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Abstract

In this article we prove the Jankov Theorem for extensionBGf([6]) and the
Jankov Theorem faKC ([7]) in a uniform frame-theoretic way in the settingrof
universal models folPC. In frame-theoretic terms, the first Jankov Theorem states
that for each finite rooted frame there is a formuylavith the property that any
counter-model for) needs this frame in the sense that each descriptive frarhe tha
falsifies+) will have this frame as the p-morphic image of a generatedranie.

The second one states tH&€ is the strongest logic that proves no negationless
formulas beyondPC. On the way we give a simple proof of the fact discussed and
proved in [1] that the upper part of theHenkin modelH(n) is isomorphic to the
n-universal model/(n) of IPC. All these results earlier occurred in a somewhat
different form in [8].

1 Introduction

In this article we prove the Jankov Theorem for extensionatoftionistic logicIPC

([6]) and the Jankov Theorem for Jankov’s lo&i€ ([7]) in a uniform frame-theoretic
way in the setting of.-universal models fotPC. In frame-theoretic terms, the first
Jankov Theorem states that for each finite rooted frame therdormulay with the
property that any counter-model fgrneeds this frame in the sense that each descrip-
tive frame that falsifieg) will have this frame as the p-morphic image of a generated
subframe. The second one states K@t is the strongest logic that proves no nega-
tionless formulas beyonéC.

The first Jankov theorem is proved in Section 3, the secondno8ection 4. Sec-
tion 2 introducesi-universal models and-Henkin models and develops their relation-
ship sufficiently for the proofs in Sections 3 and 4. In saetfiove conclude our very
straightforward proof that the upper part of theHenkin modelH(n) is isomorphic
to then-universal model/(n) of IPC. This theorem was discussed extensively and
proved in [1] in a more algebraic manner.

We will use the standard Kripke frame§ € (W, R)), descriptive frames =
(W,R,P)) and models Pt = (W, R,V')) for intuitionistic propositional logidPC,



including the notatiodt, w F ¢. We extend the notatiol (p) to formulas:V (¢) =
{w e W|wk ¢}. Our models will usually be-models, i.e. models with the valuation
V restricted to the atoms, ..., p, and thereby ta-formulas, formulas formed from
p1,---,pn. If X is a set of elements in the frangewe will write §x for the subframe
of ¥ generated byX, shortening this t§,, if X is a single element; similarly for
models. We call the upward closed subsetBofwith respect to the relatioR) upsets
The set of all upsets ¥ is denoted by/p(W).

We have the usual notions of p-morphism for Kripke framescdptive frames
and models.

Definition 1.1.

1. Let§ = (W,R) and® = (W', R') be two Kripke frames. A mag from IV to
V is called a(Kripke frame) p-morphisrof § to & if it satisfies the following
conditions:

e Foranyw,u € W, wRu implies f(w)R' f (u);
e f(w)R'v implies3v € W(wRuA f(v) =1").

2. Let§ = (W,.R,P) and® = (W' R',P’) be two descriptive frames. We call
a Kripke frame p-morphisnf of (W, R) to (W', R’) a (descriptive frame) p-
morphism ofF onto &, if it also satisfies the following condition:

e VX P, fHX)eP.

3. A Kripke frame p-morphisny of § to & is called ap-morphismof a model
M = (F,V) toamodebt = (&, V') if

o weV(p) < f(w) e V'(p) for everyp € PROP.

The canonicah-model resulting from the usual completeness proof will &ked
the n-Henkin model It consists ofn-theories with the disjunction property. Our first
business will be the development of theuniversal models and their relationship to
then-Henkin model.

2 n-universal models andn-Henkin models of IPC

In this section we recall the definition of arruniversal model. Throughout this sec-
tion, we will talk about the valuation of point in a n-model9t by using the term
color. In general, am-color is a 0-1-sequence - - - ¢,, of lengthn. If the length is
understandable from the context, we will usdor instead ofn-color. The set of all
n-colors is denoted b@g".

We define an ordering on the colors as follows:

c1-ep <cy---diff ¢; < foreach 1< i < n.

~

We writecy - ¢, < cj---c, if er--cp <o, butey--ep # ¢



A coloringon a nonempty sét is a functioncol : W — C™. Colorings on frames
(W, R) will have to satisfyuRv = col(u) < col(v). Then colorings and valuations on
frames are in one-one correspondence. Giveh & (W, R, V'), we can describe the
valuation of a point by the coloringply : W — C™, defined bycoly (w) = ¢1-+-cp,
where for each X i <n,

c-{ 1L, weV(p);
L0 wgVipi).

We callcoly (w) the color ofw underV'.

In any frame§ = (W, R), we say that a subsét C W totally coversa pointw € W,
denoted byw < X, if X is the set of all immediate successorswofWe will just write
w < vinthe case thab < {v}. A subsetX C W is called aranti-chainif | X| > 1 and
for everyw,v € X, w # v implies that-w Rv and—wv Rw.

We can now inductively define theuniversal model{/(n) by its cumulative layers
U(n)k for k € w.

