodelM{w∈W |d(w)<ω} generated by all the points

with finite depth. It is known that then-universal model is isomorphic to the finite
part of then-Henkin modelUpper(H(n)). N. Bezhanishvili gave in [1] an algebraic
proof of this fact. In the final section, we prove it directly on the basis of two important
lemmas that we already need in the next section on the first Jankov theorem. These
two lemmas respectively state that every finite model can be mapped p-morphically
onto a generated submodel ofU(n) (Lemma 2.2), and thatU(n)w is isomorphic to the
submodel ofH(n) generated by the theory of the de Jongh formula ofw (Lemma 2.9,
see Definition 2.4).

Theorem 2.2. For any finite rooted Kripken-modelM, there exists a unique pointw
in U(n) and a p-morphism ofM ontoU(n)w .
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Figure 1: Rieger-Nishimura ladder

For a proof of Theorem 2.2, see e.g. [8]. It implies immediately, by the finite model
property ofIPC, thatU(n) is a counter-model to every formula that is a non-theorem
of IPC. This shows thatU(n) deserves being called a “universal model”.

Theorem 2.3.

1. For anyn-formulaϕ, U(n) |= ϕ iff ⊢IPC ϕ.

2. For anyn-formulasϕ,ψ, for all w ∈ U(n)(w |= ϕ⇒ w |= ψ) iff ϕ ⊢IPC ψ.

Proof. (1) ⇐: trivial. ⇒: Suppose0IPC ϕ. Then there exists a finiten-modelM and
a pointw ∈ M such thatM,w 6|= ϕ. By Theorem 2.2, there exists a p-morphismf of
M to U(n). Hence,U(n),f(w) 6|= ϕ.

(2) follows easily from (1).

For any nodew in ann-modelM, if {w1, ...,wm} is the set of all immediate suc-
cessors ofw, then we let

prop(w) := {pi |w |= pi,1≤ i≤ n},
notprop(w) := {qi, |w 6|= qi,1≤ i≤ n},
newprop(w) := {rj , |w 6|= rj andwi |= rj for each 1≤ i≤m, for 1≤ j ≤ n}1.

Herenewprop(w) denotes the set of atoms which are about to be true inw, i.e. they are
true in all ofw’s proper successors. Next, we define the formulasϕw andψw, which
were first introduced in [4], and which were extensively discussed and named de Jongh
formulas in [1].

1Note that ifw is an endpoint,newprop(w) = notprop(w).

4



Definition 2.4. Letw be a point inU(n). We inductively define itsde Jongh formulas
ϕw andψw.

If d(w) = 1, then let

ϕw :=
∧

prop(w)∧
∧

{¬pk |pk ∈ notprop(w), 1≤ k ≤ n},
ψw := ¬ϕw.

If d(w) > 1, and{w1, ...,wm} is the set of all immediate successors ofw, then define

ϕw :=
∧

prop(w)∧ (
∨

newprop(w)∨
m
∨

i=1

ψwi
→

m
∨

i=1

ϕwi
),

ψw := ϕw →
m
∨

i=1

ϕwi
.

The most important properties of the de Jongh formulas are revealed in the next
theorem. It was first proved in [4].

Theorem 2.5. For everyw ∈ U(n) = 〈U(n),R,V 〉, we have that

• V (ϕw) =R(w),

whereR(w) = {u ∈ U(n) |wRu};

• V (ψw) = U(n)\R−1(w),

whereR−1(w) = {u ∈ U(n) |uRw}.

An easy lemma that is needed in the proof of Jankov’s theorem in the next section
is the following.

Lemma 2.6. If u,v ∈ U(n) andvRu, then⊢IPC ϕu → ϕv.

Proof. Immediate from Theorem 2.5 and Theorem 2.3.

Definition 2.7. We write

• Cn(ϕ) = {ψ | ⊢IPC ϕ→ ψ}.

We writeCnn(ϕ) = {n-formulaψ | ⊢IPC ϕ→ ψ}, but may leave then out if it
is clear from the context.

• Th(M,w) = {ϕ |M,w |= ϕ}.

We writeTh(w) = {ϕ |w |= ϕ} if M is clear from the context, andThn(M,w)
for the restriction ofTh(M,w) to the set ofn-formulas. Again, we may delete
then.

Corollary 2.8. For any pointw in U(n), Th(w) = Cnn(ϕw).

Proof. By Theorem 2.5,Th(w) ⊇ Cnn(ϕw). For the other direction, letψ be ann-
formula such thatU(n),w |= ψ. By Theorem 2.5 again, we have thatU(n) |= ϕw →ψ,
thus by Theorem 2.3,⊢IPC ϕw → ψ, i.e.ψ ∈ Cnn(ϕw).

5



The next lemma expresses the essence of the fact that the upper part of then-Henkin
model is isomorphic to then-universal model. We will pursue this in the last section.
For the time being the lemma will come in very useful in the proof of the first Jankov
Theorem, the main theorem of the next section.

Lemma 2.9. For anyw ∈ U(n), let ϕw be a de Jongh formula. Then we have that
H(n)Cn(ϕw)

∼= U(n)w.

Proof. LetU(n)= 〈U(n),R,V 〉 andH(n)= 〈H(n),R′,V ′〉. Define a mapf :U(n)w →
H(n)Cn(ϕw) by taking

f(v) = Cn(ϕv).

We show thatf is an isomorphism.
First for anyv ∈U(n), by Corollary 2.8, we have thatv ∈ V (p) iff Cn(ϕv)∈ V ′(p)

and that

uRv⇐⇒U(n),v |= ϕu (by Theorem 2.5)

⇐⇒ ϕu ∈ Cn(ϕv) (by Corollary 2.8)

⇐⇒ Cn(ϕu) ⊆ Cn(ϕv)

⇐⇒ f(u)R′f(v).

This makesf into a homomorphism.
Now, supposeu 6= v; w.l.o.g. we may assume that¬uRv, which by Theorem

2.5 means thatU(n),u 6|= ϕv. Thus,ϕv 6∈ Cn(ϕu) by Corollary 2.8, and sof(u) =
Cn(ϕu) 6= Cn(ϕv) = f(v). Hence,f is injective.

It remains to show thatf is surjective. That is, to show that for anyΓ∈H(n)Cn(ϕu)

(i.e. anyn-theoryΓ ⊇Cnn(ϕu) with the disjunction property) there existsv with uRv
such thatΓ = Cn(ϕv). We prove this by induction on the depth ofu.

d(u) = 1. It suffices to show that ifCn(ϕu) ⊆ Γ, thenΓ = Cn(ϕu). This is clear
from the fact thatθ ∈ Cn(ϕu) iff ⊢IPC ϕu → θ iff (by Corollary 2.8), because this
shows thatCn(ϕu) is maximal consistent.

d(u) = k+1. Let{u1, ...,um} be the set of all immediate successors ofu. Suppose
Cn(ϕu) ⊆ Γ. If Cn(ϕui

) ⊆ Γ for some 1≤ i ≤ m, then by induction hypothesis,
Γ = Cn(ϕv) for somev ∈R(ui), i.e.v ∈R(u). So, we can assumeCn(ϕui

) * Γ for
all 1≤ i≤m. ThusΓ 0 ϕui

for each 1≤ i ≤m. Take anyθ ∈ Γ. We then have also
θ∧ϕu ∈ Γ. So,

θ∧ϕu 0 ϕu1 ∨·· ·∨ϕum
.

SinceU(n) is universal, there exists au′ ∈ U(n) such that

U(n),u′ |= θ∧ϕu andU(n),u′ 6|= ϕu1 ∨·· ·∨ϕum
.

By Theorem 2.5,u′ = u, which implies thatU(n),u |= θ. By Corollary 2.8,θ ∈
Cn(ϕu). ThereforeΓ = Cn(ϕu).

We end this section by a corollary which follows from the correspondence between
H(n) andU(n), and which plays a crucial role in our proof of Jankov’s theorem.
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Corollary 2.10. LetM be any model andw be a point inU(n) = 〈W,R,V 〉. For any
pointx in M, if M,x |= ϕw, then there exists a unique pointv satisfying

M,x |= ϕv, M,x 6|= ϕv1, · · · ,M,x 6|= ϕvm
,

wherev ≺ {v1, · · · ,vm}, andwRv.

Proof. Note thatThn(M,x) is a node inH(n)= 〈W ′,R′,V ′〉. M,x |=ϕw implies that
Thn(M,x) ⊢IPC ϕw andCnn(ϕw)R′Thn(M,x). Thus, by Lemma 2.9,Thn(M,x) =
Cnn(ϕv) for a unique pointv ∈W . Moreover we havewRv. SoM,x |= ϕv.

By Theorem 2.5, we have thatU(n) 6|= ϕv → ϕvi
for all 1 ≤ i ≤ m. Thus0IPC

ϕv → ϕvi
andϕvi

6∈ Cnn(ϕv) = Thn(M,x), soM,x 6|= ϕvi
.

3 Jankov’s Theorem for extensions of IPC

The original theorem was proved by Jankov in [6] with respectto algebraically inspired
formulas. De Jongh proved in [4] the same theorem with regardto the de Jongh formu-
las defined above. Here we transform the latter proof, which made an algebraic detour,
into a purely frame-theoretic one. We have set the stage in the previous section in such
a manner that the analogies between the proof of the Jankov theorem and the proof
of our central Lemma 4.7 for the Jankov Theorem onKC (Theorem 4.9) in the next
section will come out as clearly as possible.

One of the things we will need in the proof of Jankov’s theoremis that under certain
conditions a Kripke frame p-morphism from a descriptive frame to a finite descriptive
frame is almost automatically also a descriptive frame p-morphism. The next lemma
states the necessary conditions.

Lemma 3.1. LetF = 〈W,R,P〉 andG = 〈W ′,R′,P ′〉 be two descriptive frames with
W ′ finite. Letf be a (Kripke frame) p-morphism from the Kripke frame〈W,R〉 to
the Kripke frame〈W ′,R′〉 such thatf−1(R(w)) is an admissible set for anyw ∈W ′.
Thenf is also a (descriptive frame) p-morphism from the descriptive frameF to the
descriptive frameG.