Definition 2.1.

e The first layei/(n)! consists of 2 nodes with the 2 differentn-colors under
the discrete ordering.

e Under each element in /(n)* — U (n)*~1, for each colors < col(w), we put
a new nodev in U(n)*** such thatv < w with col(v) = s, and we take the
reflexive transitive closure of the ordering.

e Under any finite anti-chai with at least one element i(n)* —/(n)*~* and
any colors with s < col(w) for all w € X, we put a new elementin U(n)**1
such thatol(v) = s andv < X and we take the reflexive transitive closure of the
ordering.

The whole model/(n) is the union of its layers. It is easy to see from the con-
struction that every/ (n)* is finite. As a consequence, the generated subnisge),,
is finite for any nodev in U(n).

The 1-universal model is also call&ieger-Nishimura laddemhich is depicted in
Figure 1.

Let Upper(9) denote the submod&R,cy 4w« 9€NErated by all the points
with finite depth. It is known that the-universal model is isomorphic to the finite
part of then-Henkin modelU pper(H(n)). N. Bezhanishvili gave in [1] an algebraic
proof of this fact. In the final section, we prove it directly the basis of two important
lemmas that we already need in the next section on the firkbyaheorem. These
two lemmas respectively state that every finite model can appad p-morphically
onto a generated submodeliéfrn) (Lemma 2.2), and thd¥(n),, is isomorphic to the
submodel ofH{(n) generated by the theory of the de Jongh formula¢gtemma 2.9,
see Definition 2.4).

Theorem 2.2. For any finite rooted Kripke:-modelt, there exists a unique point
inU(n) and a p-morphism dbt ontol{ (n).,.



0 0
0 0
0 0

Figure 1: Rieger-Nishimura ladder

For a proof of Theorem 2.2, see e.g. [8]. It implies immedyjatey the finite model
property ofIPC, thati/(n) is a counter-model to every formula that is a non-theorem
of IPC. This shows that/(n) deserves being called a “universal model”.

Theorem 2.3.
1. For anyn-formulay, U(n) = ¢ iff Fipc ¢.
2. For anyn-formulasy, ¢, for all w € U(n)(w = ¢ = w =) iff ¢ Fipc 9.

Proof. (1) «<=: trivial. =: Supposé“ipc . Then there exists a finite-model9t and
a pointw € 9 such thath, w £ ¢. By Theorem 2.2, there exists a p-morphigrof
MtoU(n). Henceld(n), f(w) [~ .

(2) follows easily from (1). O

For any nodev in ann-model9n, if {w,...,w,,} is the set of allimmediate suc-
cessors ofv, then we let

prop(w) = {pi|w = p;,1 <i<n},

notprop(w) := {g;,|w | ¢;,1 <i < n},

newprop(w) = {rj,|w = r; andw; = r; foreach 1< i <m, for 1 < j < n}.
Herenewprop(w) denotes the set of atoms which are about to be trug ire. they are
true in all ofw’s proper successors. Next, we define the formylasand1),,, which
were first introduced in [4], and which were extensively dssed and named de Jongh
formulas in [1].

INote that ifw is an endpointpewprop(w) = notprop(w).



Definition 2.4. Letw be a point iri/(n). We inductively define itsle Jongh formulas
Pw aNdey,.

If d(w) =1, then let

Do 1= /\pr()p(w) A /\{ﬁpk | pi € notprop(w), 1<k <n},
Yo 1= Q.

If d(w) > 1, and{wz,...,w,, } is the set of all immediate successorsfthen define

Pw = /\prop \/newprop )V \/ Y, — \/ (pwl
Q/Jw =P \/ Pw, -
=1
The most important properties of the de Jongh formulas areafed in the next
theorem. It was first proved in [4].
Theorem 2.5. For everyw € U(n) = (U(n), R, V'), we have that
o View) = R(w),
whereR(w) = {u € U(n) |wRu};
o V(yu)=U(n)\ R (w),
whereR~Y(w) = {u € U(n) |uRw}.

An easy lemma that is needed in the proof of Jankov’s theonetimel next section
is the following.

Lemma 2.6. If u,v € U(n) andvRu, thenkpc ¢, — .
Proof. Immediate from Theorem 2.5 and Theorem 2.3. O

Definition 2.7. We write

e On(p) ={Y| Fipc ¢ — ¥}

We write Cn,,(¢) = {n-formulas | Fipc ¢ — 1}, but may leave the out if it
is clear from the context.

o Th(M w)={p|Mw ¢}

We write Th(w) = {¢|w = ¢} if M is clear from the context, arbh,, (M, w)
for the restriction of'h (901, w) to the set ofr-formulas. Again, we may delete
then.

Corollary 2.8. For any pointw inU(n), Th(w) = Cny,(pw).

Proof. By Theorem 2.57'h(w) 2 Cn,(¢w). For the other direction, lep be ann-
formula such thal/(n), w |= 1. By Theorem 2.5 again, we have thétn) = v, — 1/)
thus by Theorem 2.35ipc ¢ — 9, i.€.9 € Oy (pu).