Proof. It suffices to show that for anyX ∈ P ′, f−1(X) ∈ P . Observing thatX =
⋃

w∈X

R(w), we obtain that

f−1(X) = f−1(
⋃

w∈X

R(w)) =
⋃

w∈X

f−1(R(w)),

which impliesf−1(X) ∈ P sincef−1(X) is a finite union of admissible sets.

The following useful lemma was introduced (as Theorem 3.2.16) and discussed in
[1]. It says that any finite rooted frame can be isomorphically found as a generated
submodel ofU(n) if only we taken large enough.

Lemma 3.2. For any finite rooted frameF = 〈W ′,R′〉, there exists a modelM = 〈F,V 〉
onF such thatM is isomorphic to a generated submodelU(n)w of U(n).
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Proof. We introduce a propositional variablepw for every pointw in W , and define
a valuationV by lettingV (pw) = R(w). Putn = |W |. By Theorem 2.2, there exists
a p-morphismf from the modelM = 〈F,V 〉 onto a generated submodelU(n)w. By
the construction, we know that different points ofM have different colors, thusf is
injective, i.e.M is isomorphic toU(n)w.

Note that the underlying Kripke frame ofU(n)w = 〈W,R,V 〉 described in the pre-
vious lemma can be viewed as the general frame〈W,R,Up(W )〉, which is a descriptive
frame sinceW is finite.

Theorem 3.3(Jankov). For every finite rooted frameF, letψw be the de Jongh formula
ofw in the modelU(n)w described in Lemma 3.2. Then for every descriptive frameG,

G 6|= ψw iff F is a p-morphic image of a generated subframe ofG.

Proof. The direction from right to left is obvious, sinceF 6|= ψw follows immediately
from Theorem 2.5.

For the other direction, supposeG 6|= ψw. Then there exists a modelN on G such
that

N 6|= ϕw → ϕw1 ∨·· ·∨ϕwm
, (1)

wherew≺{w1, · · · ,wm}. Consider the generated submodelN′ = NV ′(ϕw) = 〈W ′,R′,P ′,V ′〉
of N. Note that sinceV ′(ϕw) is admissible,〈W ′,R′,P ′〉 is a descriptive frame. Define
a mapf :W ′ →W by takingf(x) = v iff

N′,x |= ϕv, N′,x 6|= ϕv1, · · · ,N
′,x 6|= ϕvk

, (2)

wherev ≺ {v1, · · · ,vk}.
Note that for everyx ∈ W ′, N′,x |= ϕw , thus by Corollary 2.10, there exists a

uniquev ∈R(w) satisfying (2). Sof is well-defined.
We show thatf is a surjective (descriptive frame) p-morphism of〈W ′,R′,P ′〉 onto

〈W,R,P〉. Supposex,y ∈W ′ with xR′y, f(x) = v andf(y) = u. SinceN′,x |= ϕv,
we have thatN′,y |= ϕv. By Corollary 2.10, there exists a unique pointu′ ∈W such
thatu′ andy satisfy (2), moreover,vRu′. So, sinceu andy also satisfy (2), by the
uniqueness,u′ = u andvRu.

Next, supposex ∈W ′ andv,u ∈W such thatf(x) = v andvRu. We now show
that there existsy ∈W ′ with xR′y such that

N′,y |= ϕu, N′,y 6|= ϕu1, · · · ,N
′,y 6|= ϕul

(3)

whereu ≺ {u1, · · · ,ul}. This will give us the requiredf(y) = u. We will prove this
directly if u is an immediate successor ofv, i.e. one of thevi. Foru in general it follows
then by tracing a chain fromv to u.

Sincex andv satisfy (2), andϕv implies by its definition that

m
∨

i=1

ψvi
→

k
∨

i=1

ϕvi
, (4)

we must have that
N′,x 6|= ψu, (5)
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becauseu is one of thevi. From (5) the existence ofy with xR′y satisfying (3) imme-
diately follows. Hence, we have shown thatf is a (Kripke frame) p-morphism.

To show thatf is surjective it is sufficient to note that, by (1), there existsx ∈W ′

such that (2) holds forx andw, i.e.f(x) = w. Then, for every nodev ∈W , we have
thatwRv. Sincef is a (Kripke frame) p-morphism, there existsy ∈R′(x) ⊆W ′ such
thatf(y) = v.

It remains to show thatf is a (descriptive frame) p-morphism between the two
descriptive frames. In view of Lemma 3.1, it is sufficient to show that for anyv ∈X ,
f−1(R(v)) = V ′(ϕv) which is an admissible set.

Indeed, for everyx ∈ f−1(R(v)), there existsu ∈R(v) such thatf(x) = u and so
N′,x |= ϕu. Applying Lemma 2.6 givesN′,x |= ϕv, and sox ∈ V ′(ϕv). On the other
hand, for everyx∈ V ′(ϕv), by Corollary 2.10, there exists a uniqueu∈R(v) such that
f(x) = u, thusx ∈ f−1(R(v)).

Hencef is a surjective (descriptive frame) p-morphism of〈W ′,R′,P ′〉 onto〈W,R,P〉.
Then sinceF∼= 〈W,R,P〉, F is a p-morphic image of〈W ′,R′,P ′〉, which is a generated
subframe ofG.

We conclude this section with a useful theorem of [4], [5]. Wewill not apply it
directly in this paper, but we will use an adapted form of it inthe special case of the
next section.

Theorem 3.4. If L is an intermediate logic strictly extendingIPC, i.e. IPC ⊂ L ⊆
CPC, then there existsn ∈ ω andw in U(n) such thatL ⊢ ψw.

Proof. Supposeχ is a formula satisfying

L ⊢ χ andIPC 0 χ.

Then there exists a finite rooted frameF such thatF 6|= χ. By Lemma 3.2, there exists
a model〈F,V 〉 on F such that〈F,V 〉 ∼= U(n)w for some generated submodelU(n)w

of U(n). Consider the de Jongh formulaψw. SupposeL 0 ψw. Then there exists a
descriptive frameG of L such thatG 6|= ψw. By Theorem 3.3,F is a p-morphic image
of a generated subframe ofG. Thus,F is anL frame. SinceL ⊢ χ, we have thatF |= χ,
which gives us a contradiction.

4 Jankov’s Theorem for KC

Jankov’s logicKC (also called the logic of weak decidability) is the intermediate logic
axiomatized by¬ϕ∨¬¬ϕ. KC is complete with respect to finite rooted frames with
unique top points. From that fact it is not difficult to show that KC proves exactly the
same negation-free formulas asIPC. That is, for any negation-free formulaϕ, KC ⊢ ϕ
iff IPC ⊢ ϕ. For all this, check for example [3]. Jankov proved in [7] that KC is the
strongest intermediate logic that has this property. Another proof can be obtained by
using canonical formulas (see [3]). In this section, we givea frame-theoretic alternative
proof of Jankov’s Theorem. The basic idea of the proof comes from adapting the proof
of Theorem 3.3 combined with Theorem 3.4 to the special case of KC-frames.
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We start with defining formulasϕ′
w andψ′

w, which are negation-free modifications
of de Jongh formulas. They function onKC-frames as de Jongh formulas do on all
frames. First, we introduce some terminology.

For any finite setX of formulas with|X |> 1, let

∆X =
∧

{ϕ↔ ψ | ϕ,ψ ∈X}.

For the case that|X |= 1 or 0, we stipulate∆X = ⊤.

LetU(n)w0 = 〈W,R,V 〉 be a generated submodel with a largest elementt of U(n)
such that

• t |= p1∧·· ·∧pn;

• col(w) 6= col(v) for all w,v ∈W such thatw 6= v.

Let r be a new propositional variable (to be identified withpn+1 so that we can talk
aboutp1, . . . ,pn,r-models asn+1-models).

Definition 4.1. We inductively define the formulasϕ′
w andψ′

w for everyw ∈W .

If d(w) = 1,

ϕ′
w = p1∧·· ·∧pn,
ψ′

w = ϕ′
w → r.

If d(w) = 2, letq be an arbitrary propositional letter innotprop(w). Define

ϕ′
w =

∧

prop(w)∧∆notprop(w)∧ ((q → r) → q)2,

ψ′
w = ϕ′

w → q.

If d(w) > 2 andw ≺ {w1, · · · ,wm}, then let

ϕ′
w :=

∧

prop(w)∧ (
∨

newprop(w)∨
m
∨

i=1

ψ′
wi

→
m
∨

i=1

ϕ′
wi

),

ψ′
w := ϕ′

w →
m
∨

i=1

ϕ′
wi

.

We will prove for theϕ′
w andψ′

w formulas a lemma (Lemma 4.7) which is anal-
ogous to Theorem 3.3 for theϕw andψw formulas. It is good to note already that
theϕ′

w andψ′
w formulas cannot be evaluated inU(n), since there is one propositional

variable to many in them. Nevertheless, we will be able to follow the general line of
the argument in the previous section.

It is worth remarking that, ford(w) = 2,ψ′
w is a generalized form of Peirce’s Law

(((q→ r) → q) → q).

Lemma 4.2. ϕ′
w[r/⊥]3 andψ′

w[r/⊥] are IPC-equivalent toϕw andψw, respectively.

2Note that in the definition, it does not matter whichq ∈ notprop(w) is chosen. Note also that
notprop(w) = newprop(w).