The next lemma expresses the essence of the fact that thepgwpef then-Henkin
model is isomorphic to the-universal model. We will pursue this in the last section.
For the time being the lemma will come in very useful in thegdraf the first Jankov
Theorem, the main theorem of the next section.

Lemma 2.9. For anyw € U(n), let ¢, be a de Jongh formula. Then we have that
H(”)Cn(«pw) = u(n)w

Proof. Leti(n) = (U(n),R,V)andH(n) = (H(n),R',V'). Defineamag : U(n), —
H(n)cn(p,) DY taking
f(v) =Cn(py).

We show thatf is an isomorphism.
First for anyv € U(n), by Corollary 2.8, we have thate V (p) iff Cn(p,) € V' (p)
and that

uRv <= U(n),v = ¢, (by Theorem 2.5)
< ¢, € Cn(p,) (by Corollary 2.8)
< COn(pu) € Cn(pw)
= f(u)R'f(v).

This makesf into a homomorphism.

Now, suppose: # v; w.l.o.g. we may assume thatuRv, which by Theorem
2.5 means tha/(n),u ~ ¢,. Thus,¢, ¢ Cn(e,) by Corollary 2.8, and s¢ (u) =
Cn(py) # Cn(ey) = f(v). Hence,f is injective.

It remains to show that is surjective. That s, to show that for ahye H (1), (,,,)
(i.e. anyn-theoryl" O C'n,, (p,,) with the disjunction property) there existwith « Rv
such thal = Cn(y,). We prove this by induction on the depthaf

d(u) = 1. It suffices to show that i€'n(¢,,) C T, thenl = Cn(y,). Thisis clear
from the fact that) € Cn(p,,) iff Fipc @, — 0 iff (by Corollary 2.8), because this
shows that’n(y,,) is maximal consistent.

d(u) =k+1. Let{ua,...,un } be the set of allimmediate successors oSuppose
Cn(py) CT. If Cn(py,;) €T for some 1< i < m, then by induction hypothesis,
I = Cn(yp,) for somev € R(u;), i.e.v € R(u). So, we can assum@n(y,,,) ¢ I' for
all 1 <i<m. Thusl ¥ ¢, for each 1< i <m. Take anyd € I'. We then have also
0N, €T. So,

ON@uF Qug VN Py, -

Sincel{(n) is universal, there exists@ € U(n) such that
Un),u' 0N @, andU (n),u’ F @u, V-V ou,, -

By Theorem 2.5y = u, which implies that{(n),u = 6. By Corollary 2.8,0 €
Cn(py). Thereford = Cn(p,,). O

We end this section by a corollary which follows from the espondence between
H(n) andi/(n), and which plays a crucial role in our proof of Jankov’s thezor



Corollary 2.10. Lett be any model and) be a pointini/(n) = (W, R,V'). For any
pointz in 91, if M,z |= ».,, then there exists a unique poinsatisfying

max ': Do, max l;& Pogs ,93?,:17 l;& Lo s
wherev < {v1,-++ v, }, andwRv.

Proof. Note thatl'h,, (90, z) isanode i (n) = (W', R, V'). M, x = ¢,, implies that
Th, (MM, z) Fipc ©w andCny, (9 ) R'Th, (9, ). Thus, by Lemma 2.9 h, (9N, z) =
Cny,(py) for a unique poinv € W. Moreover we havevRv. S0,z = ,,.

By Theorem 2.5, we have thét(n) (= ¢, — ¢, for all 1 <i < m. Thus¥pc
0y — 0y, aNd,, & Cny(py) = Th, (9N, ), SOM, x = @y, O

3 Jankov’s Theorem for extensions of IPC

The original theorem was proved by Jankov in [6] with resp@edgebraically inspired
formulas. De Jongh proved in [4] the same theorem with refgattte de Jongh formu-
las defined above. Here we transform the latter proof, whiaberan algebraic detour,
into a purely frame-theoretic one. We have set the stagesiprtivious section in such
a manner that the analogies between the proof of the Jankavem and the proof
of our central Lemma 4.7 for the Jankov Theoremkad (Theorem 4.9) in the next
section will come out as clearly as possible.

One of the things we will need in the proof of Jankov’s theoigthat under certain
conditions a Kripke frame p-morphism from a descriptiverfeato a finite descriptive
frame is almost automatically also a descriptive frame pghsm. The next lemma
states the necessary conditions.

Lemma 3.1. Let§ = (W, R,P) and® = (W', R, P’) be two descriptive frames with
W’ finite. Letf be a (Kripke frame) p-morphism from the Kripke frafi&, R) to
the Kripke framgWW’, R') such thatf ~1(R(w)) is an admissible set for any € W,
Thenj is also a (descriptive frame) p-morphism from the descrgpframeg to the
descriptive frame5.

Proof. It suffices to show that for an € P’, f~1(X) € P. Observing that\ =

U R(w), we obtain that
weX

FAX) =1 Rw)= U fRw)),

weX weX
which impliesf~1(X) € P sincef~1(X) is a finite union of admissible sets. [

The following useful lemma was introduced (as Theorem 8®ahd discussed in
[1]. It says that any finite rooted frame can be isomorphjcllnd as a generated
submodel ot/ (n) if only we taken large enough.