3We writeϕ[p/ψ] for the formula obtained by replacing all occurrences ofp in ϕ byψ.
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Proof. We prove this by induction ond(w).
d(w) = 1. Trivial.
d(w) = 2. ϕ′

w[r/⊥] =
∧

prop(w)∧∆notprop(w)∧ ((q→⊥) → q).
First note that(q→⊥) → q) is equivalent to¬¬q. On the other hand,

⊢ ϕw ↔
∧

prop(w)∧ (
∨

notprop(w)∨¬(p1∧·· ·∧pn) → p1∧·· ·∧pn)

⊢ ϕw ↔
∧

prop(w)∧ (
∨

notprop(w) → p1∧·· ·∧pn)∧ (¬(p1∧·· ·∧pn) → p1∧·· ·∧pn)

Under the assumption
∧

prop(w),
∨

notprop(w) → p1∧ ·· · ∧ pn is equivalent to
∆notprop(w). Furthermore,¬(p1∧·· · ∧pn) → p1∧·· · ∧pn is equivalent to¬¬(p1∧
·· ·∧pn) and hence to to¬¬p1∧·· ·∧¬¬pn. This, in its turn is under the assumptions
∧

prop(w) and∆notprop(w) equivalent to¬¬q. So, indeed,⊢ ϕw ↔ ϕ′
w[r/⊥] and

⊢ ψ′
w[r/⊥] ↔ (ϕ′

w [r/⊥] → q)

⊢ ψ′
w[r/⊥] ↔ (ϕ′

w [r/⊥] → p1∧·· ·∧pn)

⊢ ψ′
w[r/⊥] ↔ (ϕw → p1∧·· ·∧pn)

⊢ ψ′
w[r/⊥] ↔ (ϕw → ϕt)

⊢ ψ′
w[r/⊥] ↔ ψw.

d(w) > 2. This is proved easily by applying the induction hypothesis.

Obviously, we could have definedϕ′
w andψ′

w in such a way that this lemma would
have been a complete triviality, but we preferred giving a more intuitive definition.

We will use the following corollary later in the proof of Theorem 4.9.

Corollary 4.3. For any generated submodelU(n)w0 of U(n) as described above, any
pointw in U(n)w0, 6⊢IPC ψ

′
w.

Proof. By Theorem 2.5,U(n)w0 6|= ψw, thus, by the Lemma 4.2, the underlying frame
of U(n)w0 falsifiesψ′

w. Hence6⊢IPC ψ
′
w.

The next lemma shows that theϕ′
w formulas have the same property that using The-

orem 2.3 was easy to prove for theϕw formulas in Lemma 2.6. Note however that this
theorem is not applicable to theϕ′

w formulas. Here we prove the corresponding theo-
rem directly from the construction of theϕ′

w andψ′
w formulas by a method that could

have been applied to theϕw formulas, but would have been unnecessarily complicated
in that case.

Lemma 4.4. LetU(n)w0 = 〈W,R,V 〉 be a model as described above and letw,v be
two nodes inW withwRv. Then we have that⊢IPC ϕ

′
v → ϕ′

w.

Proof. We prove the lemma by induction ond(v).
If d(v)= 1, thenϕ′

v = p1∧·· ·∧pn. SincewRv, we have thatprop(w)⊆{p1, · · · ,pn}
and

⊢ ϕ′
v →

∧

prop(w). (6)

We show that⊢ ϕ′
v → ϕ′

w by induction ond(w).

11



d(w) = d(v)+1 = 2. Then for anyp,q ∈ notprop(w) ⊆ {p1, · · · ,pn} we have that

⊢ p1∧·· ·∧pn → (p↔ q) and ⊢ p1∧·· ·∧pn → ((q→ r) → q).

It follows that

⊢ ϕ′
v → ∆notprop(w) and ⊢ ϕ′

v → ((q→ r) → q).

Together with (6), we obtain

⊢ ϕ′
v →

∧

prop(w)∧∆notprop(w)∧ ((q→ r) → q)

i.e. ⊢ ϕ′
v → ϕ′

w.
d(w) > 2. Letw ≺ {w1, · · · ,wk}. Tthen for any immediate successorwi of w,

sinced(wi)< d(w) by induction hypothesis, we have that⊢ ϕ′
v → ϕ′

wi
, which implies

that⊢ ϕ′
v →

k
∨

i=1
ϕ′

wi
and that

⊢ ϕ′
v → (

∨

newprop(w)∨
k
∨

i=1

ψ′
wi

→
k
∨

i=1

ϕ′
wi

). (7)

Together with (6), we obtain

⊢ ϕ′
v →

∧

prop(w)∧ (
∨

newprop(w)∨
k
∨

i=1

ψ′
wi

→
k
∨

i=1

ϕ′
wi

) (8)

i.e. ⊢ ϕ′
v → ϕ′

w.
If d(v) = 2, then sinceprop(w) ⊆ prop(v), clearly (6) holds. We show⊢ϕ′

v →ϕ′
w

by induction ond(w).
d(w) = d(v) + 1. Thenv = wi andϕ′

v = ϕ′
wi

for some immediate successorwi

of w, hence⊢ ϕ′
v →

k
∨

i=1
ϕ′

wi
and (7) follows. Together with (6), we obtain (8) i.e.

⊢ ϕ′
v → ϕ′

w.
d(w) > d(v)+ 1. For any immediate successorwi of w, sinced(wi) < d(w), by

the induction hypothesis, we have that⊢ ϕ′
v →

k
∨

i=1
ϕ′

wi
, which implies (7). Together

with (6), we obtain (8) i.e.⊢ ϕ′
v → ϕ′

w.
If d(v) > 2, then clearlyprop(w) ⊆ prop(v) gives (6). By a similar argument as

above, we can show that (7) holds, thus, (8) i.e.⊢ ϕ′
v → ϕ′

w is obtained.