Lemma 3.2. For any finite rooted fram& = (W', R’), there exists amodél = (§, V)
on§ such thatt is isomorphic to a generated submodih),, of U (n).



Proof. We introduce a propositional variabtg, for every pointw in W, and define
a valuationV” by letting V'(p,,) = R(w). Putn = |IWW|. By Theorem 2.2, there exists
a p-morphismf from the modeb)t = (F, V') onto a generated submodé(n),,. By
the construction, we know that different points®f have different colors, thug is
injective, i.e. Mt is isomorphic td{(n),,. O

Note that the underlying Kripke frame &f(n),, = (W, R, V') described in the pre-
vious lemma can be viewed as the general fréthieR, Up(1V)), which is a descriptive
frame sincdV is finite.

Theorem 3.3(Jankov) For every finite rooted framg, letv,, be the de Jongh formula
of w in the model{(n),, described in Lemma 3.2. Then for every descriptive fréme

& £ 9, Iff F is a p-morphic image of a generated subframeof

Proof. The direction from right to left is obvious, singet~ ., follows immediately
from Theorem 2.5.
For the other direction, suppose}~ v,,. Then there exists a mod# on & such
that
mb&(ﬁw_’(ﬁwl\/"'\/(ﬁwm, (1)

wherew < {wy,--- ,wy, }. Consider the generated submattek= Ny, = (W', R/, P', V")
of M. Note that sincé’’(¢,,) is admissible{W’, R’,P’) is a descriptive frame. Define
amapf : W — W by taking f(z) = v iff

mlva?':(pvvm/ax%wvlv"'vm/axb&kaa (2)

wherev < {v1,--, v }.

Note that for everyr € W', W,z = ¢y, thus by Corollary 2.10, there exists a
uniquev € R(w) satisfying (2). Sof is well-defined.

We show thalf is a surjective (descriptive frame) p-morphism®f’, R, P’) onto
(W,R,P). Suppose:,y € W with zR'y, f(x) =v and f(y) = u. Sinced’,z = ¢y,
we have tha??',y = ¢,. By Corollary 2.10, there exists a unique pointe W such
thatw’' andy satisfy (2), moreoverny Ru’. So, sinceu andy also satisfy (2), by the
uniquenessy’ =« andv Ru.

Next, suppose: € W’ andv,u € W such thatf(x) = v andvRu. We now show
that there existyg € W’ with xR’y such that

N,y b= pus Wy e Quys- N,y o (3)

whereu < {ug,---,u;}. This will give us the required(y) = u. We will prove this
directly if u is an immediate successorgfi.e. one of they,. Foru in general it follows
then by tracing a chain fromto w.

Sincex andv satisfy (2), andp,, implies by its definition that

m k
\/ 17[}712' - \/ QO’U,L" (4)
i=1 i=1
we must have that
N, b o, (5)



because: is one of they;. From (5) the existence gfwith xR’y satisfying (3) imme-
diately follows. Hence, we have shown thfais a (Kripke frame) p-morphism.

To show thatf is surjective it is sufficient to note that, by (1), there éxise W’
such that (2) holds for andw, i.e. f(x) = w. Then, for every node € W, we have
thatwRv. Sincef is a (Kripke frame) p-morphism, there existe R'(z) C W’ such
that f(y) = v.

It remains to show thaf is a (descriptive frame) p-morphism between the two
descriptive frames. In view of Lemma 3.1, it is sufficient teow that for any € X,
fY(R(v)) = V'(¢,) which is an admissible set.

Indeed, for every: € f~1(R(v)), there exists: € R(v) such thatf(x) = u and so
Nz = .. Applying Lemma 2.6 giveSt,z = ¢,, and sar € V'(y,). On the other
hand, for every: € V'(¢,), by Corollary 2.10, there exists a unique R(v) such that
f(z) =u, thusz € f1(R(v)).

Hencef is a surjective (descriptive frame) p-morphisn{@f’, R', P’) onto(W, R, P).
Thensinces = (W, R, P), § is a p-morphicimage ofi’’, R’,P’), which is a generated
subframe of%. O

We conclude this section with a useful theorem of [4], [5]. Wi not apply it
directly in this paper, but we will use an adapted form of ithe special case of the
next section.

Theorem 3.4.If L is an intermediate logic strictly extendingC, i.e.IPC C L C
CPC, then there exists € w andw in U (n) such thatL - 1,,.

Proof. Supposey is a formula satisfying
LEyandIPC ¥ y.

Then there exists a finite rooted frafiesuch thafy (= x. By Lemma 3.2, there exists
a model(F, V) on § such that{§, V') = U(n),, for some generated submodéin),,
of U(n). Consider the de Jongh formula,. Suppose. ¥ v,,. Then there exists a
descriptive frame of L such that |~ v,,. By Theorem 3.3F is a p-morphic image
of a generated subframe &f Thus,§ is anL frame. Sincd. I- x, we have thaf E x,
which gives us a contradiction. O

4 Jankov’s Theorem for KC

Jankov’s logidKC (also called the logic of weak decidability) is the interriae logic
axiomatized by-p vV =—p. KC is complete with respect to finite rooted frames with
unique top points. From that fact it is not difficult to shovatKC proves exactly the
same negation-free formulasl&C. That is, for any negation-free formulg KC + ¢

iff IPC F . For all this, check for example [3]. Jankov proved in [7]ttKL is the
strongest intermediate logic that has this property. Aeogroof can be obtained by
using canonical formulas (see [3]). In this section, we gifime-theoretic alternative
proof of Jankov’s Theorem. The basic idea of the proof coms fidapting the proof
of Theorem 3.3 combined with Theorem 3.4 to the special cBB&oframes.



We start with defining formulag!, and«, which are negation-free modifications
of de Jongh formulas. They function &¢C-frames as de Jongh formulas do on all
frames. First, we introduce some terminology.

For any finite sefX of formulas with| X | > 1, let

DX = N\p = v]pveX}.

For the case thafX'| = 1 or 0, we stipulat&X = T.

Let(n)w, = (W, R,V) be a generated submodel with a largest elemeni/(n)
such that

o tlEpLA-Apy;
e col(w) # col(v) for all w,v € W such thatv # v.

Letr be a new propositional variable (to be identified with 1 so that we can talk
aboutps,...,p,,r-models as + 1-models).

Definition 4.1. We inductively define the formulas,, and),, for everyw € .

If d(w) =1,
@'y =D1A " APn,
Yoy =Py — T

If d(w) = 2, letq be an arbitrary propositional letter itvtprop(w). Define

¢ty = \prop(w) Abnotprop(w) A((q — ) — q)?,
Yy = — 4

If d(w) >2andw < {ws,---,wy}, thenlet

¢ 1= Aprop(w) A (\ newprop(w) v \/ ¥, =\ ¢l,,),
=1 =1

Ury =y =\ Oy
i=1

We will prove for they!, andi)!, formulas a lemma (Lemma 4.7) which is anal-
ogous to Theorem 3.3 for the,, and,, formulas. It is good to note already that
the !, andy, formulas cannot be evaluatedlif{n), since there is one propositional
variable to many in them. Nevertheless, we will be able ttfolthe general line of
the argument in the previous section.

It is worth remarking that, fod(w) = 2, ¢!, is a generalized form of Peirce’s Law
((g—=7)—q)—q).

Lemma 4.2. ¢/, [r/L]® andy! [r/ L] are IPC-equivalent tap,, and.,, respectively.

2Note that in the definition, it does not matter whighe notprop(w) is chosen. Note also that
notprop(w) = newprop(w).
3We write p[p /] for the formula obtained by replacing all occurrencep of by .
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Proof. We prove this by induction od(w).
d(w) = 1. Trivial.
d(w) = 2. ¢, [r/ L] = Aprop(w) Anotprop(w) A((g — L) — q).
First note thatg — L) — ¢) is equivalent to-—¢. On the other hand,

= @w < Aprop(w) A (\/ notprop(w) vV =(p1 A+ App) = prA---Apn)
F@w < A\ prop(w) A (\/ notprop(w) — pr A+ Apa) A=(pL A+ Apn) = LA~ Apy)

Under the assumptiop prop(w), \V notprop(w) — p1 A--- A p, iS equivalent to
Anotprop(w). Furthermorer(pi A--- Apy) — p1A--- Apy, IS equivalent to-—(p1 A
.-+ Apn) and hence to te—p1 A --- A ——p,,. This, in its turn is under the assumptions
Aprop(w) andAnotprop(w) equivalent to-—q. So, indeed; ¢, <+ ¢/, [r/ L] and

d(w) > 2. This is proved easily by applying the induction hypotkesi O

Obviously, we could have defineg, ands)!, in such a way that this lemma would
have been a complete triviality, but we preferred giving aeriotuitive definition.
We will use the following corollary later in the proof of Thesi 4.9.

Corollary 4.3. For any generated submodé(n).,, of U/(n) as described above, any
pointw in U(n)wy, ipc ¥,

Proof. By Theorem 2.504/(n).,, ~ 1w, thus, by the Lemma 4.2, the underlying frame
of U(n)., falsifiesy,. Hencel/ipc 11, O

The nextlemma shows that thé formulas have the same property that using The-
orem 2.3 was easy to prove for the, formulas in Lemma 2.6. Note however that this
theorem is not applicable to thg, formulas. Here we prove the corresponding theo-
rem directly from the construction of the, and+/, formulas by a method that could
have been applied to the, formulas, but would have been unnecessarily complicated
in that case.

Lemma 4.4. LetU(n)., = (W, R,V) be a model as described above anduet be
two nodes ifd¥ with wRv. Then we have thatipc ¢, — ¢/, .

Proof. We prove the lemma by induction altv).
If d(v) =1, theny] =piA---Ap,. SincewRv, we have thaprop(w) C {p1, -+ ,pn}
and
=, — N prop(w). (6)

We show that- ¢! — ¢! by induction ond(w).