Next, we want to prove for theϕ′
w formulas an analogue to Corollary 2.10. But we

will have to do this in two steps. First, we show thatϕ′
w nodes have the right color.

Lemma 4.5. Let M = 〈W ′,R′,V ′〉 be anyn+ 1-model andU(n)w0 = 〈W,R,V 〉 be
a model as described above. PutVn = V ′ ↾ {p1, · · · ,pn}. For any pointw in U(n)w0

and any pointx in M, if

M,x |= ϕ′
w, M,x 6|= ϕ′

w1
, · · · ,M,x 6|= ϕ′

wm
, (9)

wherew ≺ {w1, · · · ,wm}, thencolVn
(x) = colV (w).

12



Proof. We prove the lemma by induction ond(w). In the following discussion we re-
strict attention ton-formulas andn-atoms all the time.

d(w) = 1, i.e.w = t. Then (9) means thatM,x |= p1∧·· · ∧pn. Also,U(n)w0, t |=
p1∧·· ·∧pn. SocolVn

(x) = colV (w).

d(w) = 2. Then (9) implies that

M,x |=
∧

prop(w). (10)

This means that all atoms true inw are true inx. From (9) we also have that

M,x |= ∆notprop(w). (11)

So, either all atoms false inw are false inx, or all are true inx. But, in this case, in
(9)m= 1 andw1 = t, so

M,x 6|= p1∧·· ·∧pn. (12)

This implies that all atoms false inw are false inx: colVn
(x) = colV (w).

d(w)> 2. This is the induction step. Again we have as in the previouscase that all
atoms true inw are true inx. Now (9)

M,x 6|= ψ′
wi
, (13)

for all immediate successorwi of w, i.e. for each immediate successorwi of w, there
existsyi ∈R

′(x) such thatyi andwi satisfy (9). Sinced(wi)< d(w), by the induction
hypothesis, we have thatcolVn

(yi) = colV (wi). So, all atoms false in at least one of
thewi are false inx. On the other hand, (9) also implies

M,x 6|=
∨

newprop(w), (14)

So, all atoms true in allwi but not inw are also false inx. We havecolVn
(x) =

colV (w).

This is the point where it becomes clear why at the start of this section we insisted
on all the nodes ofU(n)w0 to have distinct colors. With this assumption the required
analogue of (Corollary 2.10) now readily follows.

Lemma 4.6. Let M and U(n)w0 be models described above. For any nodew in
U(n)w0 and any nodex in M, if M,x |= ϕ′

w, then there exists a unique pointv ∈
U(n)w0 satisfying

M,x |= ϕ′
v, M,x 6|= ϕ′

v1
, · · · ,M,x 6|= ϕ′

vm
, (15)

wherev ≺ {v1, · · · ,vm}, andwRv.
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Proof. SupposeM,x |= ϕ′
w. We show that there existsv ∈ R(w) satisfying (15) by

induction ond(w).
d(w) = 1. Then triviallyv = w satisfies (15).
d(w) > 1. If for all immediate successorwi of w, M,x 6|= ϕ′

wi
, thenw satisfies

(15). Now suppose that for some immediate successorwi0 of w, M,x |= ϕ′
wi0

. Since

M,x |= ϕ′
wi0

andd(wi0)<d(w), by the induction hypothesis, there existsv ∈W , such
thatwi0Rv andv satisfies (15). And clearly,wRv.

Next, supposev′ ∈ U(n)w0 also satisfies (15). By Lemma 4.5,

colV (v′) = colVn
(x) = colV (v),

which by the property ofU(n)w0 means thatv′ = v.

LetF be a finite rooted frame with a largest elementx0. By Lemma 3.2, there exists
a model〈F,V 〉 on F such that〈F,V 〉 ∼= U(n)w for some generated submodelU(n)w

of U(n). Note thatU(n)w has a top pointt, t |= p1∧ ·· · ∧ pn, and distinct points of
U(n)w have distinct colors.

The next lemma is a modification of the Jankov-de Jongh Theorem (Theorem 3.3)
proved in the previous section. Both the statement of the lemma and its proof are
generalized from those of Theorem 3.3.

Lemma 4.7. For every finite rooted frameF with a largest element, letU(n)w be the
model described above. Then for every descriptive frameG,

G 6|= ψ′
w iff F is a p-morphic image of a generated subframe ofG.

Proof. ⇐: LetU(n)w = 〈W,R,P ,V 〉. SupposeF is a p-morphic image of a generated
subframe ofG. By Theorem 2.5,U(n)w 6|= ψw, thusF 6|= ψw. By Lemma 4.2, we
know in that case thatF 6|= ψ′

w. ThenG 6|= ψ′
w follows immediately.

⇒: SupposeG 6|= ψ′
w. Then there exists a modelN onG such thatN 6|= ψ′

w. Con-
sider the generated submodelN′ = NV ′(ϕ′

w) = 〈W ′,R′,P ′,V ′〉 of N. SinceV ′(ϕ′
w) is

admissible,N′ is descriptive. Define a mapf :W ′ →W by takingf(x) = v iff

N′,x |= ϕ′
v, N′,x 6|= ϕ′

v1
, · · · ,N′,x 6|= ϕ′

vk
, (16)

wherev ≺ {v1, · · · ,vk}.
Note that for everyx ∈ N′, N′,x |= ϕ′

w, thus by Lemma 4.6, there exists a unique
v ∈R(w) satisfying (16). Sof is well-defined.