11



d(w) =d(v)+1=2. Then for any,q € notprop(w) C {p1,--- ,pn} We have that
FpiAApn— (pegandEpi A Ap, — ((g— 1) = q).
It follows that
F ! — Anotprop(w) and ¢, — ((g — 1) — q).
Together with (6), we obtain
¢, — \prop(w) Abdnotprop(w) A((q — 1) — q)
ekl — @,
d(w) > 2. Letw < {wq,---,w}. Tthen for any immediate successoy of w,
sinced(w;) < d(w) by induction hypothesis, we have that, — ¢/,., which implies

k
thatt- ¢, — V ¢l,. and that
=1

k k
=@, — (\/ newprop(w) v \/ ¢¥1,. — \/ ©.,.). (7)
i=1 i=1
Together with (6), we obtain
k k
=l — Aprop(w) A(\/ newprop(w) v \/ ¢, — \/ ¢.,.) (8)
i=1 i=1
ekl — ¢,

If d(v) =2, then sincerop(w) C prop(v), clearly (6) holds. We show ¢/ — ¢/,
by induction ond(w).
d(w) = d(v) +1. Thenv = w; andy, = ¢/, for some immediate successor

k
of w, hencer- ¢}, — \ ¢, and (7) follows. Together with (6), we obtain (8) i.e.
i=1

F e, =
d(w) > d(v) +1. For any immediate successoy of w, sinced(w;) < d(w), by

k
the induction hypothesis, we have thaty;, — \/ ¢/, , which implies (7). Together
i=1

with (6), we obtain (8) i.et- ¢, — ¢!,,.
If d(v) > 2, then clearlyprop(w) C prop(v) gives (6). By a similar argument as
above, we can show that (7) holds, thus, (8)k&, — ¢/, is obtained. O

Next, we want to prove for the/, formulas an analogue to Corollary 2.10. But we
will have to do this in two steps. First, we show thgt nodes have the right color.

Lemma 4.5. Letd = (W', R', V') be anyn + 1-model and{(n).,, = (W, R,V) be
a model as described above. Rgt =V’ | {p1,---,p,}. For any pointw in U (n).,
and any pointz in 90, if

max':(piuvmvxl;&(piulv"'vmaxl;éwiyma (9)

wherew < {w1,--- ,wy, }, thencoly,, (z) = coly (w).
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Proof. We prove the lemma by induction atfw). In the following discussion we re-
strict attention tov-formulas andh-atoms all the time.

d(w) =1, i.e.w =t. Then (9) means th@t, x = p1 A--- App. AlSO,U(N)wy,t =
P1A -+ App. Socoly, (z) = coly (w).

d(w) = 2. Then (9) implies that

M,z = /\pmp(w). (10)
This means that all atoms truednare true inz. From (9) we also have that
M,z = Anotprop(w). (11)

So, either all atoms false i are false in, or all are true inz. But, in this case, in
(9)m =1andwy =t, soO

M,z EprA- Apn. (12)

This implies that all atoms false in are false in: coly;, (z) = coly (w).

d(w) > 2. This is the induction step. Again we have as in the previaise that all
atoms true inv are true inz. Now (9)

M, 2 Y, (13)

for all immediate successar; of w, i.e. for each immediate successarof w, there
existsy; € R'(x) such that; andw; satisfy (9). Sincel(w;) < d(w), by the induction
hypothesis, we have thably, (y;) = coly (w;). So, all atoms false in at least one of
thew; are false inz. On the other hand, (9) also implies

M, x [~ \/newprop(w), (14)

So, all atoms true in allv; but not inw are also false irc. We havecoly, () =
coly (w). O

This is the point where it becomes clear why at the start sf¢bction we insisted
on all the nodes af/(n).,, to have distinct colors. With this assumption the required
analogue of (Corollary 2.10) now readily follows.

Lemma 4.6. Let M and U(n).,,, be models described above. For any naden
U(n)w, and any noder in 9, if M,z = ¢!, then there exists a unique pointe
U(n)w, satisfying

Wt,x':%?;, maxb&(pglv"'amvxb&(pgma (15)

wherev < {v1,--- ,v,, }, andwRv.
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Proof. Suppose, = |= ¢,. We show that there existse R(w) satisfying (15) by
induction ond(w).

d(w) = 1. Then triviallyv = w satisfies (15).

d(w) > 1. If for all immediate successaw; of w, M,z [~ ¢}, , thenw satisfies
(15). Now suppose that for some immediate succesgpof w, M,z = %0. Since

M,z = gpﬁ% andd(w;,) < d(w), by the induction hypothesis, there exists W, such
thatw;, Rv andv satisfies (15). And clearlyy Rv.
Next, suppose’ € U(n),, also satisfies (15). By Lemma 4.5,

coly (v') = coly,, (z) = coly (v),
which by the property of{(n),,, means that’ = v. O

LetJ be afinite rooted frame with a largest elemeftBy Lemma 3.2, there exists
a model(F, V) on § such that(F, V') = U/(n),, for some generated submodé(n),,
of U(n). Note that/(n),, has a top point, ¢ = p1 A --- Ap,, and distinct points of
U(n),, have distinct colors.

The next lemma is a modification of the Jankov-de Jongh Thediéneorem 3.3)
proved in the previous section. Both the statement of therlarand its proof are
generalized from those of Theorem 3.3.

Lemma 4.7. For every finite rooted fram@ with a largest element, 1ét(n),, be the
model described above. Then for every descriptive fréme

& = o), iff § is a p-morphic image of a generated subframeof

Proof. «<: LetU(n), = (W, R,P,V). Suppose is a p-morphic image of a generated
subframe ofs. By Theorem 2.5{/(n),, £ ¥, thus§ £ ¢, By Lemma 4.2, we
know in that case th& (~ «},. Then® £~ 1., follows immediately.

= Suppose¥ |~ ¢! . Then there exists a mod# on & such thadt (= ¢!, . Con-
sider the generated submo@&l= My, y = (W', R',P', V') of N. SinceV'(y,,) is
admissibled?’ is descriptive. Define a map: W’ — W by taking f(x) = v iff

‘T(’,a:|:<pi,,‘J’I’,xb&wgl,---,m’,xb&w;k, (16)

wherev < {v1,--, v }.

Note that for every: € 2V, M,z = ¢/, thus by Lemma 4.6, there exists a unique
v € R(w) satisfying (16). Sof is well-defined.

We show thalf is a surjective (descriptive frame) p-morphism®f’, R, P’) onto
(W,R,P). Supposer,y € 0N with xRy, f(x) =v and f(y) = u. SinceM',z = ¢,
we have thad?,y = ¢/ . By Lemma 4.6, there exists a unique poite 1 such
thatw' andy satisfy (16), moreovesRu'. So, sinceu andy also satisfy (16), by the
uniquenessy’ =« andv Ru.

Next, suppose: € 9" andv,u € W such thatf(z) = v andvRu. We show that
there existy € M’ such thatf (y) = v andz R'y.

The only interesting case to considerdi®&’) = 2 andu # v. In this caseu = t.
Sincef(x) = v, v andz satisfy (16), so

N.x = /\prop(v) NAnotprop(v) A((g — r) — q). a7)
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Note that
|*|pc ((q — T) — q) — —\—|q

Thus M,z = ——q, which means that there exigte 17’ such thatr R’y and)',y = q.
Since

N,y k= /\prop(v) A Dnotprop(v),

we have that?,y = p1 A+ pa, i.e. f(y) = u.

The surjectivity off follows in the same way as in the proof of theorem 3.3.

By applying Lemma 4.4, Lemma 4.6 and using the same argunsethigain the
proof of Theorem 3.3, we can show that for every X, f~1(R(v)) = V'(¢/,), which
is an admissible set. Therefore by Lemma 3.1, we obfaf{X) c P'.

Hence,f is a surjective (descriptive frame) p-morphism{8f’, R, P’) onto(W, R, P).
Thensinces = (W, R, P), § is a p-morphicimage ofi’’, R',P’), which is a generated
subframe of®. O

Remark 4.8. We have enough information to discuss the behavior ofsfhein the

n+ 1-Henkin model. Assumel=r andz = ), for some pointv of U/ (n) with d(w) >

2 and some point of then + 1-Henkin model. We will show that in that casé= .

If that is not the case, then there exists:auch thatr = ¢!, with least depth> 2,
i.e.z [~ ¢, for allimmediate successar; of u. This means thaf(z) = u. By the
surjectivity of the functiorf constructed in the proof of Lemma 4.7, we know that there
exists a point € R(w) such thatd(v) =2 and ay € R'(x) such thatf(y) = v. From

this it follows thaty |~ 1/ . On the other hand, from = r, it is easy to see that = ¢!,
which is a contradiction. We have to concludeste= ;.

Of course; can be false as well if}, is true, and in the end it comes down to the
following. The node, in then + 1-Henkin model generates a submodel consisting
of an isomorphic copy df/(n),, (herer is false) with above its top a copy of the
Rieger-Nishimura ladder for with py,---,p, true everywhere. This also gives an
indication how the p-morphism of the proof of Lemma 4.7 wankhe case of the
n+ 1-Henkin model for the submodel generatedd)y On the bottom part it works as
an isomorphism, the top part, i.e. the Rieger-Nishimuralkxds mapped onto a single
point.

Now we are ready to prove Jankov’s theoremiip.

Theorem 4.9(Jankov) If L is an intermediate logic such thdt ¢ KC, thenL I- 6
andIPC ¥ 0 for some negation-free formuta

Proof. We follow the idea of the proof of Theorem 3.4. Suppgse a formula satis-
fying
L yandKC ¥ .

Then there exists a finite rootédC -frameF with a largest element such th@t~ .
By Lemma 3.2, there exists a mod@, V') on § such that(§,V) = U (n), for some
generated submodél(n),, of U(n). Note that/(n), has a largest elementt |=
P1A -+ Apy andeoly (v) # coly (u) for all v,u inU(n),,.