We show thatf is a surjective (descriptive frame) p-morphism of〈W ′,R′,P ′〉 onto
〈W,R,P〉. Supposex,y ∈ N′ with xR′y, f(x) = v andf(y) = u. SinceN′,x |= ϕ′

v,
we have thatN′,y |= ϕ′

v. By Lemma 4.6, there exists a unique pointu′ ∈ W such
thatu′ andy satisfy (16), moreovervRu′. So, sinceu andy also satisfy (16), by the
uniqueness,u′ = u andvRu.

Next, supposex ∈ N′ andv,u ∈W such thatf(x) = v andvRu. We show that
there existsy ∈ N′ such thatf(y) = u andxR′y.

The only interesting case to consider isd(v) = 2 andu 6= v. In this caseu = t.
Sincef(x) = v, v andx satisfy (16), so

N′,x |=
∧

prop(v)∧∆notprop(v)∧ ((q→ r) → q). (17)
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Note that
⊢IPC ((q→ r) → q) →¬¬q.

Thus,N′,x |=¬¬q, which means that there existsy ∈W ′ such thatxR′y andN′,y |= q.
Since

N′,y |=
∧

prop(v)∧∆notprop(v),

we have thatN′,y |= p1∧·· ·pn, i.e.f(y) = u.
The surjectivity off follows in the same way as in the proof of theorem 3.3.
By applying Lemma 4.4, Lemma 4.6 and using the same argument as that in the

proof of Theorem 3.3, we can show that for everyv ∈X , f−1(R(v)) = V ′(ϕ′
v), which

is an admissible set. Therefore by Lemma 3.1, we obtainf−1(X) ∈ P ′.
Hence,f is a surjective (descriptive frame) p-morphism of〈W ′,R′,P ′〉 onto〈W,R,P〉.

Then sinceF∼= 〈W,R,P〉, F is a p-morphic image of〈W ′,R′,P ′〉, which is a generated
subframe ofG.

Remark 4.8. We have enough information to discuss the behavior of theϕ′
wi

in the
n+1-Henkin model. Assumex |= r andx |= ϕ′

w for some pointw ofU(n) with d(w)≥
2 and some pointx of then+1-Henkin model. We will show that in that casex |= ϕ′

t.
If that is not the case, then there exists au such thatx |= ϕ′

u with least depth≥ 2,
i.e. x 6|= ϕ′

ui
for all immediate successorui of u. This means thatf(x) = u. By the

surjectivity of the functionf constructed in the proof of Lemma 4.7, we know that there
exists a pointv ∈R(w) such thatd(v) = 2 and ay ∈ R′(x) such thatf(y) = v. From
this it follows thaty 6|= ψ′

v. On the other hand, fromy |= r, it is easy to see thaty 6|= ψ′
v,

which is a contradiction. We have to conclude tox |= ϕ′
t.

Of course,r can be false as well ifϕ′
t is true, and in the end it comes down to the

following. The nodeϕ′
w in then+ 1-Henkin model generates a submodel consisting

of an isomorphic copy ofU(n)w (here r is false) with above its top a copy of the
Rieger-Nishimura ladder forr with p1, · · · ,pn true everywhere. This also gives an
indication how the p-morphism of the proof of Lemma 4.7 worksin the case of the
n+1-Henkin model for the submodel generated byϕ′

w. On the bottom part it works as
an isomorphism, the top part, i.e. the Rieger-Nishimura ladder is mapped onto a single
point.

Now we are ready to prove Jankov’s theorem onKC .

Theorem 4.9(Jankov). If L is an intermediate logic such thatL * KC , thenL ⊢ θ
andIPC 0 θ for some negation-free formulaθ.

Proof. We follow the idea of the proof of Theorem 3.4. Supposeχ is a formula satis-
fying

L ⊢ χ andKC 0 χ.

Then there exists a finite rootedKC -frameF with a largest element such thatF 6|= χ.
By Lemma 3.2, there exists a model〈F,V 〉 on F such that〈F,V 〉 ∼= U(n)w for some
generated submodelU(n)w of U(n). Note thatU(n)w has a largest elementt, t |=
p1∧·· ·∧pn andcolV (v) 6= colV (u) for all v,u in U(n)w.

Consider the formulaψ′
w. SupposeL 0 ψ′

w. Then there exists a descriptive frame
G of L such thatG 6|= ψ′

w. By Lemma 4.7,F is a p-morphic image of a generated
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subframe ofG. Thus,F is anL-frame. SinceL ⊢ χ, we have thatF |= χ, which leads
to a contradiction.

Hence,L ⊢ ψ′
w. We have thatIPC 0 ψ′

w by Corollary 4.3 andψ′
w is negation-free,

thusθ = ψ′
w is the required formula.