Consider the formula’,. Supposd. ¥+, . Then there exists a descriptive frame
& of L such that® (£ ¢! . By Lemma 4.7,F is a p-morphic image of a generated
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subframe of%. Thus,§ is anL-frame. Sincel. - x, we have tha§ | x, which leads
to a contradiction.

Hence,L i ¢! . We have thatPC ¥ ¢!, by Corollary 4.3 and)!, is negation-free,
thusé = !, is the required formula. O

5 Some properties otf(n) and H(n)

In this section we conclude in Theorem 5.1 the almost finigivedf of section 2 that
U(n) is isomorphic to the upper part 61(n). After that, we sharpen this result by
giving a quick proof that these two models are even more “eoted”: every infinite
upset of H(n) has an infinite intersection & (n), or in other words, if an upseX
generated by a point in the-Henkin model has a finite intersection with its upper
part, then-universal model, theX lies completely iri/(n). Both results were proved
before in [1].

Theorem 5.1. Upper(H(n)) is isomorphic td/(n).
Proof. Let U(n) = (U(n),R,V). Define a functionf : U(n) — Upper(H(n)) by
taking
f(w) = Cnlpw).
We show thatf is an isomorphism. From the proof of Lemma 2.9 we know that

U(n)w = Upper(H(n)) ¢ (w)-

It then suffices to show thdtis a bijection.

Let w,v be two distinct points of/(n). W.l.0.g. we may assume thaivRv, thus
by Theorem 2.594(n),w = ¢, buttd(n),v = ¢,,. We know from the proof of Lemma
2.9 that

U(n)w = Upper(H(n)) s andi (n), = Upper(H(n)) ¢,

thusUpper (H(n)) (w) Z Upper(H(n)) s, SO.f(w) # f(v).

For any pointz in Upper(H(n)), by Theorem 2.2, there exists a uniqug such
thatl{/(n),,, is a p-morphic image o/ pper(H(n))., which by Corollary 2.8 implies
that

Th(z) = Th(w,) = Cn(pw, ),

thereforef (w,) = x. O

We callw € X aborder pointof an upsetX of Z/(n), if w ¢ X and all successors
v of w with v # w are inX. Denote the set of all border points &f by B(X). An
upsetX is uniquely characterized by its set of border points. Nb#t &ll endpoints
U(n) which are not inX are inB(X). The concept of border point was developed in
studied in [2].

Fact5.2. If X is finite, thenB(X) is also finite.
Proof. SinceX is finite, there exists € w such thatX C U(n)*. Observe thaB(X) C
U(n)**1, which means thaB(X) is finite, sincel/ (n)**1 is finite. O
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The next lemma shows the syntactic side of the connectiorpséts and their
border points.

Lemma 5.3. If X = {v1,---,v;} is a finite anti-chain inl{(n) and B(U(n)x) =
{w1, -+, wm }, thenkpe (@, V-V i) < (P A Ay, ).

Proof. In view of Theorem 2.3, it is sufficient to show th@tn) = (o, V- Ve, ) <
(thwy A--- Ny, ). By Theorem 2.5, it is then sufficient to show that

z € R(v)U---UR(wvg) iff 2 ¢ R~ w1)U---UR Ywy,).

For =: Supposer € R(v1)U---UR(v;,) = U(n)x. If x € R7Y(w;) for some
1< i < m, then sincel/(n)x is upward closed, we have that € U(n)x, which
contradicts the definition aB(/(n) x ).

For<: Suppose: ¢ R(v1)U---UR(vi) = U(n)x. We show by induction oti(z)
thatz € R~(w;) for some 1< i < m.

d(x) = 1. Thenz is an endpoint which is a border point. Thus= w; for some
1<i<mandsor € R~(w;).

d(x) > 1. The result holds trivially ift is a border point. Now suppose there exists
y € R(x) such thaty ¢ U(n) x. Sinced(y) < d(x), by the induction hypothesis, there
exists 1< i < m such thaty € R~(w;). Thus,z € R~(w;). O

Theorem 5.4. Let be a point inH(n), i.e. T is an n-theory with the disjunction
property. IfR(I")NU(n) is finite, thenR(I") = R(I") NU(n).

Proof. SupposeX = R(I")NU(n) is finite. Then the seB(X') of border points ofX
is finite. LetB(X) = {w1,---,wn}. Supposd ¥ 1, for some 1< i < m. Then
there exists a descriptive frangesuch thats = I and® - ¢,,,. Since the underlying
frameg§ of U(n)., is finite rooted, by Theorem 3.3, the latter implies tfat a p-
morphic image of a generated submodebofThus,§ =T and sd/(n)., =T, which
is impossible sincev; € B(X) andw; ¢ R(I)NU(n).

Hence, we conclude th&tk ), forall 1 <i <m. LetY be the anti-chain con-
sisting of all least points oK. Then by Lemma 5.3, F ¢,, for somew € Y, which by
Theorem 2.5 means thBte R(w), sol" € U(n), thereforeR(I") = R(MN) NU(n). O
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