5 Some properties ofU(n) andH(n)

In this section we conclude in Theorem 5.1 the almost finishedproof of section 2 that
U(n) is isomorphic to the upper part ofH(n). After that, we sharpen this result by
giving a quick proof that these two models are even more “connected”: every infinite
upset ofH(n) has an infinite intersection inU(n), or in other words, if an upsetX
generated by a point in then-Henkin model has a finite intersection with its upper
part, then-universal model, thenX lies completely inU(n). Both results were proved
before in [1].

Theorem 5.1.Upper(H(n)) is isomorphic toU(n).

Proof. Let U(n) = 〈U(n),R,V 〉. Define a functionf : U(n) → Upper(H(n)) by
taking

f(w) = Cn(ϕw).

We show thatf is an isomorphism. From the proof of Lemma 2.9 we know that

U(n)w
∼= Upper(H(n))f(w).

It then suffices to show thatf is a bijection.
Let w,v be two distinct points ofU(n). W.l.o.g. we may assume that¬wRv, thus

by Theorem 2.5,U(n),w |=ϕw butU(n),v 6|= ϕw. We know from the proof of Lemma
2.9 that

U(n)w
∼= Upper(H(n))f(w) andU(n)v

∼= Upper(H(n))f(v),

thusUpper(H(n))f(w) ≇ Upper(H(n))f(v), sof(w) 6= f(v).
For any pointx in Upper(H(n)), by Theorem 2.2, there exists a uniquewx such

thatU(n)wx
is a p-morphic image ofUpper(H(n))x, which by Corollary 2.8 implies

that
Th(x) = Th(wx) = Cn(ϕwx

),

thereforef(wx) = x.

We callw ∈X a border pointof an upsetX of U(n), if w 6∈X and all successors
v of w with v 6= w are inX . Denote the set of all border points ofX by B(X). An
upsetX is uniquely characterized by its set of border points. Note that all endpoints
U(n) which are not inX are inB(X). The concept of border point was developed in
studied in [2].

Fact 5.2. If X is finite, thenB(X) is also finite.

Proof. SinceX is finite, there existsk ∈ω such thatX ⊆U(n)k. Observe thatB(X)⊆
U(n)k+1, which means thatB(X) is finite, sinceU(n)k+1 is finite.

16



The next lemma shows the syntactic side of the connection of upsets and their
border points.

Lemma 5.3. If X = {v1, · · · ,vk} is a finite anti-chain inU(n) and B(U(n)X) =
{w1, · · · ,wm}, then⊢IPC (ϕv1 ∨·· ·∨ϕvk

) ↔ (ψw1 ∧·· ·∧ψwm
).

Proof. In view of Theorem 2.3, it is sufficient to show thatU(n) |= (ϕv1 ∨·· ·∨ϕvk
)↔

(ψw1 ∧·· ·∧ψwm
). By Theorem 2.5, it is then sufficient to show that

x ∈R(v1)∪·· ·∪R(vk) iff x 6∈R−1(w1)∪·· ·∪R−1(wm).

For ⇒: Supposex ∈ R(v1)∪ ·· · ∪R(vk) = U(n)X . If x ∈ R−1(wi) for some
1 ≤ i ≤ m, then sinceU(n)X is upward closed, we have thatwi ∈ U(n)X , which
contradicts the definition ofB(U(n)X).

For⇐: Supposex 6∈R(v1)∪·· ·∪R(vk) =U(n)X . We show by induction ond(x)
thatx ∈R−1(wi) for some 1≤ i≤m.

d(x) = 1. Thenx is an endpoint which is a border point. Thus,x = wi for some
1≤ i≤m and sox ∈R−1(wi).

d(x)> 1. The result holds trivially ifx is a border point. Now suppose there exists
y ∈R(x) such thaty 6∈ U(n)X . Sinced(y)< d(x), by the induction hypothesis, there
exists 1≤ i≤m such thaty ∈R−1(wi). Thus,x ∈R−1(wi).

Theorem 5.4. Let Γ be a point inH(n), i.e. Γ is an n-theory with the disjunction
property. IfR(Γ)∩U(n) is finite, thenR(Γ) =R(Γ)∩U(n).

Proof. SupposeX = R(Γ)∩U(n) is finite. Then the setB(X) of border points ofX
is finite. LetB(X) = {w1, · · · ,wm}. SupposeΓ 0 ψwi

for some 1≤ i ≤ m. Then
there exists a descriptive frameG such thatG |= Γ andG 6|= ψwi

. Since the underlying
frameF of U(n)wi

is finite rooted, by Theorem 3.3, the latter implies thatF is a p-
morphic image of a generated submodel ofG. Thus,F |= Γ and soU(n)wi

|= Γ, which
is impossible sincewi ∈B(X) andwi 6∈R(Γ)∩U(n).

Hence, we conclude thatΓ ⊢ ψwi
for all 1≤ i ≤m. Let Y be the anti-chain con-

sisting of all least points ofX . Then by Lemma 5.3,Γ ⊢ϕw for somew ∈ Y , which by
Theorem 2.5 means thatΓ ∈R(w), soΓ ∈ U(n), thereforeR(Γ) =R(Γ)∩U(n).
